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Nits
he type mortaring for some ellipti
 problem

with 
orner singularities

B. Heinri
h K. Piets
h

Abstra
t

The paper deals with Nits
he type mortaring as a �nite element method (FEM)

for treating non-mat
hing meshes of triangles at the interfa
e of some domain de
om-

position. The approa
h is applied to the Poisson equation with Diri
hlet 
onditions

(as a model problem) under the aspe
ts that the interfa
e passes re-entrant 
orners

of the domain. For su
h problems and non-mat
hing meshes with and without lo
al

re�nement near the re-entrant 
orner, some properties of the �nite element s
heme and

error estimates are proved. They show that appropriate mesh grading yields 
onver-

gen
e rates as known for the 
lassi
al FEM in presen
e of regular solutions. Finally, a

numeri
al example illustrates the approa
h and 
on�rms the theoreti
al results.

Key words. �nite element method, non-mat
hing meshes, mortar �nite elements, 
orner singu-

larities, Nits
he type mortaring

AMS subje
t 
lassi�
ation. 65N30, 65N55

1 Introdu
tion

For the eÆ
ient numeri
al treatment of boundary value problems (BVPs), domain de
om-

position methods are widely used. They allow to work in parallel: generating the mesh in

subdomains, 
al
ulating the 
orresponding parts of the sti�ness matrix and of the right-

hand side, and solving the system of �nite element equations.

There is a parti
ular interest in triangulations whi
h do not mat
h at the interfa
e of

the subdomains. Su
h non-mat
hing meshes arise, for example, if the meshes in di�erent

subdomains are generated independently from ea
h other, or if a lo
al mesh with some

stru
ture is to be 
oupled with a global unstru
tured mesh, or if an adaptive remeshing

in some subdomain is of primary interest. This is often 
aused by extremely di�erent

data (material properties or right-hand sides) of the BVP in di�erent subdomains or by a


ompli
ated geometry of the domain, whi
h have their response in a solution with singular

or anisotropi
 behaviour. Moreover, non-mat
hing meshes are also applied if di�erent

dis
retization approa
hes are used in di�erent subdomains.

There are several approa
hes to work with non-mat
hing meshes. The task to satisfy some


ontinuity requirements on the interfa
e (e.g. of the solution and its 
onormale derivative)


an be done by iterative pro
edures (e.g. S
hwarz's method) or by dire
t methods like the

Lagrange multiplier te
hnique.

There are many papers on the Lagrange multiplier mortar te
hnique, see e.g. [5, 6, 9, 25℄

and the literature quoted in these papers. There, one has new unknowns (the Lagrange

multipliers) and the stability of the problem has to be ensured by satisfying some inf-sup


ondition (for the a
tual mortar method) or by stabilization te
hniques.
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Another approa
h whi
h is of parti
ular interest here is related to the 
lassi
al Nits
he

method [16℄ of treating essential boundary 
onditions. This approa
h has been worked out

more generally in [23, 20℄ and transferred to interior 
ontinuity 
onditions by Stenberg [21℄

(Nits
he type mortaring), 
f. also [1℄. As shown in [4℄ and [10℄, the Nits
he type mortaring


an be interpreted as a stabilized variant of the mortar method based on a saddle point

problem.

Compared with the 
lassi
al mortar method, the Nits
he type mortaring has several ad-

vantages. Thus, the saddle point problem, the inf{sup{
ondition as well as the 
al
ulation

of additional variables (the Lagrange multipliers) are 
ir
umvented. The method employs

only a single variational equation whi
h is, 
ompared with the usual equations (without any

mortaring), slightly modi�ed by an interfa
e term. This allows to apply existing software

tools by slight modi�
ations. Moreover, the Nits
he type method yields symmetri
 and

positive de�nite dis
retization matri
es in 
orresponden
e to symmetry and ellipti
ity of

the operator of the BVP. Although the approa
h involves a stabilizing parameter 
, it is

not a penalty method sin
e it is 
onsistent with the solution of the BVP. The parameter


 
an be estimated easily (see below). The mortar subdivision of the 
hosen interfa
e �


an be done in a more general way than known for the 
lassi
al mortar method. This


an be advantageous for solving the system of �nite element equations by iterative domain

de
omposition methods.

Basi
 aspe
ts of the Nits
he type mortaring and error estimates for regular solutions u 2

H

k

(
) (k � 2) on quasi-uniform meshes are published in [21, 4℄. Compared with these

papers, we extend the appli
ation of the Nits
he type mortaring to problems with non-

regular solutions and to meshes being lo
ally re�ned and not quasi-uniform.

We 
onsider the model problem of the Poisson equation with Diri
hlet data in the presen
e

of re-entrant 
orners and admit that the interfa
e with non-mat
hing meshes passes the

vertex of su
h 
orners. For the appropriate treatment of 
orner singularities we employ

lo
al mesh re�nement around the 
orner by mesh grading in 
orresponden
e with the

degree of the singularity. Therefore, the Nits
he type mortaring is to be analyzed on more

general triangulations. For meshes with and without grading, basi
 inequalities, stability

and boundedness of the bilinear form as well as error estimates in a dis
rete H

1

-norm are

proved. The rate of 
onvergen
e in L

2

is twi
e of that in the H

1

-norm. For an appropriate


hoi
e of some mesh grading parameter, the rate of 
onvergen
e is proved to be the same

as for regular solutions on quasi-uniform meshes. Finally, some numeri
al experiments are

given whi
h 
on�rm the rates of 
onvergen
e derived.

2 Analyti
al preliminaries

In the following, H

s

(X), s real (X some domain, H

0

= L

2

), denotes the usual Sobolev

spa
es, with the 
orresponding norms and the abbreviation k : k

s;X

:= k : k

H

s

(X)

. Constants

C or 
 o

uring in inequalities are generi
 
onstants.

For simpli
ity we 
onsider the Poisson equation with homogeneous Diri
hlet boundary


onditions as a model problem:

��u = f in 
 ;

u = 0 on �
 :

(2.1)
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Here, 
 is a bounded polygonal domain in R

2

, with Lips
hitz-boundary �
 
onsisting of

straight line segments. Suppose further that f 2 L

2

(
) holds. The variational equation of

(2.1) is given as follows. Find u 2 H

1

0

(
) :=

�

v 2 H

1

(
) : vj

�


= 0

	

su
h that

a(u; v) = f(v) 8 v 2 H

1

0

(
); (2.2)

with a(u; v) :=

Z




(ru;rv) dx ; f(v) :=

Z




fv dx:

We now de
ompose the domain 
 into non-overlapping subdomains. For simpli
ity of

notation we 
onsider two subdomains 


1

and 


2

with interfa
e �, where


 = 


1

[ 


2

; 


1

\ 


2

= ;; 


1

\ 


2

= �;

holds (X : 
losure of the set X). We assume that the boundaries �


i

of 


i

(i = 1; 2) are

also Lips
hitz-
ontinuous and formed by open straight line segments �

j

su
h that

� =

J

[

j=1

�

j

:

We distinguish two important types of interfa
es �:


ase I1: the interse
tion �\�
 
onsists of two points P

1

; P

2

(P

1

6= P

2

) being the endpoints

of �, and at least one point is the vertex of a re-entrant 
orner, like in Figure 1,


ase I2: � \ �
 = ;, i.e., � does not tou
h the boundary �
, like in Figure 2.




