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Abstract. We study the influence of many-particle interactions on aaiviesulator
transition. We consider the two-interacting-particlelgemn for onsite interacting particles
on a one-dimensional quasiperiodic chain, the so-calledrnféndré model. We show
numerically by the decimation method and finite-size sgatimat the interaction does not
modify the critical parameters such as the transition paiattthe localization-length exponent.

1. Introduction

The physics of a metal-insulator transition (MIT) in disered electronic systems has been
the subject of intense research activities over the lastdecades and still receives much
attention. The scaling hypothesis of localization [1] caecessfully predict many of the
universal features of the MIT for free electrons in disoedesystems [2]. However, the
influence of many-particle interactions on the MIT is mucéslenderstood [3] with recent
investigations of an apparent MIT in two-dimensional (2D¥tems even questioning the
main assumptions of the scaling hypothesis [4-9]. A simp&otetical approach to the
interplay of interactions and disorder is based on the mweracting-particles (TIP) problem
in 1D random [10-12] or quasiperiodic potentials [13, 14).general, these investigations
have shown that changes in the wave function interferengesalmany-particle interactions
[15, 16] can lead to a rather large enhancement of the |@tadiz lengths in 1D and 2D
[17-19].

The standard approach for computing localization lengtldisordered, non-interacting
systems is the transfer-matrix method (TMM) [20]. It hasrbesed for investigations of
the enhancement of the TIP localization length in a 1D rangatential [12, 21] where
there is no MIT as all wave functions are always localized hegthumerical approaches
to the TIP problem have been based on the time evolution otéwackets [10, 22], exact
diagonalization [23] or Green function approaches [18284,

In the single-particle case, the 1D quasiperiodic Aubryd@model is known rigorously
to exhibit an MIT for all states in the spectrum as a functiénhe quasiperiodic potential
strengthu [26]. The ground state wave function is extended fiox. 1 and localized for
y > 1. The system api. = 1 is critical: there the wave functions decrease algebligica
not exponentially as in the localized case. Recently, wenaxad this model for TIP using
the TMM approach and a careful finite-size-scaling analjii$ following earlier analytical
work [27,28]. We showed that the model for TIP exhibits an MBla function oft at ;. = 1
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as in the single-particle case. Our finite-size-scalingltegor onsite (Hubbard) interaction
suggest that the critical behavior, i.e., the value for thigical exponentv of the correlation
length, is also not affected by the interaction [14] and withe error margirv = 1. However,
it has been demonstrated [12, 18] that a TMM approach apfdi¢ide TIP problem without
finite-size scaling leads to unreliable localization Idrggi.e., it systematically overestimates
the TIP localization length\, in finite-sized samples in the case of vanishing interaction
(U = 0). In addition, simple extrapolations to infinite sampleesj12, 21] may lead to an
underestimation ol, [29]. An alternative approach, which does not suffer from &tbove
problem, is based on the decimation method (DM) and has &lsp applied recently to TIP
in a 1D random potential [18]. This encouraged us to reexartia localization lengths for
TIP in 1D quasiperiodic potentials with Hubbard interantwith the DM [30] We have found
that the general conclusions of reference [14] remain ya&d the MIT is not affected by the
interaction. The critical properties of the single-pdetitransition atu. = 1 are not altered
within the accuracy of our calculation. One-parameterisgas obeyed for onsite interaction
strengths up t&y = 10.

In this paper we present the TIP localization lengths olethiia DM for different
Hubbard interaction strengths. We compare the criticahmpa@ters estimated from different
finite-scaling methods and extracted from the TMM results.

