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Nitsche type mortaring for some elliptic problem
with corner singularities

B. Heinrich K. Pietsch

Abstract

The paper deals with Nitsche type mortaring as a finite element method (FEM)
for treating non-matching meshes of triangles at the interface of some domain decom-
position. The approach is applied to the Poisson equation with Dirichlet conditions
(as a model problem) under the aspects that the interface passes re-entrant corners
of the domain. For such problems and non-matching meshes with and without local
refinement near the re-entrant corner, some properties of the finite element scheme and
error estimates are proved. They show that appropriate mesh grading yields conver-
gence rates as known for the classical FEM in presence of regular solutions. Finally, a
numerical example illustrates the approach and confirms the theoretical results.

Key words. finite element method, non-matching meshes, mortar finite elements, corner singu-
larities, Nitsche type mortaring

AMS subject classification. 65N30, 65N55

1 Introduction

For the efficient numerical treatment of boundary value problems (BVPs), domain decom-
position methods are widely used. They allow to work in parallel: generating the mesh in
subdomains, calculating the corresponding parts of the stiffness matrix and of the right-
hand side, and solving the system of finite element equations.

There is a particular interest in triangulations which do not match at the interface of
the subdomains. Such non-matching meshes arise, for example, if the meshes in different
subdomains are generated independently from each other, or if a local mesh with some
structure is to be coupled with a global unstructured mesh, or if an adaptive remeshing
in some subdomain is of primary interest. This is often caused by extremely different
data (material properties or right-hand sides) of the BVP in different subdomains or by a
complicated geometry of the domain, which have their response in a solution with singular
or anisotropic behaviour. Moreover, non-matching meshes are also applied if different
discretization approaches are used in different subdomains.

There are several approaches to work with non-matching meshes. The task to satisfy some
continuity requirements on the interface (e.g. of the solution and its conormale derivative)
can be done by iterative procedures (e.g. Schwarz’s method) or by direct methods like the
Lagrange multiplier technique.

There are many papers on the Lagrange multiplier mortar technique, see e.g. [5, 6, 9, 25]
and the literature quoted in these papers. There, one has new unknowns (the Lagrange
multipliers) and the stability of the problem has to be ensured by satisfying some inf-sup
condition (for the actual mortar method) or by stabilization techniques.



Another approach which is of particular interest here is related to the classical Nitsche
method [16] of treating essential boundary conditions. This approach has been worked out
more generally in [23, 20] and transferred to interior continuity conditions by Stenberg [21]
(Nitsche type mortaring), cf. also [1]. As shown in [4] and [10], the Nitsche type mortaring
can be interpreted as a stabilized variant of the mortar method based on a saddle point
problem.

Compared with the classical mortar method, the Nitsche type mortaring has several ad-
vantages. Thus, the saddle point problem, the inf-sup—condition as well as the calculation
of additional variables (the Lagrange multipliers) are circumvented. The method employs
only a single variational equation which is, compared with the usual equations (without any
mortaring), slightly modified by an interface term. This allows to apply existing software
tools by slight modifications. Moreover, the Nitsche type method yields symmetric and
positive definite discretization matrices in correspondence to symmetry and ellipticity of
the operator of the BVP. Although the approach involves a stabilizing parameter v, it is
not a penalty method since it is consistent with the solution of the BVP. The parameter
v can be estimated easily (see below). The mortar subdivision of the chosen interface T
can be done in a more general way than known for the classical mortar method. This
can be advantageous for solving the system of finite element equations by iterative domain
decomposition methods.

Basic aspects of the Nitsche type mortaring and error estimates for regular solutions u €
H*(Q) (k > 2) on quasi-uniform meshes are published in [21, 4]. Compared with these
papers, we extend the application of the Nitsche type mortaring to problems with non-
regular solutions and to meshes being locally refined and not quasi-uniform.

We consider the model problem of the Poisson equation with Dirichlet data in the presence
of re-entrant corners and admit that the interface with non-matching meshes passes the
vertex of such corners. For the appropriate treatment of corner singularities we employ
local mesh refinement around the corner by mesh grading in correspondence with the
degree of the singularity. Therefore, the Nitsche type mortaring is to be analyzed on more
general triangulations. For meshes with and without grading, basic inequalities, stability
and boundedness of the bilinear form as well as error estimates in a discrete H!'-norm are
proved. The rate of convergence in L, is twice of that in the H'-norm. For an appropriate
choice of some mesh grading parameter, the rate of convergence is proved to be the same
as for regular solutions on quasi-uniform meshes. Finally, some numerical experiments are
given which confirm the rates of convergence derived.

2 Analytical preliminaries

In the following, H*(X), s real (X some domain, H° = L,), denotes the usual Sobolev
spaces, with the corresponding norms and the abbreviation [|. ||, v := [|. || s (x)- Constants
C or ¢ occuring in inequalities are generic constants.

