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ERROR ESTIMATES FOR A SEMILINEAR ELLIPTIC CONTROL

PROBLEM

Nadir Arada

1

, Eduardo Casas

2

, Fredi Tr�oltzsh.

Abstrat

We study the numerial approximation of distributed nonlinear optimal ontrol prob-

lems governed by semilinear ellipti partial di�erential equations with pointwise on-

straints on the ontrol. The analysis of the approximate ontrol problems is arried

out. In partiular, haraterization results for the optimal ontrol and the disretized

optimal ontrols are stated. The uniform onvergene of disretized ontrols to op-

timal ontrols is proven under natural assumptions. Finally, error estimates are

established.

Keywords: Distributed ontrol, semilinear ellipti equation, numerial approximation,

�nite element method, error estimates.

AMS subjet lassi�ation: 49J20, 49K20, 49M05, 65K10

1 Introdution

The paper is onerned with the disretization of the following optimal ontrol problem

(P ) inf J(u) =

Z




L(x; y

u

(x); u(x)) dx;

subjet to (y

u

; u) 2 (C(
) \H

1

(
))� L

1

(
);

Ay

u

+ f(�; y

u

) = u in 
; y

u

= 0 on �; (1.1)

u 2 U

ad

= fu 2 L

1

(
) j � � u(x) � � for a.a. x 2 
g;

where 
 is a onvex bounded domain, � is the boundary of 
; A denotes a seond order

ellipti operator of the form Ay(x) = �

P

N

i;j=1

D

i

(a

ij

(x)D

j

y(x)) where D

i

denotes the

partial derivative with respet to x

i

, and � and � are real numbers. Here u is the ontrol

while y

u

is said to be the assoiated state.

Under some natural assumptions, we prove the existene of solutions for the problem (P ).

By using the assoiated optimality onditions, a haraterization of the optimal ontrol is

given, and a orresponding regularity result is established.

The seond part of the paper is onerned with the full disretization of the ontrol

and the state equation by a �nite element method. The asymptoti behavior of the or-

responding disretized problem (P

h

) is studied, and a stability result established. As for
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the ontinuous problem, we give a haraterization result onerning the solutions of (P

h

).

This enables us to prove the uniform onvergene of these solutions to a solution of (P ).

Finally, the last and main part is devoted to the approximation errors for the optimal

ontrol. Under some natural assumptions, with a seond order and a stability ondition,

we derive some error estimates. Moreover, we show how the error estimates for the state

equation and the adjoint equation an be transferred to assoiated error estimates for the

optimal ontrols.

Let us briey omment on the relevant literature. There are two early papers on the nu-

merial approximation of linear-quadrati ontrol-onstrained ellipti ontrol problems by

Falk [11℄ and Gevei [12℄. L

2

-error estimates are obtained whih reet the H

1

-regularity

of the optimal ontrol and the optimal regularity of the state funtion. Falk onsidered

distributed ontrols, while Gevei onentrates on Neuman boundary ontrols. More re-

ently, Arnautu and Neittaanm�aki [3℄ ontributed further errors estimates to this lan of

problems. Their tehnique, however, slightly overestimates the order of the error. More-

over, we refer to Arada and Raymond [2℄, where estimates and onvergene results are

performed for relaxed optimal ontrol problems governed by semilinear ellipti equations,

and Casas [6℄, where onvergene results are proved for optimal ontrol problems governed

by linear ellipti equations with ontrols in the oeÆient. We also mention the thesis by

Mateos [20℄, who arefully studies error estimates for semilinear ellipti equations.

In ontrast to the ellipti ase, quite a number of papers was devoted to paraboli

problems, although the assoiated theory is far from being omplete. We refer to Alt and

Makenroth [1℄, Knowles [14℄, Lasieka [15℄, [16℄, Makenroth [17℄, [18℄, MKnight and

Bosarge [21℄, Tiba and Tr�oltzsh [23℄ and Tr�oltzsh [24℄, [25℄, [26℄, [27℄. The papers [1℄,

[14℄,[15℄, [16℄, [17℄, [18℄, [24℄ onsider linear paraboli equations, whih are approximated by

a semidisrete Ritz-Galerkin or �nite element sheme. Di�erent aspets are investigated.

