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1 Introdution

Adaptive �nite element algorithms have beome an important tool for numerial simula-

tions. Along with other ingredients, they usually employ a posteriori error estimators or

indiators, f. Ainsworth/Oden [2℄, Verf�urth [21℄ and the literature ited therein.

In this work we onsider a singularly perturbed reation-di�usion model problem whose

lassial formulation reads: Find u 2 C

2

(
) \ C(
) suh that

�"�u+ u = f in 
; u = 0 on �

D

= �
 (1)

in a bounded, polyhedral domain 
 � R

d

, d = 2; 3. The perturbation parameter " is

supposed to be very small, 0 < "� 1, and to have muh inuene on the solution. For a

omprehensive disussion of its analysis and numerial treatment we refer to Roos, Stynes,

Tobiska [19℄, and to Miller, O'Riordan, Shishkin [16℄, and the itations therein. Here it will

suÆe to remark that the singularly perturbed problem (1) usually gives rise to a solution

with boundary layers when a non-vanishing right-hand side f meets homogeneous Dirihlet

boundary onditions. Inside the domain 
 and suÆiently far away from the boundary,

the solution is usually smooth provided f is smooth enough too. Thus the boundary layers

mark the domain of interest, and their resolution requires inreased numerial e�ort.

The knowledge of a posteriori error estimators for the singularly perturbed problem

(1) has been unsatisfatory until reently. Most estimators yield upper and lower bounds

on the error that are not asymptotially equivalent. By this we mean that the upper and

lower bound di�er by a fator that inreases, for example, as the disretization parameter

h ! 0, or as the perturbation parameter " ! 0 . The �rst a posteriori error estimate

with asymptotially equivalent upper and lower bound on the error is, to our knowledge,

due to Angermann [3℄. He measures the error in a somewhat strange norm whih seems

to be mainly of theoretial interest. Only reently Verf�urth [22℄ derived the �rst robust

a posteriori error estimator for the energy norm. Ainsworth/Babu�ska [1℄ extended the

`equilibrated residual method' to the singularly perturbed problem and obtained a robust

error estimate as well.

Let us now onsider the �nite element method and some disretization aspets in par-

tiular. Standard methods employ so{alled isotropi meshes. That is, the elements are

shape regular or, equivalently, the ratio of the diameters of the irumsribed and insribes

spheres is bounded. However, some problems (e.g. the singularly perturbed problem above)

admit a solution with strong diretional features suh as boundary or interior layers. To ap-

proximate suh an anisotropi solution, it an be advantageous to use anisotropi elements,

i.e. elements that are no longer shape regular.

Anisotropi elements are already used in pratie, see e.g. [4, 5, 7, 11, 17, 18, 23℄, but

when ommonly known (isotropi) a posteriori error estimators are applied to anisotropi

meshes, they usually fail. The development of error estimators that are suitable for aniso-

tropi elements is just beginning. The only mathematially founded anisotropi estimators

are, as far as we know, due to [20, 14, 13, 15, 10℄, and will be disussed now briey.

Siebert [20℄ onsiders a residual error estimator for the Poisson problem on uboidal

or prismati grids. He has to impose two onditions to obtain upper and lower error
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bounds. Kunert [14, 13℄ investigates the Poisson equation on tetrahedral meshes, and

a residual error estimator and a loal problem based error estimator are derived. The

lower error bounds there hold unonditionally, whereas the upper bounds are formulated

suh that the inuene of the anisotropy beomes apparent. In Kunert/Verf�urth [15℄ it

is shown that anisotropi residual error estimators an be modi�ed suh that they only

ontain the fae residuals, but they still bound the error reliably. This has been proven

for the Poisson equation (H

1

and L

2

error estimators). The investigation has already been

extended there to a reation di�usion problem by using ertain results that are presented

in our paper here. Finally, Dobrowolski/Gr�af/Paum [10℄ propose an error estimator that

requires the solution of a global problem (and slightly more restritive mesh assumptions,

e.g. a maximum angle ondition). The sharpness of the error bounds relies on a saturation

assumption whose dependene on the anisotropy is not fully disussed.

Almost all of the aforementioned anisotropi error estimators deal with the Poisson

equation. In ontrast to this, we onsider the singularly perturbed problem (1) and derive

a robust a posteriori error estimator that an be applied to anisotropi meshes. The

upper and lower error bounds involve the same terms and are asymptotially equivalent,

provided that the anisotropi mesh orresponds suÆiently to the anisotropi problem. Our

estimator is partially inuened by Verf�urth's isotropi version [22℄. The results oinide

when our estimator is applied to isotropi meshes.

As a side e�et and a orollary of this paper here we prove some results that have

already been utilized (without proof) in [15℄ to investigate fae residual error estimators

not only for the Poisson equation but also for a reation di�usion equation. In partiular

we prove now the fundamental interpolation estimates of setion 3.3 and the lower error

bound (22) of setion 4. Note further that our error estimator here is improved by a

di�erent saling of the gradient jump.

The paper is organized as follows. In setion 2 we desribe the model problem. Setion

3 is devoted to some basi ingredients of the error estimation analysis. More preisely, we

start by presenting the transformation tehnique and related lemmas, proeed with speial

bubble funtions that will be essential for deriving lower error bounds, and onlude with

spei� interpolation estimates whih eventually give the upper error bound. In setion 4

the error estimator is de�ned and the main result, the error estimation, is presented and

proved. A numerial experiment and the summary onlude this paper.

2 The singularly perturbed model problem

The lassial formulation (1) is often too restritive to desribe real-world problems prop-

erly. So assume f 2 L

2

(
), and let H

1

o

(
) be the usual Sobolev spae of funtions that

vanish on �

D

. The variational formulation is now more appropriate:

Find u 2 H

1

o

(
) : a(u; v) = hf; vi 8 v 2 H

1

o

(
)

with a(u; v) :=

Z




" � r

T

urv + u v hf; vi :=

Z




f v :

9

=

;

(2)



3

The ontinuous problem (2) is disretized by the �nite element method whih employs a

family F of triangulations T

h

of 
. Then let V

o;h

� H

1

o

(
) be the spae of ontinuous,

pieewise linear funtions over T

h

that vanish on �

D

. The �nite element solution u

h

2 V

o;h

is uniquely de�ned by

a(u

h

; v

h

) = hf; v

h

i 8 v

h

2 V

o;h

: (3)

Both problems (2) and (3) admit unique solutions due to the Lax{Milgram Lemma.

