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1 Abstract

We consider parallelization strategies for
the two most important algorithms used
in numerical investigations of the Anderson
model of localization, a paradigmatic model
of disordered quantum systems. After a brief
review of the physics of Anderson localiza-
tion, we outline the Cullum-Willoughby im-
plementation of the Lanczos diagonalization
scheme and the transfer-matrix method used
for the numerical characterization of local-
ization properties. For applications of these
algorithms to massively parallel cluster ar-
chitectures, we develop and test various par-
allelization strategies.

2 Introduction

Disordered systems represent a major chal-
lenge for modern computational methods.
Due to their ubiquitous nature and their
many applications, there is an ever growing
need to understand the physics that governs
their behavior [1, 2, 3]. Unfortunately, it
is exactly their disordered nature that also
makes any analytical approach and thus a

simple mathematically tractable solution so
very hard to come by. Nevertheless, in recent
years a vast and extensive body of knowledge
has been collected mainly based on exten-
sive use of high-performance computing [2].
In the present paper, we will consider mod-
ern numerical approaches to the so-called
Anderson model of localization [4], a quan-
tum system of disordered electrons. In par-
ticular, we will review two recent efforts in
constructing algorithms that work on mod-
ern day computer systems using scalable dis-
tributed memory and cluster architectures
[5].

The paper is organized as follows. In sec-
tion 3 we describe the underlying quantum
physics problem, i.e., the Anderson model of
localization, and introduce the parameters
used in our paper. In section 4 we briefly
review the two main algorithms considered,
namely the Cullum-Willoughby version of
the Lanczos method and the transfer-matrix
method. We then give in section 5 a detailed
account of our parallelization strategies. We
conclude in section 6.



3 The Anderson model of lo-
calization and its physics

The Anderson model of localization [4] is a
paradigmatic model for the investigation of
electronic properties of disordered systems
[1, 2, 3]. Although it represents a severe sim-
plification of amorphous materials [6], alloys
[7, 8], and disordered semiconductors [9, 10],
it is currently widely used in the theoret-
ical description of quantum mechanical ef-
fects such as localization of electronic wave
functions [11, 12, 13, 14, 15] and the metal-
insulator transition (MIT) [16, 17, 18]. The
quantum mechanical problem is represented
mathematically by a Hamilton operator in
the form of a real symmetric matrix A. The
quantum mechanical energy levels are given
by the eigenvalues FE, and the respective
wave functions are simply the eigenvectors
x, of A [5]. E.g., for a simple cubic lat-
tice with N x N x N sites, we have to solve
the eigenvalue equation Ax = Ex, which is
given in site representation as

Ticijk t Tiv1 ik + Tij—1k + Tijri et
Tijk—1+ Tijk+1 t EijhTijk
= Ezijr, (1)

with ¢, j,k denoting the Cartesian coordi-
nates of a site. The off-diagonal entries
of A correspond to hopping amplitudes of
the electrons from one site to a neighbor-
ing site and are chosen to be equal for sim-
plicity. They have been set to one in (1)
defining the energy scale. The disorder is
encoded in the random potential site ener-
gies €, on the diagonal of the matrix A.
We consider only the standard case of ¢;
being uniformly distributed in the interval
[—W/2,4W/2] with W ranging from 1 to
30. The boundary conditions are usually pe-
riodic, but hard wall and helical [19] bound-
ary conditions are sometimes also used. Ac-

cording to the Gersgorin circle theorem [20]
every such matrix A has eigenvalues in the
interval [-W/2 — 6,+W/2 + 6]. Possible
generalizations of the Anderson model in-
clude anisotropic [21, 22, 23, 24, 25, 26]
or even random hopping [12, 13, 14, 15],
various choices of the distribution function
of the site energies [27], a finite magnetic
field [28, 29, 30, 31, 32] and spin effects
[33, 34, 35].

Although the above matrix seems to be
fairly simple, the intrinsic physics is surpris-
ingly rich [1, 2, 3, 36]. For small disorder
(W < 16.5) and energies in the band cen-
tre (|E'| < 6), the eigenvectors are extended,
i.e., T is fluctuating from site to site but
the envelope |z| is approximately a non-zero
constant. For large disorder (W > 16.5)
and large energies (|E| > 6), all eigenvec-
tors are localized, i.e., the envelope |z,| of
the nth eigenstate may be approximately
written as exp[—|r — 1|/, (W)] with r =
(i,7,k)T and \,(W) denoting the localiza-
tion length of the eigenstate at the specified
strength W of the disorder [2]. r, denotes
the approximate center of the eigenstate.

