
Tehnishe Universität Chemnitz

Sonderforshungsbereih 393

Numerishe Simulation auf massiv parallelen Rehnern

Thilo Penzl

Lyapak Users Guide

Preprint SFB393/00-33

A Matlab Toolbox for Large Lyapunov and Riati Equations, Model Redution

Problems, and Linear�Quadrati Optimal Control Problems

Preprint-Reihe des Chemnitzer SFB 393

SFB393/00-33 August 2000

See also http://www.tu-hemnitz.de/sfb393/lyapak

1

Prefae

Control theory is one of the most rapidly developing disiplines of mathematis and

engineering in the seond half of the 20th entury. In the past deade, implementations

of numerially robust algorithms for many types of dense problems in ontrol theory have

beome available in software pakages, suh as SLICOT [7℄. However, little researh has

been done on e�ient numerial methods for ontrol problems related to large sparse

or strutured dynamial systems before 1990. In the last few years, quite a number of

approahes for several types of large ontrol problems have been proposed, but, at present,

it is often not lear, whih of them are the more promising ones. It is needless to say that

there is little software for large ontrol problems available. In this situation, the author

took the opportunity to implement the software pakage LYAPACK (�Lyapunov Pakage�),

whih overs one partiular approah to a lass of large problems in ontrol theory. An

e�ient ADI-based solver for large Lyapunov equations is the �workhorse� of LYAPACK,

whih also ontains implementations of two model redution methods and modi�ations

of the Newton method for the solution of large Riati equations and linear-quadrati

optimal ontrol problems. Most of the underlying algorithms have been developed by

the author in the past three years. A part of this researh was done simultaneously and

independently by Jing-Rebea Li. A bene�t of her work to LYAPACK is in partiular an

improvement in the e�ieny of the Lyapunov solver.

LYAPACK aims at two goals. First, of ourse, the pakage will hopefully be used

to solve problems that arise from pratial appliations. The availability of easy-to-use

software is surely one step to make pratitioners onsider alternative numerial tehniques:

�unless mathematis is put into software, it will never be used� [The SIAM Report on

Mathematis in Industry, 1996℄. (This statement might be somewhat too strong. And, of

ourse, the reverse statement is not neessarily true.) Seond, SLICOT an be onsidered

as a ontribution to a fair and omprehensive omparison of the existing methods for large

Lyapunov equations, model redution problems, et., whih is yet to be done.

For several reasons LYAPACK has been implemented in MATLAB

1

rather than pro-

gramming languages like FORTRAN, C, or JAVA. MATLAB odes are easier to under-

stand, to modify, and to verify. On the other hand, their performane annot ompete

with that of odes in the aforementioned programming languages. However, this does not

mean that LYAPACK is restrited to the solution of �toy problems�. Several measures,

suh as the use of global variables for large data strutures, have been taken to enhane the

omputational performane of LYAPACK routines. To put this into the right perspetive,

Lyapunov equations of order larger than 12000 were solved by LYAPACK within few hours

on a regular workstation. When using standard methods, superomputers are needed to

solve problems of this size.

LYAPACK was implemented and tested in a UNIX environment. Note, in partiular,

that the �le names of some routines do not omply the DOS-like �xxxxxxxx.yyy� naming

onvention.

The author aknowledges the support of the DAAD (Deutsher Akademisher Aus-

taushdienst = German Aademi Exhange Servie). He is grateful to Peter Benner,

Peter Lanaster, Jing-Rebea Li, Volker Mehrmann, Enrique Quintana-Orti, and Andras

Varga for their diret or indiret help on the projet. He also wants to thank the sta�

1

MATLAB is a trademark of The MathWorks In.

of �The First Cup� (University of Calgary), where the onsiderable quantity of o�ee was

produed, whih was needed to realize the LYAPACK projet.

Finally, it should be stressed that any kind of feedbak from people who applied or

tried to apply this pakage is highly appreiated.

Thilo Penzl

Calgary, November 1999

Addendum to Prefae

This manusript was mostly �nished just before Thilo Penzl died in a tragi aident

in Deember 1999, a few days before his return to work in the Numerial Analysis Group

at TU Chemnitz where he also ompleted his PhD in 1998. I felt that this very nie piee

of work should be made available to the sienti� ommunity and we therefore tested

the odes, proofread the manusript and performed minor orretions in the text. The

MATLAB odes were tested by Falk Ebert and the orretions to the Users' Guide were

performed by myself.

Any omments or questions onerning the pakage should be addressed to Volker

Mehrmann mehrmann�mathematik.tu-hemnitz.de.

The LYAPACK odes are available at http://www.tu-hemnitz.de/sfb393/lyapak

Volker Mehrmann

Chemnitz, August 2000

Dislaimer and usage notes

� The author dislaims responsibility for any kind

of damage sustained in ontext with the use of the

software pakage LYAPACK.

� LYAPACK is restrited to non-ommerial use.

� Referenes to LYAPACK and/or to the publia-

tions on the underlying numerial methods must

be provided in reports on numerial omputations

in whih LYAPACK routines are involved.

Contents

1 Introdution 1

1.1 What is LYAPACK? . 1

1.2 When an LYAPACK be applied? . 2

1.3 When an or should LYAPACK not be applied? 3

1.4 Highlights and features . 3

2 Realization of basi matrix operations 4

2.1 Basi matrix operations . 4

2.2 The onept of user-supplied funtions . 5

2.3 Preproessing and postproessing . 7

2.4 Organization of user-supplied funtions for basi matrix operations and

guidelines for their implementation . 8

2.5 Case studies . 11

3 Lyapunov equations 11

3.1 Low Rank Cholesky Fator ADI . 11

3.1.1 Theory and algorithm . 11

3.1.2 Stopping riteria . 12

3.1.3 The routine lp_lradi . 16

3.2 Computation of ADI shift parameters . 19

3.2.1 Theory and algorithm . 19

3.2.2 The routine lp_para . 20

3.3 Case studies . 22

4 Model redution 22

4.1 Preliminaries . 22

4.2 Low rank square root method . 23

4.2.1 Theory and algorithm . 23

4.2.2 Choie of redued order . 24

4.2.3 The routine lp_lrsrm . 24

4.2.4 Case studies . 25

4.3 Dominant subspaes projetion model redution 25

4.3.1 Theory and algorithms . 25

4.3.2 Choie of redued order . 26

4.3.3 The routine lp_dspmr . 26

4.3.4 Case studies . 27

5 Riati equations and linear-quadrati optimal ontrol problems 27

5.1 Preliminaries . 27

5.2 Low rank Cholesky fator Newton method 29

5.3 Impliit low rank Cholesky fator Newton method 30

5.4 Stopping riteria . 31

5.5 The routine lp_lrnm . 34

6 Supplementary routines and data �les 38

6.1 Computation of residual norms for Lyapunov and Riati equations 38

6.2 Evaluation of model redution error . 38

6.2.1 Generation of test examples . 39

6.3 Case studies . 40

7 Alternative methods 40

A Aronyms and symbols 42

B List of LYAPACK routines 42

B.1 Main routines . 42

B.2 Supplementary routines and data �les . 43

B.3 Auxiliary routines . 43

B.4 User-supplied funtions . 44

B.5 Demo programs . 44

C Case studies 45

C.1 Demo programs for user-supplied funtions 45

C.1.1 Demo program demo_u1: . 45

C.1.2 Demo program demo_u2: . 48

C.1.3 Demo program demo_u3: . 52

C.2 Demo program for LRCF-ADI iteration and algorithm for omputing ADI

parameters . 54

C.2.1 Demo program demo_l1 . 54

C.2.2 Results and remarks . 58

C.3 Demo programs for model redution algorithms 59

C.3.1 Demo program demo_m1 . 59

C.3.2 Results and remarks . 63

C.3.3 Demo program demo_m2 . 63

C.3.4 Results and remarks . 68

C.4 Demo program for algorithms for Riati equations and linear-quadrati

optimal problems . 69

C.4.1 Demo program demo_r1 . 69

C.4.2 Results and remarks . 75

1

1 Introdution

1.1 What is LYAPACK?

LYAPACK is the aronym for �Lyapunov Pakage�. It is a MATLAB toolbox (i.e., a set of

MATLAB routines) for the solution of ertain large sale problems in ontrol theory, whih

are losely related to Lyapunov equations. Basially, LYAPACK works on realizations

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(1)

of ontinuous-time, time-invariant, linear, dynamial systems, where A 2 R

n;n

, B 2 R

n;m

,

C 2 R

q;n

, and � 2 R. n is the order of the system (1). LYAPACK is intended to solve

problems of large sale (say n > 500). The matries A, B, and C must ful�ll ertain

onditions, whih are disussed in more detail in �1.2. We all the entries of the vetors

(or, more preisely, vetor-valued funtions) u, x, and y the inputs, states, and outputs of

the dynamial system, respetively.

There are three types of problems LYAPACK an deal with.

� Solution of Lyapunov equations. Continuous-time algebrai Lyapunov equations

(CALEs) play the entral role in LYAPACK. Lyapunov equations are linear matrix

equations of the type

FX +XF

T

= �GG

T

; (2)

where F 2 R

n;n

and G 2 R

n;t

are given and X 2 R

n;n

is the solution. In some

appliations the solution X itself might be of interest, but mostly it is only an

auxiliary matrix, whih arises in the ourse of the numerial solution of another

problem. Suh problems are model redution, Riati equations, and linear-quadrati

optimal ontrol problems, for example.

� Model redution. Roughly speaking, model redution is the approximation of the

dynamial system (1) by a system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(3)

of smaller order k, whose behavior is similar to that of the original one in some sense.

There exist a large number of model redution methods whih rely on Lyapunov

equations [2℄. LYAPACK ontains implementations of two suh methods. Both are

based on the Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(4)

A

T

X

C

+X

C

A = �C

T

C: (5)

Their solutions X

B

and X

C

are alled ontrollability Gramian and observability

Gramian of the system (1), respetively.

2 1 INTRODUCTION

� Riati equations and linear-quadrati optimal ontrol problems. The min-

imization of

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� (6)

subjet to the dynamial system (1) and the initial ondition x(0) = x

0

is alled the

linear-quadrati optimal ontrol problem (LQOCP). Its optimal solution is desribed

by the state-feedbak

u(�) = �R

�1

B

T

Xx(�) =: �K

T

x(�); (7)

whih an be omputed by solving the (ontinuous-time algebrai) Riati equation

(CARE)

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0: (8)

Riati equations also arise in further appliations in ontrol theory.

LYAPACK ontains routines for these three types of problems. The underlying algo-

rithms are e�ient w.r.t. both memory and omputation for many large sale problems.

1.2 When an LYAPACK be applied?

There exist a number of onditions, that must be ful�lled by the dynamial system (1) to

guarantee appliability and usefulness of LYAPACK:

� Stability. In most ases, the matrix A must be stable, i.e., its spetrum must be

a subset of the open left half of the omplex plane. For the solution of Riati

equations and optimal ontrol problems it is su�ient that a matrix K

(0)

is given,

for whih A� BK

(0)

T

is stable.

� The number of the inputs and outputs must be small ompared to the

number of states, i.e., m << n and q << n. As a rule of thumb, we reommend

n=m; n=q � 100. The larger these ratios are, the better is the performane of

LYAPACK ompared to implementations of standard methods.

� The matrix A must have a struture, whih allows the e�ient solution

of (shifted) systems of linear equations and the e�ient realization of

produts with vetors. Examples for suh matries are lasses of sparse matri-

es, produts of sparse matries and inverses of sparse matries, irulant matries,

Toeplitz matries, et.

At this point, it should be stressed that problems related to ertain generalized dynamial

systems

M

_

~x(�) = N ~x(�) +

~

Bu(�)

y(�) =

~

C~x(�)

(9)

where M;N 2 R

n;n

, an be treated with LYAPACK as well. However, it is neessary

that the generalized system an be transformed into a stable, standard system (1). This

is the ase when M is invertible and M

�1

N is stable. The transformation is done by an

LU fatorization (or a Cholesky fatorization in the symmetri de�nite ase) of M , i.e.,

M = M

L

M

U

. Then an equivalent standard system (1) is given by

A = M

�1

L

NM

�1

U

; B = M

�1

L

~

B; C =

~

CM

�1

U

: (10)

1.3 When an or should LYAPACK not be applied? 3

1.3 When an or should LYAPACK not be applied?

To avoid misunderstandings and to make the ontents of the previous setion more lear,

it should be pointed out that the following problems annot be solved or should not be

attempted by LYAPACK routines.

� LYAPACK annot solve Lyapunov equations and model redution problems, where

the system matrix A is not stable. It annot solve Riati equations and optimal

ontrol problems if no (initial) stabilizing feedbak is provided.

� LYAPACK annot be used to solve problems related to singular systems, i.e., gen-

eralized systems (9) where M is singular.

� LYAPACK is not able to solve problems e�iently whih are highly �ill-onditioned�

(in some sense). LYAPACK relies on iterative methods. Unlike diret methods,

whose omplexity does usually not depend on the onditioning of the problem, iter-

ative methods generally perform poorly w.r.t. both auray and omplexity if the

problem to be solved is highly ill-onditioned.

� LYAPACK is ine�ient if the system is of small order (say, n � 500). In this ase,

it is reommended to apply standard methods to solve the problem; see �7.

� LYAPACK is ine�ient if the number of inputs and outputs is not muh smaller than

the system order. (For example, there is not muh sense in applying LYAPACK to

problems with, say, 1000 states, 100 inputs, and 100 outputs.)

� LYAPACK is not very e�ient if it is not possible to realize basi matrix operations,

suh as produts with vetors and the solution of ertain (shifted) systems of linear

equations with A, in an e�ient way. For example, applying LYAPACK to systems

with an unstrutured, dense matrix A is dubious.

� LYAPACK is not intended to solve disrete-time problems. However, suh problems

an be transformed into ontinuous-time problems by the Cayley transformation. It

is possible to implement the strutured, Cayley-transformed problem in user-supplied

funtions; see �2.2.

� LYAPACK annot handle more ompliated types of problems, suh as problems

related to time-invariant or nonlinear dynamial systems.

1.4 Highlights and features

LYAPACK onsists of the following omponents (algorithms):

� Lyapunov equations are solved by the Low Rank Cholesky Fator ADI (LRCF-

ADI) iteration. This iteration is implemented in the LYAPACK routine lp_lradi,

whih is the �workhorse� of the pakage.

� The performane of LRCF-ADI depends on ertain parameters, so-alled ADI shift

parameters. These an be omputed by a heuristi algorithm provided as routine

lp_para.

4 2 REALIZATION OF BASIC MATRIX OPERATIONS

� There are twomodel redution algorithms in LYAPACK. Algorithm LRSRM, that

is implemented in the routine lp_lrsrm, is a version of the well-known square-root

method, whih is a balaned trunation tehnique. Algorithm DSPMR provided as

routine lp_dspmr is more heuristi in nature and related to dominant ontrollable

and observable subspaes. Both algorithms heavily rely on low rank approximations

to the system Gramians X

B

and X

C

provided by lp_lradi).

� Riati equations and linear-quadrati optimal ontrol problems are solved

by the Low Rank Cholesky Fator Newton Method (LRCF-NM) or the Impliit LRCF-

NM (LRCF-NM-I). Both algorithms are implemented in the routine lp_lrnm.

� LYAPACK ontains some supplementary routines, suh as routines for generating

test examples or Bode plots, and a number of demo programs.

� A basi onept of LYAPACK is that matrix operations with A are impliitly realized

by so-alled user-supplied funtions (USFs). For general problems, these routines

must be written by the users themselves. However, for the most ommon problems

suh routines are provided in LYAPACK.

In partiular, the onept of user-supplied funtions, whih relies on the storage of

large data strutures in global MATLAB variables, makes LYAPACK routines e�ient,

w.r.t. both memory and omputation. Of ourse, LYAPACK ould not ompete with

FORTRAN or C implementations of the ode (if there were any). However, this pakage

an be used to solve problems of quite large sale e�iently. The essential advantages

of a MATLAB implementation are, of ourse, larity and the simpliity of adapting and

modifying the ode.

Versatility is another feature of LYAPACK. The onept of user supplied funtions

does not only result in a relatively high degree of numerial e�ieny, it also enables

solving lasses of problems with a ompliated struture (in partiular, problems related

to systems, where the system matrix A is not given expliitly as a sparse matrix).

Typially, large sale problems are solved by iterative methods. In LYAPACK iterative

methods are implemented in the routines lp_lradi, lp_lrnm, lp_para, and some user

supplied funtions. LYAPACK o�ers a variety of stopping riteria for these iterative

methods.

2 Realization of basi matrix operations

In this setion we desribe in detail how operations with the strutured system matrix A

are realized in LYAPACK. Understanding this is important for using LYAPACK routines.

However, this setion an be skipped by readers who only want to get a general idea of

the algorithms in LYAPACK.

2.1 Basi matrix operations

The e�ieny of most LYAPACK routines strongly depends on the way how matrix op-

erations with the strutured matrix A are implemented. More preisely, in LYAPACK

three types of suh basi matrix operations (BMOs) are used. In this setion, X denotes

a omplex n� t matrix, where t << n.

2.2 The onept of user-supplied funtions 5

� Multipliations with A or A

T

:

Y � AX or � A

T

X:

� Solution of systems of linear equations (SLEs) with A or A

T

:

Y � A

�1

X or � A

�T

X:

� Solution of shifted systems of linear equations (shifted SLEs) with A or A

T

,

where the shifts are the ADI parameters (see �3.2):

Y � (A+ p

i

I

n

)

�1

X or � (A

T

+ p

i

I

n

)

�1

X:

2.2 The onept of user-supplied funtions

All operations with the strutured matrix A are realized by user supplied funtions. More-

over, all data related to the matrix A is stored in �hidden� global variables for the sake of

e�ieny. One distint merit of using global variables for storing large quantities of data is

that MATLAB odes beome onsiderably faster ompared to the standard onept, where

suh variables are transfered as input or output arguments from one routine to another

over and over again. The purpose of user supplied funtions is to generate these �hidden�

data strutures, to realize basi matrix operations listed in �2.1, and destroy �hidden� data

strutures one they are not needed anymore. Moreover, pre- and postproessing of the

dynamial system (1) an be realized by user supplied funtions. At �rst glane, the use

of user supplied funtions might seem a bit umbersome ompared to the expliit aess

to the matrix A, but this onept turns out to be a good means to attain a high degree of

�exibility and e�ieny. The two main advantages of this onept are the following:

� Adequate strutures for storing the data, whih orresponds to the matrix A, an

be used. (In other words, one is not restrited to storing A expliitely in a sparse or

dense array.)

� Adequate methods for solving linear systems an be used. (This means that one is not

restrited to using �standard� LU fatorizations. Instead, Cholesky fatorizations,

Krylov subspae methods, or even multi-grid methods an be used.)

In general, users have to implement user supplied funtions themselves in a way that is

as highly e�ient w.r.t. both omputation and memory demand. However, user supplied

funtions for the following most ommon types of matries A (and ways to implement the

orresponding basi matrix operations) are already ontained in LYAPACK. Note that

the basis name, whih must be provided as input parameter name to many LYAPACK

routines, is the �rst part of the name of the orresponding user supplied funtion.

� [basis name℄ = as: A in (1) is sparse and symmetri. (Shifted) linear systems are

solved by sparse Cholesky fatorization. In this ase, the ADI shift parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm for Riati

equations and optimal ontrol problems. If this routine is used, the unsymmetri

version au must be applied instead of as.

6 2 REALIZATION OF BASIC MATRIX OPERATIONS

� [basis name℄ = au: A in (1) is sparse and (possibly) unsymmetri. (Shifted) linear

systems are solved by sparse LU fatorization.

� [basis name℄ = au_qmr_ilu: A in (1) is sparse and (possibly) unsymmetri. (Shifted)

linear systems are solved iteratively by QMR using ILU preonditioning, [14℄.