2




1

�

Figure 1:

�




2




1

Figure 2:

For the presentation of the method and error estimates we need the degree of regularity

of the solution u. Clearly, the fun
tionals a(: ; :) and f(:) satisfy the standard assumptions

of the Lax-Milgram theorem and we have the existen
e of a solution u 2 H

1

0

(
) of problem

(2.2) as well as the a priori estimate kuk

1;


� C kfk

0;


.

Furthermore, the regularity theory of (2.2) yields u 2 H

2

(
) and kuk

2;


� C kfk

0;


if 
 is


onvex. If �
 has re-entrant 
orners with angles '

0j

: � < '

0j

< 2� (j = 1; : : : ; I), then u


an be represented by

u =

I

X

j=1

�

j

a

j

r

�

j

j

sin(�

j

'

j

) + w; (2.3)

with a regular remainder w 2 H

2

(
). Here, (r

j

; '

j

) denote the lo
al polar 
oordinates of a

point P 2 
 with respe
t to the vertex P

j

2 �
, where 0 < r

j

� r

0j

and 0 < '

j

< '

0j

hold;
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r

0j

is the radius of some 
ir
le neighborhood with 
enter at P

j

. Moreover, we have �

j

=

�

'

0j

(

1

2

< �

j

< 1), a

j

is some 
onstant, and �

j

is a lo
ally a
ting (smooth) 
ut-o� fun
tion

around the vertex P

j

, with

0 � �

j

� 1; �

j

=

8

>

<

>

:

1 for 0 � r

j

�

r

0j

3

0 for

2r

0j

3

� r

j

� r

0j

:

The solution u 2 H

1

0

(
) satis�es the relations

I

X

j=1

ja

j

j+ kwk

2;


� C kfk

0;


; u 2 H

1

(�;
) :=

�

v 2 H

1

(
) : �v 2 L

2

(
)

	

(2.4)

and, owing to (2.3), also u 2 H

3

2

+"

(
) for any ": 0 < " < "

0

, "

0

suÆ
iently small. For these

results, see e.g. [13, 7℄.

In the 
ontext of dividing 
 into subdomains 


1

;


2

, we introdu
e the restri
tions v

i

:= vj




i

of some fun
tion v on 


i

as well as the ve
torized form of v by v =

�

v

1

; v

2

�

; i.e. we have

v

i

(x) = v(x) for x 2 


i

(i = 1; 2). It should be noted that we shall use here the same symbol v

for denoting the fun
tion on 
 as well as the ve
tor

�

v

1

; v

2

�

. This will not lead to 
onfusion,

sin
e the meaning will be 
lear from the 
ontext. The one-to-one 
orresponden
e between

the \�eld fun
tion" v and the \ve
tor fun
tion" v is given on 


1

[ 


2

. Moreover, vj

�

is

de�ned by the tra
e. We shall keep the notation also in 
ases, where the tra
es v

1

j

�

; v

2

j

�

on the interfa
e � are di�erent (e.g. for interpolants on 


i

).

Using this notation, it is obvious that the solution of the BVP (2.1) is equivalent to the

solution of the following interfa
e problem: Find

�

u

1

; u

2

�

su
h that

��u

i

= f in 


i

; i = 1; 2 ;

u

i

= 0 on �


i

\ �
 ; i = 1; 2 ;

u

1

= u

2

on � ;

�u

1

�n

1

+

�u

2

�n

2

= 0 on �

(2.5)

are satis�ed, where n

i

(i = 1; 2) denotes the outward normal to �


i

\ �. Introdu
ing the

spa
es V

i

(i = 1; 2) given by


ase I1: V

i

:=

n

v

i

: v

i

2 H

1

(


i

); v

i

�

�

�
\�


i

= 0

o

for �
 \ �


i

6= ;,


ase I2: V

i

:= H

1

(


i

) for �
 \ �


i

= ;;

(2.6)

and the spa
e V := V

1

� V

2

, the BVP (2.5) 
an be formulated in a weak form (see e.g.

[2℄). Clearly, we have u

i

2 V

i

and u

i

2 H

1

(�;


i

) (i = 1; 2) as well as u =

�

u

1

; u

2

�

2 V . The


ontinuity of the solution u and of its normal derivative

�u

i

�n

on � (n = n

1

or n = n

2

) is

to be required in the sense of H

1

2

�

(�) and H

�

1

2

�

(�) (the dual spa
e of H

1

2

�

(�)), respe
tively.
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De�ne H

1

2

�

(�


i

) (H

1

2

00

) by the range of V

i

by the tra
e operator and to be provided with

the quotient norm, see e.g. [9, 13℄. So we use in 
ase I1: H

1

2

�

(�


i

) ' H

1

2

00

(�


i

n �
) for

�
 \ �


i

6= ;, in 
ase I2: H

1

2

�

(�


i

) = H

1

2

(�


i

) for �
 \ �


i

= ;. Here ' means that

we identify the 
orresponding spa
es. By h : ; : i

�


i

we shall denote the duality pairing of

H

�

1

2

�

(�


i

) and H

1

2

�

(�


i

).

3 Non-mat
hing mesh �nite element dis
retization

We 
over 


i

(i = 1; 2) by a triangulation T

i

h

(i = 1; 2) 
onsisting of triangles. The triangula-

tions T

1

h

and T

2

h

are independent of ea
h other. Moreover, 
ompatibility of the nodes of T

1

h

and T

2

h

along � = �


1

\ �


2

is not required, i.e., non-mat
hing meshes on � are admitted.

Let h denote the mesh parameter of these triangulations, with 0 < h � h

0

and suÆ
iently

small h

0

. Take e.g. h = maxfh

T

: T 2 T

1

h

[ T

2

h

g, where T (T = T ) denotes a triangle and

h

T

:= diamT its diameter. Let E

1

h

; E

2

h

denote the triangulations of � de�ned by the tra
es

of T

1

h

and T

2

h

on �, respe
tively.

Assumption 3.1

(i) For i = 1; 2, it holds




i

=

[

T2T

i

h

T: (3.1)

(ii) Two arbitrary triangles T; T

0

2 T

i

h

(T 6= T

0

; i = 1; 2) are either disjoint or have a


ommon vertex, or a 
ommon edge.

(iii) The mesh in 


i

(i = 1; 2) is shape regular, i.e., for the diameter h

T

of T and the

diameter %

T

of the largest ins
ribed sphere of T , we have

h

T

%

T

� C for any T 2 T

i

h

; (3.2)

where C is independent of T and h.

Clearly, relation (3.2) implies that the angle � at any vertex and the length h

F

of any side

F of the triangle T satisfy the inequalities

0 < �

0

� � � � � �

0

; "

1

h

T

� h

F

� h

T

; (0 < "

1

< 1);

with 
onstants �

0

and "

1

being independent of h and T . Owing to (3.2), the triangulations

T

i

h

(i = 1; 2) do not have to be quasi-uniform in general.