In partiular, the (strong) onvergene of optimal values and/or optimal ontrols is shown.

In [17℄ and [18℄ the �nal state is required to reah a onvex target set, thus a speial state

onstraint is onsidered. [21℄ is onerned with the ase of unrestrited ontrol for a non-

linear paraboli state equation. Here, the optimal error estimates for paraboli equations

extend diretly to assoiated estimates for the ontrols. The assumption made in [21℄ on

Fr�ehet-di�erentiability is only satis�ed in partiular ases.

In [23℄, a onvex problem with onstraints on the ontrol and the state is studied. The

state equation is approximated by a fairly general assumption on the approximation in

spae and an impliit Euler sheme in time. Error estimates are derived, whih express the

estimate for the optimal ontrol by relevant interpolation errors. Moreover, a semilinear

problem without state-onstraint is disussed. [24℄ deals with onvergene of swithing

points for a linear-quadrati paraboli problem. The papers [25℄{[27℄ deal with semilinear

equations and onstraints on the ontrol. Exept [25℄, where the Fourier method is used

to approximate the state equation, the other papers assume a semidisrete sheme for the

paraboli equation under quite abstrat assumptions.

Our paper di�ers from the ideas presented in literature in several points. The equation
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is semilinear. Due to this, we had to derive L

1

error estimates in order to deal orretly

with the given nonlinearities. We disuss the �nite element approximation in more detail

than in the papers mentioned above. In partiular, the approximation of the given domain


 by polygonal domains is onsidered. Moreover, the following ideas are essentially new:

In the �rst part, the strong onvergene of subsequenes of approximate ontrols is

proven under a fairly weak assumption. In the seond part, error estimates are established

for suh subsequenes. Extending an idea due to Malanowski et. al [19℄, whih was used

earlier for the ase of ordinary di�erential equations, we are able to improve the error

estimates in [3℄ and [6℄. We are not sure that our results express the optimal ones in the

nonlinear ase. However, they seem to be optimal in the ase of linear equations, where

L

2

-estimates an be used.

2 General assumptions and notation

Throughout the sequel, 
 denotes a onvex bounded open subset in IR

n

(n = 2 or n = 3)

of lass C

1;1

. The oeÆients a

ij

of the operator A belong to C

0;1

(
) and satisfy the ellip-

tiity ondition

m

0

j�j

2

�

N

X

i;j=1

a

ij

(x)�

i

�

j

8 (�; x) 2 IR

N

� 
; m

0

> 0:

Moreover, we require:

A1 - The funtion f is a Carath�eodory funtion from 
 � IR into IR. For every x 2 
,

f(x; �) is of lass C

2

, and D

y

f(x; �) is nonnegative. For allM > 0 there exists C

M

> 0 suh

that

jf(x; y)j+ jD

y

f(x; y)j+ jD

yy

f(x; y)j � C

M

;

jD

yy

f(x; y

1

)�D

yy

f(x; y

2

)j � C

M

jy

1

� y

2

j

for all (x; y; y

1

; y

2

) 2 
� [�M;+M ℄

3

.

A2 - L is a Carath�eodory funtion from 
 � IR

2

into IR. For every x 2 
, L(x; �; �) is

of lass C

2

. For all M > 0, and all (x; x

1

; x

2

; y; y

1

; y

2

; u; u

1

; u

2

) 2 


3

� [�M;+M ℄

6

, the

following estimates hold

jL(x; y; u)j � L

M

(x); jD

y

L(x; y; u)j � L

1

M

(x)

jD

u

L(x

1

; y; u)�D

u

L(x

2

; y; u)j � C

M

jx

1

� x

2

j

jL

00

(y;u)

