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Nitshe type mortaring for some ellipti problem

with orner singularities

B. Heinrih K. Pietsh

Abstrat

The paper deals with Nitshe type mortaring as a �nite element method (FEM)

for treating non-mathing meshes of triangles at the interfae of some domain deom-

position. The approah is applied to the Poisson equation with Dirihlet onditions

(as a model problem) under the aspets that the interfae passes re-entrant orners

of the domain. For suh problems and non-mathing meshes with and without loal

re�nement near the re-entrant orner, some properties of the �nite element sheme and

error estimates are proved. They show that appropriate mesh grading yields onver-

gene rates as known for the lassial FEM in presene of regular solutions. Finally, a

numerial example illustrates the approah and on�rms the theoretial results.

Key words. �nite element method, non-mathing meshes, mortar �nite elements, orner singu-

larities, Nitshe type mortaring

AMS subjet lassi�ation. 65N30, 65N55

1 Introdution

For the eÆient numerial treatment of boundary value problems (BVPs), domain deom-

position methods are widely used. They allow to work in parallel: generating the mesh in

subdomains, alulating the orresponding parts of the sti�ness matrix and of the right-

hand side, and solving the system of �nite element equations.

There is a partiular interest in triangulations whih do not math at the interfae of

the subdomains. Suh non-mathing meshes arise, for example, if the meshes in di�erent

subdomains are generated independently from eah other, or if a loal mesh with some

struture is to be oupled with a global unstrutured mesh, or if an adaptive remeshing

in some subdomain is of primary interest. This is often aused by extremely di�erent

data (material properties or right-hand sides) of the BVP in di�erent subdomains or by a

ompliated geometry of the domain, whih have their response in a solution with singular

or anisotropi behaviour. Moreover, non-mathing meshes are also applied if di�erent

disretization approahes are used in di�erent subdomains.

There are several approahes to work with non-mathing meshes. The task to satisfy some

ontinuity requirements on the interfae (e.g. of the solution and its onormale derivative)

an be done by iterative proedures (e.g. Shwarz's method) or by diret methods like the

Lagrange multiplier tehnique.

There are many papers on the Lagrange multiplier mortar tehnique, see e.g. [5, 6, 9, 25℄

and the literature quoted in these papers. There, one has new unknowns (the Lagrange

multipliers) and the stability of the problem has to be ensured by satisfying some inf-sup

ondition (for the atual mortar method) or by stabilization tehniques.
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Another approah whih is of partiular interest here is related to the lassial Nitshe

method [16℄ of treating essential boundary onditions. This approah has been worked out

more generally in [23, 20℄ and transferred to interior ontinuity onditions by Stenberg [21℄

(Nitshe type mortaring), f. also [1℄. As shown in [4℄ and [10℄, the Nitshe type mortaring

an be interpreted as a stabilized variant of the mortar method based on a saddle point

problem.

Compared with the lassial mortar method, the Nitshe type mortaring has several ad-

vantages. Thus, the saddle point problem, the inf{sup{ondition as well as the alulation

of additional variables (the Lagrange multipliers) are irumvented. The method employs

only a single variational equation whih is, ompared with the usual equations (without any

mortaring), slightly modi�ed by an interfae term. This allows to apply existing software

tools by slight modi�ations. Moreover, the Nitshe type method yields symmetri and

positive de�nite disretization matries in orrespondene to symmetry and elliptiity of

the operator of the BVP. Although the approah involves a stabilizing parameter , it is

not a penalty method sine it is onsistent with the solution of the BVP. The parameter

 an be estimated easily (see below). The mortar subdivision of the hosen interfae �

an be done in a more general way than known for the lassial mortar method. This

an be advantageous for solving the system of �nite element equations by iterative domain

deomposition methods.

Basi aspets of the Nitshe type mortaring and error estimates for regular solutions u 2

H

k

(
) (k � 2) on quasi-uniform meshes are published in [21, 4℄. Compared with these

papers, we extend the appliation of the Nitshe type mortaring to problems with non-

regular solutions and to meshes being loally re�ned and not quasi-uniform.

We onsider the model problem of the Poisson equation with Dirihlet data in the presene

of re-entrant orners and admit that the interfae with non-mathing meshes passes the

vertex of suh orners. For the appropriate treatment of orner singularities we employ

loal mesh re�nement around the orner by mesh grading in orrespondene with the

degree of the singularity. Therefore, the Nitshe type mortaring is to be analyzed on more

general triangulations. For meshes with and without grading, basi inequalities, stability

and boundedness of the bilinear form as well as error estimates in a disrete H

1

-norm are

proved. The rate of onvergene in L

2

is twie of that in the H

1

-norm. For an appropriate

hoie of some mesh grading parameter, the rate of onvergene is proved to be the same

as for regular solutions on quasi-uniform meshes. Finally, some numerial experiments are

given whih on�rm the rates of onvergene derived.

2 Analytial preliminaries

In the following, H

s

(X), s real (X some domain, H

0

= L

2

), denotes the usual Sobolev

spaes, with the orresponding norms and the abbreviation k : k

s;X

:= k : k

H

s

(X)

. Constants

C or  ouring in inequalities are generi onstants.

For simpliity we onsider the Poisson equation with homogeneous Dirihlet boundary

onditions as a model problem:

��u = f in 
 ;

u = 0 on �
 :

(2.1)
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Here, 
 is a bounded polygonal domain in R

2

, with Lipshitz-boundary �
 onsisting of

straight line segments. Suppose further that f 2 L

2

(
) holds. The variational equation of

(2.1) is given as follows. Find u 2 H

1

0

(
) :=

�

v 2 H

1

(
) : vj

�


= 0

	

suh that

a(u; v) = f(v) 8 v 2 H

1

0

(
); (2.2)

with a(u; v) :=

Z




(ru;rv) dx ; f(v) :=

Z




fv dx:

We now deompose the domain 
 into non-overlapping subdomains. For simpliity of

notation we onsider two subdomains 


1

and 


2

with interfae �, where


 = 


1

[ 


2

; 


1

\ 


2

= ;; 


1

\ 


2

= �;

holds (X : losure of the set X). We assume that the boundaries �


i

of 


i

(i = 1; 2) are

also Lipshitz-ontinuous and formed by open straight line segments �

j

suh that

� =

J

[

j=1

�

j

:

We distinguish two important types of interfaes �:

ase I1: the intersetion �\�
 onsists of two points P

1

; P

2

(P

1

6= P

2

) being the endpoints

of �, and at least one point is the vertex of a re-entrant orner, like in Figure 1,

ase I2: � \ �
 = ;, i.e., � does not touh the boundary �
, like in Figure 2.




2




1

�

Figure 1:

�




2




1

Figure 2:

For the presentation of the method and error estimates we need the degree of regularity

of the solution u. Clearly, the funtionals a(: ; :) and f(:) satisfy the standard assumptions

of the Lax-Milgram theorem and we have the existene of a solution u 2 H

1

0

(
) of problem

(2.2) as well as the a priori estimate kuk

1;


� C kfk

0;


.