Our main objetive is to bound the error u � u

h

. Here we onentrate on the energy

norm

jjjvjjj

2

:= a(v; v) = "krvk

2

+ kvk

2

:

This energy norm is the most natural norm when onsidering a singularly perturbed rea-

tion di�usion problem (in weak formulation). When applied in adaptive algorithms, this

energy norm is able to produe appropriately re�ned meshes. This an be seen easily on

some 1D model problem, e.g. for �"u

00

+u = 0 in 
 = (0; 1) with u(0) = 1; u(1) = 0. Even

the optimal order of onvergene an be reovered uniformly in ".

Apart from these reasons for using the energy norm, we will here repudiate the ommon

argument that the energy norm an not distinguish between a boundary layer and the zero

funtion (f. [16, pages 12f℄). Suh an argument an not be applied here sine it would

erroneously neglet boundary onditions. Furthermore, even if the error in the energy

norm is small in absolute terms, this error an be large in relative terms and thus suÆe

to devise adaptive algorithms.

3 Notation, basi tools and Lemmas

In the following, let P

k

(!) be the spae of polynomials of order k or less over some domain

! � R

3

or ! � R

2

. Furthermore, instead of x �  � y or 

1

x � y � 

2

x (with onstants

independent of x, y, ", and T

h

) we use the shorthand notation x . y and x � y, respetively.

The L

2

norm of a funtion over a domain ! is denoted by k�k

!

, and (�; �)

!

means the L

2

(!)

salar produt. For ! = 
 the subsript is omitted.

The next setions introdue the notation and important tools. Some basi relations and

lemmas are given as well. All onsiderations are made for the 3D ase. The appliation to

the simpler 2D ase is readily possible.

3.1 Tetrahedron { Subdomains { Mesh requirements { Transfor-

mations

Tetrahedron: The four verties of an arbitrary tetrahedron T 2 T

h

are denoted by

P

0

; : : : ; P

3

suh that P

0

P

1

is the longest edge of T , meas

2

(4P

0

P

1

P

2

) � meas

2

(4P

0

P

1

P

3

),

and meas

1

(P

1

P

2

) � meas

1

(P

0

P

2

).

Additionally de�ne three pairwise orthogonal vetors p

i

with lengths h

i;T

:= jp

i

j, see

�gure 1. Observe h

1;T

> h

2;T

� h

3;T

and set h

min;T

:= h

3;T

.
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Figure 1: Notation of tetrahedron T

Tetrahedra are denoted by T; T

0

or T

i

. Faes of a tetrahedron are denoted by E. Set

jT j = meas

3

(T ), jEj = meas

2

(E), and let

h

E;T

:= 3jT j=jEj

be the length of the height over a fae E. Note that h

E;T

is not the diameter of E, as in

the usual onvention. Beause of the geometrial properties of the tetrahedron one has

h

E;T

>

1

2

h

min;T

8E � �T :

Auxiliary subdomains: Let T 2 T

h

be an arbitrary tetrahedron. Let !

T

be that domain

that is formed by T and all tetrahedra that have a ommon fae with T . Note that !

T

onsists of less than �ve tetrahedra if T has a boundary fae.

Let E be an inner fae (triangle) of T

h

, i.e. there are two tetrahedra T

1

and T

2

having

the ommon fae E. Set the domain !

E

:= T

1

[ T

2

. If E is a boundary fae set !

E

:= T

with T � E.

Mesh requirements: In addition to the usual onformity onditions of the mesh (see

Ciarlet [8℄, Chapter 2) we demand the following two assumptions.

1. The number of tetrahedra ontaining a node x

j

is bounded uniformly.

2. The dimensions of adjaent tetrahedra must not hange rapidly, i.e.

h

i;T

0

� h

i;T

8T; T

0

with T \ T

0

6= ; ; i = 1 : : : d :

The last ondition also implies that terms suh as h

min;T

or h

E;T

do not hange rapidly

aross adjaent tetrahedra.

Note that the analysis of the error estimator does not require a maximum angle ondi-

tion.

Transformations and auxiliary tetrahedra: The usual transformation tehnique be-

tween a tetrahedron T 2 T

h

and a standard tetrahedron plays a vital role in many
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proofs (f. [8℄). However, our re�ned analysis even shows that two di�erent transfor-

mations failitate matters onsiderably, see also below. Hene de�ne the matries H

T

:=

diag(h

1;T

; h

2;T

; h

3;T

) and A

T

; C

T

2 R

3�3

by

A

T

:= (

�!

P

0

P

1

;

�!

P

0

P

2

;

�!

P

0

P

3

) and C

T

:= (p

1

;p

2

;p

3

) ;

and introdue aÆne linear mappings

F

A

(�) := A

T

� �+

!

P

0

and F

C

(�) := C

T

� �+

!

P

0

; � 2 R

3

:

These mappings impliitly de�ne the standard tetrahedron

�

T := F

�1

A

(T ) and the referene

tetrahedron

^

T := F

�1

C

(T ). Then

�

T has verties

�

P

0

= (0; 0; 0)

T

and

�

P

i

= e

T

i

; i = 1 : : : 3,

whereas

^

T has verties at

^

P

0

= (0; 0; 0)

T

,

^

P

1

= (1; 0; 0)

T

,

^

P

2

= (x̂

2

; 1; 0)

T

and

^

P

3

=

(x̂

3

; ŷ

3

; 1)

T

. The onditions on the P

i

yield immediately 0 < x̂

2

� 1=2, 0 < x̂

3

< 1 and

�1 < ŷ

3

< 1. Figures 1 and 2 may illustrate this de�nition.

^

P

1

^

P

0

^

P

2

^

P

3

�

2

�

1

�

3

�

P

0

�

P

1

�

P

2

�

P

3

Figure 2: Standard tetrahedron

�

T and referene tetrahedron

^

T

Variables that are related to the standard tetrahedron

�

T and the referene tetrahedron

^

T are referred to with a bar and a hat, respetively (e.g.

�

r, v̂). The determinants of

both mappings are j det(A

T

)j = j det(C

T

)j = 6jT j, and the transformed derivatives satisfy

�

r�v = A

T

T

rv and

^

rv̂ = C

T

T

rv.

