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1. Introdu
tion

In a re
ent paper,

1)

hen
eforth it shall be 
alled P1,

we have su

essfully been able to 
hara
terize the metal-

insulator transition (MIT) of the three dimensional (3D)

anisotropi
 Anderson

2)

model (AM) via s
aling of the

level 
ompressibililty. The existen
e of an MIT for this

model even in the presen
e of very strong anisotropy

was previously demonstrated by the use of transfer-

matrix methods,

3)

multifra
tal analysis

4)

and energy

level statisti
s.

5)

The presen
e of a disorder indu
ed MIT

in 3D and the absen
e of su
h in 2D and in 1D was shown

via s
aling arguments

6)

(FSS). In the 3D AM we have the

metalli
, the 
riti
al and the insulating phases for low,


riti
al and high disorder, respe
tively. At the MIT the

lo
alization length � diverges as a fun
tion of, say, disor-

derW , � � jW�W




j

��

, whereW




is the 
riti
al disorder

and � is the lo
alization length 
riti
al exponent.

7)

2. Spe
tral Statisti
s and Level Compressibility

The lo
alization properties of wave fun
tions of disor-

dered single-ele
tron systems are 
losely related to the

statisti
al properties of the 
orresponding spe
tra.

8)

In

the insulating regime lo
alized states, even if they are


lose in energy, have an exponentially small overlap and

their levels are 
ompletely un
orrelated. A

ordingly, in

the thermodynami
 limit the normalized distribution of

spa
ing s between neighboring energy levels follows the

Poisson law exp(�s). In the metalli
 regime, the large

overlap of delo
alized states indu
es 
orrelations in the

energy spe
trum leading to level repulsion. In this 
ase, if

the system is invariant under rotational and under time-

reversal symmetry, the normalized level spa
ing distribu-

tion 
losely follows the Wigner surmise of the Gaussian

orthogonal ensemble of random matrix theory

9)

P (s) =

�

2

s exp

�

�

�

4

s

2

�

.

The third system-size independent statisti
s dire
tly at

the MIT is usually 
alled 
riti
al statisti
s and the 
or-

responding wave fun
tions are multifra
tal.

Our interest here is to use the number varian
e �

2

to


hara
terize the MIT. The number varian
e is known to

�
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have the following general behavior as a fun
tion of the

mean number of levels �n in an energy interval, i.e.,

�

2

�

8

<

:

log(�n) delo
alized,

��n 
riti
al,

�n lo
alized.

The number varian
e in the 
riti
al regime has been 
on-

je
tured to be Poisson-like,

10)

i.e., �

2

� ��n, where the

level 
ompressibility� is another important parameter to


hara
terize the MIT. Formally, the level 
ompressibility

is de�ned as

� � lim

�n!1

lim

N!1

d�

2

(�n)

d�n

. (1)

� takes values 0 � � � 1, being zero in the metalli
 state

and unity in the insulating state; N is the system size,

see P1 for details. Note that in order to perform any

statisti
al 
al
ulations the eigenspe
trum must be "un-

folded"

11)

so that the average spa
ing between adja
ent

eigenvalues is one.

3. The Model Hamiltonian

We study the 3D AM of lo
alization des
ribed by a

Hamiltonian in the latti
e site basis as

H =

N

X

i

"

i

jiihij+

X

hi;ji

t

ij

jiihjj (2)

where hijji = Æ

ij

and the t

ij

are hopping integrals with

hi; ji denoting nearest-neighbors on a regular 
ubi
 lat-

ti
e with periodi
 boundary 
onditions. Our model in-


ludes anisotropy in the hopping integrals i.e., weakly


oupled planes de�ned by t

x

= t

y

= 1, t

z

= 0:1, here

t

x

, t

y

and t

z

are hopping integrals in the three spatial

dire
tions. We emphasize that we have 
hosen strong

anisotropy simply be
ause this is the 
ase with the most

a

urate data (with relative error range form 0.2 to 0.4%)

from a previous study.

12)

In fa
t it has been shown that

anisotropy has no e�e
t on the universality 
lass of the

model

12, 13)

ex
ept for 
hanging non-universal properties

su
h as the 
riti
al disorder W




. The site energies "

i

are

taken to be random numbers uniformly distributed in

the interval [�W=2;W=2℄.
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4. FSS and Results

To perform FSS with � we �t �

2

data with a polyno-

mial and then \extra
t" the linear 
oeÆ
ient �

p

whi
h

is an approximation to �, see �gures 1 and 2. In P1, we

have shown that a polynomial �t is stable and reliable for

the 
al
ulation of the 
riti
al exponent � and the 
riti
al

disorder W




. The polynomial is of the form,

�

p

�

�

2

(N;W; �n)

�n

�

m

X

k=1




k

(N;W )�n

k

,

where m is the order of the �t and 


k

(N;W ) are as-

sumed not to depend on �n. After performing FSS we

are able to estimate the values of the 
riti
al exponent

� � 1:45�0:12 and the 
riti
al disorderW




� 8:59�0:05.

These values are averages of the results of many �t pa-

rameters in the FSS pro
edure, see Table 3 of P1 for

details. The above approa
h is only suited to giving the

global behavior of � in the neighborhood of the MIT.

This implies that there is a systemati
 shift of �

p

toward

higher values and as su
h this method exaggerates the

value of the 
riti
al level 
ompressibility �




at the MIT.

For the 
al
ulation of the 
riti
al level 
ompressibility�




,

we �t �

2

data via an ansatz fun
tion that in
orporates

irrelevant s
aling exponents y

k

, i.e.,

�




�

�

2

(N;W; �n)

�n

�

m

X

k=1

�

k

(N;W )�n

�y

k

,

where �

k

(N;W ) are assumed not to depend on �n. Note

that this �t fun
tion works well for large system sizes

and gives �




� 0:28�0:06 as an average value, see Table

2 of P1 for details. This value is in good agreement with

previous studies.

14)
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Fig. 1. �

p

(N;W ) obtained from a polynomial �t (hen
e the sub-

s
ript on �) of degree m = 3. The N dependen
e is 
learly

evident. The solid lines are �t fun
tions from FSS, see P1.

5. Summary

In summary, our results show that � 
an be used to


ompute, with the help of FSS, estimates of W




and of �

whi
h are in good agreement with other spe
tral 
al
u-

lations. Se
ondly, we have established that a polynomial
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Fig. 2. One-parameter s
aling dependen
e of �

p

on � for di�erent

system sizes N and disorders W 2 [6; 12℄.

�t 
an be used to extra
t the universal 
ontent of the

level 
ompressibility in the vi
inity of the MIT.
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