For simplicity we consider the Poisson equation with homogeneous Dirichlet boundary
conditions as a model problem:

~Au = f inQ,

u = 0 on 9. (2.1)



Here, Q is a bounded polygonal domain in R2, with Lipschitz-boundary dQ consisting of
straight line segments. Suppose further that f € Ly(Q) holds. The variational equation of
(2.1) is given as follows. Find u € HJ () := {v € H'(Q) : v|,, = 0} such that

a(u,v) = f(v) Yo € Hy(Q), (2.2)

with a(u,v) := /(VU,VU) dz, flv) == /fvdx.
Q Q

We now decompose the domain Q into non-overlapping subdomains. For simplicity of
notation we consider two subdomains Q; and Q, with interface I, where

Q=031 UD, UNk=0 Q0 nNQ =T,

holds (X : closure of the set X). We assume that the boundaries 0Q; of ; (i = 1,2) are
also Lipschitz-continuous and formed by open straight line segments I'; such that

J
r = U T;.
j=1

We distinguish two important types of interfaces I':

case I1: the intersection I'NAQ consists of two points P;, P, (P, # P») being the endpoints
of T, and at least one point is the vertex of a re-entrant corner, like in Figure 1,

case 12: rnoQ =0, i.e., T does not touch the boundary 99, like in Figure 2.

r

Sy

Figure 1: Figure 2:

For the presentation of the method and error estimates we need the degree of regularity
of the solution u. Clearly, the functionals a(.,.) and f(.) satisfy the standard assumptions
of the Lax-Milgram theorem and we have the existence of a solution u € H3(Q2) of problem
(2.2) as well as the a priori estimate lull; 0 < Cllfllo.q-

Furthermore, the regularity theory of (2.2) yields u € H*(Q) and ||ull, o < C||fllyq if Q is

convex. If 9Q has re-entrant corners with angles ¢g; : 7 < po; < 27 (j = 1,...,1), then u
can be represented by

1
w o= Y mpagry sin(eg) +w, (2.3)

j=1
with a regular remainder w € H?*(Q). Here, (rj,¢;) denote the local polar coordinates of a
point P € O with respect to the vertex P; € 99, where 0 < r; < rg; and 0 < ¢; < ¢o; hold;



ro; is the radius of some circle neighborhood with center at P;. Moreover, we have \; = o
J

(3 <)\ <1),a; is some constant, and n; is a locally acting (smooth) cut-off function

around the vertex P;, with

1 for 0<r <Y
0<m <1, m = 5 3
Toj
0 fOI‘TS’I‘jST‘oj.
The solution u € H}(Q) satisfies the relations
1
> lajl + lwllhg < Cllfllog ue H'(A,Q) = {veH'(Q): Ave Ly(Q)}  (2.4)
j=1

and, owing to (2.3), also u € H2+5(Q) for any &: 0 < & < 0, o sufficiently small. For these
results, see e.g. [13, 7].

In the context of dividing Q into subdomains Q;, Q», we introduce the restrictions v’ := U|Qi
of some function v on Q; as well as the vectorized form of v by v = (v',?), i.e. we have
vi(z) = v(z) for z € Q; (i = 1,2). Tt should be noted that we shall use here the same symbol v
for denoting the function on  as well as the vector (v!,v?). This will not lead to confusion,
since the meaning will be clear from the context. The one-to-one correspondence between
the “field function” v and the “vector function” v is given on € U Q,. Moreover, vl is
defined by the trace. We shall keep the notation also in cases, where the traces v!|r,v?|r
on the interface T are different (e.g. for interpolants on ;).

Using this notation, it is obvious that the solution of the BVP (2.1) is equivalent to the
solution of the following interface problem: Find (u',u?) such that

—Aut = f inQ;, i=1,2,
b = 0 ondNNoN, i=1,2,
(2.5)
ut = u? onT,
ou'  Ou?
o e r
6n1 8712 0 on

are satisfied, where n; (i = 1,2) denotes the outward normal to 9Q; NT. Introducing the
spaces V' (i = 1,2) given by

case Il:  Vi:= {vi cvt € HY (D), v yonn0. = 0} for 9QNoQ; #0,
' (2.6)
case 12: Vii= HY () for 00N aQ; =0,

and the space V := V! x V2| the BVP (2.5) can be formulated in a weak form (see e.g.
[2]). Clearly, we have u’ € V' and u* € H'(A,Q;) (i = 1,2) as well as u = (u*,u?) € V. The

continuity of the solution u and of its normal derivative 2= on T' (n = ny or n = ns) is

1 1 1
to be required in the sense of H?(T') and H, ?(T) (the dual space of H? (T')), respectively.



Define H*% (09;) (HO%O) by the range of V¢ by the trace operator and to be provided with
the quotient norm, see e.g. [9, 13]. So we use in case II: H*% (0Q;) ~ Héo(ani \ 99Q) for
00109 # 0, in case 12: HZ(Q;) = H(09;) for 90N 8Q; = . Here ~ means that
we identify the corresponding spaces. By (.,.),o. we shall denote the duality pairing of

HI2(00;) and H2 (59,).

3 Non-matching mesh finite element discretization

We cover Q; (i = 1,2) by a triangulation 7,/ (i = 1,2) consisting of triangles. The triangula-
tions 7,' and 7;? are independent of each other. Moreover, compatibility of the nodes of T;'
and 7.2 along T’ = 90 N 9N, is not required, i.e., non-matching meshes on I' are admitted.
Let h denote the mesh parameter of these triangulations, with 0 < h < hy and sufficiently
small ho. Take e.g. h = max{hr : T € T;}! UT?}, where T (T = T) denotes a triangle and
hr := diam T its diameter. Let £},&7 denote the triangulations of T' defined by the traces
of T,} and 7,2 on T, respectively.

Assumption 3.1

(i) Fori=1,2, it holds Q= (3.1)
TeT}
(i1) Two arbitrary triangles T, T' € T} (T # T',i = 1,2) are either disjoint or have a
common vertex, or a common edge.