Furthermore, the regularity theory of (2.2) yields u 2 H

2

(
) and kuk

2;


� C kfk

0;


if 
 is

onvex. If �
 has re-entrant orners with angles '

0j

: � < '

0j

< 2� (j = 1; : : : ; I), then u

an be represented by

u =

I

X

j=1

�

j

a

j

r

�

j

j

sin(�

j

'

j

) + w; (2.3)

with a regular remainder w 2 H

2

(
). Here, (r

j

; '

j

) denote the loal polar oordinates of a

point P 2 
 with respet to the vertex P

j

2 �
, where 0 < r

j

� r

0j

and 0 < '

j

< '

0j

hold;
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r

0j

is the radius of some irle neighborhood with enter at P

j

. Moreover, we have �

j

=

�

'

0j

(

1

2

< �

j

< 1), a

j

is some onstant, and �

j

is a loally ating (smooth) ut-o� funtion

around the vertex P

j

, with

0 � �

j

� 1; �

j

=

8

>

<

>

:

1 for 0 � r

j

�

r

0j

3

0 for

2r

0j

3

� r

j

� r

0j

:

The solution u 2 H

1

0

(
) satis�es the relations

I

X

j=1

ja

j

j+ kwk

2;


� C kfk

0;


; u 2 H

1

(�;
) :=

�

v 2 H

1

(
) : �v 2 L

2

(
)

	

(2.4)

and, owing to (2.3), also u 2 H

3

2

+"

(
) for any ": 0 < " < "

0

, "

0

suÆiently small. For these

results, see e.g. [13, 7℄.

In the ontext of dividing 
 into subdomains 


1

;


2

, we introdue the restritions v

i

:= vj




i

of some funtion v on 


i

as well as the vetorized form of v by v =

�

v

1

; v

2

�

; i.e. we have

v

i

(x) = v(x) for x 2 


i

(i = 1; 2). It should be noted that we shall use here the same symbol v

for denoting the funtion on 
 as well as the vetor

�

v

1

; v

2

�

. This will not lead to onfusion,

sine the meaning will be lear from the ontext. The one-to-one orrespondene between

the \�eld funtion" v and the \vetor funtion" v is given on 


1

[ 


2

. Moreover, vj

�

is

de�ned by the trae. We shall keep the notation also in ases, where the traes v

1

j

�

; v

2

j

�

on the interfae � are di�erent (e.g. for interpolants on 


i

).

Using this notation, it is obvious that the solution of the BVP (2.1) is equivalent to the

solution of the following interfae problem: Find

�

u

1

; u

2

�

suh that

��u

i

= f in 


i

; i = 1; 2 ;

u

i

= 0 on �


i

\ �
 ; i = 1; 2 ;

u

1

= u

2

on � ;

�u

1

�n

1

+

�u

2

�n

2

= 0 on �

(2.5)

are satis�ed, where n

i

(i = 1; 2) denotes the outward normal to �


i

\ �. Introduing the

spaes V

i

(i = 1; 2) given by

ase I1: V

i

:=

n

v

i

: v

i

2 H

1

(


i

); v

i

�

�

�
\�


i

= 0

o

for �
 \ �


i

6= ;,

ase I2: V

i

:= H

1

(


i

) for �
 \ �


i

= ;;

(2.6)

and the spae V := V

1

� V

2

, the BVP (2.5) an be formulated in a weak form (see e.g.

[2℄). Clearly, we have u

i

2 V

i

and u

i

2 H

1

(�;


i

) (i = 1; 2) as well as u =

�

u

1

; u

2

�

2 V . The

ontinuity of the solution u and of its normal derivative

�u

i

�n

on � (n = n

1

or n = n

2

) is

to be required in the sense of H

1

2

�

(�) and H

�

1

2

�

(�) (the dual spae of H

1

2

�

(�)), respetively.
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De�ne H

1

2

�

(�


i

) (H

1

2

00

) by the range of V

i

by the trae operator and to be provided with

the quotient norm, see e.g. [9, 13℄. So we use in ase I1: H

1

2

�

(�


i

) ' H

1

2

00

(�


i

n �
) for

�
 \ �


i

6= ;, in ase I2: H

1

2

�

(�


i

) = H

1

2

(�


i

) for �
 \ �


i

= ;. Here ' means that

we identify the orresponding spaes. By h : ; : i

�


i

we shall denote the duality pairing of

H

�

1

2

�

(�


i

) and H

1

2

�

(�


i

).

3 Non-mathing mesh �nite element disretization

We over 


i

(i = 1; 2) by a triangulation T

i

h

(i = 1; 2) onsisting of triangles. The triangula-

tions T

1

h

and T

2

h

are independent of eah other. Moreover, ompatibility of the nodes of T

1

h

and T

2

h

along � = �


1

\ �


2

is not required, i.e., non-mathing meshes on � are admitted.

Let h denote the mesh parameter of these triangulations, with 0 < h � h

0

and suÆiently

small h

0

. Take e.g. h = maxfh

T

: T 2 T

1

h

[ T

2

h

g, where T (T = T ) denotes a triangle and

h

T

:= diamT its diameter. Let E

1

h

; E

2

h

denote the triangulations of � de�ned by the traes

of T

1

h

and T

2

h

on �, respetively.

Assumption 3.1

(i) For i = 1; 2, it holds




i

=

[

T2T

i

h

T: (3.1)

(ii) Two arbitrary triangles T; T

0

2 T

i

h

(T 6= T

0

; i = 1; 2) are either disjoint or have a

ommon vertex, or a ommon edge.

(iii) The mesh in 


i

(i = 1; 2) is shape regular, i.e., for the diameter h

T

of T and the

diameter %

T

of the largest insribed sphere of T , we have

h

T

%

T

� C for any T 2 T

i

h

; (3.2)

where C is independent of T and h.

Clearly, relation (3.2) implies that the angle � at any vertex and the length h

F

of any side

F of the triangle T satisfy the inequalities

0 < �

0

� � � � � �

0

; "

1

h

T

� h

F

� h

T

; (0 < "

1

< 1);

with onstants �

0

and "

1

being independent of h and T . Owing to (3.2), the triangulations

T

i

h

(i = 1; 2) do not have to be quasi-uniform in general.

For i = 1; 2 and aording to V

i

from (2.6) introdue �nite element spaes V

i

h

of funtions

v

i

on 


i

by

V

i

h

:=

n

v

i

2 H

1

(


i

) : v

i

�

�

T

2 P

k

(T ) 8 T 2 T

i

h

; v

i

�

�

�
\�


i

= 0

o

; i = 1; 2; (3.3)

where P

k

(T ) denotes the set of all polynomials on T with degree � k. We do not employ

di�erent polynomial degrees on 


1

;


2

, whih ould also be done. The �nite element spae

V

h

of vetorized funtions v

h

with omponents v

i

h

on 


i

is given by

V

h

:= V

1

h

� V

2

h

=

�

v

h

=

�

v

1

h

; v

2

h

�

: v

1

h

2 V

1

h

; v

2

h

2 V

2

h

	

: (3.4)
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In general, v

h

2 V

h

is not ontinuous aross �.

