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Cholesky-like Fatorizations

of Skew-Symmetri Matries

Abstrat

Every real skew-symmetri matrix B admits Cholesky-like fa-

torizations B = R

T

JR where J =

h

0

�I

I

0

i

. This paper presents a

bakward-stable O(n

3

) proess for omputing suh a deomposition,

in whih R is a permuted triangular matrix. Deompositions of this

type are a key ingredient of algorithms for solving eigenvalue problems

with Hamiltonian struture.

Keywords: skew-symmetri matries, matrix fatorizations,

Hamiltonian eigenproblems, omplete pivoting.

AMS(MOS) subjet lassi�ation: 15A23, 65F05

1 Introdution

Let B 2 R

2n;2n

be a skew-symmetri matrix. We will study deompositions

of the form

B = R

T

JR; (1)

where

J =

�

0 I

n

�I

n

0

�

: (2)

As will be shown in this paper, there always exists an R suh that (1) holds.

We present a stable O(n

3

) algorithm that omputes an R that has the form

of a permuted triangular matrix.

Our motivation omes from eigenvalue problems with Hamiltonian struture.

A matrix H 2 R

2n;2n

is said to be Hamiltonian if (JH)

T

= JH and skew-

Hamiltonian if (JH)

T

= �JH.

Example 1 The study of orner singularities in anisotropi elasti materials

[5, 6, 11, 9℄ leads to generalized eigenvalue problems of the form

��

0 M

�K 0

�

� �

�

M 0

G M

���

v

w

�

= 0;
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where M = M

T

2 R

n;n

, K = K

T

2 R

n;n

and G = �G

T

2 R

n;n

. All three

matries are large and sparse, as they are obtained from a �nite element

disretization. M is a positive de�nite mass matrix, and K is a negative

de�nite matrix related to the sti�ness matrix. In this penil the �rst matrix

is Hamiltonian and the seond is skew-Hamiltonian. If we multiply the penil

by J on the left, we obtain the equivalent penil

��

�K 0

0 �M

�

� �

�

G M

�M 0

���

v

w

�

= 0: (3)

Now the �rst matrix is symmetri and the seond is skew-symmetri.

Example 2 Linear quadrati optimal ontrol problems for desriptor sys-

tems [8, 1℄ lead to eigenvalue problems of the form

��

A BB

T

C

T

C �A

T

�

� �

�

E 0

0 E

T

���

v

w

�

= 0: (4)

Again the �rst matrix is Hamiltonian and the seond is skew-Hamiltonian,

and again we an multiply by J to obtain an equivalent penil

��

C

T

C �A

T

�A �BB

T

�

� �

�

0 E

T

�E 0

���

v

w

�

= 0; (5)

in whih the �rst matrix is symmetri and the seond is skew-symmetri.

Consider a generalized eigenvalue problem of the form (A��B)v = 0, where

A is symmetri and B is skew-symmetri and nonsingular. We an often

failitate solution of this problem by transforming it to a standard eigen-

value problem (H ��I)z = 0, in whih H is a Hamiltonian matrix. Suppose

we an fator B into a produt B = R

T

JR as in (1). Then we an trans-

form the penil A� �B to R

�T

AR

�1

� �J , in whih the oeÆient matries

are still symmetri and skew-symmetri, respetively. If we then premul-

tiply by J

�1

= J

T

, we obtain J

T

R

�T

AR

�1

� �I, in whih the oeÆient

matrix H = J

T

R

�T

AR

�1

is Hamiltonian. Equivalently, using L = JA and

N = JB for some symmetri A and skew-symmetri B, we may onsider a

Hamiltonian/skew-Hamiltonian eigenproblem (L� �N)v = 0 and use a fa-

torization J

T

R

T

JR of the skew-Hamiltonian matrix N in order to transform

this generalized eigenproblem to a standard Hamiltonian eigenproblem.
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Transformations of this type were exploited in [1℄ and [9℄ to yield new

struture-preserving algorithms for the omputation of eigenvalues, eigen-

vetors, and deating subspaes of Hamiltonian/skew-Hamiltonian penils.