(7ii) The mesh in Q; (i = 1,2) is shape regular, i.e., for the diameter hr of T and the

diameter or of the largest inscribed sphere of T, we have
Z—T < C forany T € T}, (3.2)
T

where C' is independent of T and h.

Clearly, relation (3.2) implies that the angle # at any vertex and the length hp of any side
F of the triangle T satisfy the inequalities

0<6y <0 <m—80y, erthr < hp < hp, (0<51<1),

with constants 6y and ¢; being independent of h and T. Owing to (3.2), the triangulations
7, (i = 1,2) do not have to be quasi-uniform in general.

For i = 1,2 and according to V? from (2.6) introduce finite element spaces V¢ of functions
v’ on Q; by

Vi o= {vi € H'(Q): v'| € Pi(T) YT € Ty v'|pg000, = 0} , =12 (3.3)

where P (T) denotes the set of all polynomials on T with degree < k. We do not employ
different polynomial degrees on Q;, s, which could also be done. The finite element space
V3, of vectorized functions v, with components v} on Q; is given by

Vi = VixV2 = {on, = (v,ll,v,%) cop €V vr € Vh2} (3.4)



In general, v, € V}, is not continuous across T.

Consider further some triangulation &, of T by intervals E (E = E), i.e. T = pee, B
where hr denotes the diameter of E. Furthermore, let v be some positive constant (to be
specified subsequently) and a;, az real parameters with

Ogozi<1 (221,2), (e 5] +6¥2:1. (35)

Following [21] we now introduce the bilinear form By(.,.) on Vj x V; and the linear form
Fn(.) on V}, as follows:

2
i i ou} ou?
Br(up,vy) = lzzl (Vuh,Vvh)Qi — <o¢18—n’1‘ — a26—n’;,v}b — Ui>r
ot v
_< L L ug> 1 S bk — w2 ok =), (3.6)
! T Eeg,
2
fh(vh) = (f, U;L)Qz for up,vp € Vi
i=1

(Note that in [4] a similar bilinear form with a4 = a» = 1 and hg = h is employed.) The
finite element approximation u; of v on the non-matching triangulation 7, = 7! U T2 is

now defined by uj, = (u},u}) € Vi, = Vj! x V}? satisfying the equation
Bh(uh,vh) = fh(vh) Yo € Vi (37)

1 1
Here, (.,.)q, denotes the L(€;)-scalar product, (.,.)r the H, *(T') x HZ(I')-duality pairing
and (.,.)p the Ly(E)-scalar product. Owing to u € H%“(Q), the trace theorem yields

g—gi L€ Ly(T). Furthermore, %’2‘ € Ly(T) holds also for v, = (v},,v}) € V4. This will be

T
used subsequently for evaluating (.,.). by the L,(T')-scalar product. A natural choice for
the triangulation &, of T is &, := &} (a1 =1) or &, := &} (as = 1), where

& = {E:E=0TNT, if Eis a segment, T € T/}, fori=1,2, (3.8)
cf. Figure 3.
773 ] gilz gh ((;2 < 773
9 r r r Qs
Figure 3:

We require the asymptotic behaviour of the triangulations 7;!, 7,2 and of &, to be consistent
on T in the sense of the following assumption.



Assumption 3.2 For T € T} (i = 1,2) and E € &, with 8T N E # 0, there are positive
constants Cy and Cy independent of hr, hg and h (0 < h < hg) such that the condition

Cihr < hg < Cshr (39)

is satisfied.

Relation (3.9) guarantees that the diameter hr of the triangle T' touching the interface T
at E is asymptotically equivalent to the diameter hg of the segment E, i.e., the equivalence
of hr, hg is required only locally.

4 Properties of the discretization

First we show that the solution u of the BVP (2.1) satisfies the variational equation (3.7),
i.e., u is consistent with the approach (3.7).

Theorem 4.1 Let u be the solution of the BVP (2.1). Then u= (u',u®) solves (3.7), i.e.,
we have
Bh(u,vh) = fh(vh) Vo, € V. (41)

Proof. Insert the solution u into By (.,v,). Owing to the properties of w, Bp(u,v,) is well

: _ Aul _ ou?
defined and, since u'|, = v?|, and a—m‘r == o), hold, cf. (2.5), we get
2
PR ou! ou?
Buluun) = 3 (Ve V), — (Gooh) = (G .
i=1 r r

Taking into account (2.4) and using Green’s formula on the domains €;, the relations

2 2
Bu(u,vn) = =) (A’ vp), = > Uh)g, = Fnlvn)
i=1 i=1
are derived for any v, € V3. This proves the assertion. O

Note that due to (4.1) and (3.7) we also have the Bj-orthogonality of the error u — uj, on
Vh, i.e.,
Bh(u—uh,vh) =0 Yo € V. (42)

For further results on stability and convergence of the method, the following “weighted
discrete trace theorem” will be useful, which describes also an inverse inequality.

Lemma 4.2 Let Assumption 3.1 and 3.2 be satisfied. Then, for any v, € Vi, the inequality

2
Z hEe < CIZa? Z ||Vv2||(2)’TF (4.3)

Eeéy, 0.E =1 Fpegl

2

o}, o}

Q) —
6n1 8712

holds, where F € &} is the face of a triangle Tr € T} touching T by F (Tp NT = F). The
constant Cr does not depend on h,hr, hg.



Note that extending the norms on the right—hand side of (4.3) to the whole of Q; implies

Z hE‘

Fee,

v, 8vh
gt -
n1 6n2

2
< oY Ve, - (4.4)

i=1

For inequalities on quasi-uniform meshes related with (4.4) see [23, 21, 4].