� [basis name℄ = msns: Here, the system arises from a generalized system (9), where

M and N are symmetri. Linear systems involved in all three types of basi matrix

operations are solved by sparse Cholesky fatorizations. In this ase, the ADI shift

parameters p

i

must be real. Note: This is not guaranteed in the routine lp_lrnm

for Riati equations and optimal ontrol problems. If this routine is used, the

unsymmetri version munu must be applied instead of msns.

� [basis name℄ = munu: Here, the system arises from a generalized system (9), where

M and N are sparse and possibly unsymmetri. Linear systems involved in all three

types of basi matrix operations are solved by sparse LU fatorizations.

Although, these lasses of user supplied funtions an be applied to a great variety of

problems, users might want to write their user supplied funtions themselves (or modify

the user supplied funtions ontained in LYAPACK). For example, this might be the

ase if A is a dense Toeplitz or irulant matrix, or if alternative iterative solvers or

preonditioners should be applied to solve linear systems. Obviously, it is impossible to

provide user supplied funtions in LYAPACK for all possible strutures the matrix A an

have.

For eah type of problems listed above the following routines are needed. Here, one or

two extensions are added to the basis name:

[basis name℄_[extension 1℄ or [basis name℄_[extension 1℄_[extension 2℄

Five di�erent �rst extensions are possible. They have the following meaning:

� [extension 1℄ = m: matrix multipliation; see �2.1.

� [extension 1℄ = l: solution of systems of linear equations; see �2.1.

� [extension 1℄ = s: solution of shifted systems of linear equations; see �2.1.

� [extension 1℄ = pre: preproessing.

� [extension 1℄ = pst: postproessing.

For some lasses of user supplied funtions preproessing and postproessing routines do

not exist beause they are not needed. There is no seond extension if [extension 1℄ = pre

or pst. If [extension 1℄ = m, l, or s, there are the following three possibilities w.r.t. the

seond extension:

� [extension 2℄ = i: initialization of the data needed for the orresponding basi matrix

operations.

� no [extension 2℄: the routine atually performs the basi matrix operations.

2.3 Preproessing and postproessing 7

� [extension 2℄ = d: destrution of the global data generated by the orresponding

initialization routine ([extension 2℄ = i).

This onept is somewhat similar to that of onstrutors and destrutors in objet-oriented

programming. Note that user supplied funtions with [extension 1℄ = pre or pst will be

alled only in the main program (i.e., the program written by the user). user supplied

funtions with [extension 2℄ = i and d will be often (but not always) alled in the main

program. In ontrast, the remaining three types of user supplied funtions ([extension

1℄ = m, l, or s) will be used internally in LYAPACK main routines.

For example, au_m_i initializes the data for matrix multipliations with the unsymmet-

ri matrix A in a global variable, au_m_i performs suh multipliations, whereas au_m_d

destroys the global data generated by au_m_i to save memory.

For more details and examples see �C.1.

Note: In the user supplied funtions, that are ontained in LYAPACK, the data for

realizing basi matrix operations is stored in �xed global variables. This means that it

is impossible to store data for more than one problem (in other words for more than one

matrix A) at the same time. If, for example, several model redution problems (with

di�erent matries A should be solved, then these problems have to be treated one after

another. The user supplied funtions for initialization ([extension 2℄ = i) overwrite the

data, that has been written to global variables in prior alls of these user supplied funtions.

2.3 Preproessing and postproessing

In most ases, it is reommended or even neessary to perform a preproessing step be-

fore initializing or generating global data strutures by the routines [basis name℄_fm, l,

sg_i and before using LYAPACK main routines (see �B.1). Suh preproessing steps are

implemented in the routines [basis name℄_pre. There are no well-de�ned rules what has

to be done in the preproessing step, but in general this step onsists of a transformation

of the input data (for example, F and G for solving the Lyapunov equation (2), or A,

B, and C for the model redution problem, et.), suh that the transformed input data

has an improved struture from the numerial point of view. For example, if a standard

system (1) with a sparse matrix A is onsidered, then the preproessing done by as_pre or

au_pre is a reordering of the nonzero pattern of A for bandwidth redution. If the prob-

lem is given in form of a generalized system (9) with sparse matries M and N , then the

preproessing in msns_pre or munu_pre is done in two steps. First, the olumns and rows

of both matries are reordered (using the same permutation). Seond, the transformation

(10) into a standard system is performed.

Although LYAPACK routines ould often be applied to the original data, reordering

of sparse matries is most ases ruial to ahieve a high e�ieny, when sparse LU or

Cholesky fatorizations are omputed in MATLAB. Figure 1 shows the nonzero pattern

of the matrix M (whih equals to that of N) for a system (9) arising from a �nite element

disretization of a two-dimensional partial di�erential equation.

There are a few situations, when preproessing is not neessary. Examples are standard

systems (1), where A is a tridiagonal matrix and (shifted) linear systems are solved diretly

(Here, reordering would be super�uous.), or where A is sparse and (shifted) linear systems

are solved by QMR [14℄.

8 2 REALIZATION OF BASIC MATRIX OPERATIONS

0 200 400 600 800

0

100

200

300

400

500

600

700

800

0 200 400 600 800

0

100

200

300

400

500

600

700

800

Figure 1: Nonzero pattern before (left) and after (right) reordering.

Usually, the preproessing step onsists of an equivalene transformation of the system.

In rare ases not only the system matries, but also further matries must be transformed.

In partiular, this applies to nonzero initial stabilizing state-feedbak matries K

0

when

a Riati equation or an optimal ontrol problems should be solved.

It is important for users to understand, what is done during the preproessing and

to distinguish arefully between �original� and �transformed� (preproessed) data. Often

the output data of LYAPACK routines must be baktransformed (postproessed) in order

to obtain the solution of the original problem. Suh data are, for example, the low rank

Cholesky fator Z that desribes the (approximate) solution of a Lyapunov equation or a

Riati equation, or the (approximate) state-feedbak K for solving the optimal ontrol

problems. For instane, if as_pre or au_pre have been applied for preproessing, then the

rows of Z or K must be reordered by the inverse permutation. If msns_pre or munu_pre

are used, these quantities must be transformed with the inverse of the Cholesky fator

M

U

and subsequently re-reordered. These baktransformations are implemented in the

orresponding user supplied funtions [basis name℄_pst for postproessing.

In some ases, postproessing an be omitted, despite preproessing has been done.

This is the ase, when the output data does not depend on what has been done as pre-

proessing (whih is usually an equivalene transformation of the system). An exam-

ple is model redution by LRSRM or DSPMR. Here, the redued systems are invariant

w.r.t. equivalene transformations of the original system.

2.4 Organization of user-supplied funtions for basi matrix op-

erations and guidelines for their implementation

In the �rst part of this setion we explain how user supplied funtions are organized and

how they work. We take a standard system (1), where A is sparse, and the orresponding

user supplied funtions au_� as an illustrative example. The order in whih these user

supplied funtions are invoked is important. A typial sequene is shown below. Note

that this is a sheme displaying the hronologial order rather than a �main program�.

For example, Steps 6�13 ould be exeuted inside the routine lp_lrnm for the Newton

iteration.

2.4 Organization of user-supplied funtions 9

...

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % Step 1

au_m_i(A0); % Step 2

Y0 = au_m('N',X0); % Step 3

...

au_l_i; % Step 4

Y0 = au_l('N',X0); % Step 5

...

p = lp_para(...); % Step 6

au_s_i(p); % Step 7

...

Y0 = au_s('N',X0,i); % Step 8

...

au_s_d(p); % Step 9

...

p = lp_para(...); % Step 10

...

au_s_i(p); % Step 11

...

Y0 = au_s('N',X0,i); % Step 12

...

au_s_d(p); % Step 13

...

Z = au_pst(Z0,iprm); % Step 14

au_l_d; % Step 15

au_m_d; % Step 16

...

Note, in partiular, that the user supplied funtions au_m (multipliation), au_l (solution

of linear systems), and au_s (solution of shifted linear systems) an be alled anywhere

between the following steps:

au_m: between Steps 2 and 16,

au_l: between Steps 4 and 15,

au_s: between Steps 7 and 9, Steps 11 and 13, et.

Next, we desribe what is done in the single steps.

Step 1: Preproessing, whih has been disussed in �2.3. The system matries A, B, and

C are transformed into A

0

, B

0

and C

0

(by a simultaneous reordering of olumns and

rows).

Step 2: Initialization of data for multipliations with A

0

. Here, the input parameter A0

is stored in the �hidden� global variable LP_A.

Step 3: Matrix multipliation with A

0

. au_m has aess to the global variable LP_A.

Step 4: Initialization of data for the solution of linear systems with A

0

. Here, an LU

fatorization of the matrix A

0

(provided as LP_A) is omputed and stored in the

global variables LP_L and LP_U.

10 2 REALIZATION OF BASIC MATRIX OPERATIONS

Step 5: Solution of linear system A

0

Y

0

= X

0

. au_l has aess to the global variables

LP_L and LP_U.

Step 6: Compute shift parameters fp

1

; : : : ; p

l

g.

Step 7: Initialization of data for the solution of shifted linear systems with A

0

. Here,

the LU fators of the matries A

0

+ p

1

I, . . . , A

0

+ p

l

I (A

0

is provided in LP_A) are

omputed and stored in the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 8: Solution of shifted linear system (A

0

+p

i

I)Y

0

= X

0

. au_s has aess to the global

variables LP_Li and LP_Ui.

Step 9: Delete the global variables LP_L1, LP_U1, . . . , LP_Ll, LP_Ul.

Step 10: Possibly, a new set of shift parameters is omputed, whih is used for a further

run of the LRCF-ADI iteration. (This is the ase within the routine lp_lrnm, but

typially not for model redution problems.)

Step 11: (Re)initialization of data for the solution of shifted linear systems with A

0

and

the new shift parameters. Again, the LU fators are stored in the global variables

LP_L1, LP_U1, . . . , LP_Ll, LP_Ul. Here, the value of l may di�er from that in Step 7.

Step 12: Solve shifted linear system.

Step 13: Delete the data generated in Step 11, i.e., lear the global variables LP_L1,

LP_U1, . . . , LP_Ll, LP_Ul. (Steps 9�13 an be repeated several times.)

Step 14: Postproessing, whih has been disussed in �2.3. The result Z

0

of the prepro-

essed problem is baktransformed into Z.

Step 15: Delete the data generated in Step 4, i.e., lear the global variables LP_L and

LP_U.

Step 16: Delete the data generated in Step 2, i.e., lear the global variable LP_A.

The other user supplied funtions, whih are ontained in LYAPACK, are organized in a

similar way. Consult the orresponding m-�les for details.

The following table shows whih user supplied funtions are invoked within the single

LYAPACK main routines. [b.n.℄ means [basis name℄.

main routine invoked USFs

lp_para [b.n.℄_m, [b.n.℄_l.

lp_lradi [b.n.℄_m, [b.n.℄_s.

lp_lrsrm [b.n.℄_m.

lp_dspmr [b.n.℄_m.

lp_lrnm [b.n.℄_m, [b.n.℄_l, [b.n.℄_s_i, [b.n.℄_s, [b.n.℄_s_d.

The alling sequenes for these user supplied funtions are �xed. It is mandatory to stik

to these sequenes when implementing new user supplied funtions. The alling sequenes

are shown below. There it is assumed that X

0

(parameter X0) is a omplex n� t matrix,

p is a vetor ontaining shift parameters, and the �ag tr is either 'N' (�not transposed�)

or 'T' (�transposed�).

2.5 Case studies 11

� [basis name℄_m. Calling sequenes: Y0 = [b.n.℄_m(tr,X0) or n = [b.n.℄_m. In the

�rst ase, the result is Y

0

= A

0

X

0

for tr = 'N' and Y

0

= A

T

0

X

0

for tr = 'T'. The

parameter tr must also be provided (and is ignored) if A

0

is symmetri. In the

seond ase, where the user supplied funtion is alled without input parameters,

only the problem dimension n is returned.

� [basis name℄_l. Calling sequene: Y0 = [b.n.℄_l(tr,X0). The result is Y

0

=

A

�1

0

X

0

for tr = 'N' and Y

0

= A

�T

0

X

0

for tr = 'T'.

� [basis name℄_i_p. Calling sequene: [b.n.℄_s_i(p).

� [basis name℄_s. Calling sequene: Y0 = [b.n.℄_s(tr,X0,i). The result is Y

0

=

(A

0

+ p

i

I)

�1

X

0

for tr = 'N' and Y

0

= (A

T

0

+ p

i

I)

�1

X

0

for tr = 'T'.

� [basis name℄_s_d. Calling sequene: [b.n.℄_s_d(p).

2.5 Case studies

See �C.1.

3 Lyapunov equations

3.1 Low Rank Cholesky Fator ADI

3.1.1 Theory and algorithm

This setion gives a brief introdution to the solution tehnique for ontinuous time Lya-

punov equations used in LYAPACK. For more details, the reader is referred to[31, 6, 33, 37℄.

We onsider the ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

; (11)

where F 2 R

n;n

is stable, G 2 R

n;t

and t << n. It is well-known that suh ontinuous time

Lyapunov equations have a unique solution X, whih is symmetri and positive semidef-

inite. Moreover, in many ases, the eigenvalues of X deay very fast, whih is disussed

for symmetri matries F in [40℄. Thus, there exist often very aurate approximations of

a rank, that is muh smaller than n. This property is most important for the e�ieny of

LYAPACK.

The ADI iteration [36, 50℄ for the Lyapunov equation (11) is given by X

0

= 0 and

(F + p

i

I

n

)X

i�1=2

= �GG

T

�X

i�1

(F

T

� p

i

I

n

)

(F + �p

i

I

n

)X

i

T

= �GG

T

�X

i�1=2

T

(F

T

� �p

i

I

n

); (12)

for i = 1; 2; : : : It is one of the most popular iterative tehniques for solving Lyapunov equa-

tions. This method generates a sequene of matries X

i

whih often onverges very fast

towards the solution, provided that the ADI shift parameters p

i

are hosen (sub)optimally.

The basi idea for a more e�ient implementation of the ADI method is to replae the

ADI iterates by their Cholesky fators, i.e., X

i

= Z

i

Z

H

i

and to reformulate in terms of

the fators Z

i

. Generally, these fators have ti olumns. For this reason, we all them low

12 3 LYAPUNOV EQUATIONS

rank Cholesky fators (LRCFs) and their produts, whih are equal to the ADI iterates,

low rank Cholesky fator produts (LRCFPs). Obviously, the low rank Cholesky fators

Z

i

are not uniquely determined. Di�erent ways to generate them exist; see [31, 37℄. The

following algorithm, whih we refer to as Low Rank Cholesky Fator ADI (LRCF-ADI),

is the most e�ient of these ways. It is a slight modi�ation of the iteration proposed in

[31℄. Note that the number of iteration steps i

max

needs not be �xed a priori. Instead,

several stopping riteria, whih are desribed in �3.1.2 an be applied.

Algorithm 1 (Low rank Cholesky fator ADI iteration (LRCF-ADI))

INPUT: F , G, fp

1

; p

2

; : : : ; p

i

max

g

OUTPUT: Z = Z

i

max

2 C

n;ti

max

, suh that ZZ

H

� X.

1. V

1

=

p

�2Re p

1

(F + p

1

I

n

)

�1

G

2. Z

1

= V

1

FOR i = 2; 3; : : : ; i

max

3. V

i

=

p

Re p

i

=Re p

i�1

(V

i�1

� (p

i

+ �p

i�1

)(F + p

i

I

n

)

�1

V

i�1

)

4. Z

i

=

�

Z

i�1

V

i

�

END

Let P

j

be either a negative real number or a pair of omplex onjugate numbers

with negative real part and nonzero imaginary part. We all a parameter set of type

fp

1

; p

2

; : : : ; p

i

g = fP

1

;P

2

; : : : ;P

j

g a proper parameter set. The LYAPACK implementa-

tion of LRCF-ADI requires proper parameter sets fp

1

; p

2

; : : : ; p

i

max

g. If X

i

= Z

i

Z

H

i

is

generated by a proper parameter set fp

1

; : : : ; p

i

g, then X

i

is real, whih follows from (12).

However, if there are non-real parameters in this subsequene, Z

i

is not real. A more

ompliated modi�ation of Algorithm 1 for generating real LRCFs has been proposed

in [6℄. However, in the LYAPACK implementation of Algorithm 1, real LRCFs an be

derived from the omplex fators omputed by this algorithm (at the prie of additional

omputation). That means for the delivered omplex low rank Cholesky fator Z = Z

i

max

a real low rank Cholesky fator

~

Z is omputed in a ertain way, suh that ZZ

H

=

~

Z

~

Z

T

.

The low rank Cholesky fator

~

Z is returned as output parameter of the orresponding

routine lp_lradi.

3.1.2 Stopping riteria

The LYAPACK implementation of the LRCF-ADI iteration in the routine lp_lradi o�ers

the following stopping riteria:

� maximal number of iteration steps;

� tolerane for the normalized residual norm (NRN);

� stagnation of the normalized residual norm (most likely aused by round-o� errors);

� smallness of the values kV

i

k

F

.

3.1 Low Rank Cholesky Fator ADI 13

Here, the normalized residual norm orresponding to the low rank Cholesky fator Z is

de�ned as

NRN(Z) =

�

�

�

�

FZZ

T

+ ZZ

T

F

T

+GG

T

�

�

�

�

F

jjGG

T

jj

F

: (13)

Note: In LYAPACK, a quite e�ient method for the omputation of this quantity is

applied. See [37℄ for details. However, the omputation of the values NRN(Z

i

) in the

ourse of the iteration an still be very expensive. Sometimes, this amount of omputation

an exeed the omputational ost for the atual iteration itself! Besides this, omputing

the normalized residual norms an require a onsiderable amount of memory. This amount

is about proportional to ti. For this reason, it an be preferable to avoid stopping riteria

based on the normalized residual norm (tolerane for the NRN, stagnation of the NRN)

and to use heaper, possibly heuristial riteria instead.

In the sequel, we disuss the above stopping riteria and show some sample onvergene

histories (in terms of the normalized residual norm) for LRCF-ADI runs. Here, this

method is applied to a given test example, but the iterations are stopped by di�erent

stopping riteria and di�erent values of the orresponding stopping parameters. It should

be noted that the onvergene history plotted in Figures 2�5 is quite typial for LRCF-ADI

provided that shift parameters generated by lp_para are used in the given order. In the

�rst stage of the iteration, the logarithm of the normalized residual norm dereases about

linearly. Typially, this slope beomes less steep, when more �ill-onditioned� problems are

onsidered. (Suh problems are in partiular Lyapunov equations, where many eigenvalues

of F are loated near the imaginary axis, but far away from the real one. In ontrast,

symmetri problems, where the ondition number of F is quite large, an usually be

solved by LYAPACK within a reasonable number of iteration steps.) In the seond stage,

the normalized residual norm urve nearly stagnates on a relatively small level (mostly,

between 10

�12

and 10

�15

), whih is aused by round-o� errors. That means the auray

(in terms of the NRN) of the low rank Cholesky fator produt Z

i

Z

H

i

annot be improved

after a ertain number of steps. Note, however, that the stagnation of the error norm

kZ

i

Z

H

i

�Xk

F

an our a number of iteration steps later. Unfortunately, the error annot

be measured in pratie beause the exat solution X is unknown.

Eah of the four stopping riteria an be �ativated� or �avoided� by the hoie of the

orresponding input argument (stopping parameter) of the routine lp_lradi. If more

than one riterion is ativated, the LRCF-ADI iteration is stopped as soon as (at least)

one of the �ativated� riteria is ful�lled.

� Stopping riterion: maximal number of iteration steps. This riterion is

represented by the input parameter max_it in the routine lp_lradi. The iteration

is stopped by this riterion after max_it iterations steps. This riterion an be

avoided by setting max_it = +Inf (i.e., max_it = 1). Obviously, no additional

omputations need to be performed to evaluate it. The drawbak of this stopping

riterion is, that it is not related to the attainable auray of the delivered low rank

Cholesky fator produt ZZ

H

. This is illustrated by Figure 2.

