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Abstract

We consider the problem of reconstructing a surface from noisy samples by ap-
proximating the point set with non-uniform rational B-spline surfaces. We focus on
the fact that the knot sequences should also be part of the unknown variables that
include the control points and the weights in order to find their optimal positions.
We show how to set up the free knot problem such that constrained nonlinear opti-
mization can be applied efficiently. We describe in detail a parallel implementation of
our approach that give almost linear speedup. Finally, we provide numerical results
obtained on the Chemnitzer Linux Cluster supercomputer.
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1 Introduction

Non-uniform rational B-spline (or NURBS) are frequently used ([11, 4, 10]) for the repre-
sentation of surfaces in many applications because they allow flexible description of both
free form surfaces and usual geometries such as conic sections. Indeed, the set of rational
functions is much larger than that of polynomial functions, so in general NURBS provide
better approximation than their polynomial B-spline counterparts do. Another reason
for the appreciation of NURBS is that this representation is supported by many software
packages. For instance, OpenGL and ACIS ([12], [2]) offer commands for creating and
manipulating NURBS surfaces.

Our interest in the subject of approximation with NURBS is motivated by the application of
reverse engineering. In reverse engineering, one is concerned with the automated generation
of a computer aided design model from a set of points digitized from an existing 3D object.
Since many real world objects have been constructed using both simple algebraic surfaces
as well as free-form surfaces, NURBS surfaces appear to be a universal class for surface
fitting in reverse engineering.

It is well known (see [7]) that the choice of the knot vector of a spline (also called pa-
rameterization) has a tremendous influence on the result of the fitting procedure. For
this reason, several suggestions for a reasonable knot spacing have been made (see works
of Foley, Nielson, Lee which are referenced in [7]). However, for all these suggestions of
knot spacings, examples can be found where these methods provide unsatisfactory results.
Furthermore, these methods can only be applied for interpolatory splines while we are
interested in spline approximation. Therefore, for reliable results, one has to treat the
knots as unknowns in the approximation process. Since in many applications, we have to
cope with large data sets, we consider the parallel implementation of our approximation
procedure.

Existing work on this problem has mainly be done on the polynomial case (see [18, 9, 17]).
For the case of NURBS, the following approaches have been taken: in [4], the author uses
an iterative segment determination in order to establish the positions of the knots. The
authors of [11] use an improved version of Polak-Ribiere algorithm in order to minimize
some cost functional without trying to reduce the number of parameters.

To our knowledge, no papers on the parallel implementation of this problem have been
published. The context of the paper is organized as follows. In the next section we
will state the problem and introduce the various notations. We will also discuss how to
reduce the problem of surface fitting to be similar to the one in curve fitting by means of
lexicographic ordering. In section 2, we show how to solve the free knot problem which is
the main goal of this paper. The parallel realization will be described in section 3 where
we show how to achieve load balancing. Parallel performance analysis including speedup
and efficiency investigation will be depicted in section 4.
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2 Problem setting and notations

2.1 NURBS surface
A nonuniform rational B-spline (NURBS) surface with weights w;; € R, and control
pointsd; ; e R®* i=0,---,n, 5 =0,---,n, is given by:

o 2720 Wiy dig Nf* (u) NJ* (v)

Yo S wi i N (u)Nfv (v)

where N/ and N]’-“” are the usual B-spline basis functions ([5]) defined respectively on the
knot sequences:

X (u, v) == (1)

/’1’0 == Mku_lﬁuku". '7/’l/nu7/’l/nu+1 == /’Lnu+ku7 (2)
and
Vo= " =Vk,—1:,Vkyy" "3 Vnyry Vny+1 = = = Unytk, (3)

respectively.

2.2 Lexicographic ordering

Let us first introduce the following lexicographic ordering of the surface information:

Win,+1)45 = Wiy (4)

ditn,+1)+5 = diy (5)

N, +1+(u,0) = Nf*(u)Nj* (v). (6)

Note that the new expressions @;, dy, Ny(u,v) have only one index s = 0,---,n where
n = ny(n, + 1) + n,, whereas the old ones w;, d; j, Ni* (u)Nf” (v) have two indices

iZO,"',nujZO,"',TLU.
With the help of these new notations, the definition (1) becomes as simple as:

Y7o Wyd, Ny (u, )

X =
() = 5 N ()

, (7)

We will assume that

po =1y =0, and pn, 1k, = Vnytk, = 1.

In the sequel, we will denote:

W = (i, ..., W) (8)
D := (do,..d,) (9)
= (Wky» o Hnys Vhys -+ Vi, )- (10)



2.3 Free knot problem

Suppose we are given a sequence of noisy samples ((u;,v;), M;) i = 0,...,m with k, < m
and k, < m . We want to find the NURBS surface X(u,v) = Xw p r(u,v) which fits
these data best in a least square sense. Since we want to find the optimal positions of the
knots, we put them as variables. That means, we have the following problem:

V{,HBHT;) | Xw.p,1(ui, v;) — M. (11)

This problem is too difficult to solve because of the nonlinear dependence of X on the
parameters (W, D, T). Furthermore, we need to add some constraints that guarantee the
positivity of the weights. In the next section, we will show how to simplify this problem.

