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1. Introduction

In a recent paper,!) henceforth it shall be called P1,
we have successfully been able to characterize the metal-
insulator transition (MIT) of the three dimensional (3D)
anisotropic Anderson? model (AM) via scaling of the
level compressibililty. The existence of an MIT for this
model even in the presence of very strong anisotropy
was previously demonstrated by the use of transfer-
matrix methods,? multifractal analysis®) and energy
level statistics.’) The presence of a disorder induced MIT
in 3D and the absence of such in 2D and in 1D was shown
via scaling arguments®) (FSS). In the 3D AM we have the
metallic, the critical and the insulating phases for low,
critical and high disorder, respectively. At the MIT the
localization length & diverges as a function of, say, disor-
der W, £ ~ |[W —W,|¥, where W, is the critical disorder
and v is the localization length critical exponent.”

2. Spectral Statistics and Level Compressibility

The localization properties of wave functions of disor-
dered single-electron systems are closely related to the
statistical properties of the corresponding spectra.®) In
the insulating regime localized states, even if they are
close in energy, have an exponentially small overlap and
their levels are completely uncorrelated. Accordingly, in
the thermodynamic limit the normalized distribution of
spacing s between neighboring energy levels follows the
Poisson law exp(—s). In the metallic regime, the large
overlap of delocalized states induces correlations in the
energy spectrum leading to level repulsion. In this case, if
the system is invariant under rotational and under time-
reversal symmetry, the normalized level spacing distribu-
tion closely follows the Wigner surmise of the Gaussian
orthogonal ensemble of random matrix theory®

m T 5
P(s) = 2sexp( 15 ) .
The third system-size independent statistics directly at
the MIT is usually called critical statistics and the cor-
responding wave functions are multifractal.

Our interest here is to use the number variance X5 to

characterize the MIT. The number variance is known to
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have the following general behavior as a function of the
mean number of levels 72 in an energy interval, i.e.,

log(n) delocalized,
Yo ~ X7 critical,
i localized.

The number variance in the critical regime has been con-
jectured to be Poisson-like,!?) i.e., £, & Y7, where the
level compressibility y is another important parameter to
characterize the MIT. Formally, the level compressibility
is defined as

lim 922(7) (1)

~ lim
X A—oo N—oo dn

x takes values 0 < y < 1, being zero in the metallic state
and unity in the insulating state; N is the system size,
see P1 for details. Note that in order to perform any
statistical calculations the eigenspectrum must be ”un-
folded”'") so that the average spacing between adjacent
eigenvalues is one.

3. The Model Hamiltonian

We study the 3D AM of localization described by a
Hamiltonian in the lattice site basis as

N
Ho="y eli)(il+ D tili) (] (2)
i (i,9)
where (i|j) = §;; and the ¢;; are hopping integrals with
(i,7) denoting nearest-neighbors on a regular cubic lat-
tice with periodic boundary conditions. Our model in-
cludes anisotropy in the hopping integrals i.e., weakly
coupled planes defined by t, = t, = 1, t, = 0.1, here
tz, ty and t, are hopping integrals in the three spatial
directions. We emphasize that we have chosen strong
anisotropy simply because this is the case with the most
accurate data (with relative error range form 0.2 to 0.4%)
from a previous study.'? In fact it has been shown that
anisotropy has no effect on the universality class of the
model'?13) except for changing non-universal properties
such as the critical disorder W,. The site energies €; are

taken to be random numbers uniformly distributed in
the interval [-W/2, W/2].
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4. FSS and Results

To perform FSS with y we fit X5 data with a polyno-
mial and then “extract” the linear coefficient x,, which
is an approximation to Y, see figures 1 and 2. In P1, we
have shown that a polynomial fit is stable and reliable for
the calculation of the critical exponent v and the critical
disorder W;. The polynomial is of the form,

(N, W,n) &
Xp X ———— = DV, W)n",
e S S 3 )
where m is the order of the fit and ~y,(N,W) are as-
sumed not to depend on 7. After performing FSS we
are able to estimate the values of the critical exponent
v ~ 1.45+0.12 and the critical disorder W, ~ 8.59+0.05.
These values are averages of the results of many fit pa-
rameters in the FSS procedure, see Table 3 of P1 for
details. The above approach is only suited to giving the
global behavior of x in the neighborhood of the MIT.
This implies that there is a systematic shift of x, toward
higher values and as such this method exaggerates the
value of the critical level compressibility x. at the MIT.
For the calculation of the critical level compressibility xc,
we fit ¥s data via an ansatz function that incorporates
irrelevant scaling exponents vy, i.e.,

Yo (N, W,
Xe ® 2( %) ZFkNW

where I'y,(N, W) are assumed not to depend on 7. Note
that this fit function works well for large system sizes
and gives x. &~ 0.28 £0.06 as an average value, see Table
2 of P1 for details. This value is in good agreement with
previous studies.'®)
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Fig. 1. xp(N, W) obtained from a polynomial fit (hence the sub-
script on x) of degree m = 3. The N dependence is clearly
evident. The solid lines are fit functions from FSS, see P1.

5. Summary

In summary, our results show that x can be used to
compute, with the help of FSS, estimates of W, and of v
which are in good agreement with other spectral calcu-
lations. Secondly, we have established that a polynomial
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Fig. 2. One-parameter scaling dependence of x on £ for different
system sizes N and disorders W € [6,12].

fit can be used to extract the universal content of the
level compressibility in the vicinity of the MIT.
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