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We apply the real-space renormalization group (RG) approach to study the energy level statistics
at the integer quantum Hall (QH) transition. Within the RG approach the macroscopic array of
saddle points of the Chalker-Coddington network is replaced by a fragment consisting of only five
saddle points. Previously we have demonstrated that the RG approach reproduces the distribution
of the conductance at the transition, P(G), with very high accuracy. To assess the level statistics
we analyze the phases of the transmission coefficients of the saddle points. We find that, at the
transition, the nearest neighbor energy level spacing distribution (LSD) exhibits well-pronounced
level repulsion. We emphasize that a metal-like LSD emerges when the fized point distribution
P.(G) is used. We check that away from the transition the LSD crosses over toward the Poisson
distribution. Studying the change of the LSD around the QH transition we observe scaling behavior.
Using a finite-size scaling analysis we are able to extract a critical exponent v = 2.37 & 0.02 of the
localization length.

PACS numbers: 73.43.-f Quantum Hall effects, 73.43.Nq Quantum phase transitions, 64.60.Ak
Renormalization-group, fractal, and percolation studies of phase transitions (see also 61.43.Hv Fractals;

macroscopic aggregates)

I. INTRODUCTION

The integer quantum Hall (QH) transition is described
well in terms of a delocalization-localization transition of
the electron wavefunction. In contrast to an usual metal-
insulator transition (MIT), the QH transition is charac-
terized by a single extended state located exactly at the
center ¢ = 0 of the Landau band. When approaching
€ = 0, the localization length £ of the electron wave-
function diverges according to a power law ¢~ ¥, where ¢
defines the distance to the MIT for a suitable controlled
parameter, e.g. the electron energy.

The calculation of the energy level spacing distribution
(LSD) is an established method in the study of the prop-
erties of an MIT. It relies on the exact knowledge about
consecutive eigenenergies of a system. The LSD P(s)
then describes the probability to find neighboring energy
levels at an energy distance s. At the MIT the wave-
functions of the electrons change from being extended in
the metallic to being localized in the insulating regime.
This crossover is also observed in the correlation of the
corresponding energy levels. Wavefunctions of localized
electrons are bound to a small volume in space. There-
fore the wavefunctions are spatially uncorrelated which
results in an uncorrelated energy spectrum. Thus the
LSD is a Poisson distribution. On the metallic side wave-
functions extend over a large part of the sample. The
overlap of the wavefunctions creates a correlation in the
energy spectrum, which leads to level repulsion for small
s. The shape of P(s) in the metallic regime is predicted
by random matrix theory (RMT)!? and depends on the
universality class the system belongs to. The universal-

ity class reflects the symmetry of the Hamiltonian of the
system. The following basic Gaussian Ensembles can be
distinguished: (i) orthogonal (GOE) with time-reversal
invariance and rotational symmetry, (ii) unitary (GUE)
with broken time-reversal symmetry but rotational sym-
metry, and (iii) symplectic (GSE) with time-reversal in-
variance and broken rotational symmetry. In the case
of the QH transition the magnetic field breaks the time-
reversal symmetry. It can therefore be classified into the
GUE.

Exactly at the MIT a third system-size independent, so
called critical LSD P,(s) is found. The discussion of the
shape of P.(s) concentrates on the behavior in the tails.
For small s it is commonly excepted® that P.(s) resem-
bles the level repulsion found in the metallic regime. For
large s contradicting results have been obtained. Initial
numerical studies®® found agreement with the analytic
prediction'® P,(s) o« exp(—as?) for s > 1 obtained by
mapping the LSD to a Gibbs distribution of a classical
one-dimensional gas. The exponent v = 1+ (vd)~! is
related to the spatial dimension d and the critical expo-
nent of the localization length v at the MIT. However,
later numerical simulations®®!1716 questioned these re-
lations and rather favored a simple exponential decay
P.(s) o« exp(—bs) suggested previously by Shklovskii et
al.'”. The numerical works capture all mentioned uni-
versality classes and are based mainly on tight-binding
models, like the Anderson model of localization®®.