� Stopping riterion: tolerane for the normalized residual norms. This

riterion is represented by the input parameter min_res in the routine lp_lradi.

The iteration is stopped by this riterion as soon as

NRN(Z

i

) � min_res:

14 3 LYAPUNOV EQUATIONS

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 2: Stopping riterion: maximal number of iteration steps. Solid line: max_it = 20;

dash-dotted line: max_it = 60; dotted line: max_it = 100. The other three riteria are

avoided.

This riterion an be avoided by setting min_res = 0. (Beause of round-o� errors

it is pratially impossible to attain NRN(Z

i

) = 0.) It requires the omputation of

normalized residual norms and is omputationally expensive. A further drawbak of

this riterion is that it will either stop the iteration before the maximal auray is

attained (see min_res = 10

�5

, 10

�10

in Figure 3) or it will not stop the iteration at all

(see min_res = 10

�15

in Figure 3). If one wants to avoid this riterion, but ompute

the onvergene history provided by the output vetor res, one should set min_res

to a value muh smaller than the mahine preision (say, min_res = 10

�100

).

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 3: Stopping riterion: tolerane for the normalized residual norm. Solid line:

min_res = 10

�5

; dash-dotted line: min_res = 10

�10

; dotted line: min_res = 10

�15

. The

other three riteria are avoided.

� Stopping riterion: stagnation of the normalized residual norm. This ri-

terion is represented by the input parameter with_rs in the routine lp_lradi. It is

3.1 Low Rank Cholesky Fator ADI 15

ativated if with_rs = 'S' and avoided if with_rs = 'N'. The iteration is stopped

by this riterion when a stagnation of the normalized residual norm urve is deteted.

We do not disuss the implementation of this riterion in detail here, but, roughly

speaking, the normalized residual norm urve is onsidered as �stagnating�, when no

notieable derease of the normalized residual norms is observed in 10 onseutive

iteration steps. In extreme ases, where the shape of the normalized residual norm

urve is not so learly subdivided in the linearly dereasing and the stagnating part

as in Figure 4, this riterion might terminate the iteration prematurely. However, it

works well in pratie. It requires the omputation of normalized residual norms and

is omputationally expensive. Note that the delay between stagnation and stopping

of the urve is 10 iteration steps.

0 20 40 60 80 100
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 4: Stopping riterion: Stagnation of the normalized residual norm. Solid line:

with_rs = 'S'; dotted line: with_rs = 'N'. The other three riteria are avoided.

� Stopping riterion: smallness of the values kV

i

k

F

. This riterion is represented

by the input parameter min_in in the routine lp_lradi. It is based on the obser-

vation that the values kV

i

k

F

tend to derease very fast. Note in this ontext that

V

i

V

H

i

is the di�erene between the ADI iterates X

i

and X

i�1

, and that the sequene

of the matries X

i

is monotonially onverging (i.e., X

i

� X

i�1

). Loosely speaking,

this means the following. When kV

i

k

2

F

and onsequently kV

i

V

H

i

k

F

� kV

i

k

2

F

beome

nearly as small as the mahine preision, then the �ontribution� from iteration step

i � 1 to i is almost ompletely orrupted by round-o� errors and, thus, there is

no point in ontinuing the iteration. However, sine kV

i

k

F

is not monotonially

dereasing, it is required in lp_lradi that

kV

i

k

2

F

kZ

i

k

2

F

� min_in

is ful�lled in 10 onseutive iteration steps before the iteration is stopped to keep

the risk of a premature termination very small. The evaluation of this riterion is

inexpensive (see also [6℄) ompared to both riteria based on the normalized residual

norms. Moreover, it is less �stati� as the riterion based on the number of iteration

16 3 LYAPUNOV EQUATIONS

steps. Unfortunately, it is not lear how the auray of the approximate solution

Z

i

Z

T

i

is related to the ratio of kV

i

k

F

and kZ

i

k

F

. Thus, the riterion is not absolutely

safe. However, if the Lyapunov equation should be solved as aurate as possible,

good results are usually ahieved for values of min_in, that are slightly larger than

the mahine preision (say, min_in = 10

�12

). The riterion an be avoided by setting

min_in = 0. See Figure 5.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 5: Stopping riterion: smallness of the values kV

i

k

F

. Solid line: min_in = 10

�5

;

dash-dotted line: min_in = 10

�10

; dotted line: min_in = 10

�15

. The other three riteria

are avoided.

We reommend to use (only) the stopping riterion related to with_rs if Lyapunov so-

lutions of high auray should be omputed and if it is a�ordable to ompute residual

norms. If the omputation of the residual norms must be avoided, the riterion related to

min_in is probably the best hoie.

3.1.3 The routine lp_lradi

The LRCF-ADI iteration is implemented in the LYAPACK routine lp_lradi. Here, we

provide a brief desription of this routine. For more details see the inline doumentation

whih is displayed by typing the MATLAB ommand � help lp_lradi.

The routine an solve either the ontinuous time Lyapunov equation

FX +XF

T

= �GG

T

(14)

or to the �dual� ontinuous time Lyapunov equation

F

T

X +XF = �G

T

G: (15)

Here, F = A�B

f

K

T

f

. Basi matrix operations must be supplied by user-supplied funtions

for the matrix A (not F !). G in (14) or G

T

in (15) should ontain very few olumns

ompared to the system order. B

f

and K

f

are matries, that represent a so-alled state

feedbak. They are needed in the routine lp_lrnm for the Newton method, in whih

lp_lradi is invoked. In general, users will not use this option, whih means B

f

= K

f

= 0.

3.1 Low Rank Cholesky Fator ADI 17

However, if this is not the ase, the matries B

f

and K

f

must ontain very few olumns

to guarantee the e�ieny of the routine.

The approximate solution of either Lyapunov equation is given by the low rank

Cholesky fator Z, for whih ZZ

H

� X. Z has typially fewer olumns than rows.

(Otherwise, this routine and LYAPACK itself are useless!) In general, Z an be a omplex

matrix, but the produt ZZ

H

is real. lp_lradi an perform an optional internal post-

proessing step, whih guarantees that the delivered low rank Cholesky fator Z is real.

More preisely, the omplex low rank Cholesky fator delivered by the LRCF-ADI itera-

tion is transformed into a real low rank Cholesky fator of the same size, suh that both

low rank Cholesky fator produts are idential. However, doing this requires additional

omputation. (This option is not related to the �real version� of LRCF-ADI desribed in

[6℄.)

Furthermore, there exists an option for diretly generating the produt of the (approx-

imate) solution with a matrix, i.e., K

out

= ZZ

H

K

in

is omputed without forming the low

rank Cholesky fator Z. Here, K

in

must ontain only few olumns. However, this option

should not be used by the user. It is needed in the impliit version of the Newton method.

If this mode is used, stopping riteria based on the residual annot be applied.

Calling sequenes:

Depending on the hoie of the mode parameter zk, the following two alling sequenes

exist. However, it is reommended to use only the �rst mode.

� zk = 'Z':

[Z, flag, res, flp℄ = lp_lradi(tp, zk, r, name, Bf, Kf, G, p, ...

max_it, min_res, with_rs, min_in, info)

� zk = 'K':

[K_out, flag, flp℄ = lp_lradi(tp, zk, r, name, Bf, Kf, G, p, ...

K_in, max_it, min_in, info)

Input parameters:

tp: Mode parameter, whih is either 'B' or 'C'. If tp = 'B', CALE (14) is solved.

Otherwise, CALE (15) is solved.

zk: Mode parameter, whih is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky

fator Z is omputed. Otherwise, K

out

= ZZ

H

K

in

is omputed diretly.

r: Mode parameter, whih is either 'R' or 'C'. If r = 'C', the routine delivers a low

rank Cholesky fator, whih is not real when non-real shift parameters are used.

Otherwise, the low rank Cholesky fator resulting from the LRCF-ADI iteration is

transformed into a real low rank Cholesky fator

~

Z, whih desribes the idential

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z.

name: The basis name of the USFs that realize BMOs with A.

18 3 LYAPUNOV EQUATIONS

Bf: Feedbak matrix B

f

, whih is not used expliitely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedbak matrix K

f

, whih is not used expliitely in general. For K

f

= 0, set Kf =

[℄.

G: The matrix G.

p: Vetor ontaining the suitably ordered ADI shift parameters P = fp

1

; : : : ; p

l

g, whih

are delivered by the routine lp_para. If the number l of distint parameters is

smaller than i

max

in Algorithm 1, shift parameters are used ylially. That means,

p

l+1

= p

1

, p

l+2

= p

2

, : : :, p

2l

= p

l

, p

2l+1

= p

1

, : : :

K_in: The matrix K

in

, whih is only used in the mode zk = 'K'.

max_it: Stopping parameter. See �3.1.2.

min_res: Stopping parameter. See �3.1.2.

with_rs: Stopping parameter. See �3.1.2.

min_in: Stopping parameter. See �3.1.2.

info: Parameter, whih determines the �amount� of information that is provided as

text and/or residual history plot. The following values are possible: info = 0 (no

information), 1, 2, and 3 (most possible information)

Output parameters:

Z: The low rank Cholesky fator Z, whih is omplex if r = 'C' and p is not a real

vetor.

K_out: The matrix K

out

, whih is only returned in the mode zk = 'K'.

flag: A �ag, that shows by whih stopping riterion (or stopping parameter) the iteration

has been stopped. Possible values are 'I' (for max_it), 'R' (for min_res), 'S' (for

with_rs), and 'N' (for min_in).

res: A vetor ontaining the history of the normalized residual norms. res(1) = 1 and

res(i+1) is the normalized residual norm w.r.t. the iteration step i. If the stopping

riteria are hosen, so that the normalized residual norms need not be omputed,

res = [℄ is returned.

flp: A vetor ontaining the history of the �ops needed for the iteration. flp(1) = 0 and

flp(i+1) is the number of �ops required for the iteration steps 1 to i. flp displays

only the number of �ops required for the atual iteration. The numerial osts for

initializing and generating data by USFs, the omputation of ADI shift parameters,

and the omputation of normalized residual norms are not inluded.

3.2 Computation of ADI shift parameters 19

3.2 Computation of ADI shift parameters

3.2.1 Theory and algorithm

In this setion, we brie�y desribe a pratial algorithm to ompute a set P = fp

1

; : : : ; p

l

g

of suboptimal shift parameters, whih are needed in the LRCF-ADI iteration. This al-

gorithm [37℄ is implemented in the routine lp_para, whose output is an ordered set of l

distint shift parameters.

The determination of (sub)optimal ADI shift parameters is losely onneted with a

rational minimax problem (e.g., [46, 49, 51℄) related to the funtion

s

P

(t) =

j(t� p

1

) � : : : � (t� p

l

)j

j(t+ p

1

) � : : : � (t+ p

l

)j

:

This minimax problem an be stated as the hoie of P, suh that

max

t2�(F)

s

P

(t)

is minimized. Unfortunately, the spetrum �(F) is not known in general and it annot be

omputed inexpensively if F is very large. Furthermore, even if the spetrum or bounds for

the spetrum are known, no algorithms are available to ompute the optimal parameters

p

i

.

Our algorithm for the omputation of a set of suboptimal shift parameters is numer-

ially inexpensive and heuristi. It is based on two ideas. First, we generate a disrete

set, whih �approximates� the spetrum. This is done by a pair of Arnoldi proesses; e.g.,

[19℄. The �rst proess w.r.t. F delivers k

+

values that tend to approximate �outer� eigen-

values, whih are generally not lose to the origin, well. The seond proess w.r.t. F

�1

is

used to get k

�

approximations of eigenvalues near the origin, whose onsideration in the

ADI minimax problem is ruial. The eigenvalue approximations delivered by the Arnoldi

proesses are alled Ritz values. Seond, we hoose a set of shift parameters, whih is a

subset of the set of Ritz values R. This is done by a heuristi, that delivers a suboptimal

solution for the resulting disrete optimization problem. Note that the order in whih this

heuristi delivers the parameters is advantageous. Loosely speaking, the parameters are

ordered suh that parameters, whih are related to a strong redution in the ADI error,

are applied �rst. For more details about the parameter algorithm, see [37℄.

Algorithm 2 (Suboptimal ADI parameters)

INPUT: F , l

0

, k

+

, k

�

OUTPUT: P = fp

1

; : : : ; p

l

g, where l = l

0

or l

0

+ 1

1. Choose b

0

2 R

n

at random.

2. Perform k

+

steps of the Arnoldi proess w.r.t. (F; b

0

) and ompute the set of Ritz values

R

+

.

3. Perform k

�

steps of the Arnoldi proess w.r.t. (F

�1

; b

0

) and ompute the set of Ritz

values R

�

.

4. R = f�

1

; : : : ; �

k

+

+k

�

g := R

+

[(1=R

�

)

20 3 LYAPUNOV EQUATIONS

5. IF R 6� C

�

, remove unstable elements from R and display a warning.

6. Detet i with max

t2R

s

f�

i

g

(t) = min

�2R

max

t2R

s

f�g

(t) and initialize

P :=

�

f�

i

g : �

i

real

f�

i

; ��

i

g : otherwise

:

WHILE ard(P) < l

0

7. Detet i with s

P

(�

i

) = max

t2R

s

P

(t) and set

P :=

�

P [f�

i

g : �

i

real

P [f�

i

; ��

i

g : otherwise

:

END WHILE

Obviously, the output of this algorithm is a proper parameter set; see �3.1.1. The number

of shift parameters is either l

0

or l

0

+ 1. Larger values of k

+

and k

�

lead to better

approximations of the spetrum, but inrease also the omputational ost, beause k

+

matrix-vetor multipliations with F must be omputed in the �rst Arnoldi algorithm

and k

�

systems of linear equations with F must be solved in the seond one. A typial

hoie of the triple (l

0

; k

+

; k

�

) is (20,50,25). For �tough� problems these values should be

inreased. For �easy� ones they an be dereased. Note that dereasing l

0

will redue the

memory demand if shifted SLEs are solved diretly, beause in this ase the amount of

the memory needed to store the matrix fators is proportional to l.

Steps 6 and 7 require that R is ontained in C

�

. However, this an only be guaranteed

if F + F

T

is negative de�nite and exat mahine preision is used. If F is unstable, than

LYAPACK annot be applied anyway, beause the ADI iteration diverges or, at least,

stagnates. Experiene shows that also in the ase, when F is stable but F + F

T

is not

de�nite, the Ritz values tend to be ontained in the left half of the omplex plane. If

this is not the ase, unstable Ritz values are removed in Step 5, whih is more or less

a not very elegant emergeny measure. If LRCF-ADI run with the resulting parameters

diverges despite this measure, the matrix F is most likely unstable. In onnetion with

the LRCF-NM or LRCF-NM-I applied to ill-onditioned CAREs, this might be aused by

round-o� errors. There the so-alled losed-loop matrix A � B

f

K

T

f

an be proved to be

stable (in exat arithmetis), but the losed-loop poles (i.e, the eigenvalues of A�B

f

K

T

f

)

an be extremely sensitive to perturbations, so that stability is not guaranteed in pratie.

Figure 6 shows the result of the parameter algorithm for a random example of order

n = 500. The triple (l

0

; k

+

; k

�

) is hosen as (20,50,25). 21 shift parameters were returned.

The piture shows the eigenvalues of F , the set R of Ritz values, and the set P of shift

parameters. Note that the majority of the shift parameters is lose to the imaginary axis.

3.2.2 The routine lp_para

Calling sequenes:

The following two alling sequenes are possible:

[p,err_ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km)

[p,err_ode,rw,Hp,Hm℄ = lp_para(name,Bf,Kf,l0,kp,km,b0)

However, usually one is only interested in the �rst output parameter p.

3.2 Computation of ADI shift parameters 21

−2000 −1500 −1000 −500 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

real axis

im
ag

in
ar

y
ax

is

Figure 6: Results of Algorithm 2. �: eigenvalues of F ; : elements of R; �: elements of

P � R.

Input parameters:

name: The basis name of the USFs that realize BMOs with A.

Bf: Feedbak matrix B

f

, whih is not used expliitely in general. For B

f

= 0, set Bf =

[℄.

Kf: Feedbak matrix K

f

, whih is not used expliitely in general. For K

f

= 0, set Kf =

[℄.

l0: Parameter l

0

. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

.

km: Parameter k

�

.

b0: This optional argument is an n-vetor, that is used as starting vetor in both Arnoldi

proesses. If b0 is not provided, this vetor is hosen at random, whih means that

di�erent results an be returned by lp_para in two di�erent runs with idential

input parameters.

Output parameters:

p: A vetor ontaining the ADI shift parameters P = fp

1

; : : : ; p

l

g, where either l = l

0

or

l = l

0

+1. It is reommended to apply the shift parameters in the same order in the

routine lp_lradi as they are returned by this routine.

err_ode: This parameter is an error �ag, whih is either 0 or 1. If err_ode = 1, the

routine enountered Ritz values in the right half of the omplex plane, whih are

removed in Step 5 of Algorithm 2. err_ode = 0 is the standard return value.

22 4 MODEL REDUCTION

rw: A vetor ontaining the Ritz value set R.

Hp: The Hessenberg matrix produed by the Arnoldi proess w.r.t. F .

Hm: The Hessenberg matrix produed by the Arnoldi proess w.r.t. F

�1

.

3.3 Case studies

See �C.2.1.

4 Model redution

4.1 Preliminaries

Roughly speaking, model redution is the approximation of the dynamial system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(16)

with A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

by a redued system

_

x̂(�) =

^

Ax̂(�) +

^

Bu(�)

y(�) =

^

Cx̂(�)

(17)

with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

(or, possibly,

^

A 2 C

k;k

,

^

B 2 C

k;m

,

^

C 2 C

q;k

), and

k < n. In partiular, we onsider the ase where the system order n is large, and m and

q are muh smaller than n. Furthermore, we assume that A is stable. Several ways exist

to evaluate the approximation error between the original system and the redued system.

Frequently, the di�erene between the systems (16) and (17) measured in the L

1

norm

kG�

^

Gk

L

1

= sup

!2R

kG(|!)�

^

G(|!)k (18)

is used to do this, where | =

p

�1 and k � k is the spetral norm of a matrix. Moreover,

G and

^

G are the transfer funtions of the systems (16) and (17), whih are de�ned as

G(s) = C(sI

n

� A)

�1

B and

^

G(s) =

^

C(sI

k

�

^

A)

�1

^

B.

LYAPACK ontains implementations of two algorithms (LRSRM and DSPMR) for

omputing redued systems. Both model redution algorithms belong to the lass of state

spae projetion methods, where the redued system is given as

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

: (19)

Here, S

B

; S

C

2 C

n;k

are ertain projetion matries, whih ful�ll the biorthogonality on-

dition

S

H

C

S

B

= I

k

:

Furthermore, both model redution algorithms rely on low rank approximations to the

solutions (Gramians) of the ontinuous time Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(20)

A

T

X

C

+X

C

A = �C

T

C: (21)

4.2 Low rank square root method 23

This means that we assume that low rank Cholesky fators Z

B

2 C

n;r

B

and Z

C

2 C

n;r

C

with r

B

; r

C

<< n are available, suh that Z

B

Z

H

B

� X

B

and Z

C

Z

H

C

� X

C

. In LYAPACK

these low rank Cholesky fators are omputed by the LRCF-ADI iteration; see �3.1. In

��4.2 and 4.3 we will brie�y desribe the two model redution algorithms LRSRM [39, 33℄

and DSPMR [32, 39℄. In [39℄ a third method alled LRSM (low rank Shur method)

is proposed. However, this less e�ient method is not implemented in LYAPACK. The

distint merit of LRSRM and DSPMR ompared to standard model redution algorithms,

suh as standard balaned trunation methods [47, 44, 48℄ or all-optimal Hankel norm

approximation [18℄), is their low numerial ost w.r.t. both memory and omputation. On

the other hand, unlike some standard methods, the algorithms implemented in LYAPACK

do generally not guarantee the stability of the redued system. If stability is ruial, this

property must be heked numerially after running LRSRM or DSPMR. If the redued

system is not stable, several measures an be tried. For example, one an simply remove the

unstable modes by modal trunation [11℄. Another option is to run LRSRM or DSPMR

again using more aurate low rank Cholesky fators Z

B

and Z

C

. Note that for some

problems the error funtion kG(|!) �

^

G(|!)k in !, whih haraterizes the frequeny

response of the di�erene of both systems, an be evaluated by supplementary LYAPACK

routines; see �6.

