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Abstract. We study the influence of many-particle interactions on a metal-insulator
transition. We consider the two-interacting-particle problem for onsite interacting particles
on a one-dimensional quasiperiodic chain, the so-called Aubry-André model. We show
numerically by the decimation method and finite-size scaling that the interaction does not
modify the critical parameters such as the transition pointand the localization-length exponent.

1. Introduction

The physics of a metal-insulator transition (MIT) in disordered electronic systems has been
the subject of intense research activities over the last twodecades and still receives much
attention. The scaling hypothesis of localization [1] can successfully predict many of the
universal features of the MIT for free electrons in disordered systems [2]. However, the
influence of many-particle interactions on the MIT is much less understood [3] with recent
investigations of an apparent MIT in two-dimensional (2D) systems even questioning the
main assumptions of the scaling hypothesis [4–9]. A simple theoretical approach to the
interplay of interactions and disorder is based on the two-interacting-particles (TIP) problem
in 1D random [10–12] or quasiperiodic potentials [13, 14]. In general, these investigations
have shown that changes in the wave function interferences due to many-particle interactions
[15, 16] can lead to a rather large enhancement of the localization lengths in 1D and 2D
[17–19].

The standard approach for computing localization lengths in disordered, non-interacting
systems is the transfer-matrix method (TMM) [20]. It has been used for investigations of
the enhancement of the TIP localization length in a 1D randompotential [12, 21] where
there is no MIT as all wave functions are always localized. Other numerical approaches
to the TIP problem have been based on the time evolution of wave packets [10, 22], exact
diagonalization [23] or Green function approaches [18,24,25].

In the single-particle case, the 1D quasiperiodic Aubry-André model is known rigorously
to exhibit an MIT for all states in the spectrum as a function of the quasiperiodic potential
strengthµ [26]. The ground state wave function is extended forµ < 1 and localized for
µ > 1. The system atµc = 1 is critical: there the wave functions decrease algebraically,
not exponentially as in the localized case. Recently, we examined this model for TIP using
the TMM approach and a careful finite-size-scaling analysis[14] following earlier analytical
work [27,28]. We showed that the model for TIP exhibits an MITas a function ofµ at µc = 1
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as in the single-particle case. Our finite-size-scaling results for onsite (Hubbard) interaction
suggest that the critical behavior, i.e., the value for the critical exponentν of the correlation
length, is also not affected by the interaction [14] and within the error marginν = 1. However,
it has been demonstrated [12, 18] that a TMM approach appliedto the TIP problem without
finite-size scaling leads to unreliable localization lengths, i.e., it systematically overestimates
the TIP localization lengthλ2 in finite-sized samples in the case of vanishing interaction
(U = 0). In addition, simple extrapolations to infinite sample size [12, 21] may lead to an
underestimation ofλ2 [29]. An alternative approach, which does not suffer from the above
problem, is based on the decimation method (DM) and has also been applied recently to TIP
in a 1D random potential [18]. This encouraged us to reexamine the localization lengths for
TIP in 1D quasiperiodic potentials with Hubbard interaction with the DM [30] We have found
that the general conclusions of reference [14] remain valid, i.e., the MIT is not affected by the
interaction. The critical properties of the single-particle transition atµc = 1 are not altered
within the accuracy of our calculation. One-parameter scaling is obeyed for onsite interaction
strengths up toU = 10.

In this paper we present the TIP localization lengths obtained via DM for different
Hubbard interaction strengths. We compare the critical parameters estimated from different
finite-scaling methods and extracted from the TMM results.

2. The TIP system

The Hamiltonian for TIP in the 1D quasiperiodic potential ofthe Aubry-André model is given
as

H = ∑
n;m

jn;mihn+1;mj+ jn;mihn;m+1j+h: c:

+ jn;mi [µn +µm +U(n;m)℄hn;mj : (1)

Hereµm � 2µ cos(αm+β ) is the quasiperiodic potential of strengthµ with α=2π being an
irrational number which we choose as the inverse of the golden mean:α=2π = (

p

5�1)=2.
This value ofα=2π may be approximated by the ratio of successive Fibonacci numbers —
Fn = Fn�2+Fn�1 = 0, 1, 2, 3, 5, 8, 13,: : : — as is customary in the context of quasiperiodic
systems [31]. An arbitrary phase shift of the potential is denoted asβ . The Hubbard onsite
interaction matrixU(n;m) is diagonal, i.e.,U(n;m) =Uδnm. The indicesn andm correspond
to the positions of each particle on a chain of lengthM.