Although C

T

is naturally assoiated with our analysis, it transforms

^

T into T . In-

equality onstants would thus depend on

^

T . This drawbak is remedied by using the

transformation via A

T

in onjuntion with C

T

. To illustrate this priniple, onsider the

mapping C

�1

T

A

T

whih maps the standard tetrahedron

�

T onto the referene tetrahedron

^

T .

Sine the radii of the insribed and irumsribed spheres of

�

T and

^

T are bounded from

above and below, respetively, one immediately derives





A

T

T

C

�T

T





R

3�3

=





C

�1

T

A

T





R

3�3

� 1 : (4)
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This equivalene failitates the interation of A

T

and C

T

, see e.g. the proof of the trae

inequality below.

Beause of the singular perturbation harater of the di�erential equation we an

favourably employ a sub{tetrahedron T

E;Æ

� T whih depends on a fae E of T and a real

number Æ 2 (0; 1℄. For a preise de�nition of T

E;Æ

, let T be an arbitrary but �xed tetrahe-

dron, and enumerate temporarily its verties suh that E = Q

1

Q

2

Q

3

and T = OQ

1

Q

2

Q

3

,

f. Figure 3. Introdue baryentri oordinates suh that �

0

is related to O, and �

1

, �

2

, �

3

orrespond to Q

1

; Q

2

; Q

3

, respetively.

Let P be that point with baryentri oordinates

�

0

(P ) = Æ and �

1

(P ) = �

2

(P ) = �

3

(P ) =

1� Æ

3

:

Then T

E;Æ

is that tetrahedron that has verties P and Q

1

; Q

2

; Q

3

, i.e. T

E;Æ

has the same

fae E as T but the fourth vertex is moved towards E with the rate Æ.

An alternative desription is as follows. With S

E

being the midpoint (i.e. enter of

gravity) of fae E, point P lies on the line S

E

O suh that j

~

S

E

P j = Æ � j

~

S

E

Oj. Note that for

Æ = 1 one gets T

E;Æ

� T whereas in the limiting ase Æ ! 0 the tetrahedron T

E;Æ

ollapses

to the fae E.

Q

3

Q

2

P

S

E

Q

1

O

Figure 3: Tetrahedra T = OQ

1

Q

2

Q

3

and T

E;Æ

= PQ

1

Q

2

Q

3

In order to utilize T

E;Æ

eÆiently, we also require an aÆne linear transformation F

T;E;Æ

that maps the standard tetrahedron

�

T onto T

E;Æ

. This aÆne linear mapping is unique (up

to permutations of the enumeration of the verties of

�

T and T

E;Æ

).

Next we bound the transformation matrix of the aÆne linear mapping F

�1

T;E;Æ

(in a slight

abuse of the notation this matrix is denoted by F

�1

T;E;Æ

too). Sine F

�1

T;E;Æ

maps T

E;Æ

onto

�

T , suh a bound is obtained via

kF

�1

T;E;Æ

k

R

3�3

� d(

�

T )=%(T

E;Æ

) ;

with d(

�

T ) =

p

2 being the diameter of

�

T , and %(T

E;Æ

) being the diameter of the largest

insribed sphere of T

E;Æ

. Thus the goal of the next lemmas will be to bound that diameter.
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Lemma 3.1 Let T be an arbitrary tetrahedron with faes E

i

, i = 1 : : : 4. The length of the

height over E

i

is again denoted by h

E

i

;T

. Then

%(T ) � min

i=1:::4

h

E

i

;T

�

jT j

max

i=1:::4

jE

i

j

� h

min;T

:

Proof: The inequality %(T ) < h

E

i

;T

for i = 1 : : : 4 is obvious.

To bound %(T ) from below, onsider the midpoint S

T

of T (i.e. the entre of gravity).

Let l

i

:= dist(S

T

; E

i

) be the distane between S

T

and the plane that ontains the fae E

i

.

Then the sphere with entre at S

T

and radius min

i=1:::4

l

i

lies inside T ; therefore

%(T )=2 � min

i=1:::4

l

i

:

On the other hand l

i

= h

E

i

;T

=4 sine S

T

is the midpoint of T . This gives

%(T ) �

1

2

min

i=1:::4

h

E

i

;T

:

Realling 3jT j = h

E

i

;T

� jE

i

j ompletes the proof.

Let us now investigate the sub{tetrahedron T

E;Æ

, i.e. onsider an arbitrary tetrahedron

T and some �xed fae E thereof. Enumerate both tetrahedra again as in Figure 3, and

denote the three remaining faes of T (apart from E) by E

i

:= OQ

i

Q

i+1

. Indies are to be

onsidered modulo 3 if neessary.

Lemma 3.2 The measure of the fae PQ

i

Q

i+1

of T

E;Æ

is bounded by

jPQ

i

Q

i+1

j �

1

3

�

h

jEj + Æ � (2jE

i

j+ jE

i�1

j+ jE

i+1

j)

i

:

Proof: Simple vetor algebra yields

~

OS

E

= (

~

OQ

1

+

~

OQ

2

+

~

OQ

3

)=3 and

~

OP = (1� Æ) �

~

OS

E

:

The measure of some faes is omputed via the vetor produt. This implies

~

S

E

Q

i

�

~

OS

E

=

1

3

~

OQ

i

�

~

OQ

i�1

+

1

3

~

OQ

i

�

~

OQ

i+1

j

~

S

E

Q

i

�

~

OS

E

j �

1

3

j

~

OQ

i

�

~

OQ

i�1

j +

1

3

j

~

OQ

i

�

~

OQ

i+1

j =

2

3

�

jE

i�1

j+ jE

i

j

�

sine 2jE

i

j = j

~

OQ

i

�

~

OQ

i+1

j. Using this result, one obtains

~

PQ

i

=

~

S

E

Q

i

+ Æ �

~

OS

E

j

~

PQ

i

�

~

PQ

i+1

j � j

~

S

E

Q

i

�

~

S

E

Q

i+1

j + Æ � (j

~

S

E

Q

i

�

~

OS

E

j+ j

~

S

E

Q

i+1

�

~

OS

E

j)