For i = 1; 2 and a

ording to V

i

from (2.6) introdu
e �nite element spa
es V

i

h

of fun
tions

v

i

on 


i

by

V

i

h

:=

n

v

i

2 H

1

(


i

) : v

i

�

�

T

2 P

k

(T ) 8 T 2 T

i

h

; v

i

�

�

�
\�


i

= 0

o

; i = 1; 2; (3.3)

where P

k

(T ) denotes the set of all polynomials on T with degree � k. We do not employ

di�erent polynomial degrees on 


1

;


2

, whi
h 
ould also be done. The �nite element spa
e

V

h

of ve
torized fun
tions v

h

with 
omponents v

i

h

on 


i

is given by

V

h

:= V

1

h

� V

2

h

=

�

v

h

=

�

v

1

h

; v

2

h

�

: v

1

h

2 V

1

h

; v

2

h

2 V

2

h

	

: (3.4)
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In general, v

h

2 V

h

is not 
ontinuous a
ross �.

Consider further some triangulation E

h

of � by intervals E (E = E), i.e. � =

S

E2E

h

E,

where h

E

denotes the diameter of E. Furthermore, let 
 be some positive 
onstant (to be

spe
i�ed subsequently) and �

1

; �

2

real parameters with

0 � �

i

� 1 (i = 1; 2); �

1

+ �

2

= 1: (3.5)

Following [21℄ we now introdu
e the bilinear form B

h

(: ; :) on V

h

� V

h

and the linear form

F

h

(:) on V

h

as follows:

B

h

(u

h

; v

h

) :=

2

X

i=1

�

ru

i

h

;rv

i

h

�




i

�

�

�

1

�u

1

h

�n

1

� �

2

�u

2

h

�n

2

; v

1

h

� v

2

h

�

�

�

�

�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2

; u

1

h

� u

2

h

�

�

+ 


X

E2E

h

h

�1

E




u

1

h

� u

2

h

; v

1

h

� v

2

h

�

E

; (3.6)

F

h

(v

h

) :=

2

X

i=1

�

f; v

i

h

�




i

for u

h

; v

h

2 V

h

:

(Note that in [4℄ a similar bilinear form with �

1

= �

2

=

1

2

and h

E

= h is employed.) The

�nite element approximation u

h

of u on the non-mat
hing triangulation T

h

= T

1

h

[ T

2

h

is

now de�ned by u

h

=

�

u

1

h

; u

2

h

�

2 V

h

= V

1

h

� V

2

h

satisfying the equation

B

h

(u

h

; v

h

) = F

h

(v

h

) 8 v

h

2 V

h

: (3.7)

Here, (: ; :)




i

denotes the L

2

(


i

)-s
alar produ
t, h: ; :i

�

the H

�

1

2

�

(�) �H

1

2

�

(�)-duality pairing

and h: ; :i

E

the L

2

(E)-s
alar produ
t. Owing to u 2 H

3

2

+"

(
), the tra
e theorem yields

�u

i

�n

i

�

�

�

�

2 L

2

(�). Furthermore,

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�) holds also for v

h

=

�

v

1

h

; v

2

h

�

2 V

h

. This will be

used subsequently for evaluating h: ; :i

�

by the L

2

(�)-s
alar produ
t. A natural 
hoi
e for

the triangulation E

h

of � is E

h

:= E

1

h

(�

1

= 1) or E

h

:= E

2

h

(�

2

= 1), where

E

i

h

= fE : E = �T \ �; if E is a segment; T 2 T

i

h

g; for i = 1; 2; (3.8)


f. Figure 3.

�

E

h

E

1

h

�


1

T

1

h

=)

�

E

2

h

T

2

h




2

(=

Figure 3:

We require the asymptoti
 behaviour of the triangulations T

1

h

; T

2

h

and of E

h

to be 
onsistent

on � in the sense of the following assumption.
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Assumption 3.2 For T 2 T

i

h

(i = 1; 2) and E 2 E

h

with �T \ E 6= ;, there are positive


onstants C

1

and C

2

independent of h

T

, h

E

and h (0 < h � h

0

) su
h that the 
ondition

C

1

h

T

� h

E

� C

2

h

T

(3.9)

is satis�ed.

Relation (3.9) guarantees that the diameter h

T

of the triangle T tou
hing the interfa
e �

at E is asymptoti
ally equivalent to the diameter h

E

of the segment E, i.e., the equivalen
e

of h

T

; h

E

is required only lo
ally.

4 Properties of the dis
retization

First we show that the solution u of the BVP (2.1) satis�es the variational equation (3.7),

i.e., u is 
onsistent with the approa
h (3.7).

Theorem 4.1 Let u be the solution of the BVP (2.1). Then u =

�

u

1

; u

2

�

solves (3.7), i.e.,

we have

B

h

(u; v

h

) = F

h

(v

h

) 8 v

h

2 V

h

: (4.1)

Proof. Insert the solution u into B

h

(:; v

h

). Owing to the properties of u, B

h

(u; v

h

) is well

de�ned and, sin
e u

1

�

�

�

= u

2

�

�

�

and

�u

1

�n

1

�

�

�

�

= �

�u

2

�n

2

�

�

�

�

hold, 
f. (2.5), we get

B

h

(u; v

h

) =

2

X

i=1

�

ru

i

;rv

i

h

�




i

�

�

�u

1

�n

1

; v

1

h

�

�

�

�

�u

2

�n

2

; v

2

h

�

�

:

Taking into a

ount (2.4) and using Green's formula on the domains 


i

, the relations

B

h

(u; v

h

) = �

2

X

i=1

�

�u

i

; v

i

h

�




i

=

2

X

i=1

�

f; v

i

h

�




i

= F

h

(v

h

)

are derived for any v

h

2 V

h

. This proves the assertion.

Note that due to (4.1) and (3.7) we also have the B

h

-orthogonality of the error u� u

h

on

V

h

, i.e.,

B

h

(u� u

h

; v

h

) = 0 8 v

h

2 V

h

: (4.2)

For further results on stability and 
onvergen
e of the method, the following \weighted

dis
rete tra
e theorem" will be useful, whi
h des
ribes also an inverse inequality.

Lemma 4.2 Let Assumption 3.1 and 3.2 be satis�ed. Then, for any v

h

2 V

h

the inequality

X

E2E

h

h

E













�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2













2

0;E

� C

I

2

X

i=1

�

2

i

X

F2E

i

h







rv

i

h







2

0;T

F

(4.3)

holds, where F 2 E

i

h

is the fa
e of a triangle T

F

2 T

i

h

tou
hing � by F (T

F

\ � = F ). The


onstant C

I

does not depend on h; h

T

; h

E

.
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Note that extending the norms on the right-hand side of (4.3) to the whole of 


i

implies

X

E2E

h

h

E













�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2













2

0;E

� C

I

2

X

i=1

�

2

i







rv

i

h







2

0;


i

: (4.4)

For inequalities on quasi-uniform meshes related with (4.4) see [23, 21, 4℄.