We use the DM [18, 32] to construct an effective Hamiltonian for the diagonal of the
M�M lattice along which the cigar-shaped TIP wave function has its largest extent [23, 29].
The quantity of our interest is the TIP localization lengthλ2 defined by the TIP Green function
G2(E) [24]:

1
λ2

=�

1
jM�1j

ln jh1;1jG2jM;Mij: (2)

For TIP in 1D and 2D random potentials, this approach has led to high precision results
supporting the proposed increase of the TIP localization lengths due to the repulsive
interaction [18,19].

The correlation lengthξ∞ for the infinite system may be obtained from the localization
lengthsλ (M) for finite system sizes by using the one-parameter scaling hypothesisΛM =

f (M=ξ∞) [33] for the reduced localization lengthsΛM = λ (M)=M. The MIT is characterized
by a divergent correlation lengthξ∞(µ) ∝ jµ � µcj

�ν [2]. In order to extract the critical
parameters from the calculated values ofλ2(M) one may apply a finite-size-scaling procedure
[20] that numerically minimizes deviations of the data fromthe common scaling curvef . The
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critical exponentν can then be calculated by fitting theξ∞ obtained from finite-size scaling.
This method was used in [14] to find the critical parameters for the TIP in a quasiperiodic
potential from the localization lengths calculated by means of TMM.

Higher accuracy can be achieved by a method applied recently[34, 35] to the MIT in
the Anderson model of localization. We construct a family offit functions which include
corrections to scaling such as (i) nonlinearities of the dependence of the scaling variable on
the quasiperiodic potential strength and (ii) an irrelevant scaling variable which accounts for
a shift of the crossing point of theΛM(µ) curves as a function ofµ, i.e.,

ΛM = f̃ (χrM
1=ν

;χiM
y
): (3)

whereχr andχi are the relevant and irrelevant scaling variables, respectively. f̃ is then Taylor
expanded up to orderni in terms of the second argument

ΛM =

ni

∑
n=0

χn
i Mny f̃n(χrM

1=ν
); (4)

and eachf̃n is Taylor expanded up to ordernr:

f̃n =

nr

∑
i=0

aniχ
i
rM

i=ν
: (5)

Nonlinearities are taken into account by expandingχr andχi in terms ofu = (µc�µ)=µc up
to ordermr andmi , respectively,

χr(u) =
mr

∑
n=1

bnun
; χi(u) =

mi

∑
n=0

cnun
; (6)

with b1 = c0 = 1. The fit function is being adjusted to the data by choosing the orders
ni;nr;mr;mi up to which the expansions are carried out. Of course, the orders have to be
taken not too large to keep the number of fit parametersani, bn, andcn reasonably small.

3. Numerical results for TIP

We have calculatedλ2 at energyE = 0 for 20 values of the Hubbard interaction, i.e.,U = 0
(the non-interacting single-particle case), 0:1, : : :, 0:9, 1, 2,: : :, 10 for 6 system sizesM = 13,
21, 34, 55, 89, 144. ForU = 0 and 1, we also obtained the data forM = 233 and 377.
The quasiperiodic potential strengthsµ were chosen close to the single-particle transition at
µc � 1 and ranged typically from 0:95 to 1:05. Following the reference [14] we averaged the
results over different randomly chosen phase shiftsβ to reduce the fluctuations and improve
the scaling. The number ofβ values used in this averaging ranged from 5000 forM = 13 to
1000 forM = 377.

