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Abstract

This paper is concerned with approximating noisy samples by non-uniform ra-
tional B-spline curves with special emphasis on free knots. We show how to set
up the problem such that nonlinear optimization methods can be applied efficiently.
This involves the introduction of penalizing terms in order to avoid undesired knot
positions. We report on our implementation of the nonlinear optimization and we
show a way to implement the program in parallel. Parallel performance results are
described. Our experiments show that our program has a linear speedup and an
efficiency value close to unity. Runtime results on a parallel computer are displayed.
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1 Introduction

Non-uniform rational B-splines (NURBS) settings are appreciated in many applications
because they allow flexible description of both free form surfaces and usual geometries
such as conic sections. Indeed, the set of rational functions is much larger than that of
polynomial functions, so NURBS give mainly better approximations than their polynomial
B-spline counterparts do. Another reason for the appreciation of NURBS is that they are
supported by many softwares. For instance, it is easy in OpenGL and ACIS ([11], [2]) to
create and manipulate NURBS by just giving the required parameters.

Our interest in the subject of approximation with NURBS is motivated by the application of
reverse engineering. In reverse engineering, one is concerned with the automated generation
of a computer aided design model from a set of points digitized from an existing 3D object.
Since many real world objects have been constructed using both simple algebraic surfaces
as well as free-form surfaces, NURBS surfaces appear to be a universal class for surface
fitting in reverse engineering.

In this paper we consider the curve case as a preliminary investigation for the surface case.
We assume that a sequence of noisy sample points M; is given and we aim at reconstructing
a NURBS curve X that approximates the points in a least-square sense.

It is well known (see [7]) that the choice of the knot vector of a spline (also called pa-
rameterization) has a tremendous influence on the result of the fitting procedure. For
this reason, several suggestions for a reasonable knot spacing have been made (see works
of Foley, Nielson, Lee which are referenced in [7]). However, for all these suggestions of
knot spacings, examples can be found where these methods provide unsatisfactory results.
Furthermore, these methods can only be applied for interpolatory splines while we are in-
terested in spline approximation. Therefore, for reliable results, one has to treat the knots
as unknowns in the approximation process.

In the context of polynomial B-splines, the use of free knots has already been investigated
by several authors ([18, 9, 17]). For the case of NURBS, the following approaches have
been taken: in [4], the author uses an iterative segment determination in order to establish
the positions of the knots. The authors of [10] use an improved version of Polak-Ribiere
algorithm in order to minimize some cost functional without trying to reduce the number
of parameters.

In this paper, we report on our implementation of a general method for approximation by
NURBS curves with free knots. In section 2, we provide the necessary preliminaries to state
the approximation problem. In section 3, we reformulate the problem such that nonlinear
optimization methods can be applied efficiently. For this, we reduce the dimensionality of
the minimization problem and introduce penalizing terms in order to avoid undesired knot
positions. In section 4, we describe in detail our implementation of the nonlinear optimiza-
tion that is based on the Levenberg-Marquardt method. In the last section, we discuss the
results obtained by this approach for several data sets and different knot spacings.



2 Problem setting and notations

2.1 Open and closed NURBS curves

A nonuniform rational B-spline curve (NURBS curve) with weights wy, ..., w, € R, and
control points dy, ...,d,, € R? is given by:

o wid; NF (1)
Z?:O w’iNik (t) ’

where NF is the usual B-spline basis ([5]) defined recursively by:

X(t) == (1)

1 L 1 ifte [(9,, 9i+1)
N; (t) = { 0 otherwise

t—0;

Oipr — 1
SN )+ N )

NE() =
(® 0 Ok — O

If we are interested in open curves, we will assume that N¥ is defined on a knot sequence

00 = .. :0]4;—170]67-.-;0’)170’)1-}-1 = "':0n+k‘ (2)

Figure 1: open NURBS curve with n=7, k=4 T = (0,0,0,0,0.2,0.4,0.6,0.8,1,1,1,1)
and W = (1.4,0.5,1.6,1.8,0.7,1.9,1.5,0.9).

We will assume furthermore that
0p=0, and 0, ,=1.
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In the sequel, we will denote:

W (Wo, -, Wy) (3
D = (do,..,d,) (4
T = (by,....00). (5

An illustration can be found in Fig. 1 where we see an open NURBS curve together with
its control polygon composed of the control points.

Remark 1 If we work with closed curves (see Fig. 2), the knot sequence relations in (2)
and (3) become

0n—|—1 = On + 00
Onte = Oppr + (61— 6p)

Ok = Opir—1+ (Op—1 — Ok_2)

T = (01, .., 0n_1). (7)

‘
| d1

-2k

-3k

-4+ d2

I I I I I I I I
-4 -3 -2 -1 0 1 2 3 4

Figure 2: closed NURBS curve with n =4, k=3 T = (0.5,1.0, 1.5,2.0, 2.5, 3.0, 3.5,4.0)
and W = (1.4,1.2,0.5,2.1, 1.1).