Consider further some triangulation E

h

of � by intervals E (E = E), i.e. � =

S

E2E

h

E,

where h

E

denotes the diameter of E. Furthermore, let  be some positive onstant (to be

spei�ed subsequently) and �

1

; �

2

real parameters with

0 � �

i

� 1 (i = 1; 2); �

1

+ �

2

= 1: (3.5)

Following [21℄ we now introdue the bilinear form B

h

(: ; :) on V

h

� V

h

and the linear form

F

h

(:) on V

h

as follows:

B

h

(u

h

; v

h

) :=

2

X

i=1

�

ru

i

h

;rv

i

h

�




i

�

�

�

1

�u

1

h

�n

1

� �

2

�u

2

h

�n

2

; v

1

h

� v

2

h

�

�

�

�

�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2

; u

1

h

� u

2

h

�

�

+ 

X

E2E

h

h

�1

E




u

1

h

� u

2

h

; v

1

h

� v

2

h

�

E

; (3.6)

F

h

(v

h

) :=

2

X

i=1

�

f; v

i

h

�




i

for u

h

; v

h

2 V

h

:

(Note that in [4℄ a similar bilinear form with �

1

= �

2

=

1

2

and h

E

= h is employed.) The

�nite element approximation u

h

of u on the non-mathing triangulation T

h

= T

1

h

[ T

2

h

is

now de�ned by u

h

=

�

u

1

h

; u

2

h

�

2 V

h

= V

1

h

� V

2

h

satisfying the equation

B

h

(u

h

; v

h

) = F

h

(v

h

) 8 v

h

2 V

h

: (3.7)

Here, (: ; :)




i

denotes the L

2

(


i

)-salar produt, h: ; :i

�

the H

�

1

2

�

(�) �H

1

2

�

(�)-duality pairing

and h: ; :i

E

the L

2

(E)-salar produt. Owing to u 2 H

3

2

+"

(
), the trae theorem yields

�u

i

�n

i

�

�

�

�

2 L

2

(�). Furthermore,

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�) holds also for v

h

=

�

v

1

h

; v

2

h

�

2 V

h

. This will be

used subsequently for evaluating h: ; :i

�

by the L

2

(�)-salar produt. A natural hoie for

the triangulation E

h

of � is E

h

:= E

1

h

(�

1

= 1) or E

h

:= E

2

h

(�

2

= 1), where

E

i

h

= fE : E = �T \ �; if E is a segment; T 2 T

i

h

g; for i = 1; 2; (3.8)

f. Figure 3.

�

E

h

E

1

h

�


1

T

1

h

=)

�

E

2

h

T

2

h




2

(=

Figure 3:

We require the asymptoti behaviour of the triangulations T

1

h

; T

2

h

and of E

h

to be onsistent

on � in the sense of the following assumption.
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Assumption 3.2 For T 2 T

i

h

(i = 1; 2) and E 2 E

h

with �T \ E 6= ;, there are positive

onstants C

1

and C

2

independent of h

T

, h

E

and h (0 < h � h

0

) suh that the ondition

C

1

h

T

� h

E

� C

2

h

T

(3.9)

is satis�ed.

Relation (3.9) guarantees that the diameter h

T

of the triangle T touhing the interfae �

at E is asymptotially equivalent to the diameter h

E

of the segment E, i.e., the equivalene

of h

T

; h

E

is required only loally.

4 Properties of the disretization

First we show that the solution u of the BVP (2.1) satis�es the variational equation (3.7),

i.e., u is onsistent with the approah (3.7).

Theorem 4.1 Let u be the solution of the BVP (2.1). Then u =

�

u

1

; u

2

�

solves (3.7), i.e.,

we have

B

h

(u; v

h

) = F

h

(v

h

) 8 v

h

2 V

h

: (4.1)

Proof. Insert the solution u into B

h

(:; v

h

). Owing to the properties of u, B

h

(u; v

h

) is well

de�ned and, sine u

1

�

�

�

= u

2

�

�

�

and

�u

1

�n

1

�

�

�

�

= �

�u

2

�n

2

�

�

�

�

hold, f. (2.5), we get

B

h

(u; v

h

) =

2

X

i=1

�

ru

i

;rv

i

h

�




i

�

�

�u

1

�n

1

; v

1

h

�

�

�

�

�u

2

�n

2

; v

2

h

�

�

:

Taking into aount (2.4) and using Green's formula on the domains 


i

, the relations

B

h

(u; v

h

) = �

2

X

i=1

�

�u

i

; v

i

h

�




i

=

2

X

i=1

�

f; v

i

h

�




i

= F

h

(v

h

)

are derived for any v

h

2 V

h

. This proves the assertion.

Note that due to (4.1) and (3.7) we also have the B

h

-orthogonality of the error u� u

h

on

V

h

, i.e.,

B

h

(u� u

h

; v

h

) = 0 8 v

h

2 V

h

: (4.2)

For further results on stability and onvergene of the method, the following \weighted

disrete trae theorem" will be useful, whih desribes also an inverse inequality.

Lemma 4.2 Let Assumption 3.1 and 3.2 be satis�ed. Then, for any v

h

2 V

h

the inequality

X

E2E

h

h

E









�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2









2

0;E

� C

I

2

X

i=1

�

2

i

X

F2E

i

h





rv

i

h





2

0;T

F

(4.3)

holds, where F 2 E

i

h

is the fae of a triangle T

F

2 T

i

h

touhing � by F (T

F

\ � = F ). The

onstant C

I

does not depend on h; h

T

; h

E

.
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Note that extending the norms on the right-hand side of (4.3) to the whole of 


i

implies

X

E2E

h

h

E









�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2









2

0;E

� C

I

2

X

i=1

�

2

i





rv

i

h





2

0;


i

: (4.4)

For inequalities on quasi-uniform meshes related with (4.4) see [23, 21, 4℄.

Proof. For i = 1; 2, v

i

h

2 V

i

h

yields

�v

i

h

�x

s

�

�

�

�

�

2 L

2

(�) (s = 1; 2) and

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�). Moreover,









�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2









2

0;E

� 2

2

X

i=1

�

2

i





rv

i

h





2

0;E

holds. Let h

F

denote the length of side F belonging to triangle T = T

F

. Sine the shape

regularity of T is given, the quantities h

F

and h

T

are asymptotially equivalent. Owing to

P

E2E

h

h

E





rv

i

h





2

0;E

� 

1

P

F2E

i

h

h

F





rv

i

h





2

0;F

and to inequality





rv

i

h





2

0;F

� 

2

1

h

F





rv

i

h





2

0;T

F

;

whih is derived by means of the trae theorem on T

F

and of the inverse inequality, we get

X

E2E

h

h

E





rv

i

h





2

0;E

� 

3

X

F2E

i

h





rv

i

h





2

0;T

F

for i = 1; 2; (4.5)

where T

F

� 


i

has the edge F 2 E

i

h

. The onstants 

i

(i = 1; 2; 3) do not depend on h; 

2

is

also uniform in T . Inequality (4.5) ombined with the previous inequalities yields (4.3).