Since extended at temperature T = 0
states can contribute to electron transport,
whereas localized states cannot, the An-
derson model thus describes a 77 = 0
metal-to-insulator transition [2, 3]: In three-
dimensional samples for small disorder only
few states in the band tails are localized.
With increasing disorder more and more
states became localized until at W = W, =
16.5, the last remaining extended states at
energy E = 0 vanish and no current can
flow. Directly at W, there is a so-called crit-
ical regime where the eigenvectors are multi-
fractal entities [19, 23, 27, 37] showing char-
acteristic fluctuations of the amplitude on
all length scales, see Fig. 1. In order to
numerically distinguish these three regimes,



namely localized, critical and extended be-
havior, one needs to (i) go to extremely large
system sizes and (ii) average over many dif-
ferent realizations of the disorder, i.e., com-
pute eigenvalues or -vectors for many matri-
ces with different diagonals [38].

Figure 1. Spatial probability distribution of a mul-
tifractal wave function at the Anderson transition
(W, = 16.5, E = 0) for an isotropic system of size
N3 = 111° = 1367631. Probability values larger than
average are denoted by boxes of different sizes ac-
cording to their value. Note how the wave function
appears both extended throughout the whole system
and at the same time localized to a few regions in
space. The color code denotes the position with re-
spect to the right bottom axis.

4 Numerical approaches to the
problem

For the numerical characterization of the
Anderson localization problem, we need to
compute suitably chosen states and ener-
gies of the Hamilton matrix A of the An-
derson model. Measures of localization can
then be computed from multifractal analy-
sis [19, 23], energy level statistics [25, 39,
40, 41, 42, 43, 44], studies of participation

numbers [12; 13] and wave function statistics
[45, 46, 47, 48, 49, 50]. Therefore the compu-
tational task is to compute (a few) interior
eigenvalues and the associated eigenvectors
of a family of structured large, sparse, real,
symmetric, indefinite matrices.

4.1 Solving the eigenvalue problem
by Lanczos diagonalization

Previously this problem was often solved by
using the 1987 Cullum and Willoughby im-
plementation of the Lanczos algorithm [51,
52], in the following called CWI. This algo-
rithm iteratively generates a sequence of or-
thogonal vectors v;, ¢ = 1,..., K, such that
VEAVE = Tk, with V = {vy,va, -+, vi}
and Tx a symmetric tridiagonal K x K ma-
trix. One obtains the recursion

Brs1Vir1 = Avy — apvi — Brvie1,  (2)

where oy, = vl Avy, and Sr41 = Vi1 Avy, are
the diagonal and subdiagonal entries of T,
vo = 0 and v; is an arbitrary starting vec-
tor. In finite precision arithmetic, the Lanc-
zos vectors vy, typically lose their orthogo-
nality after a small number of Lanczos iter-
ations. Consequently, there usually appear
so-called “spurious” or “ghost” eigenvalues
in the spectrum o(Tg), which do not be-
long to o(A). The solution to this problem
as implemented in CWI [52] uses a simple
and highly successful procedure to identify
the spurious eigenvalues, thereby avoiding
reorthogonalization.

In the last 10 years several new eigenvalue
methods have been developed and imple-
mented as software packages, that seem, at
least at first glance, more appropriate than
CWI, see, e.g., the recent survey and com-
parison given in Ref. [53]. In Ref. [5] we
have tested several of these more modern
methods to compute a few interior eigenvec-
tors of the Anderson matrix. The implic-



itly restarted Arnoldi method [54] in connec-
tion with polynomial convergence accelera-
tion [55] and in shift-and-invert mode with
several direct and iterative solvers for the
arising systems of linear equations [56] was
compared to the CWI of the Lanczos method
[561, 52]. Despite the recent progress in linear
system solvers [53] we found [5] all consid-
ered modern methods to be inapplicable for
very large system sizes, because either the
computation times or the memory require-
ments are much to large. Thus CWI Lanczos
is currently still the most efficient method
for the matrix type we are interested in and
should therefore serve as the starting point
for parallelization schemes. We emphasize
that the wave function displayed in Fig. 1 is
currently the largest such wave function ever
to have been constructed [57].