� 2jS

E

Q

i

Q

i+1

j+

2

3

Æ � (jE

i�1

j+ jE

i

j + jE

i

j+ jE

i+1

j)

=

2

3

�

h

jEj + Æ � (2jE

i

j+ jE

i�1

j+ jE

i+1

j)

i

:

Together with 2jPQ

i

Q

i+1

j = j

~

PQ

i

�

~

PQ

i+1

j this proves the assertion.
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Lemma 3.3 The diameter of the insribed sphere of T

E;Æ

satis�es

%(T

E;Æ

) � minfÆ � h

E;T

; h

min;T

g :

Proof: Let us start to bound %(T

E;Æ

) from above. Obviously h

E;T

E;Æ

= Æ � h

E;T

and

%(T

E;Æ

) � %(T ) � h

min;T

sine T

E;Æ

� T . Using Lemma 3.1 this results in

%(T

E;Æ

) . minfÆ � h

E;T

; h

min;T

g :

In order to bound %(T

E;Æ

) from below, onsider the faes of T

E;Æ

and apply Lemma 3.2

giving

jPQ

i

Q

i+1

j . jEj + Æ � (jE

1

j+ jE

2

j+ jE

3

j) � max fjEj; Æ � max

i=1;2;3

jE

i

jg

max fjEj; jPQ

1

Q

2

j; jPQ

2

Q

3

j; jPQ

3

Q

1

jg . max fjEj; Æ � max

i=1;2;3

jE

i

jg

(reall that E and E

1

; E

2

; E

3

are the faes of T ). Employing Lemma 3.1 and jT

E;Æ

j = Æ � jT j

one obtains

%(T

E;Æ

) &

jT

E;Æ

j

max

�

jEj; Æ � max

i=1;2;3

jE

i

j

�

� min

8

<

:

Æ � jT j

jEj

;

Æ � jT j

Æ � max

i=1;2;3

jE

i

j

9

=

;

& minfÆ � h

E;T

; h

min;T

g

whih ompletes the assertion.

The next lemma bounds the transformation matrix of F

�1

T;E;Æ

; this will be vital to prove

the inverse inequalities of Lemma 3.7 below.

Lemma 3.4 The norm of the transformation matrix F

�1

T;E;Æ

is bounded by

kF

�1

T;E;Æ

k

R

3�3

. minfÆ � h

E;T

; h

min;T

g

�1

:

Proof: The bound follows immediately from kF

�1

T;E;Æ

k

R

3�3

� d(

�

T )=%(T

E;Æ

) and Lemma

3.3.

Trae inequality: The lemma below plays an important role when spei� interpolation

estimates are to be derived.

Lemma 3.5 (Trae inequality) Let T be an arbitrary tetrahedron and E be a fae of it.

For v 2 H

1

(T ) the trae inequality holds:

kvk

2

E

. h

�1

E;T

� kvk

T

�

�

kvk

T

+ kC

T

T

rvk

T

�

: (5)
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Proof: Consider the transformation F

A

, the standard tetrahedron

�

T := F

�1

A

(T ), the fae

�

E := F

�1

A

(E) of

�

T , and the funtion �v := v Æ F

A

2 H

1

(

�

T ). On the standard tetrahedron

�

T , the well{known (isotropi) trae inequality implies

k�vk

2

�

E

. k�vk

�

T

�

�

k�vk

�

T

+ k

�

r�vk

�

T

�

;

f. [22℄. The transformation onto the atual tetrahedron (via F

A

) yields

jEj

�1

� kvk

2

E

. jT j

�1

� kvk

T

�

�

kvk

T

+ kA

T

T

rvk

T

�

:

From (4) one derives

kA

T

T

rvk

T

= kA

T

T

C

�T

T

� C

T

T

rvk

T

� kA

T

T

C

�T

T

k

R

3�3

� kC

T

T

rvk

T

. kC

T

T

rvk

T

:

Utilizing 3 jT j = jEj � h

E;T

results in the anisotropi trae inequality (5).

3.2 Bubble funtions and inverse inequalities

As another useful and important tool we now introdue so-alled bubble funtions. They

are used, for example, for bounding ertain residual norms. The de�nitions below are

partly as in the isotropi ase, f. [21℄.

Denote by �

T;1

; � � � ; �

T;4

the baryentri oordinates of an arbitrary tetrahedron T . The

element bubble funtion b

T

is de�ned by

b

T

:= 256�

T;1

� �

T;2

� �

T;3

� �

T;4

2 P

4

(T ) on T : (6)

Let E = T

1

\T

2

be an inner fae (triangle) of T

h

. Enumerate the verties of T

1

and T

2

suh

that the verties of E are numbered �rst. De�ne the fae bubble funtion b

E

2 C

0

(!

E

) on

(the three{dimensional domain) !

E

= T

1

[ T

2

by

b

E

:= 27�

T

k

;1

� �

T

k

;2

� �

T

k

;3

on T

k

; k = 1; 2 : (7)

For simpliity assume that b

T

and b

E

are extended by zero outside their original domain

of de�nition. Note that 0 � b

T

(x); b

E

(x) � 1 and kb

T

k

1

= kb

E

k

1

= 1.

Next we introdue an extension operator F

ext

: P

0

(E) ! C

0

(!

E

). For some onstant

funtion ' 2 P

0

(E) de�ne

F

ext

(')(x) := ' for x 2 !

E

: (8)

If E is a boundary fae then b

E

and F

ext

are obviously de�ned only on the single tetrahedron

T � E.

The following anisotropi equivalenes and inverse inequalities an be derived easily,

f. [12℄, so we only state the results.
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Lemma 3.6 (Inverse inequalities I) Assume '

T

2 P

1

(T ) and '

E

2 P

0

(E). Then

kb

1=2

T

� '

T

k

T

� k'

T

k

T

(9)

kr(b

T

� '

T

)k

T

. h

�1

min;T

� k'

T

k

T

(10)

kb

1=2

E

� '

E

k

E

� k'

E

k

E

(11)

kF

ext

('

E

) � b

E

k

T

� h

1=2

E;T

� k'

E

k

E

for E � T (12)

kr(F

ext

('

E

) � b

E

)k

T

. h

1=2

E;T

� h

�1

min;T

� k'

E

k

E

for E � T (13)

The bubble funtions above suÆe to analyse the residual error estimator for the Pois-

son equation, f. [21℄. However, for the singularly perturbed problem onsidered here we

have to introdue modi�ed fae bubble funtions, f. also [12, 22℄. For some tetrahedron T

and a fae E thereof onsider the sub{tetrahedron T

E;Æ

(f. Figure 3). De�ne the so{alled

squeezed fae bubble funtion b

E;T;Æ

by

b

E;T;Æ

:=

�

b

�

E

Æ F

�1

T;E;Æ

on T

E;Æ

0 on T n T

E;Æ

(14)

where b

�

E

is the standard fae bubble funtion for the fae

�

E = F

�1

T;E;Æ

(E) of the tetrahedron

�

T = F

�1

T;E;Æ

(T

E;Æ

). In other words, b

E;T;Æ

is the usual fae bubble funtion for fae E in the

tetrahedron T

E;Æ

, and it is extended by zero in T n T

E;Æ

.