From the LSD close to the MIT also the critical ex-
ponent of the localization length v can be computed!®
and its value only depends on the universality class of
the problem. Since the exponential divergence of £ holds



only for the infinite system, it is not evaluable directly
by numerical methods. Therefore calculations performed
for finite system sizes are to be extrapolated by a suitable
scaling approach. The resulting v at the QH transition
should agree with the values obtained by various other
methods, e.g. v = 2.5 +0.5%20, 2.4 4 0.22%, 2.35 4 0.0322,
and 2.39 & 0.01%.

In order to access the LSD at the QH transition
we use the Chalker-Coddington (CC) model?® which
has proven successful in quantitative studies of the QH
transition?52434, The CC model is a strong magnetic
field (chiral) limit of a general network model, first in-
troduced by Shapiro® and later utilized for the study
of localization-delocalization transitions within different
universality classes36~*!. Besides the QH transition, the
CC model can be employed to a much broader class of
critical phenomena since the correspondence between the
CC model and thermodynamic, field-theory and Dirac-
fermions models*?7%° has been shown.

In this work we calculate the LSD from the CC
model using the real-space renormalization group (RG)
approach?351-35 First, in Sec. II we describe the model
and how to compute the eigenenergies and the LSD. In
Sec. ITT we present our numerical results for the LSD. The
finite-size scaling (FSS) analysis of the obtained LSD at
the QH transition is content of Sec. IV. Concluding re-
marks are presented in Sec. V.

II. MODEL AND RG METHOD FOR LSD
A. Description of the RG approach

The CC model is based on the microscopic picture of
electron motion in a strong magnetic field and a smooth
disorder potential?®. This allows to separate the rapid cy-
clotron motion from the semiclassical trajectories of the
guiding center of the cyclotron orbit. Assigning these
trajectories to links and considering saddle points (SP’s)
at which different trajectories come closer than the Lar-
mour radius as nodes a chiral network can be constructed
as shown in Fig. 1. For simplicity, the nodes are placed
on a square lattice.

We now apply a real-space RG approach51:52 to the CC
network%%57. The RG approach is based on the assump-
tion that a certain part of the network containing several
SP’s, the RG unit, represents the essential properties of
the entire network. This unit is next replaced through
the RG transformation by a single super-SP with an S
matrix determined by the S matrices of the constituting
SP’s. The network of super-SP’s is then treated in the
same way as the original network. Successive repetition
of the RG transformation yields the information about
the S matrix of very large samples, since, after each RG
step n, the effective sample size grows by b", with b a

scale factor determined by the geometry of the original
RG unit.?%%%59 Thus the RG method is very efficient for
studying large systems. On the other hand, the RG unit
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FIG. 1: Network of SP’s (circles) and equipotential lines (ar-
rows) on a square lattice. The RG unit used for Eq. (1) com-
bines five SP’s (full circles) into a super-SP by neglecting some
connectivity (dashed circles). ®i,...,®%4 are the phases ac-
quired by an electron drifting along the contours indicated by
the arrows. ¥q,..., ¥4 represent wave function amplitudes
and the thin, dashed lines denote the periodic boundaries used
for the compuation of level spatistics.

represent only an approximation of the real structure of
the underlying network and spatial correlations beyond
a distance b are ignored.?3°%°% The RG unit we use is
extracted from a CC network on a regular 2D square
lattice as shown in Fig. 1. A super-SP consists of five
original SP’s by analogy to the RG unit employed for the
2D bond percolation problem®® 6% and b = 2. We have
shown?? by comparison with direct numerical simulations
that the application of this RG unit yields very accurate
results.

Between the SP’s an electron travels along equipo-
tential lines, and accumulates a certain Aharonov-Bohm
phase. Different phases are uncorrelated, which reflects
the randomness of the original potential landscape. Each
SP can be described by two equations relating the wave-
function amplitudes in incoming and outgoing channels.
For our RG unit, this results in a system of ten linear
equations, the solution of which yields the following ex-
pression for the transmission coefficient of the super-SP
(Ref. 52):
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Here t; and r; = (1—t2)'/? are, respectively, the transmis-
sion and reflection coefficients of the constituting SP’s,
®; are the phases accumulated along the closed loops (see
Fig. 1). Equation (1) is the RG transformation, which
allows one to generate (after averaging over ®;) the dis-
tribution P(t') of the transmission coefficients of super-
SP’s using the distribution P(t) of the transmission coef-
ficients of the original SP’s. Since the transmission coef-
ficients of the original SP’s depend on the electron energy
€, the fact that delocalization occurs at € = 0 implies that
a certain distribution, P.(t) — with P.(¢2) being sym-
metric with respect to t* = 7 — is the fixed point (FP)
of the RG transformation (1). The distribution P, (G) of
the dimensionless conductance G?3 can be obtained from
the relation G = t2, so that P.(G) = P.(t)/2t.