(x; y; u)j

IR

2�2

� C

M

jL

00

(y;u)

(x; y

1

; u

1

)� L

00

(y;u)

(x; y

2

; u

2

)j

IR

2�2

� C

M

(jy

1

� y

2

j+ ju

1

� u

2

j);

where L

M

2 L

2

(
), L

1

M

2 L

p

(
), p > n, C

M

> 0, L

00

(y;u)

is the Hessian matrix of L with
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respet to (y; u), and j � j

IR

2�2

is any norm of matries. Moreover, there exists a positive

onstant m suh that the following estimate holds:

D

uu

L(x; y; u) � m 8 (x; y; u) 2 
� IR

2

:

In all the sequel jj � jj

2;


and jj � jj

1;


denote the usual norms in L

2

(
) and L

1

(
), respe-

tively, and  will denote a generi onstant.

Remark 1 In partiular, the following simple linear-quadrati optimal ontrol problem �ts

in this setting. We shall refer to this example to illustrate some of the ideas in the Setions

4, 6, and 7.

(E) inf

1

2

(ky � y

d

k

2

2;


+ �kuk

2

2;


);

subjet to

��y = u in 
; y

u

= 0 on �;

� � u(x) � � for a.a. x 2 
:

Here, y

d

2 L

4

(
) and � > 0 are given, and L(x; y; u) =

1

2

((y�y

d

(x))

2

+�u

2

). It is obvious

that A1 and A2 are satis�ed in the example (E).

3 State equation and Adjoint equation

In this setion we derive some useful estimates, whih express the Lipshitz ontinuity of

states and adjoint states with respet to the ontrols.

3.1 State equation

Theorem 1 [4℄ Let u be in L

1

(
) satisfy kuk

1;


� M . Then equation (1:1) admits a

unique solution y

u

2 H

1

0

(
) \W

2;p

(
), for every p > n. Moreover, there exists a positive

onstant C � C(
; n; p;M), independent of u, suh that

ky

u

k

W

2;p

(
)

� C:

Proposition 1 [4℄ Let a

o

� 0 be a funtion in L

1

(
) satisfying jja

o

jj

1;


�M . Then, for

every g 2 L

p

(
), the solution y of

Ay + a

o

y = g in 
; y

j�

= 0;

belongs to H

1

0

(
) \W

2;p

(
) for every p > n. Moreover, there exists a positive onstant

C � C(
; n; p;M), independent of a

o

, suh that

kyk

W

2;p

(
)

� C kgk

p;


; kyk

H

2

(
)

� C kgk

2;


:
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Proposition 2 Let u

1

, u

2

be in L

1

(
), and let y

1

and y

2

be the assoiated states, i.e. the

orresponding solutions of (1:1). Then y

1

� y

2

satis�es the estimate

ky

1

� y

2

k

H

2

(
)

� C ku

1

� u

2

k

2;


;

where C > 0 does not depend on u

1

and u

2

.

Proof. The funtion y = y

1

� y

2

satis�es

Ay +

~

fy = u

2

� u

1

in 
; y

j�

= 0;

where

~

f =

R

1

0

D

y

f(�; �y

1

+ (1� �)y

2

; u

1

) d� � 0. The onlusion is a diret onsequene of

Proposition 1. 2

3.2 Adjoint equation

Let u be in L

1

(
) and y

u

denote the orresponding solution of (1.1). The adjoint equation

assoiated with the problem we onsider, has the following form:

A

�

'+D

y

f(�; y

u

)' = D

y

L(�; y

u

; u) in 
; ' = 0 on �: (3.1)

Here A

�

is the formal adjoint operator of A. The solution ' = '

u

is alled the adjoint

state assoiated to u. The next theorem follows immediately from Proposition 1.