4.2 Solving the localization problem
by transfer-matrix methods

An alternative state-of-the-art method for
computing localization lengths A directly
is the so-called transfer-matrix method
(TMM) [2, 58, 59, 60, 61]. This itera-
tive method is very similar to the stan-
dard power series method for computing the
largest eigenvalue [62]. It is based on rewrit-
ing the eigenvalue equation (1) in the recur-
sion form

X1 = (BT — Ap) Xy — Xy (3)

where X, and A; denote a complete set of
wave vectors and the system matrix pro-
jected onto the Ilth slice of a quasi one-
dimensional bar of length L > M, respec-
tively. Here, M indicates the transverse ex-
tent of the bar. Starting from a complete
orthogonal basis set Xy, i.e. a matrix with
2M? x 2M? entries, one can determine the
Lyapunov exponents describing the expo-
nential increase of the amplitudes along the

bar. The inverse of the smallest exponent
yields the physically relevant largest local-
ization length .

There are two main benefits when using
the TMM. First, it is not necessary to com-
pute all wave functions. Since the system
size to be considered should be at least of
the same order as )\, this would be extremely
memory and computation time consuming
close to the MIT. Second, the accuracy can
be controlled a priori in a TMM calculation
due to the physics concept of self-averaging
[2, 59]. Thus there is no need for any a
posteriori averaging over a large number of
eigenstates. However, a major drawback of
the method is an inherent instability due to
loss of orthogonality of the initially complete
basis set of vectors Xy onto which A is re-
peatedly multiplied. This instability due to
finite precision arithmetic must be compen-
sated by regularly applying a Gram-Schmidt
reorthonormalization procedure [59].

5 Parallelization

Even when using well adapted numerical
algorithms on state-of-the-art conventional
single processor machines, the size of the sys-
tem that can be treated is limited. This is
a severe limitation, especially when critical
properties close to an MIT are to be con-
sidered. Possible further progress can be
achieved by using massively parallel com-
puter architectures together with suitably
chosen algorithms [57]. In this spirit, we
will in the following introduce and discuss
parallelization strategies for Lanczos diago-
nalization and the TMM. These ideas have
been implemented in a parallel CWI pro-
gram (P-CWI) and a parallel TMM program
(P-TMM) and used to generate the large sys-
tem size data for Refs. [14, 15, 23, 24, 25, 26,
38, 63, 64, 65].
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Figure 2: Schematic diagram of the matrix-vector
multiplication in the P-CWTI for a 4% system with pe-
riodic boundary conditions. The 16 x 16 matrices A,
I, and O denote the Hamiltonian within the ith 4 x 4
plane and the coupling to the other planes. Each pro-
cessor owns the part of the matrix and of the Lanczos
vector corresponding to a single plane and the vectors
of the two neighboring slices to which the matrix cou-
ples. Thus, processor #1 owns the slice vectors zy,
xa, and 24 (due to the periodic boundaries). In a ring
topology network for the communication neighboring
slices are located on neighbors in the ring.

5.1 Parallel Lanczos diagonalization

Asreviewed in Sec. 4 the CWI is reliable and
highly efficient for diagonalizing the Ander-
son Hamiltonian [5]. Therefore, it is worth
trying to port it to parallel machines. Most
of the computational effort in the Lanczos al-
gorithm (at least in the case where only a few
eigenvectors are to be computed) is spent
on the iteration of Eq. (2), i.e., on matrix-
vector multiplications and vector additions.
These can effectively be parallelized since
in these operations each vector element can
be calculated independently of all others.
Thus, the main part of CWI is easily paral-
lelized by splitting each of the Lanczos vec-
tors v; among the processors. This we call
the distributed element scheme (DES). Each
machine performs only part of the matrix-
vector multiplication for each vector. All
other parts of the code can be left more or
less untouched. Here, a “naive paralleliza-

tion” strategy is used: the eigenvectors to be
computed are distributed over the nodes. In
this manner, we implemented a parallel ver-
sion of the CWI for distributed-memory ar-
chitectures by using a parallelization library
developed at the TU Chemnitz [66].
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Figure 3: Time to compute all eigenvalues (top) or 5
inner eigenvectors (bottom) using P-CWTI for different
numbers of processors on a Parsytec GC/Power Plus.
The system size is N® = 323.