Proof. For i =1,2, v € V}i yields % € Ly(T') (s =1,2) and ZLj% € Ly(T). Moreover,
r “Ir
‘ o
holds. Let hp denote the length of side F belonging to triangle T' = Tr. Since the shape

regularity of T is given, the quantities hr and hr are asymptotically equivalent. Owing to
-2 S 12 . .
Yree, he [ Voillg <o Yreei hr Vv [l and to inequality

1 2 (12
dvy, vy,

2
n2
ny " 20|, <2220 Vel

i=1

IVohllor < e ||Vvh||0TF

which is derived by means of the trace theorem on Tr and of the inverse inequality, we get

S hel Vel < e 3 |VohlZ,  fori=1.2, (4.5)

Eeéy Fegl

where Tr C Q; has the edge F € €. The constants ¢; (i = 1,2,3) do not depend on h; ¢» is
also uniform in 7. Inequality (4.5) combined with the previous inequalities yields (4.3). O

The constant C; in the inequalities (4.3) and (4.4) can be estimated easily if special as-
sumptions on &, and on the polynomial degree £ are made. For example, let us choose
Ep = &} from (3. 8) a1 =land k=1, 1ie. U;L|T € P;. Then, on the triangle T the derivatives

1
g;’; (s=1,2) and are constants which can be calculated explicitely, together with their
Ls-norms on F and on Tg. Thus, we get

avh

hg
8”1

(4.6)

2l
Iy,

h“O,TE ’

where hy, denotes the height of Tr over the side E, hg the length of E. Taking the sum
over E € £} for all inequalities (4.6), we obtain the value of C; to be

h
Cr = max (2—E>
Eeg} Hp

Thus, for equilateral triangles and isosceles rectangular triangles (see the mesh on the left-
hand sides of Figures 6, 7) near T', we get C1 = 4/+/3 and C; = 2, respectively.

For deriving the V-ellipticity and V,-boundedness of the discrete bilinear form By(.,.) from
(3.6), we introduce the following discrete norm ||. ||, ,:

loall} = Z“Wh”on + > hp 1||”h‘“h||0E (4.7)

Eecé&y,

cf. [21] and [9, 4] (uniform weights). Then we can prove the following theorem.



Theorem 4.3 Let Assumptions 3.1 and 3.2 for T, (i = 1,2) and for &, be satisfied. Choose
the constant y in (3.6) independently of h and such that v > Ct holds, Cy from (4.3). Then,

Br(vnvn) > pullvall} Vo €V (4.8)

holds, with a constant py > 0 independent of h.

Proof. For By(.,.) from (3.6) we have the identity

0 0
inm) = DIkl -2 T (o3 -eaf k- it) o 3 43! ok okl

E€é&), E€&),

Using Cauchy’s inequality and Young’s inequality (2ab < % + eb?) we get

ov} ov?
o) 2 SISl L 5 e o 2k -0 2
(vn,vn) || Uh”o Q s 2 B || 1 > Ons 0,E
—€ Z hi' ||Uh - Uh”O,E +7 Z hi' ”Ullz - UIQz”o,E'
Ecgy, Eegy,

Utilizing inequality (4.3) yields (4.8), with p; = min{l—%, y—e} > 0, if € is chosen according
to Cr <e <. [l

Beside of the Vj-ellipticity of By(.,.) we also prove the Vj,-boundedness.

Theorem 4.4 Let Assumption 3.1 and 3.2 be satisfied. Then there is a constant us > 0
such that the following relations holds,

Br (whsvn)| < o flwnlly  lonlly, for wh,vn € Vi (4.9)

Proof. We apply Cauchy’s inequality several times (also with distributed weights hg, h',
hphz' = 1), insert inequality (4.3) and get relation (4.9) with a constant pus = max{1 +
Cr,14+~}. [l

5 Error estimates and convergence

Let u be the solution of (2.1) and u; from (3.7) its finite element approximation. We
shall study the error u — uy in the norm ||.[|, , given in (4.7). For functions v satisfying

vt e HY(Q;) and 8” - € Ly(T) (i = 1,2), introduce the mesh-dependent norm |||, o, by

2 P2
2 ov’
lllio o= 3| I1V0 o, + 3 hefaigel |+ 30 ket o' =*ope (51)
i=1 Ecéy, g Ecé&y,
First we bound |[[u —uyl|, , by the norm ||.||n,e of the interpolation error u — I u, where

Iyu = (Inul, Iu?), Iyu' € Vi, and Iyu® denotes the usual Lagrange interpolant of u’ in the
space Vi, i =1,2.



Lemma 5.1 Let Assumption 3.1 and 3.2 be satisfied. For u,uy, from (2.1), (3.7), respec-
tively, and v > Cy, the following estimate holds,

lu—unlly, < cllu—Thull,q- (5.2)

Proof. Obviously, Iyu € V3 holds, and the triangle inequality yields

b= wnllgy < = Tl + T = wnll (5.3)

Owing to Iyu — u, € V3, and to the Vy-ellipticity of By(.,.), we have
hw —unll; < gt (Bu(Tnu, Inu — up) — Bi(un, Inu —up)) . (5.4)

In relation (5.4) we utilize (4.2) and get

||[hU—Uh||ih < it Bu(Thvu — u, Tou — up,). (5.5)

For abbreviation we use here w := Iyu — u and vy, := Iyu — uy. Clearly u € H%“(Q) yields

'

s | € Ly(T). Because of Iu, uy € V},, we also have %‘ € Ly(T") (although Iu® denoting
k3 k3 F

0

the interpolant of uf in Vi and ui belong only to H2 <(€;)). Unfortunately, w ¢ V; holds,
but By (w,vy) is well-defined.