Proof. For i = 1; 2, v

i

h

2 V

i

h

yields

�v

i

h

�x

s

�

�

�

�

�

2 L

2

(�) (s = 1; 2) and

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�). Moreover,













�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2













2

0;E

� 2

2

X

i=1

�

2

i







rv

i

h







2

0;E

holds. Let h

F

denote the length of side F belonging to triangle T = T

F

. Sin
e the shape

regularity of T is given, the quantities h

F

and h

T

are asymptoti
ally equivalent. Owing to

P

E2E

h

h

E







rv

i

h







2

0;E

� 


1

P

F2E

i

h

h

F







rv

i

h







2

0;F

and to inequality







rv

i

h







2

0;F

� 


2

1

h

F







rv

i

h







2

0;T

F

;

whi
h is derived by means of the tra
e theorem on T

F

and of the inverse inequality, we get

X

E2E

h

h

E







rv

i

h







2

0;E

� 


3

X

F2E

i

h







rv

i

h







2

0;T

F

for i = 1; 2; (4.5)

where T

F

� 


i

has the edge F 2 E

i

h

. The 
onstants 


i

(i = 1; 2; 3) do not depend on h; 


2

is

also uniform in T . Inequality (4.5) 
ombined with the previous inequalities yields (4.3).

The 
onstant C

I

in the inequalities (4.3) and (4.4) 
an be estimated easily if spe
ial as-

sumptions on E

h

and on the polynomial degree k are made. For example, let us 
hoose

E

h

= E

1

h

from (3.8), �

1

= 1 and k = 1, i.e., v

i

h

�

�

T

2 P

1

. Then, on the triangle T the derivatives

�v

1

h

�x

s

(s = 1; 2) and

�v

1

h

�n

1

are 
onstants whi
h 
an be 
al
ulated expli
itely, together with their

L

2

-norms on E and on T

E

. Thus, we get

h

E













�v

1

h

�n

1













2

0;E

� 2

h

E

h

H

E







rv

1

h







2

0;T

E

; (4.6)

where h

H

E

denotes the height of T

E

over the side E, h

E

the length of E. Taking the sum

over E 2 E

1

h

for all inequalities (4.6), we obtain the value of C

I

to be

C

I

= max

E2E

1

h

�

2

h

E

h

H

E

�

:

Thus, for equilateral triangles and isos
eles re
tangular triangles (see the mesh on the left-

hand sides of Figures 6, 7) near �, we get C

I

= 4=

p

3 and C

I

= 2, respe
tively.

For deriving the V

h

-ellipti
ity and V

h

-boundedness of the dis
rete bilinear form B

h

(: ; :) from

(3.6), we introdu
e the following dis
rete norm k : k

1;h

:

kv

h

k

2

1;h

:=

2

X

i=1







rv

i

h







2

0;


i

+

X

E2E

h

h

�1

E







v

1

h

� v

2

h







2

0;E

(4.7)


f. [21℄ and [9, 4℄ (uniform weights). Then we 
an prove the following theorem.
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Theorem 4.3 Let Assumptions 3.1 and 3.2 for T

i

h

(i = 1; 2) and for E

h

be satis�ed. Choose

the 
onstant 
 in (3.6) independently of h and su
h that 
 > C

I

holds, C

I

from (4.3). Then,

B

h

(v

h;

v

h

) � �

1

kv

h

k

2

1;h

8 v

h

2 V

h

(4.8)

holds, with a 
onstant �

1

> 0 independent of h.

Proof. For B

h

(: ; :) from (3.6) we have the identity

B

h

(v

h;

v

h

) =

2

X

i=1







rv

i

h







2

0;


i

� 2

X

E2E

h

�

�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2

; v

1

h

� v

2

h

�

E

+ 


X

E2E

h

h

�1

E







v

1

h

� v

2

h







2

0;E

:

Using Cau
hy's inequality and Young's inequality (2ab �

a

2

"

+ "b

2

) we get

B

h

(v

h;

v

h

) �

2

X

i=1







rv

i

h







2

0;


i

�

1

"

X

E2E

h

h

E













�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2













2

0;E

� "

X

E2E

h

h

�1

E







v

1

h

� v

2

h







2

0;E

+ 


X

E2E

h

h

�1

E







v

1

h

� v

2

h







2

0;E

:

Utilizing inequality (4.3) yields (4.8), with �

1

= minf1�

C

I

"

; 
�"g > 0, if " is 
hosen a

ording

to C

I

< " < 
.

Beside of the V

h

-ellipti
ity of B

h

(: ; :) we also prove the V

h

-boundedness.

Theorem 4.4 Let Assumption 3.1 and 3.2 be satis�ed. Then there is a 
onstant �

2

> 0

su
h that the following relations holds,

jB

h

(w

h

; v

h

)j � �

2

kw

h

k

1;h

kv

h

k

1;h

for w

h

; v

h

2 V

h

: (4.9)

Proof. We apply Cau
hy's inequality several times (also with distributed weights h

E

, h

�1

E

,

h

E

h

�1

E

= 1), insert inequality (4.3) and get relation (4.9) with a 
onstant �

2

= maxf1 +

C

I

; 1 + 
g.

5 Error estimates and 
onvergen
e

Let u be the solution of (2.1) and u

h

from (3.7) its �nite element approximation. We

shall study the error u � u

h

in the norm k : k

1;h

given in (4.7). For fun
tions v satisfying

v

i

2 H

1

(


i

) and

�v

i

�n

i

2 L

2

(�) (i = 1; 2), introdu
e the mesh-dependent norm k : k

h;


by

kvk

2

h;


:=

2

X

i=1

0

�







rv

i







2

0;


i

+

X

E2E

h

h

E













�

i

�v

i

�n

i













2

0;E

1

A

+

X

E2E

h

h

�1

E







v

1

� v

2







2

0;E

: (5.1)

First we bound ku� u

h

k

1;h

by the norm jj : jj

h;


of the interpolation error u � I

h

u, where

I

h

u := (I

h

u

1

; I

h

u

2

), I

h

u

i

2 V

i

h

, and I

h

u

i

denotes the usual Lagrange interpolant of u

i

in the

spa
e V

i

h

, i = 1; 2.
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Lemma 5.1 Let Assumption 3.1 and 3.2 be satis�ed. For u; u

h

from (2.1), (3.7), respe
-

tively, and 
 > C

I

, the following estimate holds,

ku� u

h

k

1;h

� 
 ku� I

h

uk

h;


: (5.2)

Proof. Obviously, I

h

u 2 V

h

holds, and the triangle inequality yields

ku� u

h

k

1;h

� ku� I

h

uk

1;h

+ kI

h

u� u

h

k

1;h

: (5.3)

Owing to I

h

u� u

h

2 V

h

and to the V

h

-ellipti
ity of B

h

(: ; :), we have

kI

h

u� u

h

k

2

1;h

� �

�1

1

(B

h

(I

h

u; I

h

u� u

h

) � B

h

(u

h

; I

h

u� u

h

)) : (5.4)

In relation (5.4) we utilize (4.2) and get

kI

h

u� u

h

k

2

1;h

� �

�1

1

B

h

(I

h

u� u; I

h

u� u

h

): (5.5)

For abbreviation we use here w := I

h

u � u and v

h

:= I

h

u� u

h

. Clearly u 2 H

3

2

+"

(
) yields

�u

i

�n

i

�

�

�

�

2 L

2

(�). Be
ause of I

h

u; u

h

2 V

h

, we also have

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�) (although I

h

u

i

denoting

the interpolant of u

i

in V

i

h

and u

i

h

belong only to H

3

2

�"

(


i

)). Unfortunately, w 62 V

h

holds,

but B

h

(w; v

h

) is well-de�ned.