The parallel matrix-vector multiplication
Ax is sketched in Fig. 2. We exploit the fact
that a plane in the 3D cube couples only to
the two neighboring planes. Each node owns
the part of the matrix belonging to a number



of adjacent slices of the cube and the corre-
sponding part of the Lanczos vectors. Addi-
tionally, the vectors of the two neighboring
slices are copied from the neighboring nodes
and also stored locally. Now, each proces-
sor can perform its part of Ax independent
of the others. This is implemented very effi-
ciently with a number of nested loops; only
the diagonal elements have to be stored.
Unfortunately, the resulting parallel Lanc-
70s iteration does not scale very well, at least
on the present hardware available at the TU
Chemnitz. As can be seen in the right part
of Fig. 3, the program needs more time on
16 processors than on 8. In each iteration
step, the vectors of two planes have to be
exchanged between neighboring processors,
one forward and the other backward in the
(virtual) ring network connecting the nodes.
The time spent on this communication oper-
ation depends only on the system size, but
it is independent of the number of proces-
sors in use. Furthermore, there are two in-
ner products which require summations over
all nodes. This takes more time if more pro-
cessors are involved. Only the number of
arithmetic operations scales nearly in an op-
timal way. But this needs only little time,
since there are only 7 non-zero matrix ele-
ments per row in A. For N3 = 323, each of
the 16 processors owns only two planes and
almost all time is spent on communication.
In order to run efficiently, each node must
own a larger number of about (O(10) slices.
In the case where all eigenvalues are to
be computed, most of the time is spent on
determining the eigenvalues of the tridiag-
onal matrix. In the P-CWI this part of
the program is again “naively” parallelized.
Each processor works on a different part of
the energy interval of interest and one ob-
tains nearly optimal speedup. Although the
basic Lanczos iteration scales badly again,

the overall performance is much better for
larger numbers of processors compared to
the eigenvector computation. In the left part
of Fig. 3 it is shown that computing time still
decreases from 8 to 16 processors for system
size N> = 323. Most of the large-size data
(N3 = 50%) used, e.g., in Ref. [25] for energy
level statistics were computed with P-CWI
on a cluster of Linux PCs connected by Fast
Ethernet.

We expect a thread parallelization [67] of
the CWI for dual processor PCs to be quite
efficient since no data have to be commu-
nicated over a network and the number of
slices per processor is rather high. How-
ever, this was not yet tested due to the large
changes in the program required.

5.2 Parallel TMM

The TMM algorithm mainly consists of two
numerically expensive parts. First, there
is the recursion Eq. (3) which is a matrix-
vector multiplication. It can be parallelized
as described in the previous section. Sec-
ond, there is the reorthonormalization which
needs most of the computing time (~ 90%)
for larger system sizes.

For the matrix multiplication of the TMM
there are at least two possibilities of par-
allelization. The first scheme is again the
DES, ¢.e. based on storing the elements
of each vector x; on different machines as
shown in Fig. 4. Thus the speedup of this
part of the algorithm is proportional to the
number of machines used. However, at the
boundaries, the machines need to commu-
nicate due to the hopping in the direction
perpendicular to the TMM propagation, i.e.,
the A; - X; terms in Eq. (3). This decreases
the speedup as in P-CWI. On the other
hand, the reorthogonalization can be done
fairly fast in this DES scheme since the rel-
evant scalar products can be computed first



Figure 4: Schematic diagram of the two possible
schemes for storing vectors in the P-TMM. Each data
column of the 6 X 6 matrix X represents a single vec-
tor. The solid lines indicate the distributed elements
scheme (DES), whereas the dashed lines show the dis-
tributed vector scheme (DVS).

locally and only a simple addition over all
machines is needed. Thus the DES decreases
the amount of computer time needed for the
matrix-vector multiplications and allows for
a simple parallelization of the reorthogonal-
ization.

The second parallelization scheme is based
in storing the complete vectors on individ-
ual machines as also shown in Fig. 4. Let us
call it the distributed vector scheme (DVS).
No communication is needed for the matrix-
vector multiplication part of the algorithm
for the DVS and the speedup is proportional
to the number of machines used. Unfortu-
nately, the DVS needs a lot of communi-
cation for the reorthonormalization since it
requires to send each vector to every other
vector on each processor in order to compute
the necessary scalar products. In Fig. 5 we

orthonormalization

v v

proc proc proc | ... .| proc
#0 #1 #2 #k

step0
proc proc | __________ | proc
#1 #2 #K

step 1
proc | ... - proc
#2 #Kk

step 2
v \
proc
#Kk

step k

Figure 5: Schematic diagram of the orthogonalization
procedure for the P-TMM based on the DVS. The
vectors in X; are distributed on £ + 1 processors, so
that the ith processor owns n; vectors. In step 0, the
first of ny vectors on processor 0 is orthonormalized
with respect to all other ng — 1 vectors and then sent
to processor 1. Then the second vector on processor
0 is orthonormalized and so on until all ny vectors are
orthonormal. In the meantime, the other processors
have already orthonormalized their vectors with re-
spect to the ones sent to them from processor 0. The
algorithm now continues in step 1 with the n, vectors
on processor 1 until finally in step % all vectors on all
k machines are orthonormal.

show an implementation of the DVS scheme
that is nevertheless rather effective for the
orthogonalization.