If the low rank Cholesky fators Z

B

and Z

C

delivered by the LRCF-ADI iteration

are not real, then the redued systems are not guaranteed to be real. This problem is

disussed more detailed in [33℄ for the low rank square root method. If the redued

system needs to be real, it is reommended to hek a posteriori whether the result of low

rank square root method or dominant subspae projetion model redution is real. It is

possible to transform a redued omplex system into a real one by a unitary equivalene

transformation; see [33℄. A muh simpler way, of ourse, is using the option r = 'R'

for whih the routine lp_lradi delivers real low rank Cholesky fators (at the prie of a

somewhat inreased numerial ost).

4.2 Low rank square root method

4.2.1 Theory and algorithm

The low rank square root method (This algorithm is named SLA in [33℄.) (LRSRM) [39, 33℄

is only a slight modi�ation of the lassial square root method [47℄, whih in turn is a

numerially advantageous version of the balaned trunation tehnique [35℄. The following

algorithm is implemented in the LYAPACK routine lp_lrsrm:

Algorithm 3 (Low rank square root method (LRSRM))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. U

C

�U

H

B

:= Z

H

C

Z

B

(�thin� SVD with desending ordered singular values)

2. S

B

= Z

B

U

B (:;1:k)

�

�1=2

(1:k;1:k)

; S

C

= Z

C

U

C (:;1:k)

�

�1=2

(1:k;1:k)

3.

^

A = S

H

C

AS

B

;

^

B = S

H

C

B;

^

C = CS

B

The only di�erene between the lassial square root method and this algorithm is, that

24 4 MODEL REDUCTION

here (approximate) low rank Cholesky fators Z

B

and Z

C

are used instead of exat

Cholesky fators of the Gramians, whih have possibly full rank. This redues in par-

tiular the numerial ost for the singular value deomposition in Step 1 onsiderably.

However, there are two basi drawbaks of LRSRM ompared to the �exat� square

root method. Unlike LRSRM, the latter delivers stable redued systems under mild ondi-

tions. Furthermore, there exists an upper error bound for (18) for the standard square root

method, whih does not apply to the low rank square root method. Thus, it is not surpris-

ing that the performane of Algorithm 3 depends on the auray of the approximate low

rank Cholesky fator produts Z

B

Z

H

B

and Z

C

Z

H

C

and the value k, where k � rankZ

H

C

Z

B

.

This makes the hoie of the quantities r

B

, r

C

, and k a trade-o�. Large values of r

B

and

r

C

, and values of k muh smaller than rankZ

H

C

Z

B

tend to keep the deviation of the low

rank square root method from the standard square root method small. On the other hand

the omputational e�ieny of the low rank square roo method is dereased in this way.

However, LRCF-ADI often delivers low rank Cholesky fators Z

B

and Z

C

, whose produts

approximate the system Gramians nearly up to mahine preision. In this ase the re-

sults of the LYAPACK implementation of the low rank square root method will be about

as good as those by any standard implementation of the balaned trunation tehnique,

whih, however, an be still numerially muh more expensive.

Finally, note that the lassial square root method is well-suited to ompute (nu-

merially) minimal realizations; e.g., [48℄. LRSRM (as well as DSPMR) an be used to

ompute suh realizations for large systems. The term �numerially minimal realization�

is not well-de�ned. Loosely speaking, it is rather the onept of omputing a redued

system, for whih the (relative) approximation error (18) is of magnitude of the mahine

preision. See Figure 14 in �C.3.3.

4.2.2 Choie of redued order

In the LYAPACK implementation of the low rank square root method, the redued or-

der k an be hosen a priori or in dependene of the desending ordered singular values

�

1

; �

2

; : : : ; �

r

omputed in Step 1, where r = rankZ

H

C

Z

B

.

� Maximal redued order. The input parameters max_ord of the routine lp_lrsrm

presribes the maximal admissible value for the redued order k, i.e., k � max_ord

is required. If the hoie of this value should be avoided, one an set max_ord = n

or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol presribes the maximal admissible

value for the ratio �

k

=�

1

. That means k is hosen as the largest index for whih

�

k

=�

1

� tol. This means that one will generally hoose a value of tol between the

mahine preision an 1.

In general, both parameters will determine di�erent values of k. The routine lp_lrsrm

uses the smaller value.

4.2.3 The routine lp_lrsrm

Algorithm LRSRM is implemented in the LYAPACK routine lp_lrsrm. We provide a

brief desription of this routine. For more details see the inline doumentation whih is

displayed by typing the MATLAB ommand � help lp_lrsrm.

4.3 Dominant subspaes projetion model redution 25

Calling sequene:

[Ar ,Br, Cr, SB, SC, sigma℄ = lp_lrsrm(name, B, C, ZB, ZC, ...

max_ord, tol)

Input parameters:

name: The basis name of the user supplied funtions that realize basi matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�ient if r

C

<< n.

max_ord: A parameter for the hoie of the redued order k; see �4.2.2.

tol: A parameter for the hoie of the redued order k; see �4.2.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redued system.

Br: Matrix

^

B 2 C

k;m

of redued system.

Cr: Matrix

^

C 2 C

q;k

of redued system.

SB: Projetion matrix S

B

.

SC: Projetion matrix S

C

.

sigma: Vetor ontaining the singular values omputed in Step 1.

Usually, one is only interested in the �rst three output parameters.

4.2.4 Case studies

See �C.3.

4.3 Dominant subspaes projetion model redution

4.3.1 Theory and algorithms

The dominant subspaes projetion model redution (DSPMR) [32, 39℄, whih is provided

as LYAPACK routine lp_dspmr, is more heuristi in nature. The basi idea behind this

method is that the input-state behavior and the state-output behavior of the system (16)

tend to be dominated by states, whih have a strong omponent w.r.t. the dominant

invariant subspaes of the Gramians X

B

and X

C

. These dominant invariant subspaes are

approximated by the left singular vetors of Z

B

and Z

C

provided that X

B

� Z

B

Z

H

B

and

26 4 MODEL REDUCTION

X

C

� Z

C

Z

H

C

. The motivation of the dominant subspae orretion method is disussed

at length in [39℄. Compared to the low rank square root method, the approximation

properties of the redued systems by DSPMR are often less satisfatory, i.e., the error

funtion kG(s) �

^

G(s)k tends to be less small. On the other hand, DSPMR sometimes

delivers a stable redued system, when that by LRSRM is not stable. In DSPMR, the

stability of the redued system is guaranteed at least ifA+A

T

is negative de�nite. Note also

that DSPMR uses an orthoprojetion, whereas LRSRM is based on an oblique projetion.

For this reason, DSPMR is also advantageous w.r.t. preserving passivity.

Algorithm 4 (Dominant subspaes projetion model redution (DSPMR))

INPUT: A, B, C, Z

B

, Z

C

, k

OUTPUT:

^

A,

^

B,

^

C

1. Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

2. U�V

H

:= Z (�thin� SVD with desending ordered singular values)

3. S = U

(:;1:k)

4.

^

A = S

H

AS;

^

B = S

H

B;

^

C = CS

4.3.2 Choie of redued order

In the LYAPACK implementation of DSPMR, the redued order k an be hosen a priori

or in dependene of the desending ordered singular values �

1

; �

2

; : : : ; �

r

omputed in Step

2, where r = rankZ.

� Maximal redued order. The input parameter max_ord of the routine lp_dspmr

presribes the maximal admissible value for the redued order k, i.e., k � max_ord

is required. To avoid this hoie, one an set max_ord = n or max_ord = [℄.

� Maximal ratio �

k

=�

1

. The input parameter tol determines the maximal admissible

value for the ratio �

k

=�

1

. More preisely, k is hosen as the largest index for whih

�

k

=�

1

�

p

tol. Note that here the square root of tol is used in ontrast to LRSRM.

(Note that the values �

i

have somewhat di�erent meanings in LRSRM and DSPMR.)

In general, both parameters will determine di�erent values of k. The routine lp_dspmr

uses the smaller value. Finally, it should be mentioned, that, at least in exat arithmetis,

both LRSRM and DSPMR (run with idential values max_ord and tol) deliver the same

result for state-spae symmetri systems (i.e., systems, where A = A

T

and C = B

T

).

4.3.3 The routine lp_dspmr

Algorithm DSPMR is implemented in the LYAPACK routine lp_dspmr. We provide a

brief desription of this routine. For more details see the inline doumentation whih is

displayed by typing the MATLAB ommand � help lp_dspmr.

27

Calling sequene:

[Ar ,Br, Cr, S℄ = lp_dspmr(name, B, C, ZB, ZC, max_ord, tol)

Input parameters:

name: The basis name of the user supplied funtions that realize basi matrix operations

with A.

B: System matrix B.

C: System matrix C.

ZB: LRCF Z

B

2 C

n;r

B

. This routine is only e�ient if r

B

<< n.

ZC: LRCF Z

C

2 C

n;r

C

. This routine is only e�ient if r

C

<< n.

max_ord: A parameter for the hoie of the redued order k; see �4.3.2.

tol: A parameter for the hoie of the redued order k; see �4.3.2.

Output parameters:

Ar: Matrix

^

A 2 C

k;k

of redued system.

Br: Matrix

^

B 2 C

k;m

of redued system.

Cr: Matrix

^

C 2 C

q;k

of redued system.

S: Projetion matrix S.

4.3.4 Case studies

See �C.3.

5 Riati equations and linear-quadrati optimal on-

trol problems

5.1 Preliminaries

This setion mainly deals with the e�ient numerial solution of ontinuous time algebrai

Riati equations of the type

C

T

QC + A

T

X +XA�XBR

�1

B

T

X = 0; (22)

where A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

with m; q << n. Moreover, we assume that

Q 2 R

q;q

is symmetri, positive semide�nite and R 2 R

m;m

is symmetri, positive de�nite.

Unlike in the other setions of this doument, we do not assume here that A is stable, but

it is required that a matrix K

(0)

is given, suh that A� BK

(0)

T

is stable. Suh a matrix

K

(0)

an be omputed by partial pole plaement algorithms [21℄, for example.

28 5 RICCATI EQUATIONS

In general, the solution of (22) is not unique. However, under the above assumptions, a

unique, stabilizing solution X exists, whih is the solution of interest in most appliations;

e.g., [34, 29℄. A solution X is alled stabilizing if the losed-loop matrix A�BR

�1

B

T

X is

stable.

Algebrai Riati equations arise from numerous problems in ontrol theory, suh as

robust ontrol or ertain balaning and model redution tehniques for unstable systems.

Another appliation, for whih algorithms are provided by LYAPACK, is the solution

of the linear quadrati optimal ontrol problem. In this paragraph, we brie�y desribe

the onnetion between linear quadrati optimal ontrol problems and algebrai Riati

equations. The linear quadrati optimal ontrol problem is a onstrained optimization

problem. The ost funtional to be minimized, is

J (u; y; x

0

) =

1

2

Z

1

0

y(�)

T

Qy(�) + u(�)

T

Ru(�)d� ; (23)

where Q = Q

T

� 0 and R = R

T

> 0. The onstraints are given by the dynamial system

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�)

(24)

and the initial ondition

x(0) = x

0

: (25)

The solution of this optimization problem is desribed by the feedbak matrix K, that is

de�ned as

K = XBR

�1

; (26)

where X is the stabilizing solution of the algebrai Riati equation (22). The orrespond-

ing ontrol funtion is given by the state-feedbak

u(�) = �K

T

x(�)

and the initial ondition (25).

To sum up, we onsider two problems in this setion. The �rst one is the numerial

omputation of the stabilizing solution of the ontinuous time algebrai Riati equations

(22). The seond problem is the solution of the linear quadrati optimal ontrol problem

(23,24,25), whih is a partiular appliation of algebrai Riati equations. Its solution

an be desribed by the stabilizing solution X, from whih the optimal state-feedbak an

easily be omputed via (26), or by the feedbak K itself.

LYAPACK ontains implementations of the low rank Cholesky fator Newton method

(LRCF-NM) and the impliit low rank Cholesky fator Newton method (LRCF-NM-I) pro-

posed in [6℄. LRCF-NM delivers a LRCF Z, suh that the produt ZZ

H

approximates the

Riati solution X. This means that LRCF-NM an be used to solve both ontinuous time

algebrai Riati equations and linear quadrati optimal ontrol problems. The impliit

version LRCF-NM-I, whih diretly omputes an approximation to K without forming Z

or X, an only be used to solve the linear quadrati optimal ontrol problem in a more

memory e�ient way.

Both LRCF-NM and LRCF-NM-I are modi�ations of the lassial Newton method

for algebrai Riati equations [28℄, or more preisely, ombinations of the Newton method

5.2 Low rank Cholesky fator Newton method 29

with the LRCF-ADI iteration. We will desribe these ombinations in ��5.2 and 5.3. The

lassial formulation of the Newton method is given by the double step iteration

Solve Lyapunov equation

(A

T

�K

(k�1)

B

T

)X

(k)

+X

(k)

(A� BK

(k�1)

T

) = �C

T

QC �K

(k�1)

RK

(k�1)

T

for X

(k)

;

K

(k)

= X

(k)

BR

�1

(27)

for k = 1; 2; 3; : : :, whih generates a sequene of iterates X

(k)

. This sequene onverges

towards the stabilizing solution X if the initial feedbak K

0

is stabilizing, i.e., A�BK

(0)

T

is stable. Then, the onvergene is global and quadrati.

5.2 Low rank Cholesky fator Newton method

Due to the symmetry and de�niteness assumptions, the matries Q and R an be fatored

(by a Cholesky fatorization, for example) as

Q =

~

Q

~

Q

T

and R =

~

R

~

R

T

; (28)

where the matries

~

Q 2 R

q;h

(h � q) and

~

R 2 R

m;m

have full rank. Thus, the Lyapunov

equations to be solved in (27) have the struture

F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

where F

(k)

= A

T

� K

(k�1)

B

T

and G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

. Note that G

(k)

ontains

only t = m + h << n olumns. Hene, these Lyapunov an be solved e�iently by the

LRCF-ADI iteration. The Lyapunov solutions form a sequene of approximate solutions

to the algebrai Riati equations (22). Therefore, the inlusion of Algorithm 1 into the

Newton iteration (27) an be utilized to determine low rank Cholesky fator produts

whih approximate the solution of the algebrai Riati equation (22). The resulting

algorithm low rank Cholesky fator Newton method is desribed below.

Algorithm 5 (Low rank Cholesky fator Newton method (LRCF-NM))

INPUT: A, B, C, Q, R, K

(0)

for whih A�BK

(0)

T

is stable (e.g., K

(0)

= 0 if A is stable)

OUTPUT: Z = Z

(k

max

)

, suh that ZZ

H

approximates the solution X of the algebrai

Riati equation (8)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respet to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q
K

(k�1)

~

R

�

3. Compute matrix Z

(k)

by Algorithm 1, suh that the low rank Cholesky fator

produt Z

(k)

Z

(k)

H

approximates the solution of F

(k)

X

(k)

+X

(k)

F

(k)

T

= �G

(k)

G

(k)

T

.

30 5 RICCATI EQUATIONS

4. K

(k)

= Z

(k)

(Z

(k)

H

BR

�1

)

END

Similar to the LRCF-ADI iteration for the solution of Lyapunov equations, the distint

merit of this algorithm is that the (approximate) solution of the algebrai Riati equations

is provided as a low rank Cholesky fator produt rather than an expliit dense matrix. In

partiular, this allows the appliation of the algorithm to problems of large order n, where

dense n�n matries annot be stored in the omputer memory. Moreover, the LRCF-NM

requires often muh less omputation ompared to the standard implementation, where

Lyapunov are solved diretly by the Bartels-Stewart or the Hammarling method; see �7.

See [6℄ for more tehnial details of the LRCF-NM.

5.3 Impliit low rank Cholesky fator Newton method

The idea behind the impliit version of LRCF-NM is that the solution of the linear

quadrati optimal ontrol problem is desribed by the state feedbak matrix K, whih

generally ontains muh less olumns than the low rank Cholesky fator Z delivered by

LRCF-NM or even the exat solution X. LRCF-NM-I is mathematially equivalent to

LRCF-NM. It omputes an approximation to K without forming LRCF-NM iterates Z

(k)

and LRCF-ADI iterates Z

(k)

i

at all. The trik is to generate the matrix K

(k)

itself in Step

3 of Algorithm 5 instead of solving the Lyapunov equation for Z

(k)

and omputing the

produt K

(k)

= Z

(k)

Z

(k)

H

BR

�1

in Step 4. Note that the matrix K

(k)

an be aumulated

in the ourse of the �inner� LRCF-ADI iteration as

K

(k)

= lim

i!1

K

(k)

i

;

where

K

(k)

i

:= Z

(k)

i

Z

(k)

i

H

BR

�1

=

i

X

j=1

V

(k)

j

�

V

(k)

j

H

BR

�1

�

: (29)

This means, that the (exat) matrix K is the limit of the matries K

(k)

i

for k; i!1. This

onsideration motivates the following Algorithm 6, whih is best understood as a version

of the LRCF-NM with an inner loop (Steps 4 and 5) onsisting of interlaed sequenes

based on Step 3 in Algorithm 1 and the partial sums given by the right hand term in (29).

Algorithm 6 (Impliit low rank Cholesky fator Newton method (LRCF-NM-I))

INPUT: A, B, C, Q, R, K

(0)

for whih A�BK

(0)

T

is stable (e.g., K

(0)

= 0, if A is stable)

OUTPUT: K

(k

max

)

, whih approximates K given by (26)

FOR k = 1; 2; : : : ; k

max

1. Determine (sub)optimal ADI shift parameters p

(k)

1

; p

(k)

2

; : : : with respet to the

matrix F

(k)

= A

T

�K

(k�1)

B

T

.

2. G

(k)

=

�

C

T

~

Q K

(k�1)

~

R

�

3. V

(k)

1

=

q

�2Re p

(k)

1

(F

(k)

+ p

(k)

1

I

n

)

�1

G

(k)

5.4 Stopping riteria 31

FOR i = 2; 3; : : : ; i

(k)

max

4. V

(k)

i

=

q

Re p

(k)

i

=Re p

(k)

i�1

�

V

(k)

i�1

� (p

(k)

i

+ �p

(k)

i�1

)(F

(k)

+ p

(k)

i

I

n

)

�1

V

(k)

i�1

�

5. K

(k)

i

= K

(k)

i�1

+ V

(k)

i

�

V

(k)

i

H

BR

�1

�

END

6. K

(k)

= K

(k)

i

(k)

max

END

Again, see [6℄ for more implementational details.

5.4 Stopping riteria

As far as possible, the same stopping riteria are used in LRCF-NM and LRCF-NM-I for

terminating the (outer) Newton iteration. The LYAPACK routine lp_lrnm, in whih both

methods are implemented, o�ers the following �ve riteria:

� maximal number of iteration steps: used in LRCF-NM and LRCF-NM-I;

� tolerane for the normalized residual norm: used in LRCF-NM only;

� stagnation of the normalized residual norm (most likely aused by round-o� errors):

used in LRCF-NM only;

� smallness of the relative hange of the feedbak matrix (RCF): Used in LRCF-NM

and LRCF-NM-I;

� stagnation of the relative hange of the feedbak matrix: used in LRCF-NM and

LRCF-NM-I.