The onstant C

I

in the inequalities (4.3) and (4.4) an be estimated easily if speial as-

sumptions on E

h

and on the polynomial degree k are made. For example, let us hoose

E

h

= E

1

h

from (3.8), �

1

= 1 and k = 1, i.e., v

i

h

�

�

T

2 P

1

. Then, on the triangle T the derivatives

�v

1

h

�x

s

(s = 1; 2) and

�v

1

h

�n

1

are onstants whih an be alulated expliitely, together with their

L

2

-norms on E and on T

E

. Thus, we get

h

E









�v

1

h

�n

1









2

0;E

� 2

h

E

h

H

E





rv

1

h





2

0;T

E

; (4.6)

where h

H

E

denotes the height of T

E

over the side E, h

E

the length of E. Taking the sum

over E 2 E

1

h

for all inequalities (4.6), we obtain the value of C

I

to be

C

I

= max

E2E

1

h

�

2

h

E

h

H

E

�

:

Thus, for equilateral triangles and isoseles retangular triangles (see the mesh on the left-

hand sides of Figures 6, 7) near �, we get C

I

= 4=

p

3 and C

I

= 2, respetively.

For deriving the V

h

-elliptiity and V

h

-boundedness of the disrete bilinear form B

h

(: ; :) from

(3.6), we introdue the following disrete norm k : k

1;h

:

kv

h

k

2

1;h

:=

2

X

i=1





rv

i

h





2

0;


i

+

X

E2E

h

h

�1

E





v

1

h

� v

2

h





2

0;E

(4.7)

f. [21℄ and [9, 4℄ (uniform weights). Then we an prove the following theorem.
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Theorem 4.3 Let Assumptions 3.1 and 3.2 for T

i

h

(i = 1; 2) and for E

h

be satis�ed. Choose

the onstant  in (3.6) independently of h and suh that  > C

I

holds, C

I

from (4.3). Then,

B

h

(v

h;

v

h

) � �

1

kv

h

k

2

1;h

8 v

h

2 V

h

(4.8)

holds, with a onstant �

1

> 0 independent of h.

Proof. For B

h

(: ; :) from (3.6) we have the identity

B

h

(v

h;

v

h

) =

2

X

i=1





rv

i

h





2

0;


i

� 2

X

E2E

h

�

�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2

; v

1

h

� v

2

h

�

E

+ 

X

E2E

h

h

�1

E





v

1

h

� v

2

h





2

0;E

:

Using Cauhy's inequality and Young's inequality (2ab �

a

2

"

+ "b

2

) we get

B

h

(v

h;

v

h

) �

2

X

i=1





rv

i

h





2

0;


i

�

1

"

X

E2E

h

h

E









�

1

�v

1

h

�n

1

� �

2

�v

2

h

�n

2









2

0;E

� "

X

E2E

h

h

�1

E





v

1

h

� v

2

h





2

0;E

+ 

X

E2E

h

h

�1

E





v

1

h

� v

2

h





2

0;E

:

Utilizing inequality (4.3) yields (4.8), with �

1

= minf1�

C

I

"

; �"g > 0, if " is hosen aording

to C

I

< " < .

Beside of the V

h

-elliptiity of B

h

(: ; :) we also prove the V

h

-boundedness.

Theorem 4.4 Let Assumption 3.1 and 3.2 be satis�ed. Then there is a onstant �

2

> 0

suh that the following relations holds,

jB

h

(w

h

; v

h

)j � �

2

kw

h

k

1;h

kv

h

k

1;h

for w

h

; v

h

2 V

h

: (4.9)

Proof. We apply Cauhy's inequality several times (also with distributed weights h

E

, h

�1

E

,

h

E

h

�1

E

= 1), insert inequality (4.3) and get relation (4.9) with a onstant �

2

= maxf1 +

C

I

; 1 + g.

5 Error estimates and onvergene

Let u be the solution of (2.1) and u

h

from (3.7) its �nite element approximation. We

shall study the error u � u

h

in the norm k : k

1;h

given in (4.7). For funtions v satisfying

v

i

2 H

1

(


i

) and

�v

i

�n

i

2 L

2

(�) (i = 1; 2), introdue the mesh-dependent norm k : k

h;


by

kvk

2

h;


:=

2

X

i=1

0

�





rv

i





2

0;


i

+

X

E2E

h

h

E









�

i

�v

i

�n

i









2

0;E

1

A

+

X

E2E

h

h

�1

E





v

1

� v

2





2

0;E

: (5.1)

First we bound ku� u

h

k

1;h

by the norm jj : jj

h;


of the interpolation error u � I

h

u, where

I

h

u := (I

h

u

1

; I

h

u

2

), I

h

u

i

2 V

i

h

, and I

h

u

i

denotes the usual Lagrange interpolant of u

i

in the

spae V

i

h

, i = 1; 2.
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Lemma 5.1 Let Assumption 3.1 and 3.2 be satis�ed. For u; u

h

from (2.1), (3.7), respe-

tively, and  > C

I

, the following estimate holds,

ku� u

h

k

1;h

�  ku� I

h

uk

h;


: (5.2)

Proof. Obviously, I

h

u 2 V

h

holds, and the triangle inequality yields

ku� u

h

k

1;h

� ku� I

h

uk

1;h

+ kI

h

u� u

h

k

1;h

: (5.3)

Owing to I

h

u� u

h

2 V

h

and to the V

h

-elliptiity of B

h

(: ; :), we have

kI

h

u� u

h

k

2

1;h

� �

�1

1

(B

h

(I

h

u; I

h

u� u

h

) � B

h

(u

h

; I

h

u� u

h

)) : (5.4)

In relation (5.4) we utilize (4.2) and get

kI

h

u� u

h

k

2

1;h

� �

�1

1

B

h

(I

h

u� u; I

h

u� u

h

): (5.5)

For abbreviation we use here w := I

h

u � u and v

h

:= I

h

u� u

h

. Clearly u 2 H

3

2

+"

(
) yields

�u

i

�n

i

�

�

�

�

2 L

2

(�). Beause of I

h

u; u

h

2 V

h

, we also have

�v

i

h

�n

i

�

�

�

�

�

2 L

2

(�) (although I

h

u

i

denoting

the interpolant of u

i

in V

i

h

and u

i

h

belong only to H

3

2

�"

(


i

)). Unfortunately, w 62 V

h

holds,

but B

h

(w; v

h

) is well-de�ned.