2.4 The fixed knot problem
If we are given a knot sequence T, then the problem
. U . AN . 2
w}ggﬂxw,m(uuvz) M|

will be refered to as fixed knot problem. It has been investigated for example in [4] where
it has been shown to be equivalent to the linear system:

(A+ AB)y = Ar, (12)

where A and B are given in block structure:

SRS

Ao A 0 B
?;0 NE)OZZTS e 27'10 N%nzzrs
™o NpoZt® 7o N Z5?
ZM = I— e MMY (14)
Z0MD = M (15)
z*) = M7 (16)
ZZ(Q’Q) = 1-g (17)
_ ;10 Nz)o o 210 me
Be| - (18)
210 N:LO o ;10 N;m



y = [(_10,.. (_ln,tIJO,.. by, ] "

r = ., 0 ZNO Uiy V5), ZN (ug, v5)]
1=0 1=
I := identity matrix of order 3
d, = [wzdzza widz’y; UN)zdzz]
N;q = Np(ui, vi)Nq(ui, Uz’)
ci = 1/(1+M3).

In all these expressions, A is a positive constant which should be chosen large enough (see
[4]) in order to ensure positivity of the weights.

3 Solving the free knot problem

The choice of the knot vector T has a large influence on the quality of the results of the
surface fitting. It is well known that a bad placement of the knots may lead to overshooting
effects that distort the shape of the surface. In this section, we describe our method of
surface fitting that involves the determination of optimal knot positions.

3.1 Preparing the problem for nonlinear optimization

In the following, we set up the problem such that nonlinear optimization methods can be
applied. According to section 2.4, for a given knot T, we can solve the subproblem (12) in
order to determine the corresponding weights W and the control points D. In other words
W and D are functions of T i.e.

(W, D) = (W(T),D(T)).

Problem (11) is therefore simplified into:

min > [IXwm)pem),z(ui, v:) — Ml (19)
=0

From now on, we will write only Xr(u;,v;) instead of Xw(t)p(T)1(%i;v;) in order to
simplify the notation. Then we have

manHXT ug, v;) — M2 (20)

=0

This problem still allows the occurence of the situations where p; and v; are not increasing.
Therefore, we will modify this problem so that only knots with pg, < pg,+1 < -+ < i,
and v, < vg,+1 < --- < v,, will appear. By denoting:
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Xr(u,v) = (X1z(u,v), X14H(u,v), X1,.(1,v)) and
Mz = (Mzwa Miya Mzz) 3
we have
mlnz Xz (uiyv;) — Mip)® + (X (i, v;) — Miy)® + (X2 (i, v;) — M;,)?. (21)
=0
By defining
532( ) = XT,J}(/U’ZJ Uz) — M,
SBH—I(T) = XT,y(uu Uz) - Miy
SSH—?(T) - XT,z (uz: U’L) - Mzz )
we obtain
3m+2
min »_ S7(T) (22)
i=0
Now we introduce the function
0 if >0
R(z) = { (—z) if <0
and we define
R(T) = R(tk,+1— ti,) + B(ptey12 — piry11) + -+ + R(pin, — i, 1)+ (23)

R(Vkv’i‘l - Vkv) + R(Vkv+2 - Ukv"‘l) + e + R(Unv - anfl) .

Instead of (22), we will consider

3m+2

mln Z [Si(T) + aR(T))?,

(24)

where « is a very large positive number. To understand the relationship between (22) and

(24), we note the following two properties of equation (24).

o If we have pp, < pg, 41 < oo < iy, and vy, < vg, 11 < .. <y, then pg 1 r—pigy, 4r-1 >

0 and Vg, 15 — Vgyts—1 E Oforallr=1,...,n, —k, s =1,...,
R(T) = 0. Thus,

3Im+2 3Im—+2

;} [S;(T) + aR(T)]? = ZO ST

n, — k, and therefore

o If there is some r with py, 4, < pg,+r—1 Or Some s with vy 1, < Vg, 151 , then

R(pigysr — pgy+r—1) > 0 0r R(vg,+5s — Vg, 4s-1) > 0 and so R(T) is nonzero. Because
of our assumption that « is a very large number, we can expect that >3"?[S;(T) +

aR(T)]? is also very large.



