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Abstra
t The s
aling behavior of the thermoele
tri
 trans-

port properties in disordered systems is studied in the energy

region near the metal-insulator transition. Using an energy-

dependent 
ondu
tivity � obtained experimentally, we ex-

tend our linear-response-based transport 
al
ulations in the

three-dimensional Anderson model of lo
alization. Taking a

dynami
al s
aling exponent z in agreement with predi
tions

from s
aling theories, we show that the temperature-dependent

�, the thermoele
tri
 power S, the thermal 
ondu
tivity K

and the Lorenz number L

0

obey s
aling.

The s
aling des
ription [1℄ of disordered systems, e.g. the

Anderson model of lo
alization, has 
ultivated our un-

derstanding of transport properties in su
h systems [2,3℄.

A

ording to the s
aling hypothesis, the behavior of the

d.
. 
ondu
tivity � near the metal-insulator transition

(MIT) in the Anderson model 
an be des
ribed by only

a single s
aling variable. As a result of the s
aling the-

ory, the dynami
al 
ondu
tivity in the three-dimensional

(3D) Anderson model behaves as [4,5℄

�(t; T )

T

1=z

= F

�

t

T

1=�z

�

; (1)

where T is the temperature and t is the dimension-

less distan
e from the 
riti
al point. For example, t =

j1�E

F

=E




j where E

F

and E




are the Fermi energy and

the mobility edge, respe
tively. The parameter � is the


orrelation length exponent, whi
h in 3D is equivalent to

the 
ondu
tivity exponent, � / t

�

, and z is the dynam-

i
al exponent, � / T

1=z

. It was further demonstrated

that not only �(t; T ) obeys s
aling in the 3D Anderson

model but also the thermoele
tri
 power S(t; T ) [6,7℄,

the thermal 
ondu
tivityK(t; T ) and the Lorenz number

L

0

(t; T ) [7℄. However, despite the quality of the s
aling

of �, we obtained an unphysi
al value for z [7℄. S
aling

arguments for nonintera
ting systems predi
t z = d in

d dimensions [4,5℄. But we found [7℄ z = 1=� � 3. In

addition, values of S(T ) [8,9℄ are at least an order of

magnitude larger than in measurements of doped semi-


ondu
tors [10℄ and amorphous alloys [11,12℄.

In what follows, we show that we obtain the right

order of magnitude [13℄ and good s
aling for these ther-

moele
tri
 transport properties by using a "modi�ed"


riti
al behavior of � in the linear-response formulation

for the Anderson model based on experimental data.
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In the linear-response formulation, the thermoele
-

tri
 transport properties 
an be determined from the ki-

neti
 
oeÆ
ients L

ij

[9℄, i.e.,

� = L

11

; K =

L

22

L

11

� L

21

L

12

e

2

TL

11

;

(2)

S =

L

12

jejTL

11

; and L

0

=

L

22

L

11

� L

21

L

12

(k

B

TL

11

)

2

:

The L

ij

relate the indu
ed 
harge and heat 
urrent den-

sities to their sour
es su
h as a temperature gradient

[9℄. In the absen
e of intera
tions and inelasti
 s
atter-

ing pro
esses, the L

ij

are expressed as [14{16℄

L

ij

= (�1)

i+j

Z

1

�1

A(E) [E � �(T )℄

i+j�2

�

�

�

�f(E; �; T )

�E

�

dE ; (3)

for i; j = 1; 2, where � is the 
hemi
al potential of the

system, f(E; �; T ) is the Fermi distribution fun
tion,

and A(E) des
ribes the system dependent features. In

the Anderson model, one sets A(E) to be equal to the


riti
al behavior of �(E) / j1� E=E




j

�

[2℄. Note, how-

ever, that this behavior near the MIT does not 
ontain

a T dependen
e. Hen
e, the T dependen
e of the L

ij

in

Eq. (3) is merely due to the broadening of f and the

T dependen
e of �. The latter stems from the stru
ture

of the density of states, variations in whi
h yield only

negligible 
hanges in L

ij

[13℄. Thus, in order to model a


orre
t T dependen
e of the L

ij

and, 
onsequently, the

transport properties, we need to re
onsider what A(E)

should be.

A suitable �(E) may be obtained from appropriate

experimental data. The re
ent measurements of � by

Wa�ens
hmidt et al. [17℄ in Si:P at the MIT under uniax-

ial stress show that �(t; T ) obeys s
aling with � = 1�0:1

and z = 2:94 � 0:3. Obtaining (i) z � d = 3 in good

agreement with s
aling arguments [4,5℄ and (ii) � whi
h

also agrees reasonably well with the numeri
al results for

nonintera
ting systems [18{20℄ makes the experimental

data in Ref. [17℄ an ex
ellent empiri
al model for A(E).

In those experiments, t in �(t; T ) is given in terms of the

uniaxial stress and its 
riti
al value near the MIT. Here,

we derive a fun
tional form of �(E) by 
onstru
ting a

polynomial �t or a spline 
urve of the experimental data

and setting t = j1 � E=E




j. When using this data as
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Fig. 1 S
aling of thermoele
tri
 transport properties where

t = j1 � E

F

=E




j. The di�erent symbols denote the relative

positions of various values of the Fermi energy E

F

with re-

spe
t to the mobility edge E




.

input for Eq. (3) the di�eren
e in the order of magni-

tude in S as 
ompared to experiments is removed [13℄.

Thus, following the approa
h of Ref. [13℄, we now study

whether the T dependen
e of �(E; T ) 
an be s
aled as

in Eq. (1) and whether S, K and L

0

also obey s
aling.

In Fig. 1 we show that �, S, K and L

0

data for dif-

ferent t and T parameters 
ollapse onto s
aling 
urves

when plotted as a fun
tion of j1 � E

F

=E




j=T

0:31

. For

ea
h �gure, we 
learly obtain two bran
hes, one for the

metalli
 regime and another for the insulating regime.

As depi
ted in Fig. 1a, � satis�es Eq. (1). With � = 1 in

a

ordan
e with the experiment in Ref. [17℄, 1=�z = 0:31

gives z = 3:2. This is in good agreement with the predi
-

tion z = 3 for 3D nonintera
ting systems. Furthermore,

it indi
ates that the Harris 
riterion [21℄, �z > 1, is sat-

is�ed whi
h in turn implies a sharp MIT.

The prefa
tor inK in Fig. 1
 veri�es that � andK=T

behave similarly as the MIT is approa
hed. This 
on-

�rms earlier results in the 3D Anderson model from var-

ious methods [9,22℄. Meanwhile, the prefa
tors in both

S and L

0

in Figs. 1b and 1d have not been observed in

the respe
tive s
aling 
urves in the 3D Anderson model

[7℄. The prefa
tors serve as 
orre
tions to the s
aling of

S and L

0

when an appropriate �(E; T ) is used as input

in Eq. (3).

As shown in Fig. 1d in a

ordan
e also with the re-

sults in Ref. [13℄, L

0

! �

2

=3, as the MIT is approa
hed

from the metalli
 or the insulating regime. This is the

expe
ted value in the Sommerfeld free ele
tron theory.

It is di�erent from the result for the unmodi�ed 3D An-

derson model [9℄ for whi
h the magnitude of L

0

depends

on � [9℄.

In 
on
lusion, we �nd that by modifying �(E; T ) in

our 
al
ulations, the thermoele
tri
 transport properties

near the MIT obey s
aling.
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