We now apply the same inequalities as used for the proof of Theorem 4.4, with the modi-

�
ation that inequality (4.3) is only employed with respe
t to the fun
tion v

h

. This leads

to the estimate

jB

h

(w; v

h

)j � 


1

kwk

h;


kv

h

k

1;h

;

whi
h gives together with (5.5) the inequality

kI

h

u� u

h

k

2

1;h

� �

�1

1




1

kI

h

u� uk

h;


kI

h

u� u

h

k

1;h

:

This inequality 
ombined with (5.3) and with the obvious estimate kI

h

u� uk

1;h

� kI

h

u� uk

h;



on�rms assertion (5.2). The positive 
onstant 


1

depends on 
 and C

I

.

An estimate of the error jju � u

h

jj

1;h

for regular solutions u is given in [20℄ and in [4℄ by


itation of results 
ontained in [23℄. Nevertheless, sin
e we 
onsider a more general 
ase,

and sin
e we need a great part of the proof for regular solutions also for singular solutions,

the following theorem is proved.

Theorem 5.2 Let u 2 H

l

(
) (l � 2) be the solution of (2.1) and u

h

2 V

h

its �nite element

approximation a

ording to (3.7), with 
 > C

I

. Furthermore, let the mesh from Assumptions

3.1, 3.2 be quasi-uniform, i.e.

max

T2T

h

h

T

min

T2T

h

%

T

� C. Then the following error estimate holds,

ku� u

h

k

1;h

� 
 h

l�1

kuk

l;


for 2 � l � k + 1; (5.6)

with k � 1 being the polynomial degree in V

i

h

, i = 1; 2.
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Proof. We start from inequality (5.2) whi
h bounds ku� u

h

k

1;h

by the interpolation error

jjI

h

u� ujj

h;


and, in the following, take into a

ount ta
itly the assumptions on the mesh.

Note that the tra
es on � of the interpolants I

h

u

i

of u

i

in V

i

h

(i = 1; 2) do not 
oin
ide,

in general. First we observe that the weighted squared norms k : k

2

0;E


an be rewritten

su
h that interpolation estimates involve the edge F of the triangle T � 


i

(T = T

F

) with

T \ � = F 2 E

i

h

, for i = 1 or i = 2:

X

E2E

h

h

�1

E







I

h

u

i

� u

i







2

0;E

� 


1

X

F2E

i

h

h

�1

F







I

h

u

i

� u

i







2

0;F

; (5.7)

X

E2E

h

h

E
















�

�

I

h

u

i

� u

i

�

�n

i
















2

0;E

� 


2

X

F2E

i

h

h

F







r

�

I

h

u

i

� u

i

�







2

0;F

: (5.8)

Moreover, we apply the re�ned tra
e theorem

kvk

2

0;F

� 


�

h

�1

T

kvk

2

0;T

+ kvk

0;T

krvk

0;T

�

for v 2 H

1

(T ); (5.9)

whi
h is proved in [24℄, 
f. also [23℄. Repla
e v by I

h

u

i

� u

i

and

�

(

I

h

u

i

�u

i

)

�x

s

(s = 1; 2). Then,

using (5.9) and some simple estimates, we get







I

h

u

i

� u

i







2

0;F

� 


�

h

�1

T







I

h

u

i

� u

i







2

0;T

+







I

h

u

i

� u

i







0;T

�

�

I

h

u

i

� u

i

�

�

1;T

�

; (5.10)







r

�

I

h

u

i

� u

i

�







2

0;F

� 


�

h

�1

T

�

�

I

h

u

i

� u

i

�

�

2

1;T

+

�

�

I

h

u

i

� u

i

�

�

1;T

�

�

I

h

u

i

� u

i

�

�

2;T

�

: (5.11)

Taking the well-known interpolation error estimate on triangles T ,







I

h

u

i

� u

i







j;T

� 
h

l�j

T







u

i







l;T

for 2 � l � k + 1 and j = 0; 1; 2; (5.12)

see e.g. [8, 11℄, we derive from the inequalities (5.10) and (5.11) the estimates







I

h

u

i

� u

i







2

0;F

� 
h

2l�1

T







u

i







2

l;T

;







r

�

I

h

u

i

� u

i

�







2

0;F

� 
h

2l�3

T







u

i







2

l;T

:

Using these estimates and (5.7), (5.8), we realize that

X

E2E

h

0

�

h

�1

E







I

h

u

i

� u

i







2

0;E

+ h

E
















�

�

I

h

u

i

� u

i

�

�n

i
















2

0;E

1

A

� 
h

2l�2

X

T2T

i

h

:

T\� 6=;







u

i







2

l;T

(5.13)

holds. For the interpolation error I

h

u

i

� u

i

on 


i

, the estimate







r

�

I

h

u

i

� u

i

�







2

0;


i

=

�

�

I

h

u

i

� u

i

�

�

2

1;


i

� 
h

2l�2

�

�

u

i

�

�

2

l;


i

(5.14)

obviously follows from (5.12). Clearly, (5.13) and (5.14) lead via (5.2) to (5.6).

6 Treatment of 
orner singularities

We now study the �nite element approximation with non-mat
hing meshes for the 
ase

that � has endpoints at verti
es of re-entrant 
orners (
ase I1). Sin
e the in
uen
e region
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of 
orner singularities is a lo
al one (around the vertex P

0

), it suÆ
es to 
onsider one


orner. For basi
 approa
hes of treating 
orner singularities by �nite element methods see

e.g. [3, 7, 13, 17, 19, 22℄. For simpli
ity, we study solutions u 62 H

2

(
) in 
orresponden
e

with 
ontinuous pie
ewise linear elements, i.e. k = 1 in V

i

h

from (3.3). We shall 
onsider the

error u�u

h

on quasi-uniform meshes as well as on meshes with appropriate lo
al re�nement

at the 
orner.

Let (x

0

; y

0

) be the 
oordinates of the vertex P

0

of the 
orner, (r; ') the lo
al polar 
oordinates

with 
enter at P

0

, i.e. x� x

0

= r 
os('+ '

r

), y � y

0

= r sin('+ '

r

), 
f. Figure 4.

y

x




1




2

'

r

y

0

x

0

'

0

�

P

0

'

�

'

P(x;y)

r

Figure 4:

De�ne some 
ir
ular se
tor G around P

0

, with the radius r

0

> 0 and the angle '

0

(here:

� < '

0

< 2�):

G :=

�

(x; y) 2 
 : 0 � r � r

0

; 0 � ' � '

0

	

; G := G n �G; (6.1)

�G boundary of G. For de�ning a mesh with grading, we employ the real grading parameter

�, 0 < � � 1, the grading fun
tion R

i

(i = 0; 1; : : : ; n) with some real 
onstant b > 0, and the

step size h

i

for the mesh asso
iated with layers [R

i�1

; R

i

℄� [0; '

0

℄ around P

0

:

R

i

:= b (ih)

1

�

(i = 0; 1; : : : ; n); h

i

:= R

i

�R

i�1

(i = 1; 2; : : : ; n): (6.2)

Here n := n(h) denotes an integer of the order h

�1

, n :=

�

�h

�1

�

for some real � > 0 ([ : ℄ :

integer part). We shall 
hoose the numbers �; b > 0 su
h that

2

3

r

0

< R

n

< r

0

holds, i.e., the

mesh grading is lo
ated within G from (6.1).