We now apply the same inequalities as used for the proof of Theorem 4.4, with the modi-
fication that inequality (4.3) is only employed with respect to the function v,. This leads
to the estimate

[Br(w,on)] < e flwlly g [[oally

which gives together with (5.5) the inequality
1Thu —unlly ), < py e 1w — ully, o 1Tnt = unlly , -

This inequality combined with (5.3) and with the obvious estimate || T,u — ul|, , < [[Thu — ull, ¢
confirms assertion (5.2). The positive constant c¢; depends on v and Cf. O

An estimate of the error ||u — up||1,n for regular solutions u is given in [20] and in [4] by
citation of results contained in [23]. Nevertheless, since we consider a more general case,
and since we need a great part of the proof for regular solutions also for singular solutions,
the following theorem is proved.

Theorem 5.2 Let u e H'(Q) (1 >2) be the solution of (2.1) and uy € V}, its finite element

approzimation according to (3.7), with v > Cr. Furthermore, let the mesh from Assumptions
maxper, hr

3.1, 3.2 be quasi-uniform, i.e. minrer, o7

< C. Then the following error estimate holds,
luw—=unlly ), < ch'™! lulo  for 2<i<k+1, (5.6)

with k > 1 being the polynomial degree in Vi, i =1,2.

10



Proof. We start from inequality (5.2) which bounds |ju — up||; , by the interpolation error
[[Inu — ul|n,q and, in the following, take into account tacitly the assumptions on the mesh.
Note that the traces on I' of the interpolants I,u® of u' in V! (i = 1,2) do not coincide,
in general. First we observe that the weighted squared norms ||. ||(2)7E can be rewritten
such that interpolation estimates involve the edge F of the triangle T C Q; (T = Tr) with
ITNnT=Fe¢&,fori=1lori=2:

S bt Tt =y < e 30 bt [Tt — g (5.7)
Eeéy, Feé&l
0 (Ihui — u’) > . 9
> he —— < ey he |V (Tt =) g (5.8)
Eegy, ’ 0,E Feei
Moreover, we apply the refined trace theorem
ol < e (A7 1ol z + Wollo.r [IV0llgr ) for ve HY(T), (5.9)

which is proved in [24], cf. also [23]. Replace v by I,u’ —u’ and B(Ihaui;s_m) (s =1,2). Then,
using (5.9) and some simple estimates, we get

i = < e (it Nt = 2 o = B =] ), (5.00)

IN

IV (z’ =) [

IN

c (h;l Dt = [} o+ | T =l [T’ — ui|27T) . (5.11)
Taking the well-known interpolation error estimate on triangles T,
[Tt =[], < ehip? ||, for2<i<k+1landj=0,1,2, (5.12)
see e.g. [8, 11], we derive from the inequalities (5.10) and (5.11) the estimates
el L N  2CAt) Sy
Using these estimates and (5.7), (5.8), we realize that

1o} (Ihui — u’) >

> (hEl ||Ihui—ui||§7E+hE ) < ek N ||ui||f7T (5.13)
0,F

Eegy, oni Ter,f:
TAT#0
holds. For the interpolation error Iu’ — u’ on €;, the estimate
IV (=) gy = =y € ey, (514
obviously follows from (5.12). Clearly, (5.13) and (5.14) lead via (5.2) to (5.6). O

6 Treatment of corner singularities

We now study the finite element approximation with non-matching meshes for the case
that T’ has endpoints at vertices of re-entrant corners (case I1). Since the influence region

11



of corner singularities is a local one (around the vertex P), it suffices to consider one
corner. For basic approaches of treating corner singularities by finite element methods see
e.g. [3, 7,13, 17, 19, 22]. For simplicity, we study solutions u ¢ H>(Q2) in correspondence
with continuous piecewise linear elements, i.e. k£ =11in V} from (3.3). We shall consider the
error u —uy, on quasi-uniform meshes as well as on meshes with appropriate local refinement
at the corner.

Let (zo,y0) be the coordinates of the vertex Py of the corner, (r, ¢) the local polar coordinates
with center at Py, i.e. * — 29 = rcos(¢ + @), y — yo = rsin(¢ + ¢,), cf. Figure 4.

Y
8

Figure 4:

Define some circular sector G around Py, with the radius ro > 0 and the angle ¢, (here:
T < o < 2m):

G = {(z,y) €Q:0<r<rg,0<p<go}, G:=G\IG, (6.1)
dG boundary of G. For defining a mesh with grading, we employ the real grading parameter
w, 0 < p < 1, the grading function R; (i =0,1,...,n) with some real constant b > 0, and the
step size h; for the mesh associated with layers [R;_1, R;] X [0, ¢g] around Py:

Ry == b(h)¥F (i=0,1,....n), hi = Ri—Ri.x (i=1,2,....n). (6.2)

Here n := n(h) denotes an integer of the order h=!, n := [fh™'] for some real 8 > 0 ([.]:
integer part). We shall choose the numbers 3, b > 0 such that %ro < R, <19 holds, i.e., the
mesh grading is located within G from (6.1).