We now apply the same inequalities as used for the proof of Theorem 4.4, with the modi-

�ation that inequality (4.3) is only employed with respet to the funtion v

h

. This leads

to the estimate

jB

h

(w; v

h

)j � 

1

kwk

h;


kv

h

k

1;h

;

whih gives together with (5.5) the inequality

kI

h

u� u

h

k

2

1;h

� �

�1

1



1

kI

h

u� uk

h;


kI

h

u� u

h

k

1;h

:

This inequality ombined with (5.3) and with the obvious estimate kI

h

u� uk

1;h

� kI

h

u� uk

h;


on�rms assertion (5.2). The positive onstant 

1

depends on  and C

I

.

An estimate of the error jju � u

h

jj

1;h

for regular solutions u is given in [20℄ and in [4℄ by

itation of results ontained in [23℄. Nevertheless, sine we onsider a more general ase,

and sine we need a great part of the proof for regular solutions also for singular solutions,

the following theorem is proved.

Theorem 5.2 Let u 2 H

l

(
) (l � 2) be the solution of (2.1) and u

h

2 V

h

its �nite element

approximation aording to (3.7), with  > C

I

. Furthermore, let the mesh from Assumptions

3.1, 3.2 be quasi-uniform, i.e.

max

T2T

h

h

T

min

T2T

h

%

T

� C. Then the following error estimate holds,

ku� u

h

k

1;h

�  h

l�1

kuk

l;


for 2 � l � k + 1; (5.6)

with k � 1 being the polynomial degree in V

i

h

, i = 1; 2.
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Proof. We start from inequality (5.2) whih bounds ku� u

h

k

1;h

by the interpolation error

jjI

h

u� ujj

h;


and, in the following, take into aount taitly the assumptions on the mesh.

Note that the traes on � of the interpolants I

h

u

i

of u

i

in V

i

h

(i = 1; 2) do not oinide,

in general. First we observe that the weighted squared norms k : k

2

0;E

an be rewritten

suh that interpolation estimates involve the edge F of the triangle T � 


i

(T = T

F

) with

T \ � = F 2 E

i

h

, for i = 1 or i = 2:

X

E2E

h

h

�1

E





I

h

u

i

� u

i





2

0;E

� 

1

X

F2E

i

h

h

�1

F





I

h

u

i

� u

i





2

0;F

; (5.7)

X

E2E

h

h

E











�

�

I

h

u

i

� u

i

�

�n

i











2

0;E

� 

2

X

F2E

i

h

h

F





r

�

I

h

u

i

� u

i

�





2

0;F

: (5.8)

Moreover, we apply the re�ned trae theorem

kvk

2

0;F

� 

�

h

�1

T

kvk

2

0;T

+ kvk

0;T

krvk

0;T

�

for v 2 H

1

(T ); (5.9)

whih is proved in [24℄, f. also [23℄. Replae v by I

h

u

i

� u

i

and

�

(

I

h

u

i

�u

i

)

�x

s

(s = 1; 2). Then,

using (5.9) and some simple estimates, we get





I

h

u

i

� u

i





2

0;F

� 

�

h

�1

T





I

h

u

i

� u

i





2

0;T

+





I

h

u

i

� u

i





0;T

�

�

I

h

u

i

� u

i

�

�

1;T

�

; (5.10)





r

�

I

h

u

i

� u

i

�





2

0;F

� 

�

h

�1

T

�

�

I

h

u

i

� u

i

�

�

2

1;T

+

�

�

I

h

u

i

� u

i

�

�

1;T

�

�

I

h

u

i

� u

i

�

�

2;T

�

: (5.11)

Taking the well-known interpolation error estimate on triangles T ,





I

h

u

i

� u

i





j;T

� h

l�j

T





u

i





l;T

for 2 � l � k + 1 and j = 0; 1; 2; (5.12)

see e.g. [8, 11℄, we derive from the inequalities (5.10) and (5.11) the estimates





I

h

u

i

� u

i





2

0;F

� h

2l�1

T





u

i





2

l;T

;





r

�

I

h

u

i

� u

i

�





2

0;F

� h

2l�3

T





u

i





2

l;T

:

Using these estimates and (5.7), (5.8), we realize that

X

E2E

h

0

�

h

�1

E





I

h

u

i

� u

i





2

0;E

+ h

E











�

�

I

h

u

i

� u

i

�

�n

i











2

0;E

1

A

� h

2l�2

X

T2T

i

h

:

T\� 6=;





u

i





2

l;T

(5.13)

holds. For the interpolation error I

h

u

i

� u

i

on 


i

, the estimate





r

�

I

h

u

i

� u

i

�





2

0;


i

=

�

�

I

h

u

i

� u

i

�

�

2

1;


i

� h

2l�2

�

�

u

i

�

�

2

l;


i

(5.14)

obviously follows from (5.12). Clearly, (5.13) and (5.14) lead via (5.2) to (5.6).

6 Treatment of orner singularities

We now study the �nite element approximation with non-mathing meshes for the ase

that � has endpoints at verties of re-entrant orners (ase I1). Sine the inuene region
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of orner singularities is a loal one (around the vertex P

0

), it suÆes to onsider one

orner. For basi approahes of treating orner singularities by �nite element methods see

e.g. [3, 7, 13, 17, 19, 22℄. For simpliity, we study solutions u 62 H

2

(
) in orrespondene

with ontinuous pieewise linear elements, i.e. k = 1 in V

i

h

from (3.3). We shall onsider the

error u�u

h

on quasi-uniform meshes as well as on meshes with appropriate loal re�nement

at the orner.

Let (x

0

; y

0

) be the oordinates of the vertex P

0

of the orner, (r; ') the loal polar oordinates

with enter at P

0

, i.e. x� x

0

= r os('+ '

r

), y � y

0

= r sin('+ '

r

), f. Figure 4.

y

x




1




2

'

r

y

0

x

0

'

0

�

P

0

'

�

'

P(x;y)

r

Figure 4:

De�ne some irular setor G around P

0

, with the radius r

0

> 0 and the angle '

0

(here:

� < '

0

< 2�):

G :=

�

(x; y) 2 
 : 0 � r � r

0

; 0 � ' � '

0

	

; G := G n �G; (6.1)

�G boundary of G. For de�ning a mesh with grading, we employ the real grading parameter

�, 0 < � � 1, the grading funtion R

i

(i = 0; 1; : : : ; n) with some real onstant b > 0, and the

step size h

i

for the mesh assoiated with layers [R

i�1

; R

i

℄� [0; '

0

℄ around P

0

:

R

i

:= b (ih)

1

�

(i = 0; 1; : : : ; n); h

i

:= R

i

�R

i�1

(i = 1; 2; : : : ; n): (6.2)

Here n := n(h) denotes an integer of the order h

�1

, n :=

�

�h

�1

�

for some real � > 0 ([ : ℄ :

integer part). We shall hoose the numbers �; b > 0 suh that

2

3

r

0

< R

n

< r

0

holds, i.e., the

mesh grading is loated within G from (6.1).