Lemma 6.1 For h; h

i

; R

i

, and � (0 < h � h

0

; 0 < � < 1) the following relations hold

b

�

hR

1��

i

� h

i

�

b

�

�

hR

1��

i

; bR

i

1

i

� h

i

�

b

�

R

i

1

i

; (i = 1; 2; : : : ; n);

h

i�1

< h

i

� (2

1

�

� 1)h

i�1

; R

i�1

< R

i

� 2

1

�

R

i�1

; (i = 2; 3; : : : ; n):

(6.3)

We skip the proof of Lemma 6.1 sin
e it is 
omparatively simple.

Using the step size h

i

(i = 1; 2; : : : ; n), de�ne in the neighbourhood of the vertex P

0

of

the 
orner a mesh with grading, and for the remaining domain we employ a mesh whi
h

is quasi-uniform. The triangulation T

�

h

is now 
hara
terized by the mesh size h and the

grading parameter �, with 0 < h � h

0

and 0 < � � 1. We summarize the properties of T

�

h

in the following assumption.
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Assumption 6.2 The triangulation T

�

h

satis�es Assumption 3.1, Assumption 3.2 and is

provided with a grading around the vertex P

0

of the 
orner su
h that h

T

:= diamT depends

on the distan
e R

T

of T from P

0

, R

T

:= dist (T; P

0

) := inf

P2T

jP

0

� P j, in the following way:

%

1

h

1

�

� h

T

� %

�1

1

h

1

�

for T 2 T

�

h

: R

T

= 0;

%

2

hR

1��

T

� h

T

� %

�1

2

hR

1��

T

for T 2 T

�

h

: 0 < R

T

< R

g

;

%

3

h � h

T

� %

�1

3

h for T 2 T

�

h

: R

g

� R

T

;

(6.4)

with some 
onstants %

i

, 0 < %

i

� 1 (i = 1; 2; 3) and some real R

g

, 0 < R

g

< R

g

< R

g

; where

R

g

; R

g

are �xed and independent of h.

Here, R

g

is the radius of the se
tor with mesh grading and we 
an assume R

g

= R

n

(w.l.o.g.).

Outside this se
tor the mesh is quasi-uniform. The value � = 1 yields a quasi-uniform mesh

in the whole region 
, i.e.,

max

T2T

�

h

h

T

min

T2T

�

h

%

T

� C holds. In [3, 17, 19℄ related types of mesh

grading are des
ribed. In [15℄ a mesh generator is given whi
h automati
ally generates a

mesh of type (6.4).

For the error analysis we introdu
e several subsets of the triangulation T

�

h

near the vertex

P

0

of the re-entrant 
orner, viz.

C

0h

:= fT 2 T

�

h

: R

T

< R

n

g; C

h

:= fT 2 T

�

h

: R

T

� R

n

g;

with R

n

from (6.2). The set C

0h

is now de
omposed into layers (of triangles) D

jh

, j =

0; 1; : : : ; n, su
h that C

0h

:=

S

n

j=0

D

jh

holds:

D

0h

:= fT 2 T

h�

: R

T

= 0g ; D

1h

:= fT 2 T

h�

: 0 < R

T

< R

1

g ;

D

jh

:= fT 2 T

h�

: R

j�1

� R

T

< R

j

g for j = 2; : : : ; n:

A

ording to

2

3

r

0

< R

n

< r

0

, the triangles T 2 C

0h

are lo
ated in G, G from (6.1). Owing

to Assumption 6.2 (
f. also Lemma 6.1), the asymptoti
 behaviour of h

T

is determined by

the relations (given for the 
ase of one 
orner)

"

2

h

j

� h

T

� "

�1

2

h

j

for T 2 T

�

h

: R

j�1

� R

T

< R

j

(j = 1; 2; : : : ; n);

"

3

h � h

T

� "

�1

3

h for T 2 T

�

h

: R

n

� R

T

;

(6.5)

with 0 < "

l

� 1 (l = 2; 3), and h

j

; R

j

as well as n taken from (6.2). Note that the number of

all triangles T 2 T

�

h

(0 < � � 1) and nodes of the triangulation is of the order O(h

�2

). The

number n

j

of all triangles T 2 D

jh

is bounded by C � j (j = 1; : : : ; n), n

0

by C, where C is

independent of h, 
f. [14℄.

First we investigate the interpolation error of a singularity fun
tion s from (2.3) in the 
lass

of polynomials with degree k = 1. Employ the restri
tions s

i

:= sj




i

and take always into

a

ount that s = 0 for r �

2

3

r

0

.

Lemma 6.3 Let s = � a r

�

sin(�') (� =

�

'

0

;

1

2

< � < 1) be the singularity fun
tion with

respe
t to the 
orner at vertex P

0

. Further, let T

�

h

be the triangulation of 
 with mesh

13



grading within G a

ording to Assumption 6.2 (
f. (6.2){(6.5)). Then, the interpolation

error s

i

� I

h

s

i

in the seminorm j : j

1;


i


an be bounded as follows:

�

�

s

i

� I

h

s

i

�

�

1;


i

� 
 jaj�(h; �) for i = 1; 2; (6.6)

where �(h; �) is given by

�(h; �) =

8

>

>

<

>

>

:

h

�

�

for � < � � 1

h jlnhj

1

2

for � = �

h for 0 < � < � < 1:

(6.7)

Proof. A

ording to the mesh layers D

jh

(j = 0; 1; : : : ; n), the norms of the global interpo-

lation error s

i

� I

h

s

i

are represented by the lo
al interpolation error s

i

� I

T

s

i

( I

T

v

i

:= I

h

vj

T

for T 2 


i

, I

T

: lo
al P

1

{Lagrange interpolation operator) as follows

�

�

s

i

� I

h

s

i

�

�

2

1;


i

=

X

T2D

i

0h

�

�

s

i

� I

T

s

i

�

�

2

1;T

+

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

T

s

i

�

�

2

1;T

for i = 1; 2;

with D

i

jh

:= fT 2 D

jh

: T � 


i

g (j = 0; 1; : : : ; n; i = 1; 2).