For the sake of simplicity of the explanation, we will develop our theory for open curves.
Note anyway that it can be easily generalized for closed curves as we will illustrate in the
numerical results.



2.2 Free knot problem

Suppose we are given a sequence of noisy samples (t;, M;) i = 0,...,m with k¥ < m. We
want to find the NURBS curve X(¢) = Xw p () which fits these data best in a least
square sense. Since we want to find the optimal positions of the knots, we introduce them
as variables. That means, we have the following problem:

in ;) X o,z (t:) — M| (8)

This problem is too difficult to solve because of the nonlinear dependence of X on the
parameters (W, D, T). Furthermore, we need to add some constraints about the positivity
of the weights. In the next section, we will show how to simplify this problem.

2.3 Brief recall of the fixed knot problem

If we are given a knot sequence T, then the problem
- 2
min ; 1 Xw,p,(t:) — M|

will be refered to as the fixed knot problem. It has been investigated for example in [4]
where it is shown to be equivalent to solving a linear system:

(A+ AB)y = Ar, 9)

where A and B are given in block structure:

=[] o (23

Ay Ao 0 B
SN Z* - SN, 7T
SNy Zi* --- XN, Z
ZM = I— e MMY (11)
ZELQ) = ciMi (12)
yASR) e;MT (13)
ZZ(Q’Q) = 1—g (14)
SNy, - SNy,
B:=| : (15)
YN,, --- XN,
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y = [ao,...,an,wo,---awn]T

r = [0,..,0,XNF(t), .., NP ()"
I := identity matrix of order 3
ai = [widiwawidz’yawidiz]
Vi k k
Ny, = Ny(t:)N;(t:)
¢ = 1/(1+M?2).

In all these expressions, ¥ is understood to be >77", and A is a positive constant which

should be chosen large enough (see [4]) in order to ensure positivity of the weights.

3 Solving the free knot problem

The choice of the knot vector T has a large influence on the quality of the curve fitting
result. It is well known that a bad placement of the knots may lead to overshooting effects
that distort the shape of the curve. In this section, we describe our method of curve fitting
that involves the determination of optimal knot positions.

3.1 Preparing the problem for nonlinear optimization

In the following, we set up the problem such that nonlinear optimization methods can be
applied. According to section 2.3, for a given knot T, we can solve the subproblem (9) in
order to determine the corresponding weights W and the control points D. In other words
W and D are functions of T i.e.

(W, D) = (W(T),D(T)).

Problem (8) is therefore simplified into:

min Y [ Xw(r)pem).z(t:) — Mill”. (16)
=0
From now on, we will write only Xr(#;) instead of Xwr) p(r),r(%i) in order to simplify
the notation. We have then

m
min 3 [Xx(t) - M. (17)
=0
This formulation still allows the occurrence of a knot sequence that is not increasing.
Therefore, we will modify this problem so that only knots with 6, < 6,1 < --- < 6, will
happen. By denoting:

XT(t) = (XT’w(t),XT’y(t),XT’z(t)) and
Mi = (Mm; Miya zz) 3
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we have

min Y (Xru(ti) = Min)? + (X (t:) — Miy)? + (X2 (t:) — Mi)? (18)
i=0
By defining
S5i(T) = Xpg(ti) — My
S3i41(T) = Xpy(ts) — My
S3i—|—2(T) - XT,z (tz) - Mzz )
we obtain i
: 2
min g SH(T). (19)

and we define

R(T) := R(0k+1 — Ox) + R(Oks2 — Ox1) + -+ R(0y, — Op1) . (20)
Instead of (19), we will consider

3m+2

mrlin ;) [Si(T) + aR(T))?, (21)

where « is a very large positive number. To understand the relationship between (19) and
(21), we note the following two properties of equation (21).

o If we have 6 < 01 < ... < 0,, then Oy, —Ogp, 1 >0 forallr =1,....n—k and
therefore R(T) = 0. Thus,

3m+2 3m+2

;) [Si(T) + aR(T)]* = Z:O S?(T).

o If there is some r such that 6., < 0, 1 , then

R(0k+r — Ok1r—1) > 0 and so R(T) is nonzero. Because of our assumption that « is
a very large number, we can expect that >"2[S;(T) + aR(T)]? is also very large.