Lemma 6.1 For h,h;,R;, and p (0 < h < ho, 0 < u < 1) the following relations hold

1— b 1 pl— 1 b1 .
b*hR; < h < Tth ’ le; < h; < ;R,;, (i=1,2,...,n), (6 3)
1 1 ‘
hi—y < hy < (28 =1)hi_y, Ri 1 < R; < 2rR; 4, (i=2,3,...,n).

We skip the proof of Lemma 6.1 since it is comparatively simple.

Using the step size h; (i = 1,2,...,n), define in the neighbourhood of the vertex P, of
the corner a mesh with grading, and for the remaining domain we employ a mesh which
is quasi-uniform. The triangulation 7" is now characterized by the mesh size h and the
grading parameter p, with 0 < A < hp and 0 < p < 1. We summarize the properties of 7,
in the following assumption.

12



Assumption 6.2 The triangulation T satisfies Assumption 3.1, Assumption 3.2 and is
provided with a grading around the vertex Py of the corner such that hr := diamT depends
on the distance Rr of T from Py, Ry :=dist (T, Py) := infper |Py — P|, in the following way:

glh% < hr < gflh% forT €Tt :Rr=0,
0hRY™ < hy < o3 'hRy™  for TeT!:0< Rr <R, (6.4)
o3h < hr < o03'h forT €T} : Ry <Rrp,

with some constants g;, 0 < 0; <1 (i =1,2,3) and some real R,, 0 < R, <Ry < R,, where
R, R, are fized and independent of h.

Here, R, is the radius of the sector with mesh grading and we can assume R, = R,, (w.l.0.g.).

Outside this sector the mesh is quasi-uniform. The value p = 1 yields a quasi-uniform mesh
max h
in the whole region Q, i.e., TTGT% < C holds. In [3, 17, 19] related types of mesh
TeT}
grading are described. In [15] a mesh generator is given which automatically generates a

mesh of type (6.4).

For the error analysis we introduce several subsets of the triangulation 7, near the vertex
P, of the re-entrant corner, viz.

Con 1= {T S 7;:‘ Ry < Rn}, Cp, = {T S 77# Ry > Rn},

with R, from (6.2). The set Co, is now decomposed into layers (of triangles) D, j =
0,1,...,n, such that Cos := Uj_, Djn holds:

Don = {T€Twu: Rr =0}, Dip :={T€Th,: 0<Rr <R},
Djh = {TE%MZijlgRT<Rj} forj:2,...,n.

According to 2ro < R,, < ro, the triangles T € Cy), are located in G, G from (6.1). Owing

to Assumption 6.2 (cf. also Lemma 6.1), the asymptotic behaviour of hy is determined by
the relations (given for the case of one corner)

62hj < hr

IN

62_1hj fOI‘TGEuIRj_lgRT<Rj (j:l,?,...,n), (65)
esh < hr < e3'h for T € T} : R, < Rrp,

with 0 < g, <1 (I =2,3), and h;, R; as well as n taken from (6.2). Note that the number of
all triangles T € 7} (0 < p < 1) and nodes of the triangulation is of the order O(h~?). The
number n; of all triangles T € Dj;, is bounded by C -j (j = 1,...,n), ng by C, where C is
independent of h, cf. [14].

First we investigate the interpolation error of a singularity function s from (2.3) in the class
of polynomials with degree k¥ = 1. Employ the restrictions s’ := slg, and take always into
account that s =0 for r > Zr.

Lemma 6.3 Let s = nar*sin(\p) (A = = 1 < X < 1) be the singularity function with

respect to the corner at vertex Py. Further, let T} be the triangulation of Q with mesh

13



grading within G according to Assumption 6.2 (cf. (6.2)-(6.5)). Then, the interpolation
error s — Iys' in the seminorm | .|, o can be bounded as follows:

|s* — Ih3i|179i < cla|k(h,pu) for i=1,2, (6.6)
where k(h,u) is given by
B forx<pu<1
k(h,p) = h|ln h|% for p=2X\ (6.7)
h foro< <A<l

Proof. According to the mesh layers Dj;, (j =0,1,...,n), the norms of the global interpo-
lation error s¢ — I, s* are represented by the local interpolation error s¢ — I7s® ( I7v! := Iyv|r
for T € Q;, Ir: local P;—Lagrange interpolation operator) as follows

n
|si—Ihsi|iQ, = g |si—ITsi|iT+ E E |si—ITsi|?T fori=1,2,
E) 1 ’ 5
TeD}, Jj=1 TeD;'.h

with D;h. = {TEDjh TCﬁl} (j =0,1,...,n;i= 1,2).
(i) case T € D}, (i =1,2):
First, we consider triangles T € D, and employ the estimate

|Si - IT5i|1,T < |3i|1,T + |ITSi|17T‘ (6.8)

Using the explicit representation of s* and Irs?, we calculate the norms on the right-hand
side of (6.8) and get the following bound:

|5, + [Trs'|, . < ¢ lalh®,  for T € Dj,. (6.9)
(ii) case T € Di, (j =1,2,...,n;i=1,2):
We now consider triangles T' € D}, which do not touch the vertex P, (center of singularity),
i.e. T € Con \ Diy,. In this case, s € H2(T) holds owing to Rr > 0. Hence, the well-known

interpolation error estimate
|s’ — IT31|1,T < chr |sl|27T (6.10)

can be applied, where c is independent of the triangle T. The norm is estimated

easily by

i
|8 |2,T

2(A—2)
lnar? sin(/\99)|;T < c|alhZ (Igrelf%r) for T € D}),. (6.11)