2. The TIP system

The Hamiltonian for TIP in the 1D quasiperiodic potentiatioé Aubry-André model is given
as

H= Z In,m){n+1,m|+|n,m)(n,m+1|+h.c.
n,m

+ |n7m> [Iln+llm+u(n, m)]<n7m| . (1)

Here um = 2p cogam+ ) is the quasiperiodic potential of strengthwith a /21 being an
irrational number which we choose as the inverse of the gofdean:a /2= (v/5—1)/2.
This value ofa /2 may be approximated by the ratio of successive Fibonaccbeusn—
Fn=F,»,+F,,=0,1,23,5,8, 13,.. —as is customary in the context of quasiperiodic
systems [31]. An arbitrary phase shift of the potential inated ag3. The Hubbard onsite
interaction matriXJ (n,m) is diagonal, i.e.U (n,m) = U &, The indicesn andm correspond
to the positions of each particle on a chain of length

We use the DM [18, 32] to construct an effective Hamiltonianthe diagonal of the
M x M lattice along which the cigar-shaped TIP wave function k&kargest extent [23, 29].
The quantity of our interest is the TIP localization lengttdefined by the TIP Green function
G,(E) [24]

1
For TIP in 1D and 2D random potentials, this approach hasdekigh precision results
supporting the proposed increase of the TIP localizatiorgtles due to the repulsive
interaction [18, 19].

The correlation lengtl§., for the infinite system may be obtained from the localization
lengthsA (M) for finite system sizes by using the one-parameter scalipgptmgsis\,, =
f(M/&) [33] for the reduced localization lengths, = A (M) /M. The MIT is characterized
by a divergent correlation length,(u) O |4 — |~V [2]. In order to extract the critical
parameters from the calculated valuedgfM) one may apply a finite-size-scaling procedure
[20] that numerically minimizes deviations of the data frdora common scaling curvie The
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critical exponent can then be calculated by fitting tije obtained from finite-size scaling.
This method was used in [14] to find the critical parametergtie TIP in a quasiperiodic
potential from the localization lengths calculated by nseahTMM.

Higher accuracy can be achieved by a method applied reci8#/y85] to the MIT in
the Anderson model of localization. We construct a familyfiofunctions which include
corrections to scaling such as (i) nonlinearities of theethelence of the scaling variable on
the quasiperiodic potential strength and (ii) an irrelé\sraling variable which accounts for
a shift of the crossing point of th#,, (i) curves as a function qi, i.e.,

Ay = f~(Xrl\/ll/vail\/ly)- (3)

wherex; andy; are the relevant and irrelevant scaling variables, resgbgt f is then Taylor
expanded up to ordex in terms of the second argument

ni 5
A = Z)xi”M“yfn(er”V), (4)
n=
and eachf, is Taylor expanded up to ordey:
Ny . )
fnzi%aniX;Ml/v- )

Nonlinearities are taken into account by expandip@ndy; in terms ofu = (uc — )/ e Up
to orderm: andm,, respectively,

my m
Xl’(u) = Zlbnunv Xi(u) = Zocnunv (6)

with b; = ¢, = 1. The fit function is being adjusted to the data by choosirggdfders
n;,Nr, M, m up to which the expansions are carried out. Of course, thersrdave to be
taken not too large to keep the number of fit paramedgrdn, andc, reasonably small.