Since we are searching for the minimum of >3™+?[S;(T) + aR(T)]?, the preceeding two
points show that a T with 6., < O, 1 can never realize this minimum. That means
that the introduction of the penalizing term in (21) avoids those T with 6., < O ir_1-
In situation where it is desirable to have |6; — 0;,1| > € for i = k,...,n — 1, we replace (20)
by

R(T) = R(gk—H — gk — 8) + R(0k+2 — 0k+1 — 8) + ...+ R(Gn — gn—l — E) . (22)



3.2 Nonlinear optimization

By introducing

ri(T) :== S;(T) + aR(T) and K :=3m+2, (23)

the curve fitting problem has the form of a usual nonlinear least square problem:

mrli‘n Z;)[ri(T)]2 . (24)

Such a problem can be solved by nonlinear least square solvers like Levenberg-Marquardt
and Gauss-Newton (see [12, 6]). Note that for each evaluation of the function r;(T), we
need to solve the subproblem (9) in order to know the corresponding W(T), D(T). We
note that the order of the linear system (9) is small. It does not depend on the number of
data points. It depends exclusively on the degree n of the NURBS curves. Furthermore,
taking into account that the support of N¥ is [6;,0;,4), we conclude that the matrices in
(10) are banded. More precisely, we have:

VBi Y NyfBi=0 forp—gq| >k

1=0

As a consequence, the matrices are sparse and therefore we only need to compute a few
entries. On the other hand, we must note that the computation of one entry of this system
involves all data points. The remedy to that problem is to assemble the following matrix
and vector

I— C()M()M’(I; Co
. T
po=| I-aMM ci=| @ (25)
I— CmMmM% Cm

only once and store them in arrays so that they do not need to be recomputed in subsequent
computations. Note that F' and c are independent of T. They depend only on the initial
data points. The only expressions which need to be updated in each iteration of the
nonlinear optimization are the values of N (¢;) which are mostly zero except for some few
values. They can be computed recursively in a fast way (see [1]).

3.3 Numerical results

The numerical results in this paper have been computed with the Levenberg-Marquardt
algorithm. Note that this algorithm is iterative and so it needs some initial guess. The
initial guess that we have taken here is equidistant knots in which the approximating
curve is very far from the true curve. The first numerical test that we perform is the
reconstruction of W-shaped curve. We have 75 data which were added with random noise
of amplitude 0.1. The curve is reconstructed with the help of the formerly described
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algorithm. The overall time for the reconstruction is 8 seconds. In Figure 3 we see a
graphical illustration of the data, the initial curve and the reconstructed curve. The second
test is a free-form curve. The time needed for the reconstruction is like in the first test. A
graphical illustration can be found in Figure 4.

Figure 3: Initial curve, reconstructed curve and 75 samples with noise amplitude=0.1

Figure 4: Initial curve, reconstructed curve and 75 samples with noise amplitude=0.1

4 Parallel realization

When the number of data becomes very large, the performance of the described algorithm
will be slow. For this reason we considered the parallel implementation of the algorithm
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Figure 5: Initial closed curve, reconstructed closed curve and 75 noisy samples

which will be described in this section. All the numerical results that will follow were
obtained from the CLiC (Chemnitzer Linux Cluster) supercomputer ([3]) and the parallel
program was implemented by using MPI (Message Passing Interface, see [13, 14, 8]).

4.1 Way of parallelizing

Let us first note that in each iteration of the Levenberg-Marquardt algorithm (see [19]) we
have to compute the Jacobi matrix J(T). Furthermore, we need to compute the matrix
F and the vector c in relation (25). The computation of these three arrays is the most
expensive operations of our method. Therefore we conclude that parallelizing the problem
of curve reconstruction basically means assembling these matrices in parallel. A more
detailed description of parallelizing the Levenberg-Marquardt algorithm is planned in [16].
For briefness, we only describe the way we do it with the matrix J(T). The arrays F' and
c can be assembled in a similar way. The components of the unknown T will be denoted
by 7; i.e. T = (7,...,7;) where [ :=n — k + 1. The entries of J(T) are given by:

7y(m) = 2

The Jacobian matrix J(T) is of size (3m + 3) x I. That means that it has in practice
very large number of rows and a few columns. When the number of points become very
large, it is very costly to assemble and store this matrix. We can distribute the entries of
J(T) to the processors. In other words, we partition the matrix J(T) and each processor
computes the corresponding part of J(T). If we suppose that the number of processors is
Kk, a possible partitioning of the matrix J(T) can be found in Fig. 6.