Lemma 6.1 For h; h

i

; R

i

, and � (0 < h � h

0

; 0 < � < 1) the following relations hold

b

�

hR

1��

i

� h

i

�

b

�

�

hR

1��

i

; bR

i

1

i

� h

i

�

b

�

R

i

1

i

; (i = 1; 2; : : : ; n);

h

i�1

< h

i

� (2

1

�

� 1)h

i�1

; R

i�1

< R

i

� 2

1

�

R

i�1

; (i = 2; 3; : : : ; n):

(6.3)

We skip the proof of Lemma 6.1 sine it is omparatively simple.

Using the step size h

i

(i = 1; 2; : : : ; n), de�ne in the neighbourhood of the vertex P

0

of

the orner a mesh with grading, and for the remaining domain we employ a mesh whih

is quasi-uniform. The triangulation T

�

h

is now haraterized by the mesh size h and the

grading parameter �, with 0 < h � h

0

and 0 < � � 1. We summarize the properties of T

�

h

in the following assumption.
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Assumption 6.2 The triangulation T

�

h

satis�es Assumption 3.1, Assumption 3.2 and is

provided with a grading around the vertex P

0

of the orner suh that h

T

:= diamT depends

on the distane R

T

of T from P

0

, R

T

:= dist (T; P

0

) := inf

P2T

jP

0

� P j, in the following way:

%

1

h

1

�

� h

T

� %

�1

1

h

1

�

for T 2 T

�

h

: R

T

= 0;

%

2

hR

1��

T

� h

T

� %

�1

2

hR

1��

T

for T 2 T

�

h

: 0 < R

T

< R

g

;

%

3

h � h

T

� %

�1

3

h for T 2 T

�

h

: R

g

� R

T

;

(6.4)

with some onstants %

i

, 0 < %

i

� 1 (i = 1; 2; 3) and some real R

g

, 0 < R

g

< R

g

< R

g

; where

R

g

; R

g

are �xed and independent of h.

Here, R

g

is the radius of the setor with mesh grading and we an assume R

g

= R

n

(w.l.o.g.).

Outside this setor the mesh is quasi-uniform. The value � = 1 yields a quasi-uniform mesh

in the whole region 
, i.e.,

max

T2T

�

h

h

T

min

T2T

�

h

%

T

� C holds. In [3, 17, 19℄ related types of mesh

grading are desribed. In [15℄ a mesh generator is given whih automatially generates a

mesh of type (6.4).

For the error analysis we introdue several subsets of the triangulation T

�

h

near the vertex

P

0

of the re-entrant orner, viz.

C

0h

:= fT 2 T

�

h

: R

T

< R

n

g; C

h

:= fT 2 T

�

h

: R

T

� R

n

g;

with R

n

from (6.2). The set C

0h

is now deomposed into layers (of triangles) D

jh

, j =

0; 1; : : : ; n, suh that C

0h

:=

S

n

j=0

D

jh

holds:

D

0h

:= fT 2 T

h�

: R

T

= 0g ; D

1h

:= fT 2 T

h�

: 0 < R

T

< R

1

g ;

D

jh

:= fT 2 T

h�

: R

j�1

� R

T

< R

j

g for j = 2; : : : ; n:

Aording to

2

3

r

0

< R

n

< r

0

, the triangles T 2 C

0h

are loated in G, G from (6.1). Owing

to Assumption 6.2 (f. also Lemma 6.1), the asymptoti behaviour of h

T

is determined by

the relations (given for the ase of one orner)

"

2

h

j

� h

T

� "

�1

2

h

j

for T 2 T

�

h

: R

j�1

� R

T

< R

j

(j = 1; 2; : : : ; n);

"

3

h � h

T

� "

�1

3

h for T 2 T

�

h

: R

n

� R

T

;

(6.5)

with 0 < "

l

� 1 (l = 2; 3), and h

j

; R

j

as well as n taken from (6.2). Note that the number of

all triangles T 2 T

�

h

(0 < � � 1) and nodes of the triangulation is of the order O(h

�2

). The

number n

j

of all triangles T 2 D

jh

is bounded by C � j (j = 1; : : : ; n), n

0

by C, where C is

independent of h, f. [14℄.

First we investigate the interpolation error of a singularity funtion s from (2.3) in the lass

of polynomials with degree k = 1. Employ the restritions s

i

:= sj




i

and take always into

aount that s = 0 for r �

2

3

r

0

.

Lemma 6.3 Let s = � a r

�

sin(�') (� =

�

'

0

;

1

2

< � < 1) be the singularity funtion with

respet to the orner at vertex P

0

. Further, let T

�

h

be the triangulation of 
 with mesh

13



grading within G aording to Assumption 6.2 (f. (6.2){(6.5)). Then, the interpolation

error s

i

� I

h

s

i

in the seminorm j : j

1;


i

an be bounded as follows:

�

�

s

i

� I

h

s

i

�

�

1;


i

�  jaj�(h; �) for i = 1; 2; (6.6)

where �(h; �) is given by

�(h; �) =

8

>

>

<

>

>

:

h

�

�

for � < � � 1

h jlnhj

1

2

for � = �

h for 0 < � < � < 1:

(6.7)

Proof. Aording to the mesh layers D

jh

(j = 0; 1; : : : ; n), the norms of the global interpo-

lation error s

i

� I

h

s

i

are represented by the loal interpolation error s

i

� I

T

s

i

( I

T

v

i

:= I

h

vj

T

for T 2 


i

, I

T

: loal P

1

{Lagrange interpolation operator) as follows

�

�

s

i

� I

h

s

i

�

�

2

1;


i

=

X

T2D

i

0h

�

�

s

i

� I

T

s

i

�

�

2

1;T

+

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

T

s

i

�

�

2

1;T

for i = 1; 2;

with D

i

jh

:= fT 2 D

jh

: T � 


i

g (j = 0; 1; : : : ; n; i = 1; 2).