B. RG approach to the LSD

The LSD describes the probability of next-nearest-
neighbor energy level spacings. The evaluation of the
LSD therefore relies on the calculation of eigenenergies
of the system. Eigenenergies are usually obtained from
the time-independent Schrédinger equation HV = E¥
by diagonalizing the Hamiltonian H®!. With the CC
model based on wave propagation through the sample, H
is not accessible directly and a different approach has to
be used. It has been shown,%? that the levels can be com-
puted also from the energy dependent unitary network
operator U(E) of the 2D CC network. U is constructed
similar to the system of equations for obtaining ¢’ of the
RG unit. Its energy dependences stems from the energy
dependence of the ¢;(E) of the SP’s and the ®;(E) of the
links of the network. So each SP contributes 2 equations
which also contain the phases of the links thus for, e.g., a
50x 50 SP network U is a 5000 x 5000 matrix. When com-
paring to the calculation of the transmission coefficient ¢’
an essential difference as to be taken into account. Here
we are interested in energy levels which are defined only
in a closed system. Therefore periodic boundary condi-
tions are applied by connecting the free outgoing with
the free incoming links of the RG unit (see Fig. 1: lower
to left link, upper to right link). Considering the vector
¥ of wave amplitudes on the links of the network, U acts
similar as a time evolution operator. The eigenenergies
can now be obtained from the stationary condition

U(E)¥ = ¥. 2)

Nontrivial solutions exist only for discrete energies Ey,
which coincide with the eigenenergies of the system52.

The eigenvectors ¥y, correspond to the eigenstates on the
links. The evaluation of the Ej’s according to Eq. (2) is
numerically very expensive. For that reason a simplifi-
cation was proposed.3? Instead of solving the real eigen-
value problem one calculates a quasispectrum of phases
w following from

U(E)\I/l = elwl(E)\IJl. (3)

For fixed energy FE the phases w; are expected to obey
the same statistics as the real eigenenergies. For large
networks this approach for computing the LSD was al-
ready used previously®?. We will compare the results of
both methods later.

Before we apply a similar approach to the RG of the
LSD we have to consider the structure of the RG unit
again. It contains 4 closed loops where the electron trav-
els along an equipotential and accumulates a phase. Since
the length of the equipotential line obviously depends on
the energy of the electron, also the phase is a function of
energy. For the functional form of &;(E) we assume an
appropriately chosen simple linear behavior,

E
@;(E) = %o, + 2, (@)
J

with a random part ®¢; uniformly distributed within
[0, 27] and a coefficient s; which defines a periodicity in
the sense of exp(:®) = exp[t(® + 27)]. In this way s;
acts as a level spacing connected to the loop j of the
SP. Its value is chosen from an initial LSD P(s). Later
we will study also the influence of other dependencies on
E. Note that for simplicity, we shall henceforth assume
that the explicit energy dependence of the transmission
amplitudes can be ignored.>’

In order to obtain the E}’s we now have to find so-
lutions of Eq. (3) where w;(E) = 0 (or 2m,4m,...). In
Fig. 2 we show w;(F) for a sample configuration with Fj,
corresponding to the roots w; = 0. By this means the
energy dependence of U(E) at the QH transition is gov-
erned by the 4 phases, while the 5 SP’s are described by
the transmission coefficients according to the FP distri-
bution P (t). Therefore the set of 10 equations used for
the determination of (1) — albeit with periodic boundaries
— can now be reduced to 4 equations in which only the
phases ®1,...,®4 of the 4 loops are independent. Then
we can write Eq. (2) for the 4 wave amplitudes ¥y,..., ¥y
indicated in Fig. 1 as
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FIG. 2: Energy dependence of the quasieigenenergies w for a
sample configuration. Instead of using the quasispectrum ob-
tained from w; (E = 0) () we calculate the real eigenenergies
according to w(Ey) = 0 (O). Different line styles distinguish
different w;(E) where w1 > w2 > w3 > wa.
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Therefore, for one RG unit and a given set of t’s and
® ;’s we obtain 3 level spacings s, .. In order to achieve
a reliable statistics, an average over many RG units is
required in order to reach a smooth LSD P(s). Thus the
situation is comparable with estimating the true RMT
emsemble distribution functions from small, say, 2 x 2
matrices only.?53