Theorem 2 Let u 2 L

1

(
) satisfy kuk

1;


� M . Then equation (3:1) admits a unique

solution '

u

in H

1

0

(
)\W

2;p

(
) for every p > n. Moreover, there exists a positive onstant

C � C(
; n; p;M), independent of u, suh that

k'

u

k

W

2;p

(
)

� C:

Proposition 3 Let u

1

, u

2

be in L

1

(
) suh that ku

1

k

1;


+ ku

2

k

1;


� M , and let '

1

and

'

2

be the orresponding adjoint states. Then '

1

� '

2

satis�es the estimate

k'

1

� '

2

k

H

2

(
)

� C ku

1

� u

2

k

2;


where C � C(
; n;M) does not depend on u

1

and u

2

.

Proof. The funtion ' = '

1

� '

2

satis�es '

j�

= 0 and

A

�

'+ a' = (D

y

f(�; y

2

)�D

y

f(�; y

1

))'

2

+D

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

2

) in 
;

where y

1

and y

2

are the states assoiated to u

1

and u

2

, respetively, and a = D

y

f(�; y

1

).

Due to assumptions A1-A2, Theorem 1, and Proposition 2, we obtain

k'

1

� '

2

k

H

2

(
)

� C(k(D

y

f(�; y

1

)�D

y

f(�; y

2

))'

2

k

2;


+ kD

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

2

)k

2;


)
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� C(kD

y

f(�; y

1

)�D

y

f(�; y

2

)k

2;


k'

2

k

1;


+kD

y

L(�; y

1

; u

1

)�D

y

L(�; y

2

; u

1

)k

2;


+ kD

y

L(�; y

2

; u

1

)�D

y

L(�; y

2

; u

2

)k

2;


)

� C((1 + k'

2

k

1;


)ky

1

� y

2

k

2;


+ ku

1

� u

2

k

2;


)

� C(ky

1

� y

2

k

2;


+ ku

1

� u

2

k

2;


) � Cku

1

� u

2

k

2;


: 2

Remark 2 Notie that sine n � 3, Propositions 2, 3, and lassial imbedding theorems

give

ky

1

� y

2

k

C(
)

+ k'

1

� '

2

k

C(
)

� C ku

1

� u

2

k

2;


:

This estimate will be intensively used in the sequel.

4 Existene and haraterisation of solutions of (P )

4.1 Existene results

We begin this setion by a useful ontinuity result.

Proposition 4 Suppose that assumption A1 is satis�ed. Then the operator u 7! y

u

is

ontinuous from L

1

(
), endowed with the weak

�

topology, into C(
).

Proof. Let (u

�

)

�

be a sequene in U

ad

onverging to u in the weak

�

-L

1

(
) topology. Let

y

�

and y

u

be the solutions of (1.1) orresponding to u

�

and u. We have to show that (y

�

)

�

onverges to y

u

, uniformly on 
. Due to Theorem 1, the sequene (y

�

)

�

is bounded in

H

1

0

(
) \W

2;p

(
). Then there exist a subsequene (y

�

j

)

j

and y 2 H

1

0

(
) \W

2;p

(
), suh

that (y

�

j

)

j

onverges to y in the weak topology of H

1

0

(
) \ W

2;p

(
). Sine W

2;p

(
) is

ontinuously embedded into C

1

(
), it follows that (y

�

j

)

j

onverges to y uniformly on 
.

Due to this onvergene results, passing to the limit in the variational equality satis�ed

by y

�

j

, we easily show that y � y

u

. Finally, sine any subsequene (y

�

j

)

j

ontains a

subsequene tending towards the same limit y

u

, the onvergene of the whole sequene

(y

�

)

�

follows from a standard argument. 2

Theorem 3 Suppose that assumptions A1-A2 are satis�ed. Then problem (P ) admits at

least solution.