At first glance, the second scheme looks
much less convincing than the first, since in
the reorthonormalization, machines such as
proc.#0 are idle for a long time. Neverthe-
less, a direct comparison between the dis-
tributed element (DES) and the distributed
vector schemes (DVS) shows that the lat-
ter is faster. The DVS can be addition-
ally accelerated by reducing the number of
reorthonormalizations. This reduction can
be achieved by adapting the number of ma-
trix multiplications between successive re-
orthonormalizations according to the dif-
ference in norms of smallest and largest



Lyapunov exponents [68, 59] after each re-
orthonormalization. In Fig. 6 we show how
these improvements lead to a reduction in
the time needed for the P-TMM runs. For
example, P-TMM runs for the 3D Anderson
model with random hopping [12, 13, 14, 15]
with system size (cross section) 14 x 14 need
only about 20% of computation time for 32
processors when compared to a single pro-
Cessor.

The speedup curves of Fig. 6 show that for
the parallel architecture of a GC/PowerPlus-
128 (Parsytec)-parallel computer (GCPP),
the implementation of the P-TMM does in
fact give a net reduction in computing time
for large system sizes. However, the real test
of the usefulness of these codes comes when
comparing to the performance on the fastest
available serial computers. In Fig. 7 we show
that at present due to the slowness of an in-
dividual processor on the GCPP, it is only
for very large system sizes that the P-TMM
performs better then its single-processor ver-
sion on a Pentium II architecture.

We had hoped that a threaded paralleliza-
tion would be very efficient on a shared-
memory architecture dual processor PC. The
inner loop of the reorthonormalization con-
sists of an inner product and a vector multi-
plication/addition. The vectors are split in
two parts and each CPU performs the op-
erations for either the upper or lower half,
independently of the other. Unfortunately,
the gain was much less than expected, the
speedup even for extreme system sizes of
M = 40 was clearly less than 2. Two syn-
chronizations are necessary to ensure that
the correct result of the inner product is
available on both processors. However, even
for very large system sizes, in terms of the
TMM, the vector lengths on the two nodes
are only of the order of M? = 30> = 900.
Since the vector operations are performed
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Figure 6: Top: Performance data of the P-TMM for
various implementations of the DVS algorithm. The
times for data indicated by squares and diamonds
in the left panel correspond to fixed and adaptive
orthonormalization schemes as outlined in the text.
Bottom: Speedup for different system sizes from 8 x 8
to 14 x 14 as a function of the number of processors
used for the DVS. Note that the speedup for small
system sizes decays upon increasing the number of
processors already for a small number of processors
due to the increased communication.
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Figure 7: Comparison of the best 3D P-TMM im-
plementation on the GCPP with up to 32 processors
with the 3D TMM implementation on a 400 MHz
Pentium II (NAG, PGI) as a function of system size
M x M. NAG and PGI distinguish different Fortran
compilers; the PGI compiler can optimize code for
the Pentium II architecture.

extremely efficiently by using a machine spe-
cific optimized BLAS library [69], the ef-
fort of the synchronization is apparently not
small compared to the O(900) floating point
operations.

An equivalent parallelization of the Lanc-
zos iteration can be expected to be much
more efficient. Although there are two global
summations and thus 4 synchronizations in-
stead of 2 in each iteration step, the vector
lengths would be of the order N® = 503 =
125000 resulting in a better arithmetic-to-
communication ratio.

6 Conclusions

In conclusion, we have considered the strate-
gies employed in our parallelization schemes
for the CWI and the TMM in the Ander-
son model of localization. Both algorithms
rely on fast matrix-vector multiplications
and this part of the algorithms is ideally
suited for a massively parallel approach. On

the other hand, the efficiency of P-CWTI is
reduced due to the increasing communica-
tion between different sections of the matrix.
Also, the efficiency of P-TMM is limited due
to the required orthogonalization of all vec-
tors with each other which necessarily im-
plies a large communication effort.

Our results show that the application of
parallel methods to the Anderson problem is
nevertheless useful when large system sizes
have to be reached, e.g. for a special set of
parameters such as £ = 0 and W, = 16.5
that characterize the MIT. There, we have
been able to investigate hitherto unreached
system sizes.
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