Here, the normalized residual norm orresponding to the low rank Cholesky fator Z

(k)

is

de�ned as

NRN(Z

(k)

) =

kC

T

QC + A

T

Z

(k)

Z

(k)

H

+ Z

(k)

Z

(k)

H

A� Z

(k)

Z

(k)

H

BR

�1

B

T

Z

(k)

Z

(k)

H

k

F

kC

T

QCk

F

;

(30)

whereas the relative hange of the feedbak matrix related to the matries K

(k�1)

and K

(k)

is

RCF(K

(k�1)

; K

(k)

) =

kK

(k)

�K

(k�1)

k

F

kK

(k)

k

F

: (31)

Many of the remarks on stopping riteria for the LRCF-ADI iteration made in �3.1.2 also

apply to stopping riteria for LRCF-NM or LRCF-NM-I. In partiular, the appliation of

stopping riteria, whih require the omputation of normalized residual norms is numer-

ially expensive. Although the applied omputational method [6℄ exploits the low rank

struture of the approximate solutions, it an be more expensive than the iteration itself.

Moreover, it is not possible to use residual based stopping riteria for LRCF-NM-I, beause

32 5 RICCATI EQUATIONS

there the low rank Cholesky fators Z

(k)

are not formed at all, whih is the only reason

why one would apply LRCF-NM-I instead of LRCF-NM.

The onsideration of (31) for the onstrution of heuristi stopping riteria is related

to the fat that in some sense the matries K

(k)

rather than the low rank Cholesky fators

Z

(k)

or their produts are the quantities of interest when the optimal ontrol problem

should be solved. However, stopping riteria related to K

(k)

are somewhat dubious when

the optimal feedbak K or, more preisely, the produt BK

T

is very small ompared to A,

beause then small relative hanges in K hardly hange the losed-loop matrix A�BK

T

.

On the other hand, the auray of K does not play a ruial role in suh situations, whih

means that a possibly premature termination of the Newton iteration would not be very

harmful.

We will now disuss the �ve stopping riteria. Convergene plots generated for an

example problem illustrate their e�ets. Note that, similar to the riteria for the LRCF-

ADI iteration desribed in �3.1.2, the following stopping riteria an be �ativated� or

�avoided�.

� Stopping riterion: maximal number of iteration steps. This riterion is

represented by the input parameter max_it_r in the routine lp_lrnm. The itera-

tion is stopped by this riterion after max_it_r iterations steps. This riterion an

be avoided by setting max_it_r = +Inf (i.e., max_it_r = 1). Obviously, no ad-

ditional omputations need to be performed to evaluate it. The drawbak of this

stopping riterion is, that it is not diretly related to the attainable auray. This

is illustrated by Figure 7.

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 7: Stopping riterion: maximal number of iteration steps. Solid line: max_it_r

= 5; dash-dotted line: max_it_r = 10; dotted line: max_it_r = 20. The other four riteria

are avoided.

� Stopping riterion: tolerane for the normalized residual norm. This rite-

rion is represented by the input parameter min_res_r in the routine lp_lrnm. The

iteration is stopped by this riterion as soon as

NRN(Z

(k)

) � min_res_r:

5.4 Stopping riteria 33

This riterion an be avoided by setting min_res_r = 0. (Beause of round-o� errors

it is pratially impossible to attain NRN(Z

(k)

) = 0.) It requires the omputation of

normalized residual norms and is omputationally expensive. A further drawbak of

this riterion is that it will either stop the iteration before the maximal auray is

attained (see min_res_r = 10

�5

, 10

�10

in Figure 8) or it will not stop the iteration

at all (see min_res_r = 10

�15

in Figure 8). If you want to avoid this riterion, but

ompute the onvergene history provided by the output vetor res_r, set min_res_r

to a value muh smaller than the mahine preision (say, min_res_r = 10

�100

).

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 8: Stopping riterion: tolerane for the normalized residual norm. Solid line:

min_res_r = 10

�5

; dash-dotted line: min_res_r = 10

�10

; dotted line: min_res_r = 10

�15

.

Here, the dash-dotted and the solid line are idential. The other four riteria are avoided.

� Stopping riterion: stagnation of the normalized residual norm. This ri-

terion is represented by the input parameter with_rs_r in the routine lp_lrnm. It

is ativated if with_rs_r = 'S' and avoided if with_rs_r = 'N'. The iteration is

stopped by this riterion when a stagnation of the normalized residual norm urve is

deteted. In ontrast to the orresponding riterion for the LRCF-ADI iteration, this

riterion stops the iteration, when the stagnation of the normalized residual norm

is deteted for a single iteration step. Of ourse, this is a slightly heuristi riterion

but it works very well in pratie. It requires the omputation of the normalized

residual norm and is omputationally expensive. See Figure 9.

� Stopping riterion: smallness of the the relative hange of the feedbak

matrix. This riterion is represented by the input parameter min_k_r in the

routine lp_lrnm. The iteration is stopped by this riterion as soon as

RCF(K

(k�1)

; K

(k)

) � min_k_r:

This riterion an be avoided by setting min_k_r = 0. It is numerially very

inexpensive. On the other hand it is heuristi and not diretly related to the auray

in Z

(k)

. See Figure 10.

34 5 RICCATI EQUATIONS

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 9: Stopping riterion: Stagnation of the normalized residual norms. Solid line:

with_rs_r = 'S'; dotted line: with_rs_r = 'N'. The other four riteria are avoided.

� Stopping riterion: stagnation of the relative hange of the feedbak ma-

trix. This riterion is represented by the input parameter with_ks_r in the routine

lp_lrnm. It is ativated if with_ks_r = 'L' and avoided if with_ks_r = 'N'. The

iteration is stopped by this riterion when a stagnation of the relative hange of the

feedbak matrix is deteted. Similar to the last riterion, this is a inexpensive, but

heuristi stopping riterion. See Figure 11.

We reommend to use (only) the stopping riterion related to with_rs_r if algebrai

Riati equations solutions of high auray should be omputed and if it is a�ordable to

ompute normalized residual norms. If the omputation of the normalized residual norms

must be avoided, the ombination of the riteria related to min_k_r and with_rs_r is

probably the best hoie. Experiene shows that often only one of them will stop the

iteration after a reasonable number of steps. See, for example, Figure 11, where the

riterion related to with_rs_r failed.

5.5 The routine lp_lrnm

Both LRCF-NM and LRCF-NM-I are implemented in the LYAPACK routine lp_lrnm. We

provide a brief desription of this routine. For more details see the inline doumentation

whih is displayed by typing the MATLAB ommand � help lp_lrnm.

The approximate solution of the algebrai Riati equations (22) is given by the low

rank Cholesky fator Z, suh that ZZ

H

� X. Z has typially fewer olumns than rows.

Otherwise, LRCF-NM is useless! In general, Z an be a omplex matrix, but the produt

ZZ

H

is real. In the expliit mode of lp_lrnm (i.e., the one for LRCF-NM) an optional

internal postproessing step an be performed, whih guarantees that the delivered low

rank Cholesky fator Z is real. This requires additional omputation. This postproessing

is only done for the low rank Cholesky fator omputed in the last Newton step. This

means, that its relative ontribution to the overall ost is smaller than in the LRCF-ADI

iteration.

5.5 The routine lp_lrnm 35

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 10: Stopping riterion: Smallness of the the relative hange of the feedbak matrix.

Solid line: min_k_r = 10

�4

; dash-dotted line: min_k_r = 10

�8

; dotted line: min_k_r

= 10

�16

. The other four riteria are avoided. Note that it is mere oinidene, that

min_k_r = 10

�8

(dash-dotted line) leads to the termination after the �optimal� number

of steps.

Calling sequenes:

Depending on the hoie of the mode parameter zk, the following two alling sequenes

exist. For zk = 'Z', the low rank Cholesky fator Z is omputed by LRCF-NM, whereas

for zk = 'K', the feedbak matrix K is omputed by LRCF-NM-I.

� zk = 'Z':

[Z, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = ...

lp_lrnm(zk, r, name, B, C, Q0, R0, K_in, max_it_r, ...

min_res_r, with_rs_r, min_k_r, with_ks_r, info_r, kp, km, ...

l0, max_it_l, min_res_l, with_rs_l, min_in_l, info_l)

� zk = 'K':

[K_out, flag_r, flp_r, flag_l, its_l, flp_l℄ = lp_lrnm(...

zk, name, B, C, Q0, R0, K_in, max_it_r, min_k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l)

Input parameters:

zk: Mode parameter, whih is either 'Z' or 'K'. If zk = 'Z', the low rank Cholesky fator

Z = Z

(k

max

)

is omputed by LRCF-NM. Otherwise, K

(k

max

)

is diretly omputed by

LRCF-ADI-I.

r: Mode parameter, whih is either 'R' or 'C'. If r = 'C', the routine delivers a low

rank Cholesky fator, whih is not real when non-real shift parameters are used in

the last Newton step. Otherwise, this possibly omplex low rank Cholesky fator is

36 5 RICCATI EQUATIONS

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

iteration steps

no
rm

al
iz

ed
 r

es
id

ua
l n

or
m

Figure 11: Stopping riterion: Stagnation of the relative hange of the feedbak matrix.

Solid line: with_rs_r = 'L'; dotted line: with_rs_r = 'N'. The other four riteria are

avoided. For this partiular example, no stagnation in the relative hange of the feedbak

matrix is observed within 20 iteration steps.

transformed into a real low rank Cholesky fator

~

Z, whih desribes the idential

approximate solution

~

Z

~

Z

T

.

~

Z is returned instead of Z. The parameter r is not

needed in the mode for LRCF-NM-I, beause the returned feedbak (parameter

K_out) is always real, provided that K

(0)

(parameter K_in) is real.

name: The basis name of the user supplied funtions that realize basi matrix operations

with A.

B: System matrix B.

C: System matrix C.

Q0: The Cholesky fator

~

Q de�ned in (28).

R0: The Cholesky fator

~

R de�ned in (28).

K_in: The stabilizing initial state feedbak K

(0)

. If A is stable, K

(0)

= 0 an be used, for

example.

max_it_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_res_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_rs_r: Stopping parameter for (outer) Newton iteration. See �5.4.

min_k_r: Stopping parameter for (outer) Newton iteration. See �5.4.

with_ks_r: Stopping parameter for (outer) Newton iteration. See �5.4.

info_r: Parameter, whih determines the �amount� of information on the (outer) Newton

iteration that is provided as text and/or residual history plot. The following values

are possible: info_r = 0 (no information), 1, 2, and 3 (most possible information).

5.5 The routine lp_lrnm 37

l0: Parameter l

0

for the ADI parameter routine lp_para, whih is invoked in eah

Newton step. Note that k

+

+ k

�

> 2l

0

is required.

kp: Parameter k

+

for the ADI parameter routine lp_para.

km: Parameter k

�

for the ADI parameter routine lp_para.

max_it_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_res_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

with_rs_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

min_in_l: Stopping parameter for the (inner) LRCF-ADI iterations. See �3.1.2.

info_l: Parameter, whih determines the �amount� of information on the (inner) LRCF-

ADI iterations that is provided as text and/or residual history plot. The following

values are possible: info_l = 0 (no information), 1, 2, and 3 (most possible infor-

mation).

Output parameters:

Z: The low rank Cholesky fator Z, whih is the result of LRCF-NM. It an be omplex

under ertain irumstanes.

K_out: The matrix K

(k

max

)

, whih is the result of LRCF-NM-I.

flag_r: A �ag, that shows by whih stopping riterion (or stopping parameter) the

(outer) Newton iteration has been stopped. Possible values are 'I' (for max_it_r),

'R' (for min_res_r), 'S' (for with_rs_r), 'K' (for min_k_r), and 'L' (for

with_ks_r).

res_r: A vetor ontaining the history of the algebrai Riati equations normalized

residual norms (30). res_r(1) = 1 and res_r(i + 1) is the normalized residual

norm w.r.t. the Newton step i. If the stopping riteria are hosen, so that the

normalized residual norms need not be omputed, res_r = [℄ is returned.

flp_r: A vetor ontaining the history of the �ops needed for the algorithm. flp_r(1)

= 0 and flp_r(i + 1) is the number of �ops required for the Newton steps 1 to i.

flp_r displays the number of �ops required for the atual iteration. It also ontains

the numerial osts for all user supplied funtions invoked within lp_lrnm as well

as the omputation of the sets of ADI shift parameters. However, the osts for the

omputation of Riati equations or Lyapunov equation normalized residual norms

are not inluded.

flag_l: Vetor ontaining the values flag returned by the LRCF-ADI routine lp_lradi,

whih is alled in eah Newton step.

its_l: Vetor ontaining the number of iteration steps of the (inner) LRCF-ADI itera-

tions.

38 6 SUPPLEMENTARY ROUTINES AND DATA FILES

res_l: Matrix whose olumns ontain the normalized residual norm history vetors res

returned by the LRCF-ADI routine lp_lradi. Here, normalized residual norms in

the sense of (13) are onsidered.

flp_l: Matrix whose olumns ontain the �op history vetors flp returned by the LRCF-

ADI routine lp_lradi in eah Newton step.

6 Supplementary routines and data �les

Supplementary routines are routines whih do not play a entral role in LYAPACK but an

be used to generate test problems in order to validate the results delivered by LYAPACK

main routines. There are also test examples in form of data �les provided.

6.1 Computation of residual norms for Lyapunov and Riati

equations

The auray of the approximate solution ZZ

H

of the Lyapunov equation (2) or the Riati

equation (8) an be assessed by the residual norm of the Lyapunov equation

kFZZ

H

+ ZZ

H

F

T

+GG

T

k

F

(32)

or the residual norm of the Riati equation

kC

T

QC + A

T

ZZ

H

+ ZZ

H

A� ZZ

H

BR

�1

B

T

ZZ

H

k

F

: (33)

The following two LYAPACK routines an be used to ompute suh norms.

lp_nrm: Computes the Lyapunov equation residual norm (32) by the tehnique desribed

in [39℄.

lp_rnrm: Computes the Riati equation residual norm (33) by the tehnique desribed

in [6℄.

Note, that these routines do not evaluate the residual matries, i.e., the terms inside the

norms. They rather make use of the low rank struture of ZZ

H

, whih is often muh more

e�ient w.r.t. both memory and omputation. However, both routines are not e�ient if

the number of olumns in Z is almost n or even larger than n.

6.2 Evaluation of model redution error

The auray of the redued system (3), whih approximates the system (1), is usually

evaluated by omparing their transfer funtions

^

G(s) and G(s) on the imaginary axis,

whih show the frequeny responses of both systems.

If the system is a single-input single-output (SISO) system (i.e., m = q = 1) and

the redued system is not very aurate, simultaneous magnitude Bode plots an be used

to ompare both frequeny responses. To do this, one plots the funtions jG(|!)j and

j

^

G(|!)j simultaneously for a ertain �frequeny range� ! 2 [!

min

; !

max

℄. There, exist also

Bode phase plots, where the phase angles of the omplex funtions G(|!) and

^

G(|!) are

6.2 Evaluation of model redution error 39

ompared, but these are usually less important. If the system is not a SISO system, mq

plots w.r.t. the single omponents of the transfer funtion an be used for the omparison.

If the system has multiple inputs or multiple outputs, or when the approximation error

of the redued system is very small, error plots, whih show the funtion kG(|!)�

^

G(|!)k

for an interval ! 2 [!

min

; !

max

℄ are more meaningful.

To generate either type of plot, the following LYAPACK funtions an be used.

lp_lgfrq: Generates a set of logarithmially distributed �frequeny sampling points�

!

i

(i = 1; : : : ; i

max

) in the interval [!

min

; !

max

℄, i.e, !

1

= !

min

, !

i

max

= !

max

, and

!

i+1

=!

i

= onst.

lp_trfia: Generates the matries G(|!

i

) (i = 1; : : : ; i

max

). Their staked olumns are

stored in an mq � i

max

�transfer funtion sample� matrix G

s

.

lp_gnorm: Computes kG(|!

i

)k (i = 1; : : : ; i

max

), where the matries kG(|!

i

)k are re-

trieved from the matrix G

s

generated by lp_trfia.

Finally, a few omments on the usage of these funtions should be made.

Unlike the other LYAPACK routines, whih have aess to the system matrix A,

lp_trfia does not make use of user supplied funtions. On the other hand, this rou-

tine an be applied to the more general form of a dynamial system (whih is slightly

more general than (9))

E _x(�) = Ax(�) +Bu(�)

y(�) = Cx(�) +Du(�)

(34)

to generate its transfer funtionG(s) = C(sE�A)

�1

B+D on the imaginary axis. However,

it is required that all matries are given expliitely. A and E should be preferably sparse.

Typially, lp_trfia and lp_gnorm will be used subsequently. It is important that

the same set of frequeny sampling points !

i

is used in both routines. If the mq Bode

magnitude plots of a system with multiple inputs or multiple outputs should be generated,

then lp_gnorm must be applied mq times to the single rows of the matrix G

s

generated

by lp_trfia. The approximation error funtion kG(|!)�

^

G(|!)k an be evaluated easily.

First, lp_trfia is applied to both the original and the redued system, whih results in

the transfer funtion samples G

s

and

^

G

s

. Then, lp_gnorm is applied to the di�erene

G

s

�

^

G

s

, whih delivers the desired result.

6.2.1 Generation of test examples

The following two routines an generate very simple test examples of systems (1).

fdm_2d_matrix: Generates the negative sti�ness matrix for a 2D paraboli di�erential

equation, whih is semidisretized by the �nite di�erene method (FDM). This sti�-

ness matrix an be used as system matrix A.

fdm_2d_vetor: Generates the orresponding load vetors, whih an be used as system

matries B and C

T

.

The matries of a generalized system (9), whih arises from the semidisretization of a steel

rail ooling problem (see, e.g., [39℄) by the �nite element method (FEM), are provided in

two MATLAB data �les.

40 7 ALTERNATIVE METHODS

rail821.mat: Data for a oarse disretization: n = 821, m = q = 6.

rail3113.mat: Data for a �ner disretization: n = 3113, m = q = 6.

6.3 Case studies

The usage of the routines for omputing Lyapunov equation or Riati equation residual

norms is demonstrated in �C.2.1 and �C.4.1, respetively. The appliation of lp_lgfrq,

lp_trfia, and lp_gnorm is demonstrated in ��C.3.1 and C.3.3. Routines for the generation

of test examples and data �les are used in all demo programs in �C.

7 Alternative methods

Under ertain onditions LYAPACK works very well for the types of problems desribed

in �1.1. However, we are far from laiming that the methods implemented in this pakage

are the ultimate solution tehniques for the respetive problems. In this setion, we want

to give a brief and by far not omplete survey on alternative methods. In many ases,

no omparative studies of these methods have been done. LYAPACK is one step in this

diretion.

� Lyapunov equations. Standard tehniques for small dense Lyapunov equations

are the Bartels-Stewart method [3℄ or Hammarling method [20℄. Extensions of these

methods to generalized Lyapunov equations are desribed in [38℄. Large dense Lya-

punov equations an be solved by sign funtion based tehniques [42, 1, 5, 8℄ (see also

referenes to Riati equations), whih perform well on parallel omputers. This also

applies to the squared Smith method [45℄. Relatively large sparse Lyapunov equa-

tions an be solved by (standard) ADI, e.g., [36, 50℄. Several approahes for the

iterative solution of large sparse Lyapunov equations exist. In LYAPACK low rank

versions of the ADI method, whih is related to rational matrix funtions, are used

[31, 37, 6, 33℄. Krylov subspae methods, whih are related to matrix polynomials

have been proposed in [43, 22, 24℄, for example.

� Model redution. Model redution methods for small, possibly dense systems

are abundant. The perhaps most popular tehnique for reduing stable systems is

balaned trunation [35℄ and all-optimal Hankel norm approximation [18℄. Numeri-

ally elaborate implementations of the balaned trunation tehnique are proposed

in [47, 44, 48℄. Algorithms for solving large dense model redution problems on par-

allel omputers an be found in [9℄. The majority of model redution methods for

large sparse problems is related to Padé approximations of the underlying transfer

funtion, e.g., [41, 15, 12, 16℄. A quite detailed survey on this topi an be found

in [13℄. Methods that are (diretly) based on Krylov subspae tehniques have been

proposed in [25, 23, 26℄. The algorithms implemented in LYAPACK are desribed

in [32, 39, 33℄ at length.

