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Abstrat The saling behavior of the thermoeletri trans-

port properties in disordered systems is studied in the energy

region near the metal-insulator transition. Using an energy-

dependent ondutivity � obtained experimentally, we ex-

tend our linear-response-based transport alulations in the

three-dimensional Anderson model of loalization. Taking a

dynamial saling exponent z in agreement with preditions

from saling theories, we show that the temperature-dependent

�, the thermoeletri power S, the thermal ondutivity K

and the Lorenz number L

0

obey saling.

The saling desription [1℄ of disordered systems, e.g. the

Anderson model of loalization, has ultivated our un-

derstanding of transport properties in suh systems [2,3℄.

Aording to the saling hypothesis, the behavior of the

d.. ondutivity � near the metal-insulator transition

(MIT) in the Anderson model an be desribed by only

a single saling variable. As a result of the saling the-

ory, the dynamial ondutivity in the three-dimensional

(3D) Anderson model behaves as [4,5℄

�(t; T )

T

1=z

= F

�

t

T

1=�z

�

; (1)

where T is the temperature and t is the dimension-

less distane from the ritial point. For example, t =

j1�E

F

=E



j where E

F

and E



are the Fermi energy and

the mobility edge, respetively. The parameter � is the

orrelation length exponent, whih in 3D is equivalent to

the ondutivity exponent, � / t

�

, and z is the dynam-

ial exponent, � / T

1=z

. It was further demonstrated

that not only �(t; T ) obeys saling in the 3D Anderson

model but also the thermoeletri power S(t; T ) [6,7℄,

the thermal ondutivityK(t; T ) and the Lorenz number

L

0

(t; T ) [7℄. However, despite the quality of the saling

of �, we obtained an unphysial value for z [7℄. Saling

arguments for noninterating systems predit z = d in

d dimensions [4,5℄. But we found [7℄ z = 1=� � 3. In

addition, values of S(T ) [8,9℄ are at least an order of

magnitude larger than in measurements of doped semi-

ondutors [10℄ and amorphous alloys [11,12℄.

In what follows, we show that we obtain the right

order of magnitude [13℄ and good saling for these ther-

moeletri transport properties by using a "modi�ed"

ritial behavior of � in the linear-response formulation

for the Anderson model based on experimental data.
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In the linear-response formulation, the thermoele-

tri transport properties an be determined from the ki-

neti oeÆients L

ij

[9℄, i.e.,

� = L

11

; K =

L

22

L

11

� L

21
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(2)

S =
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0

=

L
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The L

ij

relate the indued harge and heat urrent den-

sities to their soures suh as a temperature gradient

[9℄. In the absene of interations and inelasti satter-

ing proesses, the L

ij

are expressed as [14{16℄

L

ij

= (�1)

i+j

Z

1

�1

A(E) [E � �(T )℄

i+j�2

�

�

�

�f(E; �; T )

�E

�

dE ; (3)

for i; j = 1; 2, where � is the hemial potential of the

system, f(E; �; T ) is the Fermi distribution funtion,

and A(E) desribes the system dependent features. In

the Anderson model, one sets A(E) to be equal to the

ritial behavior of �(E) / j1� E=E



j

�

[2℄. Note, how-

ever, that this behavior near the MIT does not ontain

a T dependene. Hene, the T dependene of the L

ij

in

Eq. (3) is merely due to the broadening of f and the

T dependene of �. The latter stems from the struture

of the density of states, variations in whih yield only

negligible hanges in L

ij

[13℄. Thus, in order to model a

orret T dependene of the L

ij

and, onsequently, the

transport properties, we need to reonsider what A(E)

should be.

A suitable �(E) may be obtained from appropriate

experimental data. The reent measurements of � by

Wa�enshmidt et al. [17℄ in Si:P at the MIT under uniax-

ial stress show that �(t; T ) obeys saling with � = 1�0:1

and z = 2:94 � 0:3. Obtaining (i) z � d = 3 in good

agreement with saling arguments [4,5℄ and (ii) � whih

also agrees reasonably well with the numerial results for

noninterating systems [18{20℄ makes the experimental

data in Ref. [17℄ an exellent empirial model for A(E).

In those experiments, t in �(t; T ) is given in terms of the

uniaxial stress and its ritial value near the MIT. Here,

we derive a funtional form of �(E) by onstruting a

polynomial �t or a spline urve of the experimental data

and setting t = j1 � E=E



j. When using this data as
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Fig. 1 Saling of thermoeletri transport properties where

t = j1 � E

F

=E



j. The di�erent symbols denote the relative

positions of various values of the Fermi energy E

F

with re-

spet to the mobility edge E



.

input for Eq. (3) the di�erene in the order of magni-

tude in S as ompared to experiments is removed [13℄.

Thus, following the approah of Ref. [13℄, we now study

whether the T dependene of �(E; T ) an be saled as

in Eq. (1) and whether S, K and L

0

also obey saling.

In Fig. 1 we show that �, S, K and L

0

data for dif-

ferent t and T parameters ollapse onto saling urves

when plotted as a funtion of j1 � E

F

=E



j=T

0:31

. For

eah �gure, we learly obtain two branhes, one for the

metalli regime and another for the insulating regime.

As depited in Fig. 1a, � satis�es Eq. (1). With � = 1 in

aordane with the experiment in Ref. [17℄, 1=�z = 0:31

gives z = 3:2. This is in good agreement with the predi-

tion z = 3 for 3D noninterating systems. Furthermore,

it indiates that the Harris riterion [21℄, �z > 1, is sat-

is�ed whih in turn implies a sharp MIT.

The prefator inK in Fig. 1 veri�es that � andK=T

behave similarly as the MIT is approahed. This on-

�rms earlier results in the 3D Anderson model from var-

ious methods [9,22℄. Meanwhile, the prefators in both

S and L

0

in Figs. 1b and 1d have not been observed in

the respetive saling urves in the 3D Anderson model

[7℄. The prefators serve as orretions to the saling of

S and L

0

when an appropriate �(E; T ) is used as input

in Eq. (3).

As shown in Fig. 1d in aordane also with the re-

sults in Ref. [13℄, L

0

! �

2

=3, as the MIT is approahed

from the metalli or the insulating regime. This is the

expeted value in the Sommerfeld free eletron theory.

It is di�erent from the result for the unmodi�ed 3D An-

derson model [9℄ for whih the magnitude of L

0

depends

on � [9℄.

In onlusion, we �nd that by modifying �(E; T ) in

our alulations, the thermoeletri transport properties

near the MIT obey saling.
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