Since we are searching for the minimum of 33"+2[S;(T) + aR(T)]?, the preceeding two
points show that a T with pg,+r < pg,+r—1 OF Vg, +r < Vg,4+s—1 can never realize this
minimum. That means that the integration of the penalizing term in (24) avoids those T
With pig, +r < fy+r—1 OF Viyir < Vk,ts-1-

In situation where it is desirable to have |p; — pip1| > € and |v; — vjyq| > € for i =
ky,...,ny — 1 and j =k, ...,n, — 1, we replace (23) by

R(T) = R(pk,+1 — pk, —€) + -+ R(tn, — pn,—1 — &)+ (25)
R(ykv+1 - Vkv - 6) + e + R(an - V”vfl - E) :
3.2 Nonlinear optimization
By introducing
ri(T) := S;(T) + aR(T) and K :=3m+2, (26)
the surface fitting problem has the form of a usual nonlinear least square problem:
K
. ) 2
mjn [ (1)) 27)

Such a problem can be solved by nonlinear least square solvers like Levenberg-Marquardt
and Gauss-Newton (see [13, 6]). Note that for each evaluation of the function r;(T), we
need to solve the subproblem (12) in order to know the corresponding W(T), D(T). We
note that the order of the linear system (12) is small. It does not depend on the number
of data points. It depends exclusively on the order n of the NURBS surfaces (see relation
(7)). Furthermore, taking into account that the support of N/ (resp. N]’-“”) is [ty Mitk,)
(resp. [Vj,Vjtk,)), we conclude that the matrices in (13) are sparse and therefore we need
only to compute a few entries. On the other hand, we must note that the computation
of one entry of this system involves all data points. The remedy to that problem is to

assemble the following matrix and vector

I— C()M()Mg Co
_ T
po=| I-aMM ci=| @ (28)
I— CmMmM% Cm

only once and store them in arrays so that they do not need to be recomputed in subsequent
computations. Note that F' and c are independent of T. They depend only on the initial
data points. The only expressions which need to be updated in each iteration of the
nonlinear optimization are the values of Ny (u;, v;) which are mostly zero except for some
few values. They can be computed recursively in a fast way (see [1]).

As an illustration of the formerly described algorithm, we consider here two benchmarks
which consist in surface reconstruction from two sets of points which are respectively of
number 12221 and 12099 (See Fig 1 and Fig. 3). We plot in Fig. 2 and Fig. 4 the
corresponding reconstructed surfaces.
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Figure 1: 12221 data points Figure 2: Reconstructed surface

4 Parallel realization

4.1 Parallel assembly of the matrices in the fixed-knot problem

We want to show how to assemble the matrices in (13) in parallel. We use the matrix A to
describe our approach and note that the other matrices can be assembled in a similar way.
The order of A is small but the difficulty in its computation is that it is computationally
very expensive to calculate every single entry of it. In fact, for each entry (see (29)), we

have to compute a sum )", over all data points. That makes it very time consuming if

we have a large number m + 1 of data points.

o Noo(T— aMMT) -+ 2 N, (T— MM
An = 5 : (29)
moNpo(I—eaMM!) - Y7 N, (I—c¢MMT)
We can partition the indices 2 = 0, ..., m into x sub-indices S):
k—1
{0,...m}=U5, (30)
p=0

Therefore, we have the following simple summation:

-1

éEi:ZZET. (31)

p=0reS)y

a
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Figure 3: 12099 data points Figure 4: Reconstructed surface

That means that all processors proc, p = 0,...,k — 1 can compute simultaneously their
own entries and afterwards we need only to sum up all local outputs in order to have the
global result.

4.2 Short description of Levenberg-Marquardt algorithm
For ease of reference, we want to recall here the Levenberg-Marquardt (see [19]) for the

resolution of problem (27). Let us denote by r(T) the vector function whose components
are r;(T):

r(T) = [ro(T), 1(T), ..., Tams2(T)]. (32)

The components of the unknown T will be denoted by 7; i.e. T = (71, ..., 73) where [ :=
(ny — ky + 1) + (ny — ky + 1). J(T) will stand for the Jacobian matrix whose entries are

s (1) = )

We define also f(T) := 235 [r:(T)]?



Levenberg-Marquardt Algorithm:

step 0 : Takeay>0,7>10< <1 an initial T

step 1 : Set k=0 and compute fy := f(Ty)

step 2 : Compute J; := J(Ty), rr := r(Ty) and g := Jyre. If
|llgk|| = 0 stop, otherwise compute

Q. :=J. I, (33)

step 3 : Solve (Qx + axl)uy = —g and compute fr1 = f(Tx + ug)

step 4 = Compute oy := (frr1 — fr)/[8F ur + 5 (uf Qpuy)]

stepb : If o < B, set ap = yay and go to step 3; otherwise, set
Tri1 = Tk + ux and g1 = ag/7.

step 6 : Set k=k+1 and go to step 2.