Proof. Let (u

n

)

n

be a minimizing sequene for (P ), and let y

n

be the state assoiated to

u

n

. Sine (u

n

)

n

is bounded in L

1

(
), there exist a subsequene, still indexed by n, and a

funtion u suh that (u

n

)

n

onverges to u in the weak

�

- L

1

(
) topology. In addition, u is

the weak limit of u

n

in L

k

(
) (for all k � 1). Sine U

ad

is onvex and losed in L

k

(
), it

is also weakly losed and u 2 U

ad

. Due to Proposition 4, the sequene (y

n

)

n

onverges to

y

u

uniformly on 
. Therefore, u is admissible for (P ), and

inf(P ) � J(u): (4.1)

6



On the other hand, from A2 and Theorem 2.1, Chapter 8 in [10℄, we an prove that

J(u) =

Z




L(x; y

u

; u) dx � lim inf

n!+1

Z




L(x; y

u

; u

n

) dx;

expressing the weak

�

-lower semiontinuity with respet to u. Moreover, by using A2 and

the mean value theorem, we have

lim

n!1

j

Z




(L(x; y

u

; u

n

)� L(x; y

n

; u

n

)) dxj � lim

n!1

Z




L

M

(x)jy

u

� y

n

j(x) dx = 0:

With these ontinuity results, we easily dedue that

J(u) � lim inf

n!1

J(u

n

) = inf(P ): (4.2)

The onlusion follows from (4.1) and (4.2). 2

4.2 Charaterization of the optimal ontrol

Let us �rst state for onveniene the known �rst order optimality onditions for problem

(P ). The lassial proof is omitted.

Theorem 4 If �u is a solution of (P ), then there exists an adjoint state '

�u

2 H

1

0

(
) \

C

0;1

(
) suh that the following onditions hold:

A

�

'

�u

+D

y

f(x; y

�u

)'

�u

�D

y

L(x; y

�u

; �u) = 0 in 
; (4.3)

Z




('

�u

+D

u

L(x; y

�u

; �u))(u� �u) dx � 0 8 u 2 U

ad

: (4.4)

To derive a haraterization of the optimal ontrol, we �rst prove two auxiliary results.

Lemma 1 Suppose that assumptions A1-A2 are satis�ed. Then, for all x 2 
, the equa-

tion

'

�u

(x) +D

u

L(x; y

�u

(x); t) = 0; (4.5)

has a unique solution t = �s(x). Moreover, the mapping �s : 
 �! IR is of lass C

0;1

(
).

Proof. Let us �rst prove uniqueness of the solution. Suppose that, for x 2 
, equation

(4:5) admits two solutions s

1

(x) and s

2

(x). By Assumption A2, we �nd

0 = jD

u

L(x; y

�u

(x); s

1

(x))�D

u

L(x; y

�u

(x); s

2

(x))j

= j

Z

1

0

D

uu

L(x; y

�u

(x); �s

1

(x) + (1� �)s

2

(x)) d�j js

1

(x)� s

2

(x)j

� m js

1

(x)� s

2

(x)j;

hene s

1

(x) = s

2

(x) must hold. To prove existene of a solution to (4.5), we onsider

7



the funtion g de�ned by g(t) = '

�u

(x) + D

u

L(x; y

�u

(x); t). The assumptions on L imply

g 2 C

1

(
) and g

0

(t) � m > 0. It follows that

g(t) = g(0) +

Z

t

0

g

0

(s) ds

8

>

<

>

:

� g(0) +mt for t > 0;

� g(0) +mt for t < 0;

and thus lim

t!�1

g(t) = �1, and lim

t!+1

g(t) = +1. Therefore, due to the ontinuity of g,

there exists a solution t = �s

x

� �s(x) of (4.5). Finally, let us prove that �s 2 C

0;1

(
). We

observe that, due to the Lipshitz ontinuity of '

�u

, y

�u

and that of u 7! D

u

L(�; �; u), by A2

and equation (4.5), we have

m j�s(x)� �s(x

o

)j

� j

Z

1

0

D

uu

L(x; y

�u

(x); ��s(x) + (1� �)�s(x

o

)) d� (�s(x)� �s(x

o

))j

= jD

u

L(x; y

�u

(x); �s(x))�D

u

L(x; y

�u

(x); �s(x

o

))j

= j � '