(i) 
ase T 2 D

i

0h

(i = 1; 2):

First, we 
onsider triangles T 2 D

i

0h

and employ the estimate

�

�

s

i

� I

T

s

i

�

�

1;T

�

�

�

s

i

�

�

1;T

+

�

�

I

T

s

i

�

�

1;T

: (6.8)

Using the expli
it representation of s

i

and I

T

s

i

, we 
al
ulate the norms on the right-hand

side of (6.8) and get the following bound:

�

�

s

i

�

�

1;T

+

�

�

I

T

s

i

�

�

1;T

� 
 jajh

�

�

; for T 2 D

i

0h

: (6.9)

(ii) 
ase T 2 D

i

jh

(j = 1; 2; : : : ; n; i = 1; 2):

We now 
onsider triangles T 2 D

i

jh

whi
h do not tou
h the vertex P

0

(
enter of singularity),

i.e. T 2 C

0h

n D

i

0h

. In this 
ase, s 2 H

2

(T ) holds owing to R

T

> 0. Hen
e, the well-known

interpolation error estimate

�

�

s

i

� I

T

s

i

�

�

1;T

� 
h

T

�

�

s

i

�

�

2;T

(6.10)


an be applied, where 
 is independent of the triangle T . The norm

�

�

s

i

�

�

2;T

is estimated

easily by

�

�

� a r

�

sin(�')

�

�

2

2;T

� 
 jajh

2

T

�

inf

P2T

r

�

2(��2)

for T 2 D

i

jh

: (6.11)

Taking into a

ount the relations between h, h

T

, R

T

, j and � from Assumption 6.2, 
f. also

(6.2),(6.3) ,(6.4) and (6.5), a we �nd easily bounds of the right-hand side in (6.11). This

leads together with (6.10) to the estimates

js

i

� I

h

s

i

j

2

1;T

� 
 jaj

2

h

2�

�

j

4

�

�4

(j � 1)

2��4

�

8 T 2 D

i

jh

; j = 2; : : : ; n;

js

i

� I

h

s

i

j

2

1;T

� 
 jaj

2

h

2�

�

8 T 2 D

i

1h

;
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where i = 1; 2. Sin
e the number of triangles in the layer D

i

jh

grows not faster than with j,

we get by summation of the error 
ontributions of the triangles T 2 C

0h

n D

i

0h

the estimate

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

h

s

i

�

�

2

1;T

� 
 jaj

2

h

2�

�

0

�

1 +

n

X

j=2

j

4

�

�3

(j � 1)

2��4

�

1

A

; i = 1; 2: (6.12)

Using monotoni
ity arguments and the estimation of sums by related integrals, it is not

hard to derive the following set of inequalities,

n

X

j=1

j

2�

�

�3

� C

8

>

>

<

>

>

:

1 for � < � � 1

lnn for � = �

n

2�

�

�2

for 0 < � < � < 1:

(6.13)

Some simple estimates of the right-hand side of (6.12) allow to apply (6.13) and n � 
h

�1

for getting the inequality

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

h

s

i

�

�

2

1;T

� 
 jaj

2

�

2

(h; �); (6.14)

with �(h; �) given at (6.7) and for i = 1; 2.

Finally, 
ombining the estimates (6.8), (6.9) from 
ase (i) and (6.14) from 
ase (ii), we

easily 
on�rm (6.6).

We now study the interpolation error s

i

� I

h

s

i

and its �rst order derivatives in the tra
e

norms.

Lemma 6.4 Under the assumption of Lemma 6.3 and with �(h; �) from (6.7), the following

interpolation error estimates hold for the singularity fun
tion s = � a r

�

sin(�') and i = 1; 2:

X

E2E

h

h

�1

E







s

i

� I

h

s

i







2

0;E

� 
 jaj

2

�

2

(h; �);

X

E2E

h

h

E
















�

�

s

i

� I

h

s

i

�

�n

i
















2

0;E

� 
 jaj

2

�

2

(h; �): (6.15)

Proof. Clearly, due to the assumption on E

h

we have for v

i

= s

i

� I

h

s

i

(i = 1; 2) the inequal-

ities

X

E2E

h

h

�1

E







v

i







2

0;E

� 


X

F2E

i

h

h

�1

F







v

i







2

0;F

;

X

E2E

h

h

E













�v

i

�n

i













2

0;E

� 


X

F2E

i

h

h

F







rv

i







2

0;F

: (6.16)

Consider now fa
es F of triangles T = T

F

tou
hing � and the lo
al interpolate I

T

s

i

.

(i) 
ase T 2 D

i

0h

(i = 1; 2):

Here we use a similar approa
h like at (6.8) and get by dire
t evaluation of the norms the

following estimates:

h

�1

F







s

i

� I

T

s

i







2

0;F

� 2

�

h

�1

F







s

i







2

0;F

+ h

�1

F







I

T

s

i







2

0;F

�

� 
 jaj

2

h

2�

F

� 
 jaj

2

h

2�

�

; (6.17)

h

F







r

�

s

i

� I

T

s

i

�







2

0;F

� 2

�

h

F







rs

i







2

0;F

+ h

F







r(I

T

s

i

)







2

0;F

�

� 
 jaj

2

h

2�

F

� 
 jaj

2

h

2�

�

: (6.18)
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(ii) 
ase T 2 D

i

jh

(j = 1; 2; : : : ; n; i = 1; 2):

For the remaining fa
es F and adja
ent triangles T whi
h do not tou
h the vertex P

0

of the


orner, s

i

2 H

2

(T ) holds. Therefore, inequalities (5.10), (5.11) 
an be applied. We insert

the well-known estimates

�

�

s

i

� I

T

s

i

�

�

l;T

� 
h

2�l

T

�

�

s

i

�

�

2;T

(l = 0; 1; 2) into (5.10), (5.11) and get

for any triangle with fa
e F � �:

h

�1

F







s

i

� I

T

s

i







2

0;F

� 
h

2

T

�

�

s

i

�

�

2

2;T

; h

F







r

�

s

i

� I

T

s

i

�







2

0;F

� 
h

2

T

�

�

s

i

�

�

2

2;T

: (6.19)

Cal
ulating and estimating

�

�

s

i

�

�

2

2;T

and summation over all triangles T 2 C

0h

n D

0h

tou
hing

� near the singularity yields by analogy to (6.14) the estimate

n

X

j=1

X

T2D

i

jh

:

T\� 6=;

h

2

T

�

�

s

i

�

�

2

2;T

� 
 jaj

2

�

2

(h; �) for i = 1; 2: (6.20)

Finally, we 
ombine the inequalities (6.16){(6.20) and get (6.15).

Lemma 6.5 Assume that there is one re-entrant 
orner and that the triangulation T

�

h

is

provided with mesh grading a

ording to the Assumption 6.2. Then the following estimate

holds for the error u � I

h

u of the Lagrange interpolant I

h

u 2 V

h

, with u from (2.3) and

�(h; �) from (6.7):

ku� I

h

uk

h;


� 
�(h; �) kfk

0;


: (6.21)

Proof. A

ording to (2.3), the solution u of the BVP (2.1) 
an be represented by u = s+w =

� a r

�

sin(�') + w, where w 2 H

2

(
) denotes the regular part of the solution, and s is the

singular part. Apply the triangle inequality jju � I

h

ujj

h;


� jjs � I

h

sjj

h;


+ jjw � I

h

wjj

h;


.

Sin
e w 2 H

2

(
) \ H

1

0

(
) holds, the norm jjw � I

h

wjj

h;


has been already estimated in the

proof of Theorem 5.2. Thus, using the estimates (5.13) and (5.14) for l = k+1 = 2, together

with (2.4), we get

kw � I

h

wk

h;


� 
h kwk

2;


� 
h kfk

0;


: (6.22)

Bounds of the norm ks� I

h

sk

h;



an be derived from Lemma 6.3 and Lemma 6.4. The


ombination of (6.6), (6.15) and (2.4) yields the inequalities

ks� I

h

sk

h;


� 
�(h; �) jaj � 
�(h; �) kfk

0;


; (6.23)

with �(h; �) from (6.7). Estimate (6.21) is obvious by (6.22) and (6.23).