Together with the RG approach for P(t) we can now
compute also P(s) iteratively. We start with two chosen
initial distributions (i) Py(t) which defines the transmit-
tance of the SP’s and (ii) Py(s) which enters in the energy
dependence of phases ®;. The distributions P;(t) and
Py (s) of the super-SP are then computed by averaging
over results from many RG units. These new distribu-
tions are used iteratively for the next RG step and so
on.

ITI. NUMERICAL RESULTS
A. The LSD at the QH transition

First, we are interested in the shape of the LSD at
the QH transition. We choose the LSD of GUE as the

starting distribution Py(s) of the RG iteration, since it
is expected to be close to the critical LSD.!* According
to Po(s), we pick s; and set ®;, j = 1,...,4 as in Eq.
(4). For the transmission coefficients of the SP we use
the FP distribution P(t), obtained recently?3, as initial
distribution Py(t). From Py(t), we choose t;, 1 =1,...,5.
Using the RG transformation (1) we compute 107 super-
transmission coefficients ¢'. The accumulated distribu-
tion P;(t') is discretized in at least 1000 bins, such that
the bin width is typically 0.001 for the interval ¢ € [0, 1].
P;(t') is then smoothed by a Savitzky-Golay filter®! in
order to decrease statistical fluctuations. From the so-
lutions w;(Ex) = 0 of Eq. (3) the new LSD P;(s') is
constructed using the “unfolded” energy level spacings
S;n = (Em+1 - E’m)/A’ where m = 172737 Ek+1 > Ek
and the mean spacing A = (E4 — E1)/3. Due to the
“unfolding”%* with A, the average spacing is set to one for
each sample and in each RG-iteration step we can super-
impose spacing data of 2 x 10® super-SP’s. The resulting
LSD is discretized in bins with largest width 0.01. In the
following iteration step we repeat the procedure using the
Py’s as initial distributions. We assume that the iteration
process has converged when the mean-square deviations
of both distributions P, (t) and P, (s) deviate by less than
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FIG. 3: FP distributions P,(s) obtained from the spectrum of
w;(E = 0) and from the RG approach using the real eigenen-
ergies Ej, in comparison to the LSD for GUE. As in all other
graphs P(s) is shown in units of the mean level spacing A.

10~* from predecessors P,_;(t) and P,_;(s). Once the
(unstable) FP has been reached, the P,,’s should in prin-
ciple remain unchanged during all further RG iterations.
Unfortunately, our simulations show?? that unavoidable
numerical inaccuracies sum up within several further it-
erations and lead to a drift away from the FP. In order
to stabilize our calculation, we therefore use in every RG
step instead of P,(t) the FP distribution P,(t) obtained
previously?®. This trick does not alter the results and
also speeds up the convergence of the RG for P,(s) con-
siderably. The above approach now enables us to deter-
mine the critical LSD P,(s). The RG iteration converges
rather quickly after only 2 — 3 RG steps. The resulting
P;(s) is shown in Fig. 3. Its shape is characterized by
level repulsion for small s, a large maximum close to the
mean level spacing A and a long tail.

Let us now also compare our results for the LSD with
the FP distribution derived from the quasispectrum of
phases w;. Since the w;’s are obtained for fixed energy
E = 0, there is no energy dependence in the phase @;
of the RG unit in contradistinction to Eq. (4). Thus
the ®;’s contain only the random part and are uniformly
distributed within [0,27]. In Fig. 3 we show that both
curves are almost identical. This observation is surpris-
ing, because the shape of P;(s) depends on the actual
energy dependence of the phases ®; as in Eq. (4). Us-
ing instead of a linear FE-dependence as in (4) another
arbitrary functional form, say,

E
®,;(E) = &g ; + 2arcsin (s_ - Qp) , (6)
J
where the periodicity is achieved by choosing the integer

S—’f - Zp‘ < 1, we find that the resulting
P;(s) is indeed different from P.(s) as shown in Fig. 4.
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FIG. 4: FP distributions P.(s) for a linear and an arcsin
energy dependence of the phases ®;. The form of P.(s) is
clearly influenced by the actual choice of ®;(E). Thus we
don’t expect universal behavior in the bulk shape. The inset
illustrates examples of the two different functions ®;(F) as in
Egs. (4) and (6).