Standard saling arguments for the transformation F

T;E;Æ

:

�

T ! T

E;Æ

, together with

the essential Lemma 3.4 yield now the inverse inequalities for the squeezed fae bubble

funtion.

Lemma 3.7 (Inverse inequalities II) Let E be an arbitrary fae of T , and assume '

E

2

P

0

(E). Then

kb

E;T;Æ

� F

ext

('

E

)k

T

. Æ

1=2

� h

1=2

E;T

� k'

E

k

E

(15)

kr(b

E;T;Æ

� F

ext

('

E

))k

T

. Æ

1=2

� h

1=2

E;T

�minfÆ � h

E;T

; h

min;T

g

�1

� k'

E

k

E

: (16)

3.3 Mathing funtion and interpolation estimates

When investigating interpolation error estimates on anisotropi meshes, one soon disovers

that the anisotropi mesh and the anisotropi funtion have to orrespond in some way.

Hene we �rst disuss the relation between mesh and funtion before the interpolation

properties are given.

From a heuristi point of view the anisotropy of the mesh should be aligned with the

anisotropy of the funtion to provide a satisfying interpolation. Intuitively all pratial

appliations follow this onept. For a rigorous analysis, however, we want to have some

measure of the alignment of mesh and funtion. To this end the so-alledmathing funtion

has been proposed by Kunert [12, 14℄.
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De�nition 3.1 (Mathing funtion) Let v 2 H

1

(
), and T

h

2 F be a triangulation of


. De�ne the mathing funtion m

1

: H

1

(
)� F 7! R by

m

1

(v; T

h

) :=

�

X

T2T

h

h

�2

min;T

� kC

T

T

rvk

2

T

�

1=2

.

krvk : (17)

A omprehensive disussion is given in the literature ited above; some remarks shall suÆe

here. Setting h

max;T

:= h

1;T

, one obtains

1 � m

1

(v; T

h

) . max

T2T

h

h

max;T

=h

min;T

:

The de�nition implies that a mesh T

h

whih is well aligned with an anisotropi funtion,

results in a small mathing funtion m

1

. The rude upper bound of m

1

implies that,

on isotropi meshes, m

1

� 1, and hene the mathing funtion merges there with other

onstants. In this sense, (17) is a natural extension of the theory for isotropi meshes.

Remark 3.1 A di�erent possibility to de�ne a mathing funtion onsists in

m

1;"

(v; T

h

) :=

�

X

T2T

h

kvk

2

T

+ " � h

�2

min;T

� kC

T

T

rvk

2

T

�

1=2

.

jjjvjjj : (18)

This de�nition implies 1 � m

1;"

(v; T

h

) � m

1

(v; T

h

) while all the other inequalities below

are preserved (with m

1

replaed by m

1;"

). The original de�nition however gives rise to a

straight{forward approximation of m

1

(u� u

h

; T

h

), see Remark 4.2.

Let us now swith to the interpolation of some funtion v 2 H

1

(
). The usual La-

grange interpolation annot be employed. Instead, in Kunert [12℄ the Cl�ement interpola-

tion tehnique [9℄ is extended to anisotropi tetrahedral meshes. The resulting Cl�ement

like interpolation operator R

o

is analysed there. Here we state the basi interpolation error

estimates obtained.

Lemma 3.8 Let v 2 H

1

o

(
). The Cl�ement interpolation operator R

o

: H

1

o

(
) 7! V

o;h

of

[12℄ satis�es the inequalities below:

kv � R

o

vk . kvk

X

T2T

h

h

�2

min;T

� kv � R

o

vk

2

T

. m

1

(v; T

h

)

2

� krvk

2

X

T2T

h

h

�2

min;T

� kC

T

T

r(v � R

o

v)k

2

T

. m

1

(v; T

h

)

2

� krvk

2

:

In ontrast to ommon isotropi estimates, the additional fatorm

1

(v; T

h

) in the right{hand

side of the previous two inequalities is indispensable here [12℄.

For the analysis of the error estimator we want to obtain spei� interpolation esti-

mates that are related to the reation{di�usion problem. More preisely, the estimates
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shall involve the energy norm (whih is related to the di�erential operator but not to the

interpolation operator). To shorten the notation, introdue the auxiliary term

�

T

:= minf1; "

�1=2

� h

min;T

g :

Lemma 3.9 Let v 2 H

1

o

(
). The Cl�ement interpolation operator R

o

: H

1

o

(
) 7! V

o;h

satis�es the inequalities below:

X

T2T

h

�

�2

T

� kv � R

o

vk

2

T

. m

1

(v; T

h

)

2

� jjjvjjj

2

(19)

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

� kv �R

o

vk

2

E

. m

1

(v; T

h

)

2

� jjjvjjj

2

: (20)

Proof: The de�nition of �

T

implies

�

�1

T

= max

�

1; "

1=2

� h

�1

min;T

	

:

With the help of Lemma 3.8 one obtains

X

T2T

h

�

�2

T

� kv �R

o

vk

2

T

=

X

T2T

h

1�"�h

�2

min;T

kv �R

o

vk

2

T

+

X

T2T

h

1<"�h

�2

min;T

"h

�2

min;T

� kv � R

o

vk

2

T

� kv �R

o

vk

2

+ " �

X

T2T

h

h

�2

min;T

� kv � R

o

vk

2

T

. kvk

2

+ " �m

1

(v; T

h

)

2

� krvk

2

� m

1

(v; T

h

)

2

� jjjvjjj

2

whih proves the �rst inequality.