The numerially stable fatorization presented in this paper extends the algo-

rithms proposed in [1℄ and [9℄ to all Hamiltonian/skew-Hamiltonian penils.

It is an important point that none of the methods proposed in [1, 9℄ requires

expliit formation of the Hamiltonian matrix H = J

T

R

�T

AR

�1

.

2 Skew-Symmetri Cholesky-like Fatoriza-

tions

In some ases a useful fatorization of the form B = R

T

JR an be found by

inspetion.

Example 3 Consider the matrix

B =

�

0 E

T

�E 0

�

from (5). By inspetion

B =

�

0 I

�E 0

� �

0 I

�I 0

� �

0 E

T

�I 0

�

= R

T

JR:

If E is nonsingular, then this is a useful fatorization [1℄.

Example 4 Consider the matrix

B =

�

G M

�M 0

�

from (3). We have

B =

�

I �

1

2

G

0 M

� �

0 I

�I 0

� �

I 0

1

2

G M

�

= R

T

JR:

This is essentially the deomposition that was used in [9℄. With this deom-

position, the Hamiltonian matrix orresponding to the penil A� �B of (3)
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is

H = J

T

R

�T

AR

�1

=

�

0 �I

I 0

� �

I �

1

2

GM

�1

0 M

�1

� �

�K 0

0 �M

� �

I 0

�

1

2

M

�1

G M

�1

�

=

�

0 I

�I 0

� �

I �

1

2

G

0 I

� �

K 0

0 M

�1

� �

I 0

�

1

2

G I

�

:

It is relatively easy to see that any nonsingular skew-symmetri matrix has

a deomposition of the form (1).

Proposition 1 Let B 2 R

m;m

be skew-symmetri. If B is nonsingular, then

there exists R 2 R

m;m

suh that B an be fatored as B = R

T

JR.

Proof. This is an easy onsequene of the spetral deompositionB = Q

T

XQ

(Murnaghan anonial form), see e.g. [10℄, in whih Q is orthogonal and X

is blok diagonal. Eah blok on the main diagonal is 2� 2 and has the form

�

0 Æ

i

�Æ

i

0

�

with Æ

i

> 0 where �{Æ

i

is a pair of omplex onjugate (purely imaginary)

eigenvalues of B. If we let D = diagf

p

Æ

1

;

p

Æ

1

; : : : ;

p

Æ

n

;

p

Æ

n

g, then X =

D

^

JD = D

T

^

JD, where

^

J is the blok diagonal matrix with 2� 2 bloks

�

0 1

�1 0

�

running down the main diagonal. Clearly

^

J is permutationally similar to J .

Indeed

^

J = PJP

T

;

where P is the perfet-shu�e permutation

P =

�

e

1

; e

3

; : : : ; e

2n�1

; e

2

; e

4

; : : : ; e

2n

�

; (6)

with e

j

the jth unit vetor in R

2n

. Combining these fatorizations, we obtain

B = R

T

JR, where R = P

T

DQ.

Not only have we shown the existene of a deomposition B = R

T

JR, we

have skethed a pratial (and stable) algorithm for omputing one. The only

nontrivial step is the omputation of the Murnaghan form. EÆient methods
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for omputing this form are given in [10, 12℄. The deomposition is also usable

in pratie, sine R

�1

is easily aessible; eah of its fators P

T

, D, and Q,

has an easily omputable inverse. However, this fatorization has substantial

drawbaks. The iterative algorithms needed to ompute the Murnaghan

form use substantially more arithmeti work than the diret fatorization

algorithm presented below. Furthermore, and perhaps more importantly,

the Murnaghan deomposition does not preserve sparseness. Q is essentially

a matrix of eigenvetors of B. Even if B is extremely sparse (as, e.g., for

problems as in Example 1), Q will be full.

2.1 Triangular Fatorizations

For sparse problems we require a di�erent fatorization. Chanes for pre-

serving sparseness are better if R is obtained through a proess similar to

Gaussian elimination, whih leads to a triangular R. This tehnique has

proven suessful in omputing sparse LU and Cholesky fatorizations; see,

e.g, [2, 3℄. We begin with a theorem that tells what an be done without

pivoting. Of greatest interest to us is the even-dimensional ase. However,

we inlude the odd-dimensional ase for ompleteness.