3. Numerical results for TIP

We have calculated, at energyE = 0 for 20 values of the Hubbard interaction, ild.= 0
(the non-interacting single-particle case}10.., 0.9, 1, 2,..., 10 for 6 system sizelgl = 13,
21, 34, 55, 89, 144. Fdd = 0 and 1, we also obtained the data fdr= 233 and 377.
The quasiperiodic potential strengthisvere chosen close to the single-particle transition at
L ~ 1 and ranged typically from.05 to 105. Following the reference [14] we averaged the
results over different randomly chosen phase slfifte reduce the fluctuations and improve
the scaling. The number @ values used in this averaging ranged from 5000Mo# 13 to
1000 forM = 377.
In order to directly compare the results of the TMM and detiomemethod we applied
to the data collected fdd = 0 andU = 1 the same procedure as used in [14] to extract the
critical parameters from the TMM results. The critical pagders estimated from the DM data
areu. = 0.99+0.03,v =1.044+0.2 forU = 0 andy; = 1.00+0.02,v = 1.2+ 0.2 forU = 1.
In [14] we obtained from the TMM datg. = 1.01+0.02 forU = 0 andp; = 1.04+ 0.04 for
U = 1, the critical exponent wag = 0.8+ 0.2 both forU = 0 andU = 1. Thus the critical
parameters extracted from the TMM or DM data are the samearwiitle estimated accuracy.
For all data collected from the DM calculations we applied tion-linear fit necessary
for the finite-size-scaling procedure described in se@iahe Levenberg-Marquardt method
[35, 36] was used. As the DM data — like the TMM results [14] —e atill rather noisy we
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Figure 1. Reduced localization lengtids, versus quasiperiodic disorder strengtfor U =0.

For clarity, only error bars fovl = 55 and 377 are given. The lines are the fits to the data given
by (3). Inset: scaling function (solid line) and scaled datints; only every 3rd data point is
represented by a symbol.

had to suitably limit the ranges of the quasiperiodic po&rstrengthuy and/or the system
sizesM used for fitting the data.

ForU = 0 and 1, which were examined by the TMM in detail [14], the Wéstvas
obtained fomy = 3, n; =2, m, = 2 andm = 1. ForU = 0 we used the data fqr ranging
from 0.96 to 101 andM = 55,89,144,233, and 377; fotJ = 1 we used all system sizes
M=13,...,377and ®7< u < 1.05.

Figure 1 and figure 2 show the resulting TIP localization tasgorU = 0 and 1. Also
shown are the fits of the finite-size-scaling curves to tha datgiven by (3) fo = 0 and 1,
respectively. We find that for botd values, there is an apparent transition closgde- 1.
For the cas& = 0, we also observe a systematic shift of the crossing poitiit lwcreasing
system sizes necessitating the inclusion of an irrelevaaiirg) variable as discussed in section
2. The transition point is not so clearly distinguishedWo« 1, albeit the different behavior
for y <1 andu > 1, namely the increase and decrease, respectively,,ofvith increasing
M, is clearly seen.

The corresponding plots of the scaling curves are display#t insets of figures 1 and
2. The scaling curves are much better than reported prdyifiL# for the TMM data. The
critical parameters can consequently be estimated o be0.989+ 0.001,v = 1.00+0.15
forU =0andu. =0.997+0.001,v =1.19+0.16 forU = 1. The irrelevant scaling exponents
are closety=1.84+0.2 andy=0.15+0.1 forU = 0 and 1, respectively. Note that the quoted
errors correspond to the standard deviations estimated tihe non-linear fit procedure. In
this way the accuracy is significantly overestimated. Siids apriori not clear, which
valuesn,, n;, m;, m to use, we estimate the true errors from a comparison of wafits with
differentn;,n,,m;,m. Even in the case of extremely high precision data closeddiT in
the Anderson model of localization, this has been shown {85hcrease the error by one
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Figure 2. Reduced localization lengtids, versus quasiperiodic disorder strengtforU =1.

For clarity, only error bars foM = 377 are given. The lines are the fits to the data given by
(3). Inset: scaling function (solid line) and scaled datants only every 3rd data point is
represented by a symbol