4.3 Parallel computation of the Jacobian matrix

The Jacobian matrix J is of size (3m + 3) x [. That means that it has in practice very
large number of raws and a few columns. When the number of points become very large,
it is very costly to assemble and store this matrix. Our method is to assemble and store it
simultaneously (see sketch in Fig. 5). We can still follow the approach in section 4.1 and
each processor assembles therefore 3 x card(S,) rows.

J? . (assembled/stored by processor 0)
Ji . (assembled/stored by processor 1)
Ji =
£=1 | (assembled/stored by processor x — 1)

Figure 5: Distribution of the matrix J; to the processors

In practice, it is possible that the derivation of the function r;(T) is very difficult, so we
use finite difference to approximate its value:

Ori(T) _ ri(T +ee,) — ri(T)
or, € (34)




where e; = (0, ...,0,1,0,...,0) takes only value 1 at the s-th entry. We can distribute the
vector r(T) in (32) among the processors in the following way:

Therefore, the matrix J? can be written block-wise as:

» or?  Or? or?

The computation of the entries of J% can therefore be done in I steps by noting from (34)
that:

or’ 1P(T +ce,) —1?(T)
ory € ' (36)

4.4 Parallel computation of the matrix Q; and the vector g;

Now we consider how the matrix Qj in the relation (33) can be assembled in parallel. Note
that Qy is a very small matrix compared to its sources J{ and Ji(see Fig. 6). We note
the following simple relation:

Qi = (TR (TR + (T (TR + -+ (T (I (37)

In order to assemble Q, relation (37) simply induces that each processor proc, can assem-
ble its own Q} := (J?)"(JY). And Qy, will be the sum of all local Q}. That can be done
for instance with MPI_Reduce() if we use MPI to implement this idea. The same idea can
be applied to the computation of g, in step 2 by noting:

gr =dprp + Jprp + -+ J5 gt (38)

Q= Ji S

Figure 6: Size of Qx, JF and J;,
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4.5 Load balancing

In order to achieve a good performance result in parallel computing, it is desirable that
all processors execute approximately the same amount of computation because the goal is
that if we multiply the number of processors by two, then we expect also that the program
executes twice faster.

So as to achieve that load balancing, the sub-indices S, in (30) should have approximately
the same size. In other words, if we denote

L(p) := card(S,) ,

then L(p) which is an integer number that should be almost the same for allp = 0,-- -, k—1.
The following strategy can be used to achieve that goal:

m+1
J, my:=m+1—mgy-k

my Z:{
K

(where |z] stands for the largest integer which is smaller or equal to z).

_ ) my if p>my,
L(p)_{m0+1 if p<my.

As an illustration: if we have m + 1 = 123,025 data points and we have k = 9 processors,
then L(p) = 13669 if p > 4 and L(p) = 13670 otherwise.

5 Parallel performance

In this section, we would like to evaluate the performance of our parallel program. First,
we investigate the speedup of our algorithm. We recall the definition (see [16]) of speedup
for a parallel implementation involving k processors:

runtime of serial program

Sk) = runtime of parallel program with k processors

In Fig. 7, we show graphically the speedup of our parallel algorithm together with the ideal
speedup. We can notice that we have a speedup which is practically linear. In other words,
if we multiply the number of processors by two, then the time for running the algorithm
is also twice faster.

Secondly, we want to investigate the efficiency (see [16, 15]) which is defined by

If the efficiency F(k) approaches 0 then the parallel program is said to be bad because it
reflects a slowdown (see [15]). Contrarily, an efficiency of 1 demonstrate a good perfor-
mance. In Table 1, we gather the numerical results for the efficiency. As we can see, our

11
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number of proc  runtime efficiency
1 308.23 sec 1.000
2 161.35 sec 0.955
4 77.71 sec 0.991
8 37.25 sec 1.034
16 17.50 sec 1.100
32 9.61 sec 1.002

Table 1: efficiency
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algorithm can be categorized as having good performance because the efficiency is close to
1.

In Table 2, we gather the run-times of the programs for different number of data on various
number of processors. It confirms the linear speedup that we mentioned earlier.

Note that all the numerical results were obtained from the CLiC (Chemnitzer Linux Clus-
ter) supercomputer ([3]) and the parallel program was implemented by using MPI (Message
Passing Interface, see [14, 15, 8]).

number of data 64 processors 32 processors 16 processors

100,000 21.73 sec 42.54 sec 87.69 sec
200,000 43.25 sec 85.40 sec 172.03 sec
300,000 67.27 sec 129.83 sec 256.44 sec
400,000 90.08 sec 176.76 sec 342.26 sec
500,000 116.70 sec 225.38 sec 425.50 sec

Table 2: runtime in second

6 Future work

In this document, we have only considered the case of a whole NURBS surface. We plan
to investigate in the near future the case of trimmed NURBS surface fitting which is has
more interesting practical applications.
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