For notational onveniene we will produe deompositions of the form B =

R

T

^

JR, using the shu�ed matrix

^

J instead of J . We then obtain the desired

results by deshu�ing.

We will use the following notation. When we want to emphasize the dimen-

sion of

^

J , we write

^

J

2n

. Thus

^

J

2n

= PJ

2n

P

T

, where P is as in (6) and

J

2n

=

�

0 I

n

�I

n

0

�

:

In addition we de�ne

^

J

2n+1

=

�

^

J

2n

0

0 0

�

:

FinallyB[< i >℄ will denote the ith leading prinipal submatrix of the matrix

B.

Theorem 2 i) Let B 2 R

2n;2n

be a skew-symmetri matrix suh that

detB[< 2j >℄ 6= 0 for j = 1; : : : ; n. Then B has a unique fatorization

B = R

T

^

J

2n

R; (7)
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where R is upper triangular with r

2j�1;2j

= 0, r

2j�1;2j�1

> 0 and r

2j;2j

=

�r

2j�1;2j�1

for j = 1; : : : ; n. Thus R has 2� 2 bloks of the form

�

r 0

0 �r

�

running down the main diagonal.

ii) Let B 2 R

(2n+1);(2n+1)

be a skew-symmetri matrix suh that detB[<

2j >℄ 6= 0 for j = 1; : : : ; n. Then B has a unique fatorization

B = R

T

^

J

2n+1

R (8)

with R as in part i), along with the additional ondition r

2n+1;2n+1

= 0.

Proof. We begin by proving part i) by indution on n. If n = 1 we have

B =

�

0

�v

v

0

�

, where v 6= 0 by the assumption detB[< 2 >℄ 6= 0. From the

equation

�

r 0

0 s

� �

0 1

�1 0

� �

r 0

0 s

�

=

�

0 rs

�rs 0

�

we see that we need to hoose r and s so that rs = v. Sine we want r > 0

and s = �r, we must hoose r and s as follows. If v > 0, take r = +

p

v and

s = r; if v < 0, take r = +

p

�v and s = �r. This establishes existene and

uniqueness of the fatorization in the ase n = 1.

For the indution step partition B as

B =

�

B

11

B

12

�B

T

12

B

22

�

;

where B

11

2 R

2;2

. As we have just demonstrated, B

11

has a unique deom-

position B

11

= R

T

11

^

J

2

R

11

, where R

11

= diagfr;�rg. Let R

12

=

^

J

T

2

R

�T

11

B

12

and S = B

22

� R

T

12

^

J

2

R

12

. Then

B =

�

B

11

B

12

�B

T

12

B

22

�

=

�

R

T

11

0

R

T

12

I

� �

^

J

2

S

� �

R

11

R

12

0 I

�

: (9)

The Shur omplement S 2 R

2n�2;2n�2

is skew-symmetri. It also satis�es

detS[< 2j >℄ 6= 0 for j = 1; : : : ; n�1, inheriting the property from B. This is

an easy onsequene of (9). Therefore, by the indution hypothesis, there is a

6



unique upper triangularR

22

of the spei�ed form, suh that S = R

T

22

^

J

2n�2

R

22

.

Substituting this expression for S into (9), we obtain

B =

�

B

11

B

12

�B

T

12

B

22

�

=

�

R

T

11

0

R

T

12

R

T

22

� �

^

J

2

^

J

2n�2

� �

R

11

R

12

0 R

22

�

; (10)

whih is the desired deomposition.

We easily hek uniqueness. Equation (10) implies B

12

= R

T

11

^

J

2

R

12

, whih

determines R

12

uniquely, sine R

T

11

^

J

2

is nonsingular. Equation (10) also

implies B

22

= R

T

12

^

J

2

R

12

+ R

T

22

^

J

2n�2

R

22

, whih fores R

T

22

^

J

2n�2

R

22

= S. As

part of the indution hypothesis, R

22

is unique.