�u

(x) + '

�u

(x

o

) +D

u

L(x

o

; y

�u

(x

o

); �s(x

o

))�D

u

L(x; y

�u

(x); �s(x

o

))j

� j'

�u

(x)� '

�u

(x

o

)j+ C

M

fjx� x

o

j+ jy

�u

(x)� y

�u

(x

o

)jg � Cjx� x

o

j: 2

Remark 3 For the example (E), the variational inequality reads

Z




('

�u

+ ��u)(u� �u) dx � 0 8 u 2 U

ad

:

The equation (4:5) reads '

�u

+ �t = 0, hene in this ase �s(x) = �

1

�

'

�u

(x).

Lemma 2 Suppose that the assumptions A1-A2 are satis�ed. Let �u be an optimal ontrol

for (P ), and let �s be the orresponding solution of (4:5). Then

'

�u

(x) +D

u

L(x; y

�u

(x); �) � 0 i� �u(x) = �; (4.6)

'

�u

(x) +D

u

L(x; y

�u

(x); �) � 0 i� �u(x) = �: (4.7)

If '

�u

(x) +D

u

L(x; y

�u

(x); �) < 0 < '

�u

(x) +D

u

L(x; y

�u

(x); �)

then '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) = 0:

(4.8)

Proof. First, let us notie that the optimality ondition (4.4) an be rewritten as

('

�u

(x) +D

u

L(x; y

�u

(x); �u(x)))(v � �u(x)) � 0 (4.9)

for all v 2 [�; �℄ and all x 2 


o

, where 


o

� 
 and j

�


 n 


o

j = 0.

� Let x 2 


o

be suh that '

�u

(x) + D

u

L(x; y

�u

(x); �) � '

�u

(x) + D

u

L(x; y

�u

(x); �s(x)) = 0.

8



The monotoniity of D

u

L w.r. to u yields �s(x) � �, and

('

�u

(x) +D

u

L(x; y

�u

(x); �))(�� �u(x)) � 0

follows from � � �u(x). Moreover, sine the funtion t 7! '

�u

(x) + D

u

L(x; y

�u

(x); t) is

inreasing, by taking v = � in (4.9), we obtain

('

�u

(x) +D

u

L(x; y

�u

(x); �))(�� �u(x))

� ('

�u

(x) +D

u

L(x; y

�u

(x); �u(x)))(�� �u(x)) � 0:

Therefore, ('

�u

(x) +D

u

L(x; y

�u

(x); �))(� � �u(x)) = 0. If '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) > 0,

the onlusion �u = � is diret. If not, from the uniqueness of the solution of (4.5), we

dedue that � � �u(x) = �s(x) � �, and thus �u(x) = �.

Conversely, if �u(x) = �, then (4.9) implies that '

�u

(x) + D

u

L(x; y

�u

(x); �) = '

�u

(x) +

D

u

L(x; y

�u

(x); �u(x)) is nonnegative. We have proved (4.6), and assertion (4.7) an be

obtained by similar arguments.

� Finally, let us prove (4.8). Let x 2 


o

be suh that

'

�u

(x) +D

u

L(x; y

�u

(x); �) < 0 < '

�u

(x) +D

u

L(x; y

�u

(x); �):

From (4.6) and (4.7), we get � < �u(x) < �. Setting v = � and v = � in (4.9), we dedue

that '

�u

(x) +D

u

L(x; y

�u

(x); �u(x)) = 0. 2

The next result is fundamental for the sequel. It provides a useful haraterization of the

optimal ontrol, whih is well known for linear-quadrati optimal ontrol problems.

Theorem 5 Suppose that assumptions A1-A2 are satis�ed. Let �u be an optimal ontrol,

and let �s be the assoiated solution of equation (4:5). Then

�u(x) = Proj

[�;�℄

(�s(x)) = max(�;min(�; �s(x)));

and �u belongs to C

0;1

(
).