Taking into account the relations between h, hr, R7, j and p from Assumption 6.2, cf. also
(6.2),(6.3) ,(6.4) and (6.5), a we find easily bounds of the right-hand side in (6.11). This
leads together with (6.10) to the estimates

22—4
w

. . 22 4 .
|s' = L'l < clal®h® jE=t (- 1) VT eDiy, j=2,...,n,

|s" = Ins'lir < c|a|2h27 YV T € Diy,
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where 7 = 1,2. Since the number of triangles in the layer D;.h grows not faster than with j,
we get by summation of the error contributions of the triangles T' € Cop, \ Df,, the estimate

>y |si—1h.si|fT < claf>h% (1+Zgu (G —1) ‘4), i=1,2. (6.12)

=1 i
J TeDjh

Using monotonicity arguments and the estimation of sums by related integrals, it is not
hard to derive the following set of inequalities,

" 1 for A<pu<1
S iEP< 0l mn for p=2A (6.13)
; 0,

nw for 0<pu<A<l.

Some simple estimates of the right-hand side of (6.12) allow to apply (6.13) and n < ch™!
for getting the inequality

Z Z |s* — Is’ |1T < clal® k*(h, ), (6.14)

Jj=1 TeDl

with x(h,u) given at (6.7) and for i = 1,2.

Finally, combining the estimates (6.8), (6.9) from case (i) and (6.14) from case (ii), we
easily confirm (6.6). O

We now study the interpolation error s* — I;s* and its first order derivatives in the trace
norms.

Lemma 6.4 Under the assumption of Lemma 6.3 and with x(h,u) from (6.7), the following
interpolation error estimates hold for the singularity function s =nar*sin(A¢) and i = 1,2:

[hS) ?

0,F

< clal® K(hy ). (6.15)

S ongtls = s g < clal’ W), S he

E€é&), Eegy,

Proof. Clearly, due to the assumption on &, we have for v’ = s — I;;s* (i = 1,2) the inequal-
ities

<c > he||Voilly . (6.16)

0,E i
Fegj

PR (4 W DRl T D DR

Eecgy, Feg}il Ee€é&y,

Consider now faces F of triangles T' = Tr touching T' and the local interpolate Irs’.

(i) case T € Dy, (i =1,2):

Here we use a similar approach like at (6.8) and get by direct evaluation of the norms the
following estimates:

IN

hpt st = Ins; z(h;1 [ = ||ITsi||(2)7F) < claPh? < claf*h, (6.17)

hF ||V st — ITS

IN

2(hp [V5']ls o + e [VIrsls ) < elaPB3 < claPh®. (6.18)

2
Mo, lo,
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(ii) case T € D}, (j =1,2,...,n5i=1,2):

For the remaining faces F and adjacent triangles T which do not touch the vertex P, of the
corner, st € H*(T) holds. Therefore, inequalities (5.10), (5.11) can be applied. We insert
the well-known estimates |s' — Irs'|, . < ch7 ' |s'], - (I = 0,1,2) into (5.10), (5.11) and get
for any triangle with face F C T:

Wt s = Irs'lly o < ehi|s'ly e B | V(T = Trs) o < b5, (6.19)

Calculating and estimating |s’|z - and summation over all triangles 7' € Cop, \ Don touching
T near the singularity yields by analogy to (6.14) the estimate

Z Z hZ. |s’|§T < claf’ k*(h,p) fori=1,2. (6.20)
Jj=1 TeDJi,h:
TNT#D
Finally, we combine the inequalities (6.16)—(6.20) and get (6.15). O

Lemma 6.5 Assume that there is one re-entrant corner and that the triangulation T} is
provided with mesh grading according to the Assumption 6.2. Then the following estimate
holds for the error uw — Inu of the Lagrange interpolant Inu € Vi, with u from (2.8) and
k(h, 1) from (6.7):

lu = Thully o < er(hy ) | £llog - (6.21)

Proof. According to (2.3), the solution u of the BVP (2.1) can be represented by u = s+w =
nar*sin(Ap) + w, where w € H?(Q) denotes the regular part of the solution, and s is the
singular part. Apply the triangle inequality ||u — Ihulln.a < |Is = Ins||n,a + ||lw — Inwl||nq.
Since w € H*(Q) N H}(Q) holds, the norm [|w — Iyw||n.o has been already estimated in the
proof of Theorem 5.2. Thus, using the estimates (5.13) and (5.14) for I = k+1 = 2, together
with (2.4), we get

o= Iellyg < chllwlg < chlifllog - (6.22)

Bounds of the norm |[[s — I3[, o can be derived from Lemma 6.3 and Lemma 6.4. The
combination of (6.6), (6.15) and (2.4) yields the inequalities

lls — Ih3||h7Q < ck(h,p)lal < ck(h,p) ||f||07Q ) (6.23)
with &(h, ) from (6.7). Estimate (6.21) is obvious by (6.22) and (6.23). O

The final error estimate is given in the next theorem.