Now onsider the odd-dimensional ase ii). Suppose B 2 R

m;m

, where m =

2n + 1. The ase m = 1 is trivial. If m > 1, we dedue the result from the

even ase m� 1. Partition B as

B =

�

~

B v

�v

T

0

�

;

where

~

B 2 R

2n;2n

. Sine we have already established the even ase,

~

B has a

unique deomposition

~

B =

~

R

T

^

J

2n

~

R of the spei�ed form. Let w =

^

J

T

2n

~

R

�T

v.

Then

B =

�

~

B v

�v

T

0

�

=

�

~

R

T

0

w

T

0

� �

^

J

2n

0

� �

~

R w

0 0

�

;

whih is the desired deomposition. One easily heks that this equation

determines

~

R and w uniquely.

In the odd-dimensional ase, the ondition r

2n+1;2n+1

= 0 was spei�ed arbi-

trarily in order to obtain uniqueness of the fatorization. In fat, r

2n+1;2n+1

an be given any value.

2.2 Fatorization with Complete Pivoting

If we allow pivoting, we an drop the assumptions on the nonsingularity of

prinipal submatries. To preserve skew-symmetry in a skew-symmetri B

we only onsider symmetri permutations of B, that is B  PBP

T

where P

is a permutation matrix. Row permutations or olumn permutations alone

destroy skew-symmetry.

7



Theorem 3 Let B 2 R

m;m

be skew-symmetri and let rank(B) = 2s. Then

there exists a permutation matrix Q suh that

B = Q

T

R

T

^

JRQ; (11)

where R is upper triangular, r

2j�1;2j

= 0, r

2j�1;2j�1

= r

2j;2j

> 0 for j =

1; : : : ; s, jr

jk

j � r

jj

for k > j, j = 1; : : : ; 2s, and r

jk

= 0 for j > 2s. In

general Q is not uniquely determined. One Q has been �xed, R is uniquely

determined.

Proof. The proof is by indution on s. If s = 0, the orret deomposition is

B = 0

T

^

J0. Now suppose s > 0, and assume the result holds for matries of

rank 2(s� 1). We use a omplete pivoting strategy. Searh B for its largest

(positive) entry. Suppose this is in position (i; j), noting that i 6= j. If i 6= 1,

interhange rows 1 and i. The largest entry is now in position (1; j). Now

interhange olumns 1 and i. If j = 1, the largest entry is now in position

(1; i); let k = i. If j 6= 1, then sine i 6= j, the largest entry remains in

position (1; j); let k = j. Now if k 6= 2, interhange olumns 2 and k and

also rows 2 and k. The result is a skew-symmetri matrix

~

B = Q

T

1

BQ

1

whose

largest entry is in the (1; 2) position. Q

1

is a permutation matrix.

Partition

~

B as

~

B =

�

~

B

11

~

B

12

�

~

B

T

12

~

B

22

�

;

where

~

B

11

2 R

2;2

.

~

B

11

=

�

0

�v

v

0

�

; where v is the largest (positive) entry of

~

B.

Let r =

p

v and R

11

=

�

r

0

0

r

�

. Then

~

B

11

= R

T

11

^

J

2

R

11

. Let

~

R

12

=

^

J

T

2

R

�T

11

~

B

12

and S =

~

B

22

�

~

R

T

12

^

J

2

~

R

12

. Then

~

B =

�

~

B

11

~

B

12

�

~

B

T

12

~

B

22

�

=

�

R

T

11

0

~

R

T

12

I

� �

^

J

2

S

� �

R

11

~

R

12

0 I

�

: (12)

From the de�nition of

~

R

12

, we see that eah of its entries has the form

~

b=r,

where

~

b is an entry of

~

B

12

. Sine j

~

b j=r � v=r = r, we onlude that all

entries in the �rst two rows are bounded in modulus by r.