Proof. First, suppose that �s(x) � �. Then

0 = '

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) � '

�u

(x) +D

u

L(x; y

�u

(x); �):

From (4:6) we obtain �u(x) = � = Proj

[�;�℄

(�s(x)). In the same way, the statement follows

from (4.7) if �s(x) � �. Finally, if � < �s(x) < �, then

'

�u

(x) +D

u

L(x; y

�u

(x); �) < '

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) = 0

< '

�u

(x) +D

u

L(x; y

�u

(x); �):

Now (4.8) yields '

�u

(x) + D

u

L(x; y

�u

(x); �u(x)) = 0. Sine the solution of (4.5) is unique,

it follows that �u(x) = �s(x) = Proj

[�;�℄

(�s(x)). The Lipshitz ontinuity of �u is a diret

onsequene, sine �s is Lipshitz (see Lemma 1) and the projetion operator Proj

[�;�℄

is

Lipshitz ontinuous with onstant 1. 2
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Remark 4 In the example (E), the statement of Theorem 5 redues to the well known

haraterization

�u(x) = Proj

[�;�℄

(�

1

�

'

�u

(x)):

Remark 5 The results of Theorem 5 an be easily extended to the ase where � and � are

funtions of x. In this ase, the Lipshitz ontinuity of the optimal ontrol �u is obtained

under the assumption that � and � are Lipshitz ontinuous.

5 Finite-element approximation of (P)

Here we de�ne a �nite-element based approximation of the optimal ontrol problem (P ).

To this aim, we onsider a family of triangulations (T

h

)

h>0

of 
. With eah element T 2 T

h

,

we assoiate two parameters �(T ) and �(T ), where �(T ) denotes the diameter of the set

T and �(T ) is the diameter of the largest ball ontained in T . De�ne the mesh size of

the grid by h = max

T2T

h

�(T ). We suppose that the following regularity assumptions are

satis�ed.

(i) - There exist two positive onstants � and � suh that

�(T )

�(T )

� �;

h

�(T )

� �

hold for all T 2 T

h

and all h > 0.

(ii) - Let us take 


h

= [

T2T

h

T , and let 


h

and �

h

denote its interior and its boundary,

respetively. We assume that 


h

is onvex and that the verties of T

h

plaed on the

boundary of �

h

are points of �. From [22℄, estimate (5.2.19), we know

j
 n 


h

j � Ch

2

: (5.1)

Now, to every boundary triangle T of T

h

, we assoiate another triangle

^

T � 
 with urved

boundary as follows: The edge between the two boundary nodes of T is substituted by

the part of � onneting these nodes and forming a triangle with the remaining interior

sides of T . We denote by

b

T

h

the union of these urved boundary triangles with the interior

triangles to 
 of T

h

, so that 
 = [

^

T2

b

T

h

^

T . Let us set

U

h

= fu 2 L

1

(
) j u

j

^

T

is onstant on all

^

T 2

b

T

h

g; U

ad

h

= U

h

\ U

ad

;

V

h

= fy

h

2 C(
) j y

h

jT

2 P

1

; for all T 2 T

h

; and y

h

= 0 on 
 n 


h

g;

where P

1

is the spae of polynomials of degree less or equal than 1. For eah u

h

2 U

h

, we

denote by y

h

(u

h

) the unique element of V

h

that satis�es

a(y

h

(u

h

); �

h

) =

Z




(u

h

� f(x; y

h

(u

h

)))�

h

(x) dx 8 �

h

2 V

h

; (5.2)
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where a : V

h

� V

h

�! IR is the bilinear form de�ned by

a(y; �) =

Z




(

n

X

i;j=1

a

ij

(x)D

i

y(x)D

j

�(x)) dx:

In other words, y

h

(u

h

) is the approximate state assoiated with u

h

. Notie that y = � = 0

on 
n


h

, hene the last integral is equivalent to integration on 


h

. The �nite dimensional

approximation of the optimal ontrol