(i) ase T 2 D

i

0h

(i = 1; 2):

First, we onsider triangles T 2 D

i

0h

and employ the estimate

�

�

s

i

� I

T

s

i

�

�

1;T

�

�

�

s

i

�

�

1;T

+

�

�

I

T

s

i

�

�

1;T

: (6.8)

Using the expliit representation of s

i

and I

T

s

i

, we alulate the norms on the right-hand

side of (6.8) and get the following bound:

�

�

s

i

�

�

1;T

+

�

�

I

T

s

i

�

�

1;T

�  jajh

�

�

; for T 2 D

i

0h

: (6.9)

(ii) ase T 2 D

i

jh

(j = 1; 2; : : : ; n; i = 1; 2):

We now onsider triangles T 2 D

i

jh

whih do not touh the vertex P

0

(enter of singularity),

i.e. T 2 C

0h

n D

i

0h

. In this ase, s 2 H

2

(T ) holds owing to R

T

> 0. Hene, the well-known

interpolation error estimate

�

�

s

i

� I

T

s

i

�

�

1;T

� h

T

�

�

s

i

�

�

2;T

(6.10)

an be applied, where  is independent of the triangle T . The norm

�

�

s

i

�

�

2;T

is estimated

easily by

�

�

� a r

�

sin(�')

�

�

2

2;T

�  jajh

2

T

�

inf

P2T

r

�

2(��2)

for T 2 D

i

jh

: (6.11)

Taking into aount the relations between h, h

T

, R

T

, j and � from Assumption 6.2, f. also

(6.2),(6.3) ,(6.4) and (6.5), a we �nd easily bounds of the right-hand side in (6.11). This

leads together with (6.10) to the estimates

js

i

� I

h

s

i

j

2

1;T

�  jaj

2

h

2�

�

j

4

�

�4

(j � 1)

2��4

�

8 T 2 D

i

jh

; j = 2; : : : ; n;

js

i

� I

h

s

i

j

2

1;T

�  jaj

2

h

2�

�

8 T 2 D

i

1h

;
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where i = 1; 2. Sine the number of triangles in the layer D

i

jh

grows not faster than with j,

we get by summation of the error ontributions of the triangles T 2 C

0h

n D

i

0h

the estimate

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

h

s

i

�

�

2

1;T

�  jaj

2

h

2�

�

0

�

1 +

n

X

j=2

j

4

�

�3

(j � 1)

2��4

�

1

A

; i = 1; 2: (6.12)

Using monotoniity arguments and the estimation of sums by related integrals, it is not

hard to derive the following set of inequalities,

n

X

j=1

j

2�

�

�3

� C

8

>

>

<

>

>

:

1 for � < � � 1

lnn for � = �

n

2�

�

�2

for 0 < � < � < 1:

(6.13)

Some simple estimates of the right-hand side of (6.12) allow to apply (6.13) and n � h

�1

for getting the inequality

n

X

j=1

X

T2D

i

jh

�

�

s

i

� I

h

s

i

�

�

2

1;T

�  jaj

2

�

2

(h; �); (6.14)

with �(h; �) given at (6.7) and for i = 1; 2.

Finally, ombining the estimates (6.8), (6.9) from ase (i) and (6.14) from ase (ii), we

easily on�rm (6.6).

We now study the interpolation error s

i

� I

h

s

i

and its �rst order derivatives in the trae

norms.

Lemma 6.4 Under the assumption of Lemma 6.3 and with �(h; �) from (6.7), the following

interpolation error estimates hold for the singularity funtion s = � a r

�

sin(�') and i = 1; 2:

X

E2E

h

h

�1

E





s

i

� I

h

s

i





2

0;E

�  jaj

2

�

2

(h; �);

X

E2E

h

h

E











�

�

s

i

� I

h

s

i

�

�n

i











2

0;E

�  jaj

2

�

2

(h; �): (6.15)

Proof. Clearly, due to the assumption on E

h

we have for v

i

= s

i

� I

h

s

i

(i = 1; 2) the inequal-

ities

X

E2E

h

h

�1

E





v

i





2

0;E

� 

X

F2E

i

h

h

�1

F





v

i





2

0;F

;

X

E2E

h

h

E









�v

i

�n

i









2

0;E

� 

X

F2E

i

h

h

F





rv

i





2

0;F

: (6.16)

Consider now faes F of triangles T = T

F

touhing � and the loal interpolate I

T

s

i

.

(i) ase T 2 D

i

0h

(i = 1; 2):

Here we use a similar approah like at (6.8) and get by diret evaluation of the norms the

following estimates:

h

�1

F





s

i

� I

T

s

i





2

0;F

� 2

�

h

�1

F





s

i





2

0;F

+ h

�1

F





I

T

s

i





2

0;F

�

�  jaj

2

h

2�

F

�  jaj

2

h

2�

�

; (6.17)

h

F





r

�

s

i

� I

T

s

i

�





2

0;F

� 2

�

h

F





rs

i





2

0;F

+ h

F





r(I

T

s

i

)





2

0;F

�

�  jaj

2

h

2�

F

�  jaj

2

h

2�

�

: (6.18)
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(ii) ase T 2 D

i

jh

(j = 1; 2; : : : ; n; i = 1; 2):

For the remaining faes F and adjaent triangles T whih do not touh the vertex P

0

of the

orner, s

i

2 H

2

(T ) holds. Therefore, inequalities (5.10), (5.11) an be applied. We insert

the well-known estimates

�

�

s

i

� I

T

s

i

�

�

l;T

� h

2�l

T

�

�

s

i

�

�

2;T

(l = 0; 1; 2) into (5.10), (5.11) and get

for any triangle with fae F � �:

h

�1

F





s

i

� I

T

s

i





2

0;F

� h

2

T

�

�

s

i

�

�

2

2;T

; h

F





r

�

s

i

� I

T

s

i

�





2

0;F

� h

2

T

�

�

s

i

�

�

2

2;T

: (6.19)

Calulating and estimating

�

�

s

i

�

�

2

2;T

and summation over all triangles T 2 C

0h

n D

0h

touhing

� near the singularity yields by analogy to (6.14) the estimate

n

X

j=1

X

T2D

i

jh

:

T\� 6=;

h

2

T

�

�

s

i

�

�

2

2;T

�  jaj

2

�

2

(h; �) for i = 1; 2: (6.20)

Finally, we ombine the inequalities (6.16){(6.20) and get (6.15).

Lemma 6.5 Assume that there is one re-entrant orner and that the triangulation T

�

h

is

provided with mesh grading aording to the Assumption 6.2. Then the following estimate

holds for the error u � I

h

u of the Lagrange interpolant I

h

u 2 V

h

, with u from (2.3) and

�(h; �) from (6.7):

ku� I

h

uk

h;


� �(h; �) kfk

0;


: (6.21)

Proof. Aording to (2.3), the solution u of the BVP (2.1) an be represented by u = s+w =

� a r

�

sin(�') + w, where w 2 H

2

(
) denotes the regular part of the solution, and s is the

singular part. Apply the triangle inequality jju � I

h

ujj

h;


� jjs � I

h

sjj

h;


+ jjw � I

h

wjj

h;


.

Sine w 2 H

2

(
) \ H

1

0

(
) holds, the norm jjw � I

h

wjj

h;


has been already estimated in the

proof of Theorem 5.2. Thus, using the estimates (5.13) and (5.14) for l = k+1 = 2, together

with (2.4), we get

kw � I

h

wk

h;


� h kwk

2;


� h kfk

0;


: (6.22)

Bounds of the norm ks� I

h

sk

h;


an be derived from Lemma 6.3 and Lemma 6.4. The

ombination of (6.6), (6.15) and (2.4) yields the inequalities

ks� I

h

sk

h;


� �(h; �) jaj � �(h; �) kfk

0;


; (6.23)

with �(h; �) from (6.7). Estimate (6.21) is obvious by (6.22) and (6.23).