The Shur omplement S is skew-symmetri and has rank 2(s�1). Therefore,

by the indution hypothesis, S =

~

Q

T

2

R

T

22

^

J

m�2

R

22

~

Q

2

, where

~

Q

2

is a permuta-

tion matrix, and R

22

is an upper-triangular matrix satisfying the hypotheses

of the theorem. Substituting this expression for S in (12), we obtain

~

B =

�

R

T

11

0

~

R

T

12

~

Q

T

2

R

T

22

� �

^

J

2

^

J

m�2

� �

R

11

~

R

12

0 R

22

~

Q

2

�

8



=

�

I

2

~

Q

T

2

� �

R

T

11

0

~

Q

2

~

R

T

12

R

T

22

�

^

J

m

�

R

11

~

R

12

~

Q

T

2

0 R

22

� �

I

2

~

Q

2

�

Letting R

12

=

~

R

12

~

Q

T

2

,

R =

�

R

11

R

12

0 R

22

�

; Q

2

=

�

I

2

~

Q

2

�

;

and Q = Q

2

Q

1

, we have

~

B = Q

1

BQ

T

1

= Q

T

2

R

T

^

JRQ

2

, i.e. B = Q

T

R

T

^

JRQ.

The proof of Theorem 3 is onstrutive; it yields an algorithm, whih an be

skethed as follows. The algorithm writes R over B.

for j = 1; : : : ; bm=2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�nd (ii; jj) suh that B[ii; jj℄ = maxB[2j � 1 : m; 2j � 1 : m℄

if B[ii; jj℄ = 0, then

�

rank = 2j � 2

return

if jj = 2j � 1, then kk  ii, else kk  jj

if ii 6= 2j � 1, then interhange rows, olumns ii and 2j � 1

if kk 6= 2j, then interhange rows, olumns kk and 2j

r  +

p

B[2j � 1; 2j℄

B[2j � 1; 2j � 1℄ r;

B[2j; 2j℄ r;

B[2j � 1; 2j℄ 0

B[2j � 1 : 2j; 2j + 1 : m℄ �r

�1

^

J

2

B[2j � 1 : 2j; 2j + 1 : m℄

^

B  B[2j � 1 : 2j; 2j + 1 : m℄

T

^

J

2

B[2j � 1 : 2j; 2j + 1 : m℄

B[2j + 1 : m; 2j + 1 : m℄ B[2j + 1 : m; 2j + 1 : m℄�

^

B

end for

rank = 2bm=2

return

To this brief desription we add a few details. By symmetry we need only

store and operate on the upper half of B. In partiular, only about half of

the operations indiated in the onstrution and appliation of the update

^

B (bottom two lines in the loop) need to be performed. The permutation

matrix Q is determined by keeping a reord of the olumn interhanges.

Eah olumn interhange should be applied to all rows of the array, not just

the urrent Shur omplement B[2j � 1 : m; 2j � 1 : m℄. This way the

9



update R

12

=

~

R

12

~

Q

T

2

, indiated in the proof of Theorem 3, is performed

automatially.

The op ount, for a dense B, is about

1

3

(m

3

� (m � 2s)

3

), i.e.

1

3

m

3

in the

high-rank ase and 2sm

2

in the low-rank ase. In addition the pivot searhes

make about

1

12

m

3

omparisons in all.

Less expensive pivoting strategies are possible. For example, the pivot searh

ould be on�ned to the top two rows, unless no suitable pivot is found there.

One an also onsider pivoting strategies that take sparseness into aount,

ompromising on stability in order to obtain a sparser fator R. Inomplete

fatorizations an also be obtained from the given algorithm analogously to

inomplete LU or Cholesky deompositions by presribing a level of allowed

�ll-in or using a drop tolerane.

The desired fatorization of B is an easy orollary of Theorem 3.

Corollary 4 Let B 2 R

2n;2n

be skew-symmetri. Then

B = R

T

JR;

where R = P

T

RQ, P is the perfet-shu�e permutation (6), R is an upper-

triangular matrix satifying the hypotheses of Theorem 3, and Q is a permu-

tation matrix.

Analogously, we obtain a result for skew-Hamiltonian matries using the

isomorphism N ! JN whih maps skew-Hamiltonian matries to skew-

symmetri matries and vie versa.