In order to directly compare the results of the TMM and decimation method we applied
to the data collected forU = 0 andU = 1 the same procedure as used in [14] to extract the
critical parameters from the TMM results. The critical parameters estimated from the DM data
areµc = 0:99�0:03,ν = 1:04�0:2 forU = 0 andµc = 1:00�0:02,ν = 1:2�0:2 forU = 1.
In [14] we obtained from the TMM dataµc = 1:01�0:02 forU = 0 andµc = 1:04�0:04 for
U = 1; the critical exponent wasν = 0:8�0:2 both forU = 0 andU = 1. Thus the critical
parameters extracted from the TMM or DM data are the same within the estimated accuracy.

For all data collected from the DM calculations we applied the non-linear fit necessary
for the finite-size-scaling procedure described in section2; the Levenberg-Marquardt method
[35, 36] was used. As the DM data — like the TMM results [14] — are still rather noisy we
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Figure 1. Reduced localization lengthsΛM versus quasiperiodic disorder strengthµ for U = 0.
For clarity, only error bars forM = 55 and 377 are given. The lines are the fits to the data given
by (3). Inset: scaling function (solid line) and scaled datapoints; only every 3rd data point is
represented by a symbol.

had to suitably limit the ranges of the quasiperiodic potential strengthµ and/or the system
sizesM used for fitting the data.

For U = 0 and 1, which were examined by the TMM in detail [14], the bestfit was
obtained fornr = 3, ni = 2, mr = 2 andmi = 1. ForU = 0 we used the data forµ ranging
from 0:96 to 1:01 andM = 55;89;144;233, and 377; forU = 1 we used all system sizes
M = 13, : : :, 377 and 0:97� µ � 1:05.

Figure 1 and figure 2 show the resulting TIP localization lengths forU = 0 and 1. Also
shown are the fits of the finite-size-scaling curves to the data as given by (3) forU = 0 and 1,
respectively. We find that for bothU values, there is an apparent transition close toµc = 1.
For the caseU = 0, we also observe a systematic shift of the crossing point with increasing
system sizes necessitating the inclusion of an irrelevant scaling variable as discussed in section
2. The transition point is not so clearly distinguished forU = 1, albeit the different behavior
for µ � 1 andµ � 1, namely the increase and decrease, respectively, ofΛM with increasing
M, is clearly seen.

The corresponding plots of the scaling curves are displayedin the insets of figures 1 and
2. The scaling curves are much better than reported previously [14] for the TMM data. The
critical parameters can consequently be estimated to beµc = 0:989�0:001,ν = 1:00�0:15
for U = 0 andµc = 0:997�0:001,ν = 1:19�0:16 forU = 1. The irrelevant scaling exponents
are close toy= 1:8�0:2 andy= 0:15�0:1 forU = 0 and 1, respectively. Note that the quoted
errors correspond to the standard deviations estimated from the non-linear fit procedure. In
this way the accuracy is significantly overestimated. Sinceit is apriori not clear, which
valuesni;nr;mr;mi to use, we estimate the true errors from a comparison of various fits with
differentni;nr;mr;mi . Even in the case of extremely high precision data close to the MIT in
the Anderson model of localization, this has been shown [35]to increase the error by one
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Figure 2. Reduced localization lengthsΛM versus quasiperiodic disorder strengthµ for U = 1.
For clarity, only error bars forM = 377 are given. The lines are the fits to the data given by
(3). Inset: scaling function (solid line) and scaled data points; only every 3rd data point is
represented by a symbol

order of magnitude. Further results for otherU values are collected in table 1. The expansion
ordersni;nr;mr;mi, the system sizes and ranges of the quasiperiodic potentialstrength have
been chosen in order to minimize theχ2 statistics and to get the most convincing scaling fit.