9



J(T)° | (assembled/stored by processor 0)

J(T)" |.__ (assembled/stored by processor 1)

J(T)*'|.__ (assembled /stored by processor x — 1)

Figure 6: Distribution of the matrix J(T) to the processors

4.2 Load balancing

In this section we describe our method to achieve load balancing. We want in fact that
all the processors execute approximately the same amount of computational work. If the
number of processors  is a multiple of the number of rows 3m + 3, then the process is

easy because each processor treats L = % rows. Otherwise, we introduce
3m+ 3
mg := , m1 :=3m+ 3 —myKk
K

(where |z stands for the largest integer which is smaller or equal to ).
For processor p =0, ..., k — 1, the number of rows that it assembles and stores is:

— ] mo if p>m
L(p).—{m0+1 if p<m

We notice that L(p) is either mgy or mg + 1 which are approximately the same in practical
situations (i.e. my large). That means that load balancing can still be achieved in cases
where 3m + 3 is not a multiple of the number of processors.

As an illustration: if we have 3m + 3 = 123, 025 data points and we have k = 9 processors,
then L(p) = 13669 if p > 4 and L(p) = 13670 otherwise.

4.3 Parallel performance

In this section, we evaluate the performance of our parallel program. First, we investigate
the speedup of our algorithm. We recall the definition (see [15]) of speedup for number of
processors k to be:

runtime of serial program

S(k) :=

runtime of parallel program with k processors

10



SPEEDUP

number of processors

Figure 7: Speedup

In Fig. 7, we plot the speedup of our parallel algorithm. We can notice that we have a
speedup which is practically linear. In other words, if we multiply the number of processors
by two, then the time for running the algorithm is also twice faster.

Secondly, we want to investigate the efficiency (see [15]) which is defined as

We know (see [14]) that 0 < E(k) < 1: if the efficiency E(k) approaches 0 then the
parallel program is said to be bad because it reflects a slowdown. Contrarily, an efficiency
of 1 demonstrate a good performance. In Table 1, we gather the numerical results for the
efficiency. As we can see, our algorithm can be categorized as having good performance
because the efficiency is always close to 1 .

nb. processors runtime parallel efficiency

1 304.31 sec 1.00000
155.92 sec 0.975871
105.91 sec 0.957776
81.20 sec 0.936849
66.58 sec 0.914051
54.64 sec 0.928139

DD T W N

Table 1: Efficiency

In Table 2, we collect some results of numerical experiments for different numbers of data
with three numbers of processors. It shows more precisely the runtime of our algorithm in
practice.
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number of data 64 processors 32 processors 16 processors

500,000 17.18 sec 28.07 sec 50.21 sec
600,000 19.81 sec 29.70 sec 54.76 sec
700,000 22.50 sec 35.47 sec 63.78 sec
800,000 26.26 sec 40.70 sec 76.85 sec
900,000 29.62 sec 44.85 sec 81.71 sec
1,000,000 31.82 sec 50.70 sec 93.72 sec

Table 2: runtime in second

4.4 Iteration vs. error

The next test consists in investigating the error after each iteration. This test is for the
W-shaped curve in which the exact inner knot position is T = (0.333333, 0.5, 0.666666).
In Table 3, we see the value of T for each iteration and the corresponding error. We found
that the number of iterations needed in practice to achieve a satisfactory accuracy. Note
also that the reconstructed curve is already graphically satisfactory after iteration 4.

Iter  T(0) T(1) T(2) Error
1 0.25000 0.50000 0.75000 0.055556
0.26471 0.50124 0.71852 0.040575
0.29438 0.50293 0.69673 0.023980
0.31266  0.50099 0.67307 0.009359
0.32722 0.49908 0.66601 0.002561
0.33331 0.49992 0.66668 0.000037

O O i W N

Table 3: Error for each iteration.

4.5 Initial guess

The number of the iterations needed for this method depend on the initial guess that we
take. That is again due to the fact that this is an iterative method. Although two different
initial guesses give the same results, they may need different time to run the algorithm
because more iterations mean a longer time of execution. Two possible initial guesses are:
equidistant knot sequence and chord length knot sequence. The latter is meant in the sense
that the interval [0, 1] is divided into subintervals in such a way that each corresponding
curve part is proportional to the length of the subinterval. Sometimes the first initial guess
is good. For instance, the W-shaped curve (see Fig. 3) needs 6 iterations for equidistant
initial guess. But it needs as many as 11 iterations for chord length initial guess to have
the same results. The case of the curve in Fig. 4 is completely opposite to that. It needs
4 iterations for equidistant initial guess and 3 iterations for chord length initial guess. But

12



as far as the final results are considered, both initial guesses give the same result. The
difference can be found only in the number of iterations.

5 Future work

In this work, we have only focused on curve reconstruction. The case of surfaces is more
interesting because it has exciting applications in reverse engineering. Our future work
will consist in extending our algorithm for surfaces.
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