Corollary 5 Let N 2 R

2n;2n

be skew-Hamiltonian. Then

N = J

T

R

T

JR;

where R is the fator of JN as in Corollary 4.

3 Stability of the Fatorization

Standard tehniques of bakward error analysis an be applied to obtain the

following result (f. [4, Theorem 9.3℄).

Theorem 6 Let B be skew-symmetri with rank 2s. Suppose we ompute

the deomposition B = Q

T

R

T

^

JRQ using oating point arithmeti with unit

roundo� u. Then the omputed R satis�es B + E = Q

T

R

T

^

JRQ, where

jE j � 2suQ

T

jR

T

j j

^

J j jR j Q+O(u

2

):

10



This result is valid for the unpivoted algorithm, but it therefore holds for

all pivoting strategies, sine pivoting is equivalent to applying the unpivoted

algorithm to a matrix for whih the interhanges have been performed in

advane. So long as only modest element growth ours in the omputation

of R, the algorithm is bakward stable.

The objetive of the omplete pivoting strategy is to disourage element

growth. There is both theoretial and empirial evidene that it sueeds.

We begin with a theoretial bound. Let B

(0)

be the skew-symmetri matrix

B at the beginning of Algorithm 1, and let B

(r)

be the Shur omplement

matrix B[2r+1 : m; 2r+1 : m℄ at the end of the rth pass through the outer

loop. De�ne the element growth fator  by

 = max

r

max

ij

jB

(r)

ij

j

max

ij

jB

(0)

ij

j

:

It is easy to show that max

ij

jr

ij

j �

p

. Wilkinson's lassial analysis of the

growth fator for Gaussian elimination with omplete pivoting (GCP) [13℄

arries over with only trivial modi�ations to Algorithm 1. It an be shown

that for a nonsingular 2n� 2n skew-symmetri matrix B,

 �

q

(2n)4

1

6

1=2

8

1=3

� � � (2n)

1=(n�1)

: (13)

This bound has the same order of magnitude as Wilkinson's lassial bound

on the element growth fator for GCP [13℄.

Mountains of numerial evidene aumulated over the years have shown that

the GCP bound is quite pessimisti. For example, for matries of dimension

n = 100 and n = 200 the bound guarantees that the growth fator is no

greater than 3571 and 28298, respetively. However, numerial experiene

has shown that the atual growth fator is usually muh less than n. Indeed

it is diÆult to �nd matries for whih the growth fator is muh greater

than n. See, for example, the disussion in [4, pp. 180{181℄. On the basis of

this evidene, GCP has been pronouned stable.

Sine the omplete pivoting proess in Algorithm 1 is so similar to GCP, we

expeted that the bound (13) would also prove pessimisti. This expetation

has been realized. We implemented Algorithm 1 in Matlab [7℄ and found

that when applied to random matries, the growth fator is modest. We then

used fminsearh from Matlab's optimization toolbox to searh for skew-

symmetri matries whose growth fator is large. For eah of three hoies of

11



m, we alled fminsearh �fty times. Eah all to fminsearh started with

an m � m skew-symmetri matrix with nontrivial entries drawn from the

normal distribution with mean zero and variane one. For m = 2n = 10, the

bound (13) is 18:7, but the largest element growth fator that fminsearh

found was 3. For m = 16 the bound (13) is 46:0, but the largest element

growth fator that we observed was 3:36. For m = 20 the bound (13) is 72:8,

but the largest element growth fator that we observed was 4:37. Based on

these �ndings, as well as the evidene that has been aumulated for GCP,

we assert that Algorithm 1 is stable.

4 Conlusions

Every real skew-symmetri matrixB admits Cholesky-like fatorizationsB =

R

T

JR where J =

�

0

�I

I

0

�

. Fatorizations of this type are a key ingredient

of algorithms for solving eigenvalue problems with Hamiltonian struture.

Fatorizations in whih R is a permuted triangular matrix an be omputed

by an O(n

3

) proess similar to Gaussian elimination. If omplete pivoting is

used, the proess is numerially bakward stable.
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