Therefore we can conlude that (i) the functional form of
(4) is indeed a good guess and the assumption of Ref.3’
for the equivalence of w; and Ej, approaches to computing
the LSD is valid, (ii) the shape of P(s) obtained from the
E, approach is non-universal and depends on the specific
form of (4). We emphasize that a search for an universal
form of P.(s) is flawed anyhow, as it has been shown
recently that the critical LSD at a transition — although
being system size independent — nevertheless depends
on the geometry of the samples®® and on the specific
choice of boundary conditions.®%¢7 It comes of course as
no surprise that for our small RG unit, the influence of
boundary conditions exerts a paramount influence.

B. Small and large s behavior

We now focus on two further characteristic prop-
erties of P.(s), the small s and the large s be-
havior, which have received considerable attention
previously.>6:10:13,14,17,19,68 The shape of the LSD at the
QH transition is a consequence of localization behavior
of the wavefunction. For localized states a Poisson distri-
bution is expected. In the delocalized regime the spatial
extension of the wavefunction leads to an overlap and
therefore to correlation between states and correspond-
ing energy levels. Level repulsion is observed. For this
case the LSD has been predicted by RMT?, which was
developed already in the 1950’s to explain correlation in
experimental nuclear spectra. This so called Wigner sur-
mise, derived analytically for 2 x 2 matrices, relies on the
symmetry of the underlying Hamiltonian. As already
mentioned the contribution of the magnetic field breaks
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FIG. 5: FP P(s) for small s in agreement with the predicted
s behavior. Due to the log-log plot errors are shown in the
upper direction only.

the time reversal symmetry. Therefore our case can be
classified as belonging to the GUE for which

32 4
Pgue(s) = Fszefisz. (7)

The critical LSD at the transition lies between Pgyg(s)
and the Poisson distribution and inherits properties of
both distributions.

For small s the critical LSD P,(s) is expected to be-
have like Poyg(s). It is governed by the s dependence,
indicating a strong level repulsion®®. This holds also for
our result, as can be seen in Fig. 5. The given error bars
of our numerical data are standard deviations computed
from a statistical average of 100 FP distributions each
obtained for different random sets of ¢;’s and ®;’s within
the RG unit.

On the other hand the behavior of the large s tail
of P.(s) has been discussed extensively*¢-10:13,14,17,19,68
The authors of Ref. 10 derived P(s) x exp(—as?) for
s > 1 with v = 1 + (vd)"!. In our case we would
therefore expect v ~ 1 + (2.35-2)7! ~ 1.23. In early
numerical simulations®!® for the 3D Anderson model of
localization'® general agreement with these relations was
found. While in Ref. 19, 7y coincided with the expected
value, such quantitative agreement was not found in Refs.
6 and 13. Another kind of behavior was proposed in Ref.
17 where for the large s tail P(s) o exp(—bs) has been
predicted with b as a system dependent constant related
to the multifractality of the wavefunctions at criticality.
This relation was numerically checked, e.g., in Refs. 4,14
and the discrepancy with earlier works was attributed
to a higher numerical accuracy attainable with modern
computers. For the QH transition b ~ 4.1 has been
obtained®® using the 2D Anderson model of localization
with magnetic field.

In Fig. 6 we show our data with fits according to both
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FIG. 6: The large s tail of the FP P.(s) compared with fits
according to the predictions of Ref. 10 (dotted and dashed
line) and 17 (dot-dashed line). The interval used for fitting is
indicated by the bars close to the lower axis. For clarity error
are shown in upper direction and for s/A = 1.5,2.0,2.5,3.0
only. For s < 2.4, only every 5th data point is shown by a
symbol.

behaviors. Our P.(s) decays rather fast. An exponen-
tial behavior can describe the large s tail only in limited
intervals. We obtain b = 5.442 for s/A € [1.5,2.0] and
b = 6.803 for s/A € [2.0,2.5] as decay coeflicient com-
pared to b &~ 4.1 of Ref. 68. The fit of Ref. 10 within the
interval [1.8,2.6] yields better agreement with our data.
However we find v = 2.401 which also contradicts the ex-
pected value 1.23. We attribute these deviations to the
low accuracy of the distribution in the required interval,
which finally does not allow us to favor one or the other
dependency.