Figure 3 and figure 4 show the values of the critical quasiperiodic potential strengthµc
and the critical exponentν. For almost all cases the critical quasiperiodic potentialstrengthµc
remains close to 1, the only exceptions areU = 0;0:1 and 0:9, whenµc = 0:99;0:98 and 1:015
respectively. However, since we know that the transition inthe single-particle case is exactly
at µc = 1 [26], this observation can be used to estimate the true error of the estimate forµc.
Thus comparing with theµc estimates forU 6= 0, we find that the errors calculated within
the non-linear fitting procedure are significantly underestimated as discussed above. We
therefore conclude that within the accuracy of our calculation there is no change of the critical
quasiperiodic potential strengthµc for the Hubbard interaction in the range 0�U � 10. The
same argument leads to the conclusion that within the error bars the critical exponentν does
not change with the Hubbard interaction strength and is close to 1. This is in agreement with
the previous results obtained by the TMM and finite-size scaling [14]. We stress that the
critical exponents can only be obtained with much less accuracy than the transition pointµc
as shown in table 1 and figure 4.

4. Conclusions

In this work, we have studied the interplay of disorder and interactions for a quantum system
at very low density (TIP). We calculated the pair localization lengths for a quasiperiodic
potential and Hubbard interaction by means of the DM and extracted the critical parameters
from the fit using the one-parameter scaling hypothesis. Forboth non-interacting particles as
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Table 1. Values of the critical quasiperiodic disorder strengthµc and the critical exponentν
obtained by the non-linear fit for variousU values. The 4th and 5th columns for eachU give
the ordersni , mi used in the expansion (4–6) for which the best fits have been obtained. In all
cases we findnr = 3 andmr = 2. Forµ andM the range of the values which were used in the
fit is given.

U µ M ni mi µc ν

0 0:96�1:01 55�377 2 1 0:989�0:001 1:00�0:15
0.1 0:97�1:01 55�144 0 0 0:978�0:004 1:19�0:40
0.2 0:97�1:05 13�144 1 1 0:999�0:002 1:00�0:10
0.3 0:95�1:05 13�144 1 1 0:996�0:001 1:17�0:04
0.4 0:97�1:05 13�144 1 1 1:000�0:001 1:13�0:06
0.5 0:95�1:05 55�144 0 0 1:000�0:002 1:17�0:07
0.6 0:95�1:05 55�144 0 0 1:000�0:002 1:16�0:08
0.7 0:97�1:05 13�144 2 1 0:998�0:002 1:07�0:06
0.8 0:97�1:05 13�144 2 1 0:994�0:001 1:21�0:07
0.9 0:98�1:02 55�144 1 1 1:015�0:002 1:15�0:16
1 0:97�1:05 13�377 2 1 0:997�0:001 1:19�0:16
2 0:97�1:05 55�144 0 0 1:001�0:002 1:14�0:11
3 0:95�1:05 13�144 2 1 1:000�0:002 1:16�0:08
4 0:97�1:05 55�144 0 0 1:000�0:003 1:12�0:10
5 0:95�1:05 13�144 1 1 1:002�0:002 1:20�0:09
6 0:95�1:05 55�144 0 0 0:999�0:002 1:28�0:08
7 0:95�1:05 55�144 0 0 0:997�0:002 1:28�0:07
8 0:97�1:05 55�144 0 0 1:001�0:002 1:16�0:08
9 0:97�1:05 13�144 1 1 1:000�0:001 1:15�0:05

10 0:97�1:05 55�144 0 0 1:000�0:002 1:23�0:08
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Figure 3. The critical quasiperiodic potential strengthµc versus Hubbard interaction strength
U . Error bars mark the errors resulting from the Levenberg-Marquardt method of the non-
linear fit.
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Figure 4. The critical exponentν versus Hubbard interaction strengthU . Error bars mark the
errors resulting from the Levenberg-Marquardt method of the non-linear fit.

well as onsite interaction we obtain the value of the critical quasiperiodic potential strength
µc = 1 and the critical exponentν � 1 in agreement with the previous results of TMM
calculations and finite-size scaling [14]. The results forU > 1 show that this conclusion
remains valid also for much stronger interactions.

For the finite density case ofN interacting spinless fermions on a 1D ring of
circumferenceM with Aubry-André onsite potentialµ and nearest-neighbour interactionV it
is possible to treat system lengths up to aboutM � 100�200 using the DMRG. We refer the
reader to reference [37] for a more detailed discussion of this case.
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[18] Leadbeater M, Römer R A and Schreiber M 1999 Eur. Phys. J. B 8 643
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