The �nal error estimate is given in the next theorem.

Theorem 6.6 Let u and u

h

be the solutions of the BVP (2.1) with one re-entrant orner

and of the �nite element equation (3.7), respetively. Further, for T

�

h

let Assumption 6.2

be satis�ed. Then the error u� u

h

in the norm k : k

1;h

(4.7) is bounded by

ku� u

h

k

1;h

� �(h; �) kfk

0;


; (6.24)

with �(h; �) =

8

>

>

<

>

>

:

h

�

�

for � < � � 1

h jlnhj

1

2

for � = �

h for 0 < � < � < 1:

16



Proof. The ombination of Lemma 5.1 with Lemma 6.5 immediately yields the assertion.

Remark 6.7 Estimate (6.24) holds also for more than one re-entrant orner, with a slightly

modi�ed funtion �(h; �). For example, if the mortar interfae � touhes the verties P

01

; P

02

(P

01

6= P

02

) of two re-entrant orners with angles '

01

; '

02

, say � < '

01

� '

02

< 2�, then

1

2

< �

2

� �

1

< 1 (�

j

=

�

'

0j

) holds. Aording to �

1

; �

2

, we employ meshes with grading

parameters �

1

; �

2

. Estimate (6.24) holds now with

�(h; �) =

8

>

<

>

:

h

Æ

for Æ < 1

h jlnhj

1

2

for Æ = 1

h for Æ > 1

; where Æ := min

1�j�2

�

j

�

j

:

Remark 6.8 Under the assumption of Theorem 6.6 and for the error in the L

2

{norm, the

estimate

ku� u

h

k

0;


� �

2

(h; �) kfk

0;


(6.25)

holds. In partiular, we have the O(h

2

) onvergene rate for meshes with appropriate

grading. Estimate (6.25) is proved by the Nitshe trik with additional ingredients, e.g.

inlude again some interpolant (f. the proof of Lemma 5.1). For the proof in the onforming

ase see e.g. [14℄.

7 Numerial experiments

We shall give some illustration of the Nitshe type mortaring in presene of some orner

singularity. In partiular we investigate the rate of onvergene when loal mesh re�nement

is applied. Consider the BVP

��u = f in 
 ; u = 0 on �
 ;

where 
 is the L-shaped domain of Figure 5. The right-hand side f is hosen suh that the

exat solution u is of the form

u(x; y) = (a

2

� x

2

)(b

2

� y

2

)r

2

3

sin(

2

3

'); (7.1)

'

�a

b

a

�b

'

0

=

3

2

�

r




1




2

y

x

�

Figure 5: The L-shaped domain 
.
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where r

2

= x

2

+ y

2

, 0 � ' � '

0

, '

0

=

3

2

�. Clearly, uj

�


= 0, � =

�

'

0

=

2

3

and, therefore,

u 2 H

5

3

�"

(
) is satis�ed. We apply the Nitshe type mortaring method to this BVP and

use initial meshes shown in Figure 6 and 7. The approximate solution u

h

is visualized in

Figure 9.

Figure 6: Triangulations with mesh ratio 2 : 3, h

1

{mesh (left) and h

2

{mesh with re�nement

(right).

Figure 7: Triangulations with mesh ratio 2 : 5, h

1

{mesh (left) and h

3

{mesh with re�nement

(right).

The initial mesh is re�ned globally by dividing eah triangle into four equal triangles suh

that the mesh parameters form a sequene fh

1

; h

2

; h

3

; : : :g given by fh;

h

2

;

h

4

; : : :g. The ratio

of the number of mesh segments on the mortar interfae is given by 2 : 3 (see Figure 6)

and 2 : 5 (see Figure 7). Furthermore, the values �

1

= 1, �

2

= 0 are hosen, i.e., the trae

of the triangulation T

1

h

of 


1

on the interfae � forms the partition E

h

(for 


1

f. Figure

5). For the examples the hoie  = 3 was suÆient to ensure stability. (For numerial

experiments with  and also with regular solutions, f. [18℄). Moreover, we also apply loal

re�nement by grading the mesh around the vertex P

0

of the orner, aording to setion 6.

The parameter is hosen by � = 0:7�.

Let u

h

denote the �nite element approximation aording to (3.7) of the exat solution u

from (7.1). Then the error estimate in the disrete norm jj : jj

1;h

is given by (6.24). We

assume that h is suÆiently small suh that

ku� u

h

k

1;h

� Ch

�

(7.2)
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holds with some onstant C whih is approximately the same for two onseutive levels of

h, like h;

h

2

. Then � = �

obs

(observed value) is derived from (7.2) by �

obs

:= log

2

q

h

, where

q

h

:= ku� u

h

k=







u� u

h

2







. The same is arried out for the L

2

{norm, where ku� u

h

k

0;


� Ch

�

is supposed. The values of � and � are given in Table 1 and Table 2, respetively.

mesh ratio 2 : 3 mesh ratio 2 : 5

norm k : k

1;h

(h

3

; h

4

)-levels (h

4

; h

5

)-levels (h

3

; h

4

)-levels (h

4

; h

5

)-levels � (expeted)

�

�=1

0.6977 0.6676 0.7316 0.6798 0.6667

�

�=0:7�

1.1323 0.9784 1.0896 1.1749 1

Table 1: Observed onvergene rates �

�

for di�erent pairs (h

i

, h

i+1

) of h-levels, for � = 1

and for � = 0:7� (� =

2

3

) in the norm k : k

1;h

.

mesh ratio 2 : 3 mesh ratio 2 : 5

norm k : k

0;


(h

3

; h

4

)-levels (h

4

; h

5

)-levels (h

3

; h

4

)-levels (h

4

; h

5

)-levels � (expeted)

�

�=1

1.2919 1.2971 1.3016 1.2991 1.3333

�

�=0:7�

2.0093 2.0835 2.2252 2.0863 2

Table 2: Observed onvergene rates �

�

for di�erent pairs (h

i

, h

i+1

) of h-levels, for � = 1

and for � = 0:7� ( � =

3

2

) in the norm jj : jj

0;


.

The numerial experiments show that the observed rates of onvergene are approximately

equal to the expeted values. Furthermore, it an be seen that loal mesh grading is suited

to overome the loss of auray (f. Figure 9) and the diminishing of the rate of onvergene

on non-mathing meshes aused by orner singularities.
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Figure 9: The approximate solution u

h

in two di�erent perspetives (top), the loal point-

wise error on the quasi-uniform mesh (bottom left) and the loal pointwise error on the

mesh with grading (bottom right).
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