At this point it seems that only the s2 behavior of
P,(s) for small s proves to be robust within our RG ap-
proach and obeys the expected universal level repulsion.
But as we will show in the next section universality can
be found also in additional quantities derived from the
critical LSD.

IV. SCALING RESULTS FOR THE LSD
A. Finite-size scaling at the QH transition

As has been established experimentally, the QH tran-
sition is a 2nd order phase transition®®. This kind of
transition can be characterized by the divergence of a
correlation length £, e.g. the localization length of the
wavefunction, according to

€ool(20) X |20 — 2| (8)

when the controlling parameter 2z reaches the critical
point z.. The value of critical exponent v is usually’®"*



predicted to be a universal quantity.”>”"* For the QH
transition v has been calculated by a variety of numerical
methods, e.g. v = 2.5 +0.5%20, 2.4 4 0.22%, 2.35 4 0.0322,
and 2.39+0.0123, which agrees also with the experimental
estimates v ~ 2.369:75,76,

In order to extract v from the LSD we employ the one-
parameter-scaling hypothesis””. This theory describes
the rescaling of a quantity a(N;{z;}) — depending on
(external) system parameters {z;} and the system size
N — onto a single curve by using a scaling function f

N
00 =1 (i) Y
Since Eq. (8), as indicated by “co”, holds only in the limit
of infinite system size, we now use the scaling assumption
to extrapolate f to N — oo from the finite-size results of
the computations. The knowledge about f and £, then
allows to derive the value of v.

In our present study, we will use only the parameter 2,
which is connected to the RG of the LSD in the following
way. Let us consider z as the dimensionless height of a SP
in the potential according to the transformation rule ¢t =
(€% 4+1)~1/2.52 Thus the distribution P(G) can be trans-
lated easily to the distribution @(z) of the SP heights via
Q(z) = P(G)dG/dz = P [(e* +1)7'] /4cosh®(z/2). In
Ref. 23, we have shown that that Q. corresponding to P,
is a distribution function symmetric around z = 0 and
close to a sum of Gaussians in is functional form. We
then introduced the parameter zg as a shift in the initial
distribution Qo(z) = Q¢(z — 20).2% For zp < 0 this dis-
turbance in Qo(2) acts toward the localized regime since
the weight in the corresponding P(G) is moved toward
conductance G = 0. The opposite holds for zg > 0. Here
Qo(z) is shifted toward the delocalized regime (G = 1).
Consequently, from the choice of the starting distribution
of the RG iteration follows the position of transition at
the critical value z, = 0.

B. Scaling for ap and o

In principle, we are now free to choose for the finite-size
analysis any characteristic quantity a(N; 29) constructed
from the LSD which has a systematic dependence on sys-
tem size N for 2y # 0 while being constant at the tran-
sition zp = 0. Because of the large number of possible
choices”14:17:68,78,79 we restrict ourselves to two quanti-
ties which are obtained by integration of the LSD and
have already been successfully used in Refs. 7,80, namely

S0
ap = / P(s)ds (10)
0
and second
1 g0
o= — I(s)ds, (11)
s0 Jo
with I(s) fos P(s')ds'. The integration limit is chosen

as sg = 1.4 which approximates the common crossing
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FIG. 7: RG of the LSD used for the computation of v. The
dotted lines corresponds to the first 9 RG iterations with an
initial distribution P, shifted to the metallic regime (zo = 0.1)
while the long-dashed lines represent results for a shift toward
localization (2o = —0.1). Within the RG procedure the LSD
moves away from the FP as indicated by the arrows. At
s/A = 1.4 the curves cross at the same point — a feature we
exploit when deriving a scaling quantity from the LSD.

point” of all LSD curves as can be seen in Fig. 7. Thus
P(s0) is independent of the distance |z — z.| to the crit-
ical point and the system size N. We note that N is
directly related to the RG step n by N = 2". The dou-
ble integration in oy is numerically advantageous since
fluctuations in P(s) are smoothed. We now apply the
finite-size-scaling approach from Eq. (9)

N
goo(zO)) ‘ (12)