For the seond estimate the trae inequality (5) is invoked giving

h

E;T

� kv �R

o

vk

2

E

. kv �R

o

vk

T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v � R

o

v)k

T

�

:

Using the �rst result (19), the Cauhy{Shwarz inequality, Lemma 3.8 and the fat that

h

min;T

. h

E;T

results in

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

� kv � R

o

vk

2

E

.

. "

1=2

X

T2T

h

h

�

�1

T

� kv �R

o

vk

T

� h

�1

min;T

�

�

kv �R

o

vk

T

+ kC

T

T

r(v �R

o

v)k

T

�

i

. "

1=2

�

 

X

T2T

h

�

�2

T

� kv � R

o

vk

2

T

!

1=2

�

�

 

X

T2T

h

h

�2

min;T

� kv �R

o

vk

2

T

+ h

�2

min;T

� kC

T

T

r(v � R

o

v)k

2

T

!

1=2

. "

1=2

�m

1

(v; T

h

) � jjjvjjj �m

1

(v; T

h

) � krvk � m

1

(v; T

h

)

2

� jjjvjjj

2

:

Hene the seond estimate is proven.
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4 Residual error estimator

Residual error estimators bound the error u � u

h

by measuring the residual. However,

instead of omputing the norm of the residual in the dual spae [H

1

o

(
)℄

�

= H

�1

(
), one

tries to obtain an equivalent measure by evaluating easier terms that involve the given data

(e.g. f , 
, or T

h

). The main task is to arefully alibrate the weights of the residual norms

suh that both an upper and lower error bound hold. The diÆulties that arise from the

singularly perturbed problem are here even emphasized and ampli�ed by the anisotropi

elements.

Furthermore, in order to obtain lower error bounds, we replae f 2 L

2

(
) by some

approximation f

h

from a �nite dimensional spae. In partiular, f

h

shall be pieewise

onstant over T

h

(but otherwise arbitrary). A more omprehensive disussion is given in

[21, 12℄.

Next, the (approximate) element residuals and the fae residuals are de�ned with the

help of f

h

.

De�nition 4.1 (Element and fae residual) Let u

h

2 V

o;h

be the �nite element solu-

tion. For an element T , de�ne the element residual r

T

2 P

1

(T ) by

r

T

:= f

h

� (�" ��u

h

+ u

h

) on T :

For an interior fae E � 
 de�ne the fae residual r

E

2 P

0

(E) by

r

E

(x) := lim

t!+0

�

�u

h

�n

E

(x + tn

E

)�

�u

h

�n

E

(x� tn

E

)

�

x 2 E :

Here n

E

? E is any of the two unitary normal vetors. The fae residual is also known as

gradient jump or jump residual. Note that the element residual r

T

is learly related to the

strong form of the di�erential equation.

Now the error estimator is de�ned, and the main result is presented and proved.

De�nition 4.2 (Residual error estimator) De�ne the loal residual error estimator

�

";T

for a tetrahedron T by

�

";T

:=

0

�

�

2

T

� kr

T

k

2

T

+ "

3=2

� �

T

�

X

E��Tn�

D

kr

E

k

2

E

1

A

1=2

: (21)

To shorten the notation, de�ne the loal approximation term

�

";T

:= �

T

� kf � f

h

k

!

T

and introdue the global terms

�

2

"

:=

X

T2T

h

�

2

";T

and �

2

"

:=

X

T2T

h

�

2

";T

:
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Theorem 4.1 (Residual error estimation) Let u 2 H

1

o

(
) be the exat solution and

u

h

2 V

o;h

be the �nite element solution. Then the error is bounded loally from below by

�

";T

. jjju� u

h

jjj

!

T

+ �

";T

(22)

for all T 2 T

h

. The error is bounded globally from above by

jjju� u

h

jjj . m

1

(u� u

h

; T

h

) �

�

�

2

"

+ �

2

"

�

1=2

: (23)

Remark 4.1 Combining the lower and upper error bound yields

�

2

"

�  � �

2

"

. jjju� u

h

jjj . m

2

1

(u� u

h

; T

h

) �

�

�

2

"

+ �

2

"

�

:

Assuming that the approximation term �

"

is negligible, one obtains sharp error bounds if

the mathing funtion m

1

(u� u

h

; T

h

) is small, whih in turn implies that the anisotropi

mesh is well suited to the anisotropi solution.

Note that in pratial appliations m

1

(u � u

h

; T

h

) has to be approximated, e.g. by

means of a reovered gradient [12, 14℄.

Proof: The struture of the proofs is similar to that of known residual error estimators,

f. [21℄. The lower error bound is derived with the help of bubble funtions and inverse

inequalities, whereas the upper bound relies on interpolation estimates. All ingredients are,

of ourse, arefully adapted to suit our spei� reation{di�usion problem on anisotropi

meshes.

Start with the lower error bound (22) for an arbitrary but �xed tetrahedron T , and

onsider the norm kr

T

k

T

of the element residual r

T

= f

h

+" ��u

h

�u

h

. Sine we use linear

ansatz funtions there holds r

T

� f

h

� u

h

2 P

1

(T ). For x 2 T let

w(x) := r

T

(x) � b

T

(x) 2 P

5

(T ) \H

1

o

(T ) ;

with b

T

being the usual bubble funtions of (6). Integration by parts yields

Z

T

r

T

� w =

Z

T

(f + " ��u

h

� u

h

) � w +

Z

T

(f

h

� f) � w

=

Z

T

" � r

T

(u� u

h

) � rw + (u� u

h

) � w +

Z

T

(f

h

� f) � w

j(r

T

; w)

T

j � " � kr(u� u

h

)k

T

� krwk

T

+ ku� u

h

k � kwk

T

+ kf � f

h

k

T

� kwk

T

:

The inverse inequalities (9), (10) and 0 � b

T

� 1 readily imply the bounds

j(r

T

; w)

T

j = kb

1=2

T

� r

T

k

2

T

� kr

T

k

2

T

krwk

T

= kr(b

T

� r

T

)k

T

. h

�1

min;T

� kr

T

k

T

kwk

T

= kb

T

� r

T

k

T

� kr

T

k

T

:
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Hene one obtains

kr

T

k

2

T

. "