� Riati equations and optimal ontrol problems. In LYAPACK, only the solu-

tion of large optimal ontrol problems by solving Riati equations is onsidered [6℄.

However, �Riati equation-free� solution tehniques for optimal ontrol problems

41

surely exist. Standard tehniques for small, possibly dense Riati equations are the

Shur method [30℄, (standard) Newton method and modi�ations [28, 34, 29, 4℄, and

the sign funtion method, e.g., [42, 10, 17, 27℄.

Numerially reliable and versatile odes for dense problems of moderate size are an be

found in the freeware subroutine library SLICOT (Subroutine Library in Control Theory)

[7℄.

42 B LIST OF LYAPACK ROUTINES

A Aronyms and symbols

ADI alternating diretion impliit (algorithm)

BMO basi matrix operation

CALE ontinuous-time algebrai Lyapunov equation

CARE ontinuous-time algebrai Riati equation

DSPMR dominant subspaes projetion model redution (algorithm)

FDM �nite di�erene method

FEM �nite element method

�op �oating point operation

NRN normalized residual norm

LQOCP linear-quadrati optimal ontrol problem

LRCF low rank Cholesky fator

LRCF-ADI low rank Cholesky fator ADI (algorithm)

LRCF-NM low rank Cholesky fator Newton method (algorithm)

LRCF-NM-I low rank Cholesky fator Newton method � impliit version

(algorithm)

LRCFP low rank Cholesky fator produt

LRSRM low rank square root method (algorithm)

LYAPACK Lyapunov pakage

PDE partial di�erential equation

RCF relative hange of the feedbak matrix

SISO single-input single-output

SLE system of linear equations

SVD singular value deomposition

USF user-supplied funtion

A

H

onjugate transposed of the matrix A

A

T

transposed of the matrix A

C , C

n

, C

n;m

omplex numbers, vetors, matries

R, R

n

, R

n;m

real numbers, vetors, matries

kAk spetral norm of the matrix A

kAk

F

Frobenius norm of the matrix A

kGk

L

1

L

1

norm of a dynamial system

�(A) spetrum of the matrix A

|

p

�1

� �wild ard�

B List of LYAPACK routines

B.1 Main routines

These are the essential omputational routines, whih are alled within the main programs

written by users themselves.

lp_dspmr: Model redution algorithm DSPMR.

B.2 Supplementary routines and data �les 43

lp_lradi: LRCF-ADI iteration for solving Lyapunov equations.

lp_lrnm: Both versions of Newton method (LRCF-NM and LRCF-NM-I) for solving

Riati equations and optimal ontrol problems.

lp_lrsrm: Model redution algorithm LRSRM.

lp_para: Computation of ADI shift parameters.

B.2 Supplementary routines and data �les

The following routines an be used for a veri�ation of the results delivered by LYAPACK

main routines.

lp_gnorm: Computation of norms of transfer funtion sample.

lp_lgfrq: Computation of logarithmially distributed frequeny sampling points in a

ertain frequeny range.

lp_nrm: E�ient omputation of the Lyapunov equation residual norm.

lp_rnrm: E�ient omputation of the Riati equation residual norm.

lp_trfia: Computation of transfer funtion sample.

The following routines and data �les are used for generating test examples.

fdm_2d_matrix: Generates negative sti�ness matrix for 2D PDE problem.

fdm_2d_vetor: Generates load vetor for 2D PDE problem.

rail821.mat: Data �le for steel rail ooling problem (order n = 821).

rail3113.mat: Data �le for steel rail ooling problem (order n = 3113).

B.3 Auxiliary routines

These are routines for internal use. They are not intended for expliit use in main pro-

grams.

lp_arn_m: Arnoldi proess w.r.t. F

�1

.

lp_arn_p: Arnoldi proess w.r.t. F .

lp_e: Evaluation of ertain strings.

lp_mnmx: Suboptimal solution of ADI minimax problem.

lp_nrmu: E�ient omputation of the Lyapunov equation residual norm based on up-

dated QR fatorizations.

lp_prm: Bandwidth redution by reordering the rows and olumns of a matrix or a matrix

pair.

lp_s: Auxiliary routine for lp_mnmx.

44 B LIST OF LYAPACK ROUTINES

B.4 User-supplied funtions

This lass of user supplied funtions omprises a relatively large number of routines. The

routine name and the purpose of the single routines arises from the respetive ombination

of the basis name and the extension(s)

[USF name℄ = [basis name℄_[extension(s)℄,

whih has been disussed quite detailed in �2.2.

� [basis name℄:

as: Standard system (1); sparse matrix A is symmetri and shift parameters are

real; (shifted) linear systems are solved diretly.

au: Standard system (1); sparse matrix A is (possibly) unsymmetri or shift pa-

rameters are not neessarily real; (shifted) linear systems are solved diretly.

au_qmr_ilu: Standard system (1); sparse matrix A is (possibly) unsymmetri or

shift parameters are not neessarily real; (shifted) linear systems are solved

iteratively by QMR with ILU preonditioning.

msns: Generalized system (9); sparse (de�nite) matries M and N are symmetri

and shift parameters are real; (shifted) linear systems are solved diretly.

munu: generalized system (9); sparse matriesM and N are (possibly) unsymmetri

or shift parameters are not neessarily real; (shifted) linear systems are solved

diretly.

� [extension(s)℄:

m_i: Initialization or generation of data needed for multipliations with A.

m: Perform multipliation.

m_d: Delete data that has been needed for multipliations.

l_i: Initialization or generation of data needed for solving linear systems with A.

l: Solve linear system.

l_d: Delete data that has been needed for solving linear systems.

s_i: Initialization or generation of data needed for solving shifted linear systems.

s: Solve shifted linear system.

s_d: Delete data that has been needed for solving shifted linear systems.

pre: Preproessing (not for au_qmr_ilu).

pst: Postproessing (not for au_qmr_ilu).

B.5 Demo programs

demo_l1: Demo program for LRCF-ADI iteration and omputation of ADI parameters.

demo_m1, demo_m2: Demo programs for model redution.

demo_u1, demo_u2, demo_u3: Demo programs for user supplied funtions.

demo_r1: Demo program for Riati equations and optimal ontrol problems.

45

C Case studies

In this setion we provide listings of the demo programs whih are inluded in LYAPACK.

In these programs, we usually provide matries that orrespond to transformed (prepro-

essed) problems with a zero subsript (e.g., A0 or A

0

) to distinguish them from data

related to the original problem (e.g., A or A).

C.1 Demo programs for user-supplied funtions

C.1.1 Demo program demo_u1:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_*'

%

%

% This demo program shows how the user-supplied funtions 'au_*' work.

% This means that we onsider (possibly) unsymmetri matries and

% (possibly) non-real shift parameters.

% ---

% Generate test problem

% ---

%

% As test example we use a simple FDM-semidisretized PDE problem

% (an instationary onvetion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary onditions).

% We reorder the olumns and rows of the resulting stiffness matrix by

% a random permutation, to generate a "bad" nonzero pattern.

n0 = 20; % n0 = number of grid points in either spae diretion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate omplex matrix X0, whih

X0 = randn(n,t)+j*randn(n,t); % ontains muh fewer olumns than rows

% ---

46 C CASE STUDIES

% Preproessing

% ---

[A0,dummy,dummy,prm,iprm℄ = au_pre(A,[℄,[℄);

% au_pre realizes a preproessing:

% - The olumns and rows of A are simultaneously

% reordered to redue the bandwidth. The result

% is A0. prm and iprm are the orresponding

% permutation and inverse permutation.

% - Sine we onsider only the matrix A but not

% a dynamial system, we use [℄ as 2nd and 3rd

% input parameter. dummy = [℄ is returned.

figure(1), hold off, lf

spy(A)

title('Before preproessing: nonzero pattern of A.')

figure(2), hold off, lf

spy(A0)

title('After preproessing: nonzero pattern of A_0.')

disp('Verifiation (test_1, test_2, ... should be small):')

% ---

% Multipliation of matrix A0 with X0

% ---

au_m_i(A0); % initialization and generation of data needed for matrix

% multipliations with A0 and A0'

Y0 = au_m('N',X0); % ompute Y0 = A0*X0

T0 = A0*X0;

test_1 = norm(Y0-T0,'fro')

% ---

% Multipliation of (transposed) matrix A0' with X0

% ---

Y0 = au_m('T',X0); % ompute Y0 = A0'*X0

T0 = A0'*X0;

test_2 = norm(Y0-T0,'fro')

C.1 Demo programs for user-supplied funtions 47

% ---

% Solution of system of linear equations with A0

% ---

au_l_i; % initialization for solving systems with A0 and A0'

Y0 = au_l('N',X0); % solve A0*Y0 = X0

test_3 = norm(A0*Y0-X0,'fro')

% ---

% Solution of (transposed) system of linear equations with A0'

% ---

Y0 = au_l('T',X0); % solve A0'*Y0 = X0

test_4 = norm(A0'*Y0-X0,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% ---

disp('Shift parameters:')

p = [-1; -2+3*j; -2-3*j ℄

au_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I and A0'+p(i)*I

% (i = 1,...,3)

Y0 = au_s('N',X0,1);

test_5 = norm(A0*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('N',X0,2);

test_6 = norm(A0*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('N',X0,3);

test_7 = norm(A0*Y0+p(3)*Y0-X0,'fro')

% ---

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A0'+p(i)*I)*Y0 = X0.

% ---

Y0 = au_s('T',X0,1);

48 C CASE STUDIES

test_8 = norm(A0'*Y0+p(1)*Y0-X0,'fro')

Y0 = au_s('T',X0,2);

test_9 = norm(A0'*Y0+p(2)*Y0-X0,'fro')

Y0 = au_s('T',X0,3);

test_10 = norm(A0'*Y0+p(3)*Y0-X0,'fro')

% ---

% Postproessing

% ---

%

% There is no postproessing.

% ---

% Destroy global data strutures (lear "hidden" global variables)

% ---

au_m_d; % lear global variables initialized by au_m_i

au_l_d; % lear global variables initialized by au_l_i

au_s_d(p); % lear global variables initialized by au_s_i

C.1.2 Demo program demo_u2:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'au_qmr_ilu_*'

%

%

% This demo program shows how the user-supplied funtions 'au_qmr_ilu_*'

% work.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidisretized PDE problem

% (an instationary onvetion-diffusion heat equation on the unit square

% with homogeneous 1st kind boundary onditions).

% We reorder the olumns and rows of the resulting stiffness matrix by

% a random permutation to generate a "bad" nonzero pattern.

n0 = 30; % n0 = number of grid points in either spae diretion;

C.1 Demo programs for user-supplied funtions 49

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'10*x','100*y','0'); % Note: A is unsymmetri.

[dummy,pm℄ = sort(randn(n0^2,1)); % generate a random permutation

A = A(pm,pm);

disp('Problem dimensions:')

n = size(A,1) % problem order

t = 3; j = sqrt(-1); % generate omplex matrix X, whih

X = randn(n,t)+j*randn(n,t); % ontains muh fewer olumns than rows

% ---

% Preproessing

% ---

%

% There is no preproessing.

figure(1), hold off, lf

spy(A)

title('Nonzero pattern of A.')

disp('Verifiation (test_1, test_2, ... should be small):')

% ---

% Multipliation of matrix A with X

% ---

m = 'M', % optimize for memory, i.e., preonditioners will be

% generated right before any QMR run

max_it_qmr = 50, % maximal number of QMR iteration steps

tol_qmr = 1e-15, % normalized residual norm for stopping the QMR

% iterations

tol_ilu = 1e-2, % dropping tolerane for generating ILU preonditioners

info_qmr = 2, % amount of displayed information on performane of

% ILU-QMR iteration

disp('NOTE: The USFs will return a warning message, when they fail to')

disp(' fulfill the stopping riteria for the ILU-QMR iteration.')

disp(' Also, the attained auray is displayed, whih allows the')

disp(' user to judge, whether the results are still aeptable or')

disp(' not.')

50 C CASE STUDIES

pause(5)

au_qmr_ilu_m_i(A,m,max_it_qmr,tol_qmr,tol_ilu,info_qmr);

% initialization and generation of data needed for matrix

% multipliations with A

Y = au_qmr_ilu_m('N',X); % ompute Y = A*X (here, of ourse, QMR is

% not involved)

T = A*X;

test_1 = norm(Y-T,'fro')

% ---

% Multipliation of (transposed) matrix A' with X

% ---

Y = au_qmr_ilu_m('T',X); % ompute Y = A'*X (here, of ourse, QMR is

% not involved)

T = A'*X;

test_2 = norm(Y-T,'fro')

% ---

% Solution of system of linear equations with A

% ---

au_l_i; % initialization for solving systems with A and A'

Y = au_qmr_ilu_l('N',X); % solve A*Y = X

test_3 = norm(A*Y-X,'fro')

% ---

% Solution of (transposed) system of linear equations with A'

% ---

Y = au_qmr_ilu_l('T',X); % solve A'*Y = X

test_4 = norm(A'*Y-X,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A+p(i)*I)*Y = X.

% ---

disp('Shift parameters:')

C.1 Demo programs for user-supplied funtions 51

p = [-1; -2+3*j; -2-3*j ℄

au_qmr_ilu_s_i(p) % initialization for solution of shifted systems of

% linear equations with system matrix A+p(i)*I and

% A'+p(i)*I (i = 1,...,3)

Y = au_qmr_ilu_s('N',X,1);

test_5 = norm(A*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,2);

test_6 = norm(A*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('N',X,3);

test_7 = norm(A*Y+p(3)*Y-X,'fro')

% ---

% Solve (transposed) shifted systems of linear equations, i.e.

% solve (A'+p(i)*I)*Y = X.

% ---

Y = au_qmr_ilu_s('T',X,1);

test_8 = norm(A'*Y+p(1)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,2);

test_9 = norm(A'*Y+p(2)*Y-X,'fro')

Y = au_qmr_ilu_s('T',X,3);

test_10 = norm(A'*Y+p(3)*Y-X,'fro')

% ---

% Postproessing

% ---

%

% There is no postproessing.

% ---

% Destroy global data strutures (lear "hidden" global variables)

% ---

au_qmr_ilu_m_d; % lear global variables initialized by au_qmr_ilu_m_i

au_qmr_ilu_l_d; % lear global variables initialized by au_qmr_ilu_l_i

au_qmr_ilu_s_d(p); % lear global variables initialized by

% au_qmr_ilu_s_i

52 C CASE STUDIES

C.1.3 Demo program demo_u3:

%

% REALIZATION OF BASIC MATRIX OPERATIONS BY USER-SUPPLIED

% FUNCTIONS 'munu_*'

%

%

% This demo program shows how the user-supplied funtions 'munu_*' work.

% In this partiular ase, we onsider a generalized dynamial system

% with symmetri matries M and N, but we will use non-real shift

% parameters. For this reason, 'munu_*' is used instead of 'msns_*'.

% ---

% Generate test problem

% ---

%

% As test example, we use an FEM-semidisretized problem, whih leads to

% a generalized system where M (the mass matrix) and N (the negative

% stiffness matrix) are sparse, symmetri, and definite.

load rail821 % load the matries M N

disp('Problem dimensions:')

n = size(M,1) % problem order

t = 3; j = sqrt(-1); % generate omplex matrix X0, whih

X0 = randn(n,t)+j*randn(n,t); % ontains muh fewer olumns than rows

% ---

% Preproessing

% ---

[M0,ML,MU,N0,dummy,dummy,prm,iprm℄ = munu_pre(M,N,[℄,[℄);

% munu_pre realizes a preproessing:

% - The olumns and rows of M and N are

% simultaneously reordered to redue the

% bandwidth. The result is M0 and N0. prm and

% iprm are the orresponding permutation and

% inverse permutation.

% - A Cholesky fatorization of M is omputed,

% so that the impliit system matrix A0 is

% A0 = inv(ML)*N0*inv(MU).

% - Sine we onsider only the matrix A0 but not

% a dynamial system, we use [℄ as 2nd and 3rd

C.1 Demo programs for user-supplied funtions 53

% input parameter. dummy = [℄ is returned.

figure(1), hold off, lf

spy(M)

title('Before prepro.: nonzero pattern of M. That of N is the same.')

figure(2), hold off, lf

spy(M0)

title('After prepro.: nonzero pattern of M_0. That of N_0 is the same.')

disp('Verifiation (test_1, test_2, ... should be small):')

% ---

% Multipliation of matrix A0 with X0

% ---

munu_m_i(M0,ML,MU,N0) % initialization and generation of data needed

% for matrix multipliations with A0

Y0 = munu_m('N',X0); % ompute Y0 = A0*X0

T0 = ML\(N0*(MU\X0));

test_1 = norm(Y0-T0,'fro')

% ---

% Solution of system of linear equations with A0

% ---

munu_l_i; % initialization for solving systems solve with A0

Y0 = munu_l('N',X0); % solve A0*Y0 = X0

test_2 = norm(ML\(N0*(MU\Y0))-X0,'fro')

% ---

% Solve shifted systems of linear equations, i.e.

% solve (A0+p(i)*I)*Y0 = X0.

% ---

disp('Shift parameters:')

p = [-1; -2+3*j; -2-3*j ℄

munu_s_i(p) % initialization for solution of shifted systems of linear

% equations with system matrix A0+p(i)*I (i = 1,...,3)

54 C CASE STUDIES

Y0 = munu_s('N',X0,1);

test_3 = norm(ML\(N0*(MU\Y0))+p(1)*Y0-X0,'fro')

Y0 = munu_s('N',X0,2);

test_4 = norm(ML\(N0*(MU\Y0))+p(2)*Y0-X0,'fro')

Y0 = munu_s('N',X0,3);

test_5 = norm(ML\(N0*(MU\Y0))+p(3)*Y0-X0,'fro')

% ---

% Postproessing

% ---

%

% There is no postproessing.

% ---

% Destroy global data strutures (lear "hidden" global variables)

% ---

munu_m_d; % lear global variables initialized by munu_m_i

munu_l_d; % lear global variables initialized by munu_l_i

munu_s_d(p); % lear global variables initialized by munu_s_i

C.2 Demo program for LRCF-ADI iteration and algorithm for

omputing ADI parameters

C.2.1 Demo program demo_l1

%

% SOLUTION OF LYAPUNOV EQUATION BY THE LRCF-ADI METHOD (AND GENERATION

% OF ADI PARAMETERS)

%

% This demo program shows how the routines 'lp_para' (omputation of

% ADI shift parameters) and 'lp_lradi' (LRCF-ADI iteration for the

% solution of the Lyapunov equation F*X+X*F'=-G*G') work. Also, the

% use of user-supplied funtions is demonstrated.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidisretized PDE problem

% (an instationary onvetion-diffusion heat equation on the unit square

C.2 Demo program for LRCF-ADI iteration 55

% with homogeneous 1st kind boundary onditions).

n0 = 20; % n0 = number of grid points in either spae diretion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

F = fdm_2d_matrix(n0,'10*x','100*y','0');

G = fdm_2d_vetor(n0,'.1<x<=.3');

disp('Problem dimensions:')

n = size(G,1) % problem order

m = size(G,2) % number of olumns in fator of r.h.s. (mostly, the rank

% of the r.h.s.)