Since a1,p(N, 29) is analytical for finite N, one can ex-
pand the scaling function f at the critical point. The
first order approximation yields

aI,P(Na 20) = f (

(N, z) ~ a(N, z.) + a|zg — 2| N/” (13)

where a is a coefficient. For our calculation we
use a higher order expansion proposed by Slevin and
Ohtsuki.®! In their method f is expanded twice, first, in
Chebyshev polynomials of order O, and, second, as Tay-
lor expansion with terms |29 — 2| in the order O,. This
allows to describe deviations from linearity in |z — 2|
at the transition. Additionally they take into account
also contributions from an irrelevant scaling variable with
leads to a shift of the transition for small system sizes. As
shown in Fig. 8, our data show the transition at zy = 0.
Therefore we can neglect the influence of irrelevant vari-
ables. In order to obtain the functional form of f the
fitting parameters, including v, are evaluated by a non-
linear least-square (x?) minimization. In Fig. 8 we show
the resulting fit for ap and o at the transition. The
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FIG. 8: Behavior of a; and ap at the QH transition as re-
sults of the RG of the LSD. Data are shown for RG iter-
ations n = 1,...,9 corresponding to effective system sizes
N = 2" = 2,...,512. Full lines indicate the functional de-
pendence according to FSS using the x® minimization with
O, =2and O, =3.

fits are chosen in a way such that the total number of
parameters is kept at a minimal value and the fit agrees
well with the numerical data. The corresponding scal-
ing curves are displayed in Fig. 9. In the plots the two
branches for localized (29 < 0) and extended (29 > 0)
regime can be distinguished clearly. In order to estimate
the error of fitting procedure we compare the results for
v obtained by different orders O, and O, of the expan-
sion, system sizes N, and regions around the transition.
A part of our over 100 fit results together with the stan-
dard deviation of the fit are given in Table I. The value
of v is calculated as average of all individual fits where
the resulting error of v was smaller than 0.02. The er-
ror is then determined as the standard deviation of the
contributing values. By this method we assure that our
result is not influenced by local minima of the nonlinear
fit. So we consider v = 2.37 £+ 0.02 as a reliable value for
the exponent of the localization length at the QH tran-
sition obtained from the LSD. This is in excellent agree-
ment with v = 2.5 + 0.5 (Ref. 20), 2.4 £ 0.2 (Ref. 21),
2.35+£0.03 (Ref. 22), and 2.39+0.01 (Ref. 23) calculated
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FIG. 9: FSS curves resulting from the x? fit of our data shown
in Fig. 8. Different symbols correspond to different effective
system sizes N = 2". The data points collapse onto a single
curve indicating the validity of the scaling approach.

previously.

We mention that besides ap and ar we tested also
a parameter-free scaling quantity fooo s2P(s)ds,” where
the whole distribution P(s) is taken into account. Here,
due to the influence of the large s-tail only a less reliable
value v = 2.33 £ 0.05 was obtained.

C. Different initial distributions

Let us now study the influence of the initial conditions.
So far we constructed the starting distributions Py(t) and
Py(s) of the RG iteration by disturbing the critical distri-
butions P,(t) and P.(s). Now we examine how Py (t) and
Py(s) based on non-critical and therefore “wrongly cho-
sen” distributions P(t) and P(s) would effect our results.
E.g. we construct Py(t) from a distribution Pggus(G)
which is sharply peaked but still symmetric with respect
to G = 0.5 as shown in Fig. 10. The corresponding LSD
is obtained similar to the calculation of P.(s), where we
now use P,(G) = Pgaus(@G) in all iterations.

For the determination of the critical exponent, we



TABLE I: Part of fit results for v obtained from o1 and ap
for different system sizes NN, intervals around the transition,
orders O, and O, of the fitting procedure.