order of magnitude. Further results for othkwralues are collected in table 1. The expansion
ordersn,,n;, m,,m, the system sizes and ranges of the quasiperiodic potstrigaigth have
been chosen in order to minimize tjyé statistics and to get the most convincing scaling fit.
Figure 3 and figure 4 show the values of the critical quasacipotential strengtip
and the critical exponemt. For almost all cases the critical quasiperiodic potesti@ngthu.
remains close to 1, the only exceptionsidre- 0,0.1 and 09, wheng = 0.99,0.98 and 1015
respectively. However, since we know that the transitiothesingle-particle case is exactly
at L. = 1 [26], this observation can be used to estimate the true efrithe estimate foyi.
Thus comparing with thei. estimates fotJ # 0, we find that the errors calculated within
the non-linear fitting procedure are significantly undeneated as discussed above. We
therefore conclude that within the accuracy of our calcoiethere is no change of the critical
guasiperiodic potential strength for the Hubbard interaction in the range<QJ < 10. The
same argument leads to the conclusion that within the eexs the critical exponent does
not change with the Hubbard interaction strength and isedo4.. This is in agreement with
the previous results obtained by the TMM and finite-sizeisgdl14]. We stress that the
critical exponents can only be obtained with much less aayuthan the transition point.
as shown in table 1 and figure 4.

4. Conclusions

In this work, we have studied the interplay of disorder andriactions for a quantum system
at very low density (TIP). We calculated the pair localiaatiengths for a quasiperiodic
potential and Hubbard interaction by means of the DM andaeted the critical parameters
from the fit using the one-parameter scaling hypothesisbBtr non-interacting particles as



Localization properties of TIP in a quasiperiodic potential with an MIT 6

Table 1. Values of the critical quasiperiodic disorder strengghand the critical exponent
obtained by the non-linear fit for variolks values. The 4th and 5th columns for ed¢hyive
the ordersy, m used in the expansion (4-6) for which the best fits have betingal. In all
cases we findy = 3 andm, = 2. Foru andM the range of the values which were used in the

fit is given.
u u M N m He v
0 096-1.01 55-377 2 1 0989+0.001 100+0.15
0.1 097-1.01 55-144 0 O 0978+0.004 119+0.40
0.2 097-105 13-144 1 1 0999+0.002 100+0.10
0.3 095-1.05 13-144 1 1 (0996+0.001 117+0.04
04 097-105 13-144 1 1 1000+0.001 113+0.06
05 095-1.05 55-144 0 O 1000+0.002 117+0.07
0.6 095-1.05 55-144 0 O 1000+0.002 116+0.08
0.7 Q97-1.05 13-144 2 1 0998+0.002 107+0.06
0.8 Q97-1.05 13-144 2 1 0994+0.001 121+0.07
09 098-1.02 55-144 1 1 1015+0.002 115+0.16
1 097-105 13-377 2 1 0997+0.001 119+0.16
2 097-105 55-144 0 O 1001+0.002 114+0.11
3 095-105 13-144 2 1 1000+0.002 116+0.08
4 097-105 55-144 0 O 1000+0.003 112+0.10
5 095-105 13-144 1 1 1002+0.002 120+0.09
6 095-1.05 55-144 0 O 0999+0.002 128+0.08
7 095-1.05 55-144 0 O 0997+0.002 128+0.07
8 097-1.05 55-144 0 O 1001+0.002 116+0.08
9 097-1.05 13-144 1 1 1000+0.001 115+0.05

10 097—-105 55-144 0 O 1000+0.002 123+0.08
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Figure 3. The critical quasiperiodic potential strengthversus Hubbard interaction strength
U. Error bars mark the errors resulting from the Levenbergguardt method of the non-
linear fit.
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Figure 4. The critical exponent versus Hubbard interaction strendth Error bars mark the
errors resulting from the Levenberg-Marquardt method efrthn-linear fit.

well as onsite interaction we obtain the value of the critquaasiperiodic potential strength
Ue = 1 and the critical exponent ~ 1 in agreement with the previous results of TMM
calculations and finite-size scaling [14]. The results@or- 1 show that this conclusion
remains valid also for much stronger interactions.

For the finite density case oW interacting spinless fermions on a 1D ring of
circumferenceM with Aubry-André onsite potentigl and nearest-neighbour interactigrit
is possible to treat system lengths up to abllddut 100— 200 using the DMRG. We refer the
reader to reference [37] for a more detailed discussionisicise.
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