2

� h

�2

min;T

� kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ kf � f

h

k

2

T

giving �

2

T

� kr

T

k

2

T

. minf" � h

�2

min;T

; 1g � " � kr(u� u

h

)k

2

T

+

+�

2

T

� ku� u

h

k

2

T

+ �

2

T

� kf � f

h

k

2

T

� " � kr(u� u

h

)k

2

T

+ ku� u

h

k

2

T

+ �

2

T

� kf � f

h

k

2

T

= jjju� u

h

jjj

2

T

+ �

2

T

� kf � f

h

k

2

T

: (24)

Now we aim at a bound of the norm kr

E

k

E

of the gradient jump aross some inner fae

(triangle) E � �T . Sine we use linear ansatz funtions r

E

2 P

0

(E) holds. Let T

1

� T

and T

2

be the two tetrahedra that E belongs to. Sine f 2 L

2

(
), integration by parts

yields for any funtion w 2 H

1

o

(!

E

)

0 =

Z

!

E

"r

T

urw + u � w � f � w

�"

Z

E

r

E

� w = "

2

X

i=1

Z

�T

i

w �

�u

h

�n

= "

2

X

i=1

Z

T

i

�

r

T

u

h

rw + �u

h

� w

�

=

2

X

i=1

Z

T

i

�

"r

T

u

h

rw + (r

T

i

� f

h

+ u

h

) � w

�

=

2

X

i=1

Z

T

i

�

"r

T

(u

h

� u)rw + (u

h

� u) � w + (r

T

i

+ f � f

h

) � w

�

sine "�u

h

= r

T

i

� f

h

+ u

h

on T

i

. Let now the funtion w be de�ned by

w :=

�

b

E;T

1

;Æ

1

� F

ext

(r

E

) on T

1

b

E;T

2

;Æ

2

� F

ext

(r

E

) on T

2

;

with F

ext

being the extension operator of (8) and b

E;T

i

;Æ

i

being the squeezed fae bubble

funtions of (14). The real numbers Æ

i

will be hosen later. Note that indeed w 2 H

1

o

(!

E

)

sine b

E;T

1

;Æ

1

�

�

�

E

= b

E;T

2

;Æ

2

�

�

�

E

= b

E

�

�

�

E

. Hene we onlude

" kb

1=2

E

r

E

k

2

E

�

2

X

i=1

�

" kr(u� u

h

)k

T

i

� krwk

T

i

+

+

h

ku� u

h

k

T

i

+ kr

T

i

k

T

i

+ kf � f

h

k

T

i

i

� kwk

T

i

�

:

The inverse inequalities (15) and (16) are used to bound kwk

T

i

and krwk

T

i

, respetively.
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Together with kb

1=2

E

� r

E

k

E

� kr

E

k

E

from (11) this implies

kr

E

k

E

.

2

X

i=1

Æ

1=2

i

� h

1=2

E;T

i

�

�

minfÆ

i

� h

E;T

i

; h

min;T

i

g

�1

� kr(u� u

h

)k

T

i

+

+ "

�1

� (ku� u

h

k

T

i

+ kr

T

i

k

T

i

+ kf � f

h

k

T

i

)

�

:

Now we hoose

Æ

i

:=

1

2

"

1=2

� h

�1

E;T

i

� �

T

i

�

1

2

minf"

1=2

=h

E;T

i

; h

min;T

i

=h

E;T

i

g < 1

(reall h

E;T

i

> h

min;T

i

=2). This yields minfÆ

i

�h

E;T

i

; h

min;T

i

g � "

1=2

��

T

i

. Insert the previous

estimate (24) whih provides a bound of kr

T

i

k

T

i

to obtain

"

3=2

� �

T

� kr

E

k

2

E

.

.

2

X

i=1

" � kr(u� u

h

)k

2

T

i

+ �

2

T

i

� ku� u

h

k

2

T

i

+ jjju� u

h

jjj

2

T

i

+ �

2

T

i

� kf � f

h

k

2

T

i

. jjju� u

h

jjj

2

!

E

+ �

2

T

� kf � f

h

k

2

!

E

sine h

min;T

i

and �

T

i

do not hange rapidly aross adjaent tetrahedra, and sine �

T

i

� 1.

Summing up over all faes E of T , realling the de�nition of �

";T

and applying (24) �nishes

the proof of the lower error bound (22).

Seondly, in order to derive (23) we utilize the orthogonality property of the error

a(u� u

h

; v

h

) = 0 8 v

h

2 V

o;h

:

Integration by parts gives for all v 2 H

1

o

(
)

a(u� u

h

; v) = a(u� u

h

; v � R

o

v)

= "(r(u� u

h

);r(v �R

o

v)) + (u� u

h

; v � R

o

v)

=

X

T2T

h

(f + "�u

h

� u

h

; v � R

o

v)

T

+ "

X

E�
n�

(r

E

; v � R

o

v)

E

=

X

T2T

h

h

(r

T

+ f � f

h

; v � R

o

v)

T

+

1

2

� "

X

E��Tn�

D

(r

E

; v � R

o

v)

E

i

�

X

T2T

h

h

�

T

(kr

T

k

T

+ kf � f

h

k

T

) � �

�1

T

kv � R

o

vk

T

+

+

1

2

X

E��Tn�

D

"

3=4

�

1=2

T

kr

E

k

E

� "

1=4

�

�1=2

T

kv � R

o

vk

E

i

:
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The Cauhy-Shwarz inequality and the interpolation estimate (19) yield

X

T2T

h

�

T

(kr

T

k

T

+ kf � f

h

k

T

) � �

�1

T

kv �R

o

vk

T

�

�

�

2

X

T2T

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

�

1=2

�

�

X

T2T

h

�

�2

T

kv � R

o

vk

2

T

�

1=2

(19)

.

�

X

T2T

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

With the help of interpolation estimate (20) one derives analogously

X

T2T

h

X

E��Tn�

D

"

3=4

�

1=2

T

kr

E

k

E

� "

1=4

�

�1=2

T

kv �R

o

vk

E

�

�

�

"

3=2

X

T2T

h

X

E��Tn�

D

�

T

kr

E

k

2

E

�

1=2

�

�

"

1=2

X

T2T

h

X

E��Tn�

D

�

�1

T

kv �R

o

vk

2

E

�

1=2

(20)

.