Theorem 6.6 Let u and uy, be the solutions of the BVP (2.1) with one re-entrant corner
and of the finite element equation (3.7), respectively. Further, for T} let Assumption 6.2
be satisfied. Then the error u —uy in the norm ||. ||, , (4.7) is bounded by

lw —unlly, < crlh,pw) [[flloq (6.24)
hi fora<pu<i1
with k(h,p) = { hink|*  for p=A
h foro<pu< A<l
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Proof. The combination of Lemma 5.1 with Lemma 6.5 immediately yields the assertion.
O

Remark 6.7 Estimate (6.24) holds also for more than one re-entrant corner, with a slightly
modified function x(h, ). For example, if the mortar interface I touches the vertices Py, Po2
(Py1 # Py2) of two re-entrant corners with angles ¢o1, po2, say ™ < wo1 < o2 < 2, then
T< <A< ()= ﬁ) holds. According to Ay, A2, we employ meshes with grading
parameters jup, 2. Estimate (6.24) holds now with

ho for § < 1 \
w(h,p) = h|lnh|% foros=1, where § := min L.
1<5<2 u;
h for6>1

Remark 6.8 Under the assumption of Theorem 6.6 and for the error in the Ly—norm, the
estimate

lu —unlloo < ex®(hy ) Ifllo0 (6.25)

holds. In particular, we have the O(h2?) convergence rate for meshes with appropriate
grading. Estimate (6.25) is proved by the Nitsche trick with additional ingredients, e.g.
include again some interpolant (cf. the proof of Lemma 5.1). For the proof in the conforming
case see e.g. [14].

7 Numerical experiments

We shall give some illustration of the Nitsche type mortaring in presence of some corner
singularity. In particular we investigate the rate of convergence when local mesh refinement
is applied. Consider the BVP

—Au = f inQ, uwu=0 ondQ,

where  is the L-shaped domain of Figure 5. The right-hand side f is chosen such that the
exact solution u is of the form

u(r,y) = (@ =)0~ )t sin(Cp), (7.1)

Y

b
F/

0 Qs
r
/>/s0(a -
—a X a

po=35n

—b

Figure 5: The L-shaped domain €.
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where ? = 2% + %, 0 < ¢ < o, po = 7. Clearly, ulyo =0, A = = = % and, therefore,

u € Hg_E(Q) is satisfied. We apply the Nitsche type mortaring method to this BVP and
use initial meshes shown in Figure 6 and 7. The approximate solution u, is visualized in
Figure 9.

Figure 6: Triangulations with mesh ratio 2 : 3, hy—mesh (left) and ho-mesh with refinement
(right).

Figure 7: Triangulations with mesh ratio 2 : 5, hy—mesh (left) and hs—mesh with refinement
(right).

The initial mesh is refined globally by dividing each triangle into four equal triangles such
that the mesh parameters form a sequence {hi,hs, hs,...} given by {h, 2 2 .} The ratio
of the number of mesh segments on the mortar interface is given by 2 : 3 (see Figure 6)
and 2 : 5 (see Figure 7). Furthermore, the values a; = 1, as = 0 are chosen, i.e., the trace
of the triangulation 7;! of Q; on the interface I' forms the partition &, (for @, cf. Figure
5). For the examples the choice v = 3 was sufficient to ensure stability. (For numerical
experiments with y and also with regular solutions, cf. [18]). Moreover, we also apply local
refinement by grading the mesh around the vertex P, of the corner, according to section 6.
The parameter is chosen by p = 0.7A.

Let u;, denote the finite element approximation according to (3.7) of the exact solution u
from (7.1). Then the error estimate in the discrete norm ||.||; is given by (6.24). We
assume that h is sufficiently small such that

lu —wunlly, ~ Ch® (7.2)
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holds with some constant C which is approximately the same for two consecutive levels of
h, like h, % Then a = ays (observed value) is derived from (7.2) by aps := log, qn, where

qn = |lu— uh||/Hu —up ‘ The same is carried out for the Ly—norm, where |lu — usl|, , ~ Ch?
A :

is supposed. The values of a and 8 are given in Table 1 and Table 2, respectively.

mesh ratio 2:3 mesh ratio 2:5
norm |- fl, (h3, ha)-levels | (hg, hs)-levels | (hs, hq)-levels | (hq, hs)-levels | a (expected)
Qp=1 0.6977 0.6676 0.7316 0.6798 0.6667
Q=077 1.1323 0.9784 1.0896 1.1749 1

Table 1: Observed convergence rates a, for different pairs (h;, hiy1) of h-levels, for p =1

and for u=0.7A (A = %) in the norm || .||, ,.

mesh ratio 2: 3 mesh ratio 2: 5
norm f-flo (hs, ha)-levels | (hq, hs)-levels | (hs,hq)-levels | (hy, hs)-levels | 3 (expected)
Bu=1 1.2919 1.2971 1.3016 1.2991 1.3333
Bu=0.7x 2.0093 2.0835 2.2252 2.0863 2

Table 2: Observed convergence rates 3, for different pairs (h;, hiy1) of h-levels, for p =1
and for 4 = 0.7A ( A = 2) in the norm ||. ||o,0.

The numerical experiments show that the observed rates of convergence are approximately
equal to the expected values. Furthermore, it can be seen that local mesh grading is suited
to overcome the loss of accuracy (cf. Figure 9) and the diminishing of the rate of convergence
on non-matching meshes caused by corner singularities.

— mr: 2:3

. - - mr 25
107

T 1,h-norm

107F

error in different norms  |Ju-uy||
error in different norms ||lu-uy||
.
5

10°F

. . .
10° 10° 10* 10° 10° 10"
number of elements N (N=O(h"?)) number of elements N (N=0O(h™2))

Figure 8: The error in different norms on quasi-uniform meshes (left) and on meshes with

grading (right).
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Figure 9: The approximate solution uy, in two different perspectives (top), the local point-
wise error on the quasi-uniform mesh (bottom left) and the local pointwise error on the
mesh with grading (bottom right).
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