% ---

% Initialization/generation of data strutures used in user-supplied

% funtions and omputation of ADI shift parameters

% ---

%

% Note that the routines 'au_m_i', 'au_l_i', and 'au_s_i' reate global

% variables, whih ontain the data that is needed for the effiient

% realization of basi matrix operations with F (multipliations,

% solution of systems of linear equations, solution of shifted systems

% of linear equations).

name = 'au'; % basis name of user-supplied funtions applied to the

% problem with nonsymmetri F. Note: in this lass of

% user-supplied funtions, sparse LU fatorizations are

% applied to solve (shifted) systems of linear equations.

f = flops;

[F0,G0,dummy,prm,iprm℄ = au_pre(F,G,[℄); % preproessing (reordering

% for bandwidth redution)

% Note the dummy parameter,

% whih will be set to [℄ on

% exit.

au_m_i(F0); % initialization for matrix multipliations with F0

au_l_i; % initialization for solving systems with F0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(F0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para'.)

disp('Parameters for heuristi algorithm whih omputes ADI parameters:')

56 C CASE STUDIES

l0 = 15 % desired number of distint shift parameters

kp = 50 % number of steps of Arnoldi proess w.r.t. F0

km = 25 % number of steps of Arnoldi proess w.r.t. inv(F0)

b0 = ones(n,1); % This is just one way to hoose the Arnoldi start

% vetor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % omputation of ADI shift

% parameters

disp('Atual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations with

% F0+p(i)*I (i = 1,...,l)

disp('Flops required for a-priori omputations:')

a_priori_flops = flops-f

% ---

% Solution of Lyapunov equation F*X+X*F' = -G*G' (or, more preisely,

% the transformed equation F0*X0+X0*F0' = -G0*G0') by LRCF-ADI iteration

% ---

%

% The approximate solution is given by the low rank Cholesky fator Z0,

% i.e., Z0*Z0' is approximately X0

%

% The stopping riteria are hosen, suh that the iteration is stopped

% shortly after the residual urve stagnates. This requires the sometimes

% expensive omputation of the residual norms. (If you want to avoid

% this, you might hoose max_it = 500 (large value), min_res = 0

% ("avoided"), with_rs = 'N' ("avoided"), min_in = 1e-12 ("ativated").)

disp('Parameters for stopping riteria in LRCF-ADI iteration:')

max_it = 500 % max. number of iteration steps (here, a very large

% value, whih will probably not stop the iteration)

min_res = 0 % tolerane for normalized residual norm (riterion

% is "avoided")

with_rs = 'S' % stopping riterion "stagnation of the normalized

% residual norms" ativated

min_in = 0 % threshold for smallness of values ||V_i||_F (riterion

% is "avoided")

C.2 Demo program for LRCF-ADI iteration 57

disp('Further input parameters of the routine ''lp_lradi'':');

tp = 'B' % type of Lyapunov equation to be solved

% (here, F0*X0+X0*F0'=-G0*G0')

zk = 'Z' % ompute Z0 or generate Z0*Z0'*K0 (here, Z0)

r = 'C' % ompute possibly omplex Z0 or demand for real Z0 (here,

% a omplex matrix Z0 may be returned)

Kf = [℄, Bf = [℄ % feedbak matries (these parameters are only used

% in the Newton iteration)

info = 3 % information level (here, maximal amount of information is

% provided during the LRCF-ADI iteration)

figure(1), hold off; lf; % (lp_lradi will plot residual history.)

[Z0,flag,res,flp℄ = lp_lradi(tp,zk,r,name,Bf,Kf,G0,p,max_it,min_res,...

with_rs,min_in,info);

% Note that in lp_lradi the transformed r.h.s.

% matrix G0 must be used.

disp('Termination flag of the routine ''lp_lradi'':')

flag

disp('Internally omputed normalized residual norm (of final iterate):');

final_nrn = res(end)

disp('Number of flops required for the whole iteration');

disp('(without a-priori omputation and omputation of residual norm):');

lrf_adi_flops = flp(end)

% ---

% Postproessing, destroy global data strutures

% ---

%

% NOTE: The matries F and G have been reordered in the preproessing

% step (''au_pre'') resulting in F0 and G0. This means that the rows of

% the matrix Z0 must be re-reordered in a postproessing step to obtain

% the solution to the original Lyapunov equation!

Z = au_pst(Z0,iprm);

au_m_d; % lear global variables initialized by au_m_i

au_l_d; % lear global variables initialized by au_l_i

au_s_d(p); % lear global variables initialized by au_s_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real (0 = no, 1 = yes)?')

58 C CASE STUDIES

is_real = ~any(any(imag(Z)))

% ---

% Verify the result

% ---

%

% Note that this is only an "illustrative" way of verifying the auray

% by omputing the (normalized) residual norm. A more pratial (beause

% less expensive) way is evaluating the residual norm by means of the

% routine 'lp_nrm' (Must be applied before postproessing!), if the

% residual norms have not been generated during the iteration.

disp('The attained residual norm:')

res_norm = norm(F*Z*Z'+Z*Z'*F'+G*G','fro')

disp('The attained normalized residual norm:')

normal_res_norm = res_norm/norm(G*G','fro')

C.2.2 Results and remarks

In demo_l1 the LRCF-ADI iteration is stopped by the stopping riterion related to the

parameter with_rs (stagnation of the residual norm). The number of iteration steps is 43.

Hene, the low rank Cholesky fator Z is a 400� 43 matrix. It is not real. The attained

normalized residual norm is approximately 1:4 � 10

�15

. About 4 � 10

6

�ops were needed for

the omputations (without omputing the residual norms). Figure 12 shows the residual

history.

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

N
or

m
al

iz
ed

 re
si

du
al

 n
or

m

Iteration steps

Figure 12: Residual history for the LRCF-ADI iteration in demo_l1.

C.3 Demo programs for model redution algorithms 59

C.3 Demo programs for model redution algorithms

C.3.1 Demo program demo_m1

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A REDUCED SYSTEM OF VERY SMALL ORDER.

%

% This demo program shows how the model redution routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied funtions is demonstrated.

% ---

% Generate test problem

% ---

%

% This is an artifiial test problem of a system, whose Bode plot shows

% "spires".

A = sparse(408,408); B = ones(408,1); C = ones(1,408);

A(1:2,1:2) = [-.01 -200; 200 .001℄;

A(3:4,3:4) = [-.2 -300; 300 -.1℄;

A(5:6,5:6) = [-.02 -500; 500 0℄;

A(7:8,7:8) = [-.01 -520; 520 -.01℄;

A(9:408,9:408) = spdiags(-(1:400)',0,400,400);

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% ---

% Initialization/generation of data strutures used in user-supplied

% funtions and omputation of ADI shift parameters

% ---

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

% omments.

%

% Note that A is a tridiagonal matrix. No preproessing needs to be done.

name = 'au';

au_m_i(A); % initialization for multipliation with A

au_l_i; % initialization for solving systems with A

disp('Parameters for heuristi algorithm whih omputes ADI parameters:')

60 C CASE STUDIES

l0 = 10 % desired number of distint shift parameters

kp = 30 % number of steps of Arnoldi proess w.r.t. A

km = 15 % number of steps of Arnoldi proess w.r.t. inv(A)

b0 = ones(n,1); % This is just one way to hoose the Arnoldi start

% vetor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % omputation of ADI shift

% parameters

disp('Atual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

au_s_i(p) % initialization for shifted systems of linear equations

% with A+p(i)*I (i = 1,...,l)

% ---

% Solution of Lyapunov equations A*X+X*A' = -B*B' and

% A'*X+X*A = -C'*C

% ---

disp('Parameters for stopping riteria in LRCF-ADI iteration:')

max_it = 20 % (will stop the iteration)

min_res = 1e-100 % (avoided, but the residual history is shown)

with_rs = 'N' % (avoided)

min_in = 0 % (avoided)

zk = 'Z';

r = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A*XB+XB*A'' = - B*B''...');

tp = 'B';

figure(1), hold off; lf; % (lp_lradi will plot residual history.)

[ZB,flag_B℄ = lp_lradi(tp,zk,r,name,Bf,Kf,B,p,max_it,min_res,...

with_rs,min_in,info);

% ompute ZB

C.3 Demo programs for model redution algorithms 61

title('LRCF-ADI for CALE AX_{B}+X_{B}A^T = -BB^T')

disp('Termination flag:')

flag_B

disp('Size of ZB:');

size_ZB = size(ZB)

disp('... solving A''*XC+XC*A = - C''*C...');

tp = 'C';

figure(2), hold off; lf; % (lp_lradi will plot residual history.)

[ZC,flag_C℄ = lp_lradi(tp,zk,r,name,Bf,Kf,C,p,max_it,min_res,...

with_rs,min_in,info);

% ompute ZC

title('LRCF-ADI for CALE A^T X_{C} + X_{C} A_ = -C^TC')

disp('Termination flag:')

flag_C

disp('Size of ZC:');

size_ZC = size(ZC)

% ---

% Plot the transfer funtion of the system for a ertain frequeny range

% ---

disp('... omputing transfer funtion of original system ...');

freq = lp_lgfrq(100,1000,200); % generate a set of 200 "frequeny

% sampling points" in the interval

% [100,1000℄.

G = lp_trfia(freq,A,B,C,[℄,[℄); % ompute "transfer funtion sample"

% for these frequeny points

nrm_G = lp_gnorm(G,m,q); % ompute norms of the "transfer funtion

% sample" for these frequeny points

figure(3); hold off; lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'Bode plots: dotted: ||G||';

title(t_text);

pause(1)

% ---

62 C CASE STUDIES

% Generate redued systems

% ---

disp('Parameters for model redution:')

max_ord = 10 % (This parameter determines the redued order.)

tol = 0 % (avoided)

disp('... omputing redued system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B,C,ZB,ZC,max_ord,tol); % run LRSRM

disp('Redued order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % ompute "transfer funtion

% sample" for redued system

nrm_Grs = lp_gnorm(Grs,m,q); % ompute norm transfer funtion samples

% of redued system

figure(3); hold on

loglog(freq,nrm_Grs,'r-');

t_text = [t_text, ', solid: ||G_{LRSRM}||'℄;

title(t_text); pause(1)

disp('... omputing redued system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B,C,ZB,ZC,max_ord,tol); % run DSPMR

disp('Redued order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % ompute "transfer funtion

% sample" for redued system

nrm_Grd = lp_gnorm(Grd,m,q); % ompute norm transfer funtion samples

% of redued system

figure(3); hold on

loglog(freq,nrm_Grd,'b--');

t_text = [t_text, ', dashed: ||G_{DSPMR}||'℄;

title(t_text); pause(1)

% ---

% Destroy global data strutures

% ---

au_m_d;

au_l_d;

C.3 Demo programs for model redution algorithms 63

au_s_d(p);

C.3.2 Results and remarks

In the demo program demo_m1 we use very inaurate Gramians. The normalized residual

norms are only � 7:8 � 10

�2

. The redued order of the systems delivered by LRSRM and

DSPMR is as low as 10. The result of the demo program is shown in Figure 13. There

simultaneous Bode magnitude plots of the original system and and both redued systems

are shown.

10
2

10
3

10
−1

10
0

10
1

ω

M
ag

ni
tu

de

Figure 13: Simultaneous Bode magnitude plots of original system (dotted), redued system

by LRSRM, and redued system by DSPMR generated by the demo program demo_m1.

Both Bode plots of both redued systems are almost idential and shown as solid line.

C.3.3 Demo program demo_m2

%

% MODEL REDUCTION BY THE ALGORITHMS LRSRM AND DSPMR. THE GOAL IS TO

% GENERATE A "NUMERICALLY MINIMAL REALIZATION" OF THE GIVEN SYSTEM

% AS WELL AS A REDUCED SYSTEM OF RELATIVELY SMALL ORDER.

%

% This demo program shows how the model redution routines 'lp_lrsrm'

% and 'lp_dspmr' work. Also, the use of 'lp_lradi', supplementary

% routines, and user-supplied funtions is demonstrated.

% ---

% Generate test problem

% ---

%

% As test example, we use an FEM-semidisretized problem, whih leads to

% a generalized system where M (the mass matrix) and N (the negative

64 C CASE STUDIES

% stiffness matrix) are sparse, symmetri, and definite.

load rail821 % load the matries M N Btilde Ctilde of the generalized

% system

%load rail3113 % Unomment this to get an example of larger order.

disp('Problem dimensions:')

n = size(M,1) % problem order (number of states)

m = size(Btilde,2) % number of inputs

q = size(Ctilde,1) % number of outputs

% ---

% Initialization/generation of data strutures used in user-supplied

% funtions and omputation of ADI shift parameters

% ---

%

% See 'demo_u1', 'demo_u2', 'demo_u3', and 'demo_l1' for more detailed

% omments.

name = 'msns';

[M0,MU,N0,B0,C0,prm,iprm℄ = msns_pre(M,N,Btilde,Ctilde); % preproessing

msns_m_i(M0,MU,N0); % initialization for multipliation with A0

msns_l_i; % initialization for solving systems with A0

disp('Parameters for heuristi algorithm whih omputes ADI parameters:')

l0 = 20 % desired number of distint shift parameters

kp = 50 % number of steps of Arnoldi proess w.r.t. A0

km = 25 % number of steps of Arnoldi proess w.r.t. inv(A0)

b0 = ones(n,1); % This is just one way to hoose the Arnoldi start

% vetor.

p = lp_para(name,[℄,[℄,l0,kp,km,b0); % omputation of ADI shift

% parameters

disp('Atual number of ADI shift parameters:');

l = length(p)

disp('ADI shift parameters:');

p

msns_s_i(p) % initialization for shifted systems of linear equations

% with A0+p(i)*I (i = 1,...,l)

C.3 Demo programs for model redution algorithms 65

% ---

% Solution of Lyapunov equations A0*XB0+XB0*A0' = -B0*B0' and

% A0'*XC0+XC0*A0 = -C0'*C0

% ---

disp('Parameters for stopping riteria in LRCF-ADI iteration:')

max_it = 200 % (large value)

min_res = 0 % (avoided)

with_rs = 'S' % ("ativated")

min_in = 0 % (avoided)

zk = 'Z';

r = 'C';

Bf = [℄;

Kf = [℄;

info = 3;

disp('... solving A0*XB0+XB0*A0'' = - B0*B0''...');

tp = 'B';

figure(1), hold off; lf;

[ZB0,flag_B℄ = lp_lradi(tp,zk,r,name,Bf,Kf,B0,p,max_it,min_res,...

with_rs,min_in,info);

% ompute ZB0

title('LRCF-ADI for CALE A_0X_{B0}+X_{B0}A_0^T = -B_0B_0^T')

disp('Termination flag:')

flag_B

disp('Size of ZB0:');

size_ZB0 = size(ZB0)

disp('... solving A0''*XC0+XC0*A0 = - C0''*C0...');

tp = 'C';

figure(2), hold off; lf;

[ZC0,flag_C℄ = lp_lradi(tp,zk,r,name,Bf,Kf,C0,p,max_it,min_res,...

with_rs,min_in,info);

% ompute ZC0

title('LRCF-ADI for CALE A_0^T X_{C0} + X_{C0} A_0 = -C_0^TC_0')

disp('Termination flag:')

flag_C

disp('Size of ZC0:');

size_ZC0 = size(ZC0)

% ---

66 C CASE STUDIES

% Plot the transfer funtion of the system for a ertain frequeny range

% ---

disp('... omputing transfer funtion of original system ...');

freq = lp_lgfrq(1e-10,1e10,200); % generate a set of 200 "frequeny

% sampling points" in the interval

% [10^-10,10^+10℄.

G = lp_trfia(freq,N,Btilde,Ctilde,[℄,M); % ompute "transfer funtion

% sample" for these frequeny

% points

nrm_G = lp_gnorm(G,m,q); % ompute norms of the "transfer funtion

% sample" for these frequeny points

figure(3); hold off; lf;

loglog(freq,nrm_G,'k:');

xlabel('\omega');

ylabel('Magnitude');

t_text = 'dotted: ||G||';

title(t_text);

pause(1)

% ---

% Generate redued systems of high auray and possibly high order

% ---

disp(' ')

disp('Generate redued systems of high auray and possibly high order')

disp('---')

disp('Parameters for model redution:')

max_ord = [℄ % (avoided)

tol = 1e-14 % (This riterion determines the redued order. The very

% small value is hosen to generate a "numerially minimal

% realization".)

disp('... omputing redued system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redued order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % ompute "transfer funtion

% sample" for redued system

C.3 Demo programs for model redution algorithms 67

nrm_dGrs = lp_gnorm(G-Grs,m,q); % ompute norm of DIFFERENCE of

% transfer funtion samples of original

% and redued system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

t_text = [t_text, ', solid: ||G-G_{DSPMR}||'℄;

title(t_text); pause(1)

disp('... omputing redued system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redued order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % ompute "transfer funtion

% sample" for redued system

nrm_dGrd = lp_gnorm(G-Grd,m,q); % ompute norm of DIFFERENCE of

% transfer funtion samples of original

% and redued system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--'); pause(1)

t_text = [t_text, ', solid: ||G-G_{LRSRM}||'℄;

title(t_text); pause(1)

% ---

% Generate redued systems of low order

% ---

disp(' ')

disp('Generate redued systems of low order')

disp('-------------------------------------')

disp('Parameters for model redution:')

max_ord = 25 % (This riterion determines the redued order.)

tol = 0 % (avoided)

disp('... omputing redued system by LRSRM ...');

[Ars,Brs,Crs℄ = lp_lrsrm(name,B0,C0,ZB0,ZC0,max_ord,tol); % run LRSRM

disp('Redued order:')

disp(length(Ars))

Grs = lp_trfia(freq,Ars,Brs,Crs,[℄,[℄); % ompute "transfer funtion

68 C CASE STUDIES

% sample" for redued system

nrm_dGrs = lp_gnorm(G-Grs,m,q); % ompute norm of DIFFERENCE of

% transfer funtion samples of original

% and redued system.

figure(3); hold on

loglog(freq,nrm_dGrs,'r-');

disp('... omputing redued system by DSPMR ...');

[Ard,Brd,Crd℄ = lp_dspmr(name,B0,C0,ZB0,ZC0,max_ord,tol); % run DSPMR

disp('Redued order:')

disp(length(Ard))

Grd = lp_trfia(freq,Ard,Brd,Crd,[℄,[℄); % ompute "transfer funtion

% sample" for redued system

nrm_dGrd = lp_gnorm(G-Grd,m,q); % ompute norm of DIFFERENCE of

% transfer funtion samples of original

% and redued system.

figure(3); hold on

loglog(freq,nrm_dGrd,'b--');

% ---

% Destroy global data strutures

% ---

msns_m_d;

msns_l_d;

msns_s_d(p);

C.3.4 Results and remarks

In ontrast to demo_m1, we use very aurate Gramians in the program demo_m2. The

normalized residual norms for Z

B0

and Z

C0

are � 7:0 �10

�14

and � 1:7 �10

�14

, respetively.

Using these low rank Cholesky fators of the Gramians we generate two pairs of redued

systems by LRSRM and DSPMR. In the �rst run we attempt to generate a pair of redued

systems, whih are very aurate. Indeed, Figure 14 shows that the approximation error

kG(|!)�

^

G(|!)k for both redued systems is very small ompared to the Bode magnitude

funtion of the original system. We allow the redued order to be relatively large by

hoosing a very small value for tol. These orders are 118 for LRSRM and 208 for DSPMR.

LRSRM and DSPMR deliver almost idential results w.r.t. the approximation error, but

LRSRM delivers a system of lower order. In the seond run, we use �xed redued orders

k = 25. We still obtain relatively small approximation errors; see Figure 14. Here, the

result by LRSRM is again better than that by DSPMR. Note that we show approximation

C.4 Demo program for algorithms for Riati equations 69

errors in Figure 14 as opposed to simultaneous Bode plots in Figure 13. The redued

systems generated by demo_m2 are so aurate that idential urves would be displayed in

simultaneous Bode magnitude plots.

10
−10

10
−5

10
0

10
5

10
10

10
−20

10
−15

10
−10

10
−5

10
0

10
5

ω

M
ag

ni
tu

de

Figure 14: Results of demo_m2. The dotted line is the Bode magnitude plot of the original

system, i.e, the funtion kG(|!)k. The solid and dashed lines are the approximation

errors, i.e., the funtions kG(|!)�

^

G(|!)k, for LRSRM and DSPMR, respetively. The

lower two urves orrespond to the �rst run (highly aurate redued systems, �numerially

minimal realization�) and the upper two to the seond run (low redued order).