�

"

3=2

X

T2T

h

X

E��Tn�

D

�

T

kr

E

k

2

E

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

Combining these estimates results in

a(u� u

h

; v) .

�

X

T2T

h

h

�

2

T

�

kr

T

k

2

T

+ kf � f

h

k

2

T

�

+ "

3=2

�

T

X

E��Tn�

D

kr

E

k

2

E

i

�

1=2

�m

1

(v; T

h

) � jjjvjjj :

Substituting v := u� u

h

2 H

1

o

(
) �nishes the proof.

Remark 4.2 The upper error bound (23) ontains the mathing funtion m

1

(u�u

h

; T

h

).

Sine u � u

h

is not known, m

1

(u � u

h

; T

h

) annot be omputed exatly. This an be

remedied by using an approximation m

R

1

by means of a reovered gradient r

R

u

h

� ru:

m

1

(u� u

h

; T

h

) �

�

X

T2T

h

h

�2

min;T

� kC

T

T

r(u� u

h

)k

2

T

�

1=2

.

kr(u� u

h

)k

�

�

X

T2T

h

h

�2

min;T

� kC

T

T

(r

R

u

h

�ru

h

)k

2

T

�

1=2

.

kr

R

u

h

�ru

h

k

=: m

R

1

(u

h

; T

h

) ; (25)

f. [14℄ for a more omprehensive disussion. All numerial experiments so far indiate

that m

R

1

is a robust approximation to m

1

, see also Setion 5 below.
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5 Numerial experiments

In this setion we will illustrate the error estimates of the previous setion by means of

numerial experiments. Here we hoose the same model problem that has been employed

in [15℄ to analyse a fae{based error estimator.

Consider the three{dimensional model problem

�"�u+ u = 0 in 
 := [0; 1℄

3

; u = u

0

on �

D

:= �


with the perturbation parameter " = 10

�4

. The exat solution is presribed to be

u = e

�x=

p

"

+ e

�y=

p

"

+ e

�z=

p

"

:

It displays typial boundary layers along the planes x = 0, y = 0, and z = 0. The boundary

value u

0

is hosen aordingly.

The domain is disretized by a sequene of meshes, eah one being the tensor produt of

three one{dimensional Bakhvalov{like meshes [6℄ with 2

k

intervals in [0,1℄, k = 1 : : : 6. To

desribe the 1D nodal distribution properly, denote the transition point of the boundary

layer by � :=

p

"j ln

p

"j. Then 2

k�1

nodes are exponentially distributed in the boundary

layer interval [0; � ℄ whereas the remaining interval [�; 1℄ is divided into 2

k�1

equidistant

intervals, f. Figure 4. More preisely, the (1D) nodal oordinate of the m-th node is

x

m

:=

8

>

<

>

:

��

p

" ln

h

1�

m

2

k�1

(1� e

��=�=

p

"

)

i

for m = 0 : : : 2

k�1

; � = 3=2

� + (1� �) �

�

m

2

k�1

� 1

�

for m = 2

k�1

+ 1 : : : 2

k

:

Note that the only di�erene to the original Bakhvalov mesh onsists in the slightly di�erent

hoie of the transition point � .

Figure 4: Mesh 2 { Mesh 3

We start by presenting the size and the maximum aspet ratio of the meshes as well as

the mathing funtion m

1

.
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Mesh k # Elements Aspet ratio m

1

(u� u

h

; T

h

)

1 48 29.4 1.55

2 384 69.5 1.62

3 3 072 82.6 1.69

4 24 576 88.6 1.88

5 196 608 91.5 2.37

6 1 572 864 92.9 3.04

The size of m

1

is omparatively small and grows only mildly. This implies that the

hosen meshes disretize the problem suÆiently well.

Next, we investigate the results of the error estimation of Theorem 4.1 by omputing

the orresponding ratios. Reall that the approximation terms �

";T

and �

"

vanish here.

Mesh k jjju� u

h

jjj

jjju� u

h

jjj

m

1

� �

"

max

T2T

h

�

";T

jjju� u

h

jjj

!

T

1 0:154E + 0 0:435 1:026

2 0:536E � 1 0:167 2:693

3 0:229E � 1 0:118 4:214

4 0:110E � 1 0:096 4:163

5 0:553E � 2 0:074 4:054

6 0:282E � 2 0:058 3:948

To start with, the error norm jjju� u

h

jjj displays the optimal rate of onvergene. Next

onsider the ratios of the third and fourth olumn whih orrespond to our main theo-

retial result. These ratios are bounded from above and thus on�rm the preditions of

Theorem 4.1. Note that from a pratial point of view the moderately dereasing values of

the upper error bound (third olumn) imply that the error is inreasingly overestimated.

Finally we will investigate the mathing funtion more losely, f. the table below. We

ompare the mathing funtion m

1

(u � u

h

; T

h

) from (17) and its modi�ation m

1;"

(u �

u

h

; T

h

) from (18). Clearly only marginal di�erenes an be seen, so either hoie seems

possible.

On the other hand we present the approximation m

R

1

proposed in equation (25) of

Remark 4.2. The results show a suÆient oinidene with the values of m

1

(u � u

h

; T

h

).

Hene the mathing funtion and its approximation are useful tools for the theoretial

analysis as well as for assessing the mesh quality in numerial omputations. This topi

has already been disussed for the Poisson equation in [14℄.
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Mesh k m

1

(u� u

h

; T

h

) m

1;"

(u� u

h

; T

h

) m

R

1

(u

h

; T

h

)

1 1:55 1:23 1:68

2 1:62 1:48 1:52

3 1:69 1:64 1:69

4 1:88 1:86 1:86

5 2:37 2:34 2:03

6 3:04 3:01 2:29

6 Summary

For a singularly perturbed reation{di�usion model problem, we have proposed and rigor-

ously analysed a new residual error estimator that is suitable for anisotropi meshes. It

has been shown that the error estimation is uniform in the small perturbation parameter.

The analysis implies that tight error bounds are obtained as long as the anisotropi mesh

is hosen aording to the anisotropy of the solution. A numerial experiment on�rms

the theory. Hene reliable and eÆient error estimation is possible on anisotropi meshes.

This is a �rst important step towards a general adaptive anisotropi algorithm.
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