The �nal error estimate is given in the next theorem.

Theorem 6.6 Let u and u

h

be the solutions of the BVP (2.1) with one re-entrant 
orner

and of the �nite element equation (3.7), respe
tively. Further, for T

�

h

let Assumption 6.2

be satis�ed. Then the error u� u

h

in the norm k : k

1;h

(4.7) is bounded by

ku� u

h

k

1;h

� 
�(h; �) kfk

0;


; (6.24)

with �(h; �) =

8

>

>

<

>

>

:

h

�

�

for � < � � 1

h jlnhj

1

2

for � = �

h for 0 < � < � < 1:
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Proof. The 
ombination of Lemma 5.1 with Lemma 6.5 immediately yields the assertion.

Remark 6.7 Estimate (6.24) holds also for more than one re-entrant 
orner, with a slightly

modi�ed fun
tion �(h; �). For example, if the mortar interfa
e � tou
hes the verti
es P

01

; P

02

(P

01

6= P

02

) of two re-entrant 
orners with angles '

01

; '

02

, say � < '

01

� '

02

< 2�, then

1

2

< �

2

� �

1

< 1 (�

j

=

�

'

0j

) holds. A

ording to �

1

; �

2

, we employ meshes with grading

parameters �

1

; �

2

. Estimate (6.24) holds now with

�(h; �) =

8

>

<

>

:

h

Æ

for Æ < 1

h jlnhj

1

2

for Æ = 1

h for Æ > 1

; where Æ := min

1�j�2

�

j

�

j

:

Remark 6.8 Under the assumption of Theorem 6.6 and for the error in the L

2

{norm, the

estimate

ku� u

h

k

0;


� 
�

2

(h; �) kfk

0;


(6.25)

holds. In parti
ular, we have the O(h

2

) 
onvergen
e rate for meshes with appropriate

grading. Estimate (6.25) is proved by the Nits
he tri
k with additional ingredients, e.g.

in
lude again some interpolant (
f. the proof of Lemma 5.1). For the proof in the 
onforming


ase see e.g. [14℄.

7 Numeri
al experiments

We shall give some illustration of the Nits
he type mortaring in presen
e of some 
orner

singularity. In parti
ular we investigate the rate of 
onvergen
e when lo
al mesh re�nement

is applied. Consider the BVP

��u = f in 
 ; u = 0 on �
 ;

where 
 is the L-shaped domain of Figure 5. The right-hand side f is 
hosen su
h that the

exa
t solution u is of the form

u(x; y) = (a

2

� x

2

)(b

2

� y

2

)r

2

3

sin(

2

3

'); (7.1)

'

�a

b

a

�b

'

0

=

3

2

�

r




1




2

y

x

�

Figure 5: The L-shaped domain 
.
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where r

2

= x

2

+ y

2

, 0 � ' � '

0

, '

0

=

3

2

�. Clearly, uj

�


= 0, � =

�

'

0

=

2

3

and, therefore,

u 2 H

5

3

�"

(
) is satis�ed. We apply the Nits
he type mortaring method to this BVP and

use initial meshes shown in Figure 6 and 7. The approximate solution u

h

is visualized in

Figure 9.

Figure 6: Triangulations with mesh ratio 2 : 3, h

1

{mesh (left) and h

2

{mesh with re�nement

(right).

Figure 7: Triangulations with mesh ratio 2 : 5, h

1

{mesh (left) and h

3

{mesh with re�nement

(right).

The initial mesh is re�ned globally by dividing ea
h triangle into four equal triangles su
h

that the mesh parameters form a sequen
e fh

1

; h

2

; h

3

; : : :g given by fh;

h

2

;

h

4

; : : :g. The ratio

of the number of mesh segments on the mortar interfa
e is given by 2 : 3 (see Figure 6)

and 2 : 5 (see Figure 7). Furthermore, the values �

1

= 1, �

2

= 0 are 
hosen, i.e., the tra
e

of the triangulation T

1

h

of 


1

on the interfa
e � forms the partition E

h

(for 


1


f. Figure

5). For the examples the 
hoi
e 
 = 3 was suÆ
ient to ensure stability. (For numeri
al

experiments with 
 and also with regular solutions, 
f. [18℄). Moreover, we also apply lo
al

re�nement by grading the mesh around the vertex P

0

of the 
orner, a

ording to se
tion 6.

The parameter is 
hosen by � = 0:7�.

Let u

h

denote the �nite element approximation a

ording to (3.7) of the exa
t solution u

from (7.1). Then the error estimate in the dis
rete norm jj : jj

1;h

is given by (6.24). We

assume that h is suÆ
iently small su
h that

ku� u

h

k

1;h

� Ch

�

(7.2)
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holds with some 
onstant C whi
h is approximately the same for two 
onse
utive levels of

h, like h;

h

2

. Then � = �

obs

(observed value) is derived from (7.2) by �

obs

:= log

2

q

h

, where

q

h

:= ku� u

h

k=










u� u

h

2










. The same is 
arried out for the L

2

{norm, where ku� u

h

k

0;


� Ch

�

is supposed. The values of � and � are given in Table 1 and Table 2, respe
tively.

mesh ratio 2 : 3 mesh ratio 2 : 5

norm k : k

1;h

(h

3

; h

4

)-levels (h

4

; h

5

)-levels (h

3

; h

4

)-levels (h

4

; h

5

)-levels � (expe
ted)

�

�=1

0.6977 0.6676 0.7316 0.6798 0.6667

�

�=0:7�

1.1323 0.9784 1.0896 1.1749 1

Table 1: Observed 
onvergen
e rates �

�

for di�erent pairs (h

i

, h

i+1

) of h-levels, for � = 1

and for � = 0:7� (� =

2

3

) in the norm k : k

1;h

.

mesh ratio 2 : 3 mesh ratio 2 : 5

norm k : k

0;


(h

3

; h

4

)-levels (h

4

; h

5

)-levels (h

3

; h

4

)-levels (h

4

; h

5

)-levels � (expe
ted)

�

�=1

1.2919 1.2971 1.3016 1.2991 1.3333

�

�=0:7�

2.0093 2.0835 2.2252 2.0863 2

Table 2: Observed 
onvergen
e rates �

�

for di�erent pairs (h

i

, h

i+1

) of h-levels, for � = 1

and for � = 0:7� ( � =

3

2

) in the norm jj : jj

0;


.

The numeri
al experiments show that the observed rates of 
onvergen
e are approximately

equal to the expe
ted values. Furthermore, it 
an be seen that lo
al mesh grading is suited

to over
ome the loss of a

ura
y (
f. Figure 9) and the diminishing of the rate of 
onvergen
e

on non-mat
hing meshes 
aused by 
orner singularities.
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Figure 8: The error in di�erent norms on quasi-uniform meshes (left) and on meshes with

grading (right).
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Figure 9: The approximate solution u

h

in two di�erent perspe
tives (top), the lo
al point-

wise error on the quasi-uniform mesh (bottom left) and the lo
al pointwise error on the

mesh with grading (bottom right).
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