N [20min, Zomaz] Oy O, v
ap
2-512 [9.93,10.07] 3 2 2.336 +£0.010
2—256 [9.93,10.07] 2 3 2.412+0.013
4—-512 [9.95,10.05] 3 1 2.325+0.014
2 —512 [9.95, 10.05] 2 1 2.402+0.014
2—256 [9.95,10.05] 2 2 2.360+0.016
16 — 512 [9.95,10.05] 2 3 2.385+0.018
2128 [9.93,10.07] 1 3 2.384+0.019
4 —512 [9.93, 10.07] 2 1 2471 +£0.019
ar
2-—512 [9.93,10.07] 2 2 2.383+0.010
2-512 [9.93,10.07 2 3 2.388+0.010
2 —512 [9.93, 10.07] 3 1 2.346 +0.012
8 —512 [9.93,10.07] 2 3 2.376+0.012
2-512 [9.95,10.05] 2 3 2.368 +0.014
2—-128 1[9.93,10.07] 2 3 2.377 £0.016
16 — 512 [9.95,10.05] 2 1 2.367 +0.016
2-256 [9.93,10.07 3 3 2.372+0.018
2.0
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FIG. 10: Comparison of the LSD P.(s) and Pgqys(s) obtained
from the corresponding conductance distributions shown in
the inset.

again disturb the distributions by an energy shift 2o and
study the change of the LSD in the course of the RG
iterations by means of oy and ap. Our data for a; are
plotted in Fig. 11. The curves for small system sizes N
exhibit strong deviations, i.e., there is initially no com-
mon crossing point, while for large N a behavior similar
to Fig. 8 is observed. Therefore small N data are ne-
glected in the scaling analysis. The x? fits for o1 and ap
are carried out using 29 € [—0.05,0.05] and N = 16—512.
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FIG. 11: Behavior of a1 computed for initial distributions
Pgaug different from the critical distributions, as shown in
Fig. 10. Data are plotted for RG iterations n =1,...,9 cor-
responding to effective system sizes N = 2" = 2,...,512.
Curves for small n do not cross at the common point zo = 0.
Full lines indicate the functional dependence according to FSS
using the x? minimization with ©, =2 and O, = 2.

They yield v; = 2.43 £ 0.02 and vp = 2.46 £ 0.03 which
are still reasonable close to v = 2.37 + 0.02 obtained
for the correct initial distributions. Obviously the initial
failure is reduced and smeared out already after a few
RG iterations. This is a fundamental property of this
RG approach and strongly connected to the choice of the
RG unit, which is constructed to capture the right chiral
symmetry of the QH transition.

V. CONCLUSION

The common way to study the LSD in lattice or net-
work models is to examine as large as possible systems.
Only this allows to obtain a huge number of energy levels
required for a reliable statistics and furthermore is a pre-
requisite to observe universal behavior. In this work we
choose a different method. Instead of a large CC network
we use only a 5 SP RG unit to extract the eigenenergies.
This RG approach is based on an specific assumption of
the energy dependence (4) of the phases in the RG unit,
which has an influence also on the shape of the LSD.
Therefore the overall form of the computed critical LSD
P, is not universal but at least shows a quadratic level
repulsion for small s, one of the predicted characteristic
properties. We checked that this behavior is observed
also for a different nonlinear energy dependence of the
phases in the RG unit.

The robustness of universal properties is moreover
demonstrated by a finite-size scaling analysis of the LSD
around the QH transition. The exponent v = 2.37 +0.02
of the localization length obtained by a nonlinear 2 min-



imization is in excellent agreement with the value calcu-
lated in previous works.

This result is surprisingly good when keeping in mind
that it was derived just from the 4 loops of our RG unit.
Nevertheless this RG unit seems to capture the essential
physics of the QH transition. We attribute the success
of our RG approach to (i) the description of the trans-
mission amplitudes ¢ of the SP’s by a correct distribution
function P(t), while for network models usually a fixed
value t(F) is assigned to all SP’s, (ii) the phases are asso-
ciated with full loops in the network and not with single
SP-SP links, and (iii) a design of the RG unit describing
the underlying symmetry of the QH transition, which is
not accessible, e.g., with the 4 SP RG unit considered in
Ref. 57. Due to these reasons the RG iteration is always
governed by the quantum critical point of the QH transi-
tion. Even when starting the iteration with a distribution
Py(G) totally different from P.(G), but still symmetric
with respect to G = 0.5, we approach after a view itera-
tions at the same results.

10

We argue that our findings indicate a large robustness
of universal properties of the QH transition. Using a
simple non interacting semiclassical picture of electron
propagation and the rather crude RG approach we were
able to reveal universal behavior. On the other hand
experimental results®2®3 clearly indicate the influence of
electron interaction at the QH transition. It seems that a
fundamental description of QH transition is still far from
being accomplished.
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