C.4 Demo program for algorithms for Riati equations and

linear-quadrati optimal problems

C.4.1 Demo program demo_r1

%

% SOLUTION OF RICCATI EQUATION BY LRCF-NM AND SOLUTION OF LINEAR-

% QUADRATIC OPTIMAL CONTROL PROBLEM BY LRCF-NM-I

%

% This demo program shows how both modes (i.e., the one for LRCF-NM and

% the one for LRCF-NM-I) work. Also, the use of user-supplied funtions

% is demonstrated in this ontext.

% ---

% Generate test problem

% ---

%

% As test example, we use a simple FDM-semidisretized PDE problem

% (an instationary heat equation on the unit square with homogeneous 1st

% kind boundary onditions).

%

% Note that the negative stiffness matrix A is symmetri.

70 C CASE STUDIES

n0 = 20; % n0 = number of grid points in either spae diretion;

% n = n0^2 is the problem dimension!

% (Change n0 to generate problems of different size.)

A = fdm_2d_matrix(n0,'0','0','0');

B = fdm_2d_vetor(n0,'.1<x<=.3');

C = (fdm_2d_vetor(n0,'.7<x<=.9'))';

Q0 = 10 % Q = Q0*Q0' = 100

R0 = 1 % R = R0*R0' = 1

K_in = [℄; % Initial feedbak K is zero (Note that A is stable).

disp('Problem dimensions:')

n = size(A,1) % problem order (number of states)

m = size(B,2) % number of inputs

q = size(C,1) % number of outputs

% ---

% Initialization/generation of data strutures used in user-supplied

% funtions

% ---

%

% Note that we use routines 'au_*' rather than the routines 'as_*',

% although A is symmetri. This is beause ADI shift parameters w.r.t.

% the nonsymmetri losed loop matrix A-B*K' (generated in the routine

% lp_lrnm) might be not real. The routines 'as_*' are restrited to

% problems, where the shift parameters are real.

name = 'au';

[A0,B0,C0,prm,iprm℄ = au_pre(A,B,C); % preproessing (reordering for

% bandwidth redution)

% Note that K_in is zero. Otherwise it needs not be transformed as well.

au_m_i(A0); % initialization for matrix multipliations with A0

au_l_i; % initialization for solving systems with A0 (This is needed in

% the Arnoldi algorithm w.r.t. inv(A0). The Arnoldi algorithm

% is part of the algorithm in 'lp_para', whih in turn will

% be invoked in eah Newton step in the routine 'lp_lrnm'.)

% Note that 'au_s_i' will be invoked repeatedly in 'lp_lrnm'.

C.4 Demo program for algorithms for Riati equations 71

disp('Parameters for heuristi algorithm whih omputes ADI parameters:')

l0 = 15 % desired number of distint shift parameters

kp = 50 % number of steps of Arnoldi proess w.r.t. A0-B0*K0'

km = 25 % number of steps of Arnoldi proess w.r.t. inv(A0-B0*K0')

% ---

% Compute LRCF Z0 by LRCF-NM

% ---

%

% The approximate solution is given by the low rank Cholesky fator Z0,

% i.e., Z0*Z0' is approximately X0, where X0 is the solution of the

% transformed Riati equation

%

% C0'*Q0*Q0'*C0+A0'*X0+X0*A0-X0*B0*inv(R0*R0')*B0'*X0 = 0.

%

% The stopping riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are hosen, suh that the iterations are

% stopped shortly after the residual urves stagnate. This requires

% the sometimes expensive omputation of the Lyapunov equation

% and Riati equation residual norms.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whih will probably not stop the iteration)

min_res_r = 0 % tolerane for normalized residual norm (riterion

% is "avoided")

with_rs_r = 'S' % stopping riterion "stagnation of the normalized

% residual norms" ativated

min_k_r = 0 % stopping riterion "smallness of the RCF" ("avoided")

% (RCF = relative hange of the feedbak matrix)

with_ks_r = 'N' % stopping riterion "stagnation of the RCF"

% (riterion is "avoided")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whih will probably not stop the iteration)

min_res_l = 0 % tolerane for normalized residual norm (riterion

% is "avoided")

with_rs_l = 'S' % stopping riterion "stagnation of the normalized

% residual norms" ativated

min_in_l = 0 % threshold for smallness of values ||V_i||_F

% (riterion is "avoided")

disp('Further input parameters of the routine ''lp_lrnm'':');

72 C CASE STUDIES

zk = 'Z' % ompute Z0 by LRCF-NM or generate diretly

% K_out = Z0*Z0'*K_in (here, Z0 is omputed)

r = 'C' % ompute possibly omplex Z0 or demand for real Z0 (here,

% a omplex matrix Z0 may be returned)

info_r = 3; % information level for the Newton iteration (here,

% maximal amount of information is provided)

info_l = 3; % information level for LRCF-ADI iterations (here,

% maximal amount of information is provided)

randn('state',0); % (This measure is taken to make the test results

% repeatable. Note that a random vetor is involved

% into the omputation of ADI parameters inside

% 'lp_lrnm'.)

[Z0, flag_r, res_r, flp_r, flag_l, its_l, res_l, flp_l℄ = lp_lrnm(...

zk, r, name, B0, C0, Q0, R0, K_in, max_it_r, min_res_r, with_rs_r,...

min_k_r, with_ks_r, info_r, kp, km, l0, max_it_l, min_res_l,...

with_rs_l, min_in_l, info_l);

disp('Results for (outer) Newton iteration in LRCF-NM:')

disp('Termination flag:')

flag_r

disp('Internally omputed normalized residual norm of final iterate:');

final_nrn_r = res_r(end)

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

disp('Internally omputed normalized residual norms of final iterates:');

final_nrn_l = [℄;

for i = 1:length(its_l)

final_nrn_l = [final_nrn_l; res_l(its_l(i)+1,i)℄;

end

final_nrn_l

% ---

C.4 Demo program for algorithms for Riati equations 73

% Compute (approximately) optimal feedbak K0 by LRCF-NM-I

% ---

%

% Here, the matrix K0 that solves the (transformed) linear-quadrati

% optimal ontrol problem is omputed by LRCF-NM-I.

%

% The stopping riteria for both the (outer) Newton iteration and the

% (inner) LRCF-ADI iteration are hosen by inexpensive heuristi

% riteria.

disp('Parameters for stopping the (outer) Newton iteration:')

max_it_r = 20 % max. number of iteration steps (here, a very large

% value, whih will probably not stop the iteration)

min_res_r = 0 % tolerane for normalized residual norm (riterion

% is "avoided")

with_rs_r = 'N' % stopping riterion "stagnation of the normalized

% residual norms" (riterion is "avoided")

min_k_r = 1e-12 % stopping riterion "smallness of the RCF"

% ("ativated")

with_ks_r = 'L' % stopping riterion "stagnation of the RCF"

% ("ativated")

disp('Parameters for stopping the (inner) LRCF-ADI iterations:')

max_it_l = 500 % max. number of iteration steps (here, a very large

% value, whih will probably not stop the iteration)

min_res_l = 0 % tolerane for normalized residual norm (riterion

% is "avoided")

with_rs_l = 'N' % stopping riterion "stagnation of the normalized

% residual norms" (riterion is "avoided")

min_in_l = 1e-12 % threshold for smallness of values in ||V_i||_F

% (riterion is "ativated")

disp('Further input parameters of the routine ''lp_lradi'':');

zk = 'K'

r = 'C'

info_r = 3

info_l = 3

randn('state',0);

[K0, flag_r, flp_r, flag_l, its_l, flp_l℄ = ...

lp_lrnm(zk, name, B0, C0, Q0, R0, K_in, max_it_r, min_k_r, ...

with_ks_r, info_r, kp, km, l0, max_it_l, min_in_l, info_l);

disp('Results for (outer) Newton iteration in LRCF-NM-I:')

74 C CASE STUDIES

disp('Termination flag:')

flag_r

disp('Results for (inner) LRCF-ADI iterations in LRCF-NM-I:')

disp('Termination flags:')

flag_l

disp('Number of LRCF-ADI iteration steps:')

its_l

% ---

% Postproessing, destroy global data strutures

% ---

%

% Note that both the LRCF Z0 and the state feedbak K0 must be

% postproessed in order to attain the results for the original problems.

Z = au_pst(Z0,iprm);

K = au_pst(K0,iprm);

% Note that 'au_s_d' has already been invoked in 'lp_lrnm'.

au_l_d; % lear global variables initialized by au_l_i

au_m_d; % lear global variables initialized by au_m_i

disp('Size of Z:');

size_Z = size(Z)

disp('Is Z real (0 = no, 1 = yes)?')

Z_is_real = ~any(any(imag(Z)))

disp('Is K real (0 = no, 1 = yes)?')

K_is_real = ~any(any(imag(K)))

% ---

% Verify the result

% ---

%

% Note that this is only an "illustrative" way of verifying the auray

% by omputing the (normalized) residual norm of the Riati equation.

% A more pratial (beause less expensive) way is evaluating the residual

% norm by means of the routine 'lp_rnrm' (Must be applied before

% postproessing!), if the residual norms have not been generated during

C.4 Demo program for algorithms for Riati equations 75

% the iteration.

%

% In general the result for LRCF-NM-I annot be verified. However, we

% will ompare the delivered feedbak K with the feedbak matrix omputed

% by use of the LRCF Z.

disp('The attained CARE residual norm:')

res_norm = norm(C'*Q0*Q0'*C+A'*Z*Z'+Z*Z'*A-Z*Z'*B*((R0*R0')\B')*Z*Z',...

'fro')

disp('The attained normalized CARE residual norm:')

normal_res_norm = res_norm/norm(C'*Q0*Q0'*C,'fro')

disp('The normalized deviation of the feedbak matries omputed by')

disp('LRCF-NM and LRCF-NM-I (small value --> high auray):');

KE = Z*Z'*(B/(R0*R0'));

norm_dev = norm(K-KE,'fro')/max([norm(K,'fro'),norm(KE,'fro')℄)

C.4.2 Results and remarks

In demo_r1 both LRCF-NM and LRCF-NM-I are applied to the same problem. In the �rst

run, the low rank Cholesky fator Z for the solution of the Riati equation is omputed.

Residual based stopping riteria are used. See Figure 15 for the normalized residual norm

history. The (approximate) optimal state feedbak K

(E)

(variable KE) for the solution of

the optimal ontrol problem is omputed �expliitely� by K

(E)

= ZZ

H

BR

�1

. In the seond

run, the optimal ontrol problem is solved diretly by LRCF-NM-I, whih delivers the

approximate optimal state feedbak K. Heuristi stopping riteria are used. The results

of both runs are ompared by the normalized deviation of the state feedbak matries:

kK �K

(E)

k

F

maxfkKk

F

; kK

(E)

k

F

g

� 5:9 � 10

�16

:

76 REFERENCES

0 1 2 3 4 5 6 7 8
10

−15

10
−10

10
−5

10
0

10
5

N
or

m
al

iz
ed

 re
si

du
al

 n
or

m

Iteration steps

Figure 15: normalized residual norm history of the LRCF-NM in demo_r1.

Referenes

[1℄ F. Aliev and V. Larin, Constrution of square root fator for solution of the

Lyapunov matrix equation, Sys. Control Lett., 20 (1993), pp. 109�112.

[2℄ A. Antoulas, D. Sorensen, and S.Guerin, A survey of model redution meth-

ods for large-sale systems, preprint, Dept. of Eletr. and Comp. Engineering, Rie

University, Houston, Texas 77251-1892, USA, 2000.

[3℄ R. Bartels and G. Stewart, Solution of the matrix equation AX + XB = C:

Algorithm 432, Comm. ACM, 15 (1972), pp. 820�826.

[4℄ P. Benner and R. Byers, An exat line searh method for solving general-

ized ontinuous-time algebrai Riati equations, IEEE Trans. Automat. Control, 43

(1998), pp. 101�107.

[5℄ P. Benner, J. Claver, and E. Quintana-Ortí, Parallel distributed solvers for

large stable generalized Lyapunov equations, Parallel Proessing Letters, 9 (1999),

pp. 147�158.

[6℄ P. Benner, J. Li, and T. Penzl, Numerial solution of large lyapunov equations,

riati equations, and linear-quadrati optimal ontrol problems, in preparation, Zen-

trum f. Tehnomathematik, Fb. Mathematik und Informatik, Univ. Bremen, 28334

Bremen, Germany, 2000.

[7℄ P. Benner, V. Mehrmann, V. Sima, S. V. Huffel, and A. Varga, SLICOT - a

subroutine library in systems and ontrol theory, Applied and Computational Control,

Signals, and Ciruits, 1 (1999), pp. 505�546.

[8℄ P. Benner and E. Quintana-Orti, Solving stable generalized Lyapunov equations

with the matrix sign funtion, Numer. Alg., 20 (1999), pp. 75�100.

REFERENCES 77

[9℄ P. Benner, E. Quintana-Orti, and G. Quintana-Orti, Balaned trunation

model redution of large-sale dense systems on parallel omputers. Submitted for

publiation, 1999.

[10℄ R. Byers, Solving the algebrai Riati equation with the matrix sign funtion, Linear

Algebra Appl., 85 (1987), pp. 267�279.

[11℄ E. Davison, A method for simplifying linear dynami systems, IEEE Trans. Automat.

Control, 11 (1966), pp. 93�101.

[12℄ P. Feldmann and R. Freund, E�ient linear iruit analysis by Padé approx-

imation via the Lanzos proess, IEEE Trans. Computer-Aided Design, 14 (1995),

pp. 639�649.

[13℄ R. Freund, Redued-order modeling tehniques based on Krylov subspaes and their

use in iruit simulation. Numerial Analysis Manusript No. 98-3-02, Bell Labora-

tories, Murray Hill, New Jersey, 1998.

[14℄ R. Freund and N. Nahtigal, QMR: a quasi-minimal residual method for non-

Hermitian linear systems, Numer. Math., 60 (1991), pp. 315�339.

[15℄ K. Gallivan, E. Grimme, and P. V. Dooren, Asymptoti waveform evaluation

via a Lanzos method, Appl. Math. Lett., 7 (1994), pp. 75�80.

[16℄ , A rational Lanzos algorithm for model redution, Numer. Alg., 12 (1996),

pp. 33�63.

[17℄ J. Gardiner and A. Laub, Parallel algorithms for the algebrai Riati equations,

Internat. J. Control, 54 (1991), pp. 1317�1333.

[18℄ K. Glover, All optimal Hankel norm approximations of linear multivariable systems

and their L

1

-error bounds, Internat. J. Control, 39 (1984), pp. 1115�1193.

[19℄ G. Golub and C. V. Loan, Matrix Computations, The Johns Hopkins University

Press, Baltimore, 3rd ed., 1996.

[20℄ S. Hammarling, Numerial solution of the stable, non�negative de�nite Lyapunov

equation, IMA J. Numer. Anal., 2 (1982), pp. 303�323.

[21℄ C. He and V. Mehrmann, Stabilization of large linear systems, in Preprints of the

European IEEE Workshop CMP'94, Prague, September 1994, L. Kulhavá, M. Kárný,

and K. Warwik, eds., 1994, pp. 91�100.

[22℄ D. Hu and L. Reihel, Krylov-subspae methods for the Sylvester equation, Linear

Algebra Appl., 172 (1992), pp. 283�313.

[23℄ I. Jaimoukha, A general minimal residual Krylov subspae method for large sale

model redution, IEEE Trans. Automat. Control, 42 (1997), pp. 1422�1427.

[24℄ I. Jaimoukha and E. Kasenally, Krylov subspae methods for solving large Lya-

punov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227�251.

78 REFERENCES

[25℄ , Oblique projetion methods for large sale model redution, SIAM J. Matrix

Anal. Appl., 16 (1995), pp. 602�627.

[26℄ , Impliitly restarted Krylov subspae methods for stable partial realizations, SIAM

J. Matrix Anal. Appl., 18 (1997), pp. 633�652.

[27℄ C. Kenney and A. Laub, The matrix sign funtion, IEEE Trans. Automat. Control,

40 (1995), pp. 1330�1348.

[28℄ D. Kleinman, On an iterative tehnique for Riati equation omputations, IEEE

Trans. Automat. Control, 13 (1968), pp. 114�115.

[29℄ P. Lanaster and L. Rodman, Algebrai Riati Equations, Clarendon Press,

Oxford, 1995.

[30℄ A. Laub, A Shur method for solving algebrai Riati equations, IEEE Trans. Au-

tomat. Control, 24 (1979), pp. 913�921.

[31℄ J. Li, F. Wang, and J. White, An e�ient Lyapunov equation-based approah for

generating redued-order models of interonnet, in Pro. 36th IEEE/ACM Design

Automation Conferene, New Orleans, LA, 1999.

[32℄ J. Li and J. White, E�ient model redution of interonnet via approximate sys-

tem Grammians, in Pro. IEEE/ACM International Conferene on Computer Aided

Design, San Jose, CA, 1999.

[33℄ P. Li and T. Penzl, Approximate balaned trunation of large generalized state-spae

systems, in preparation, Fak. f. Mathematik, TU Chemnitz, D-09107 Chemnitz, 2000.

[34℄ V. Mehrmann, The Autonomous Linear Quadrati Control Problem, Theory and

Numerial Solution, vol. 163 of Leture Notes in Control and Information Sienes,

Springer-Verlag, Heidelberg, 1991.

[35℄ B. C. Moore, Prinipal omponent analysis in linear systems: Controllability, ob-

servability, and model redution, IEEE Trans. Automat. Control, 26 (1981), pp. 17�31.

[36℄ D. Peaeman and H. Rahford, The numerial solution of ellipti and paraboli

di�erential equations, J. So. Indust. Appl. Math., 3 (1955), pp. 28�41.

[37℄ T. Penzl, A yli low rank Smith method for large sparse Lyapunov equations. to

appear in SIAM J. Si. Comput.

[38℄ , Numerial solution of generalized Lyapunov equations, Advanes in Comp.

Math., 8 (1998), pp. 33�48.

[39℄ , Algorithms for model redution of large dynamial systems. Submitted for pub-

liation., 1999.

[40℄ , Eigenvalue deay bounds for solutions of Lyapunov equations: the symmetri

ase. Submitted for publiation., 1999.

REFERENCES 79

[41℄ L. Pillage and R. Rohrer, Asymptoti waveform evaluation for timing analysis,

IEEE Trans. Computer-Aided Design, 9 (1990), pp. 352�366.

[42℄ J. Roberts, Linear model redution and solution of the algebrai Riati equation by

use of the sign funtion, Internat. J. Control, 32 (1980), pp. 677�687.

[43℄ Y. Saad, Numerial solution of large Lyapunov equations, in Signal Proessing, Sat-

tering, Operator Theory and Numerial Methods, M. Kaashoek, J. V. Shuppen, and

A. Ran, eds., Birkhäuser, Boston, MA, 1990, pp. 503�511.

[44℄ M. Safonov and R. Chiang, A Shur method for balaned-trunation model re-

dution, IEEE Trans. Automat. Control, 34 (1989), pp. 729�733.

[45℄ R. Smith, Matrix equation XA +BX = C, SIAM J. Appl. Math., 16 (1968).

[46℄ G. Starke, Optimal alternating diretion impliit parameters for nonsymmetri sys-

tems of linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431�1445.

[47℄ M. Tombs and I. Postlethwaite, Trunated balaned realization of stable, non-

minimal state-spae systems, Internat. J. Control, 46 (1987), pp. 1319�1330.

[48℄ A. Varga, E�ient minimal realization proedure based on balaning, in Prepr. of

IMACS Symp. on Modelling and Control of Tehnologial Systems, A. E. Moudni,

P. Borne, and S. Tzafestas, eds., vol. 2, 1991, pp. 42�49.

[49℄ E. Wahspress, Iterative Solution of Ellipti Systems, Prentie-Hall, 1966.

[50℄ , Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988),

pp. 87�90.

[51℄ , The ADI minimax problem for omplex spetra, in Iterative Methods for Large

Linear Systems, D. Kinaid and L. Hayes, eds., Aademi Press, San Diego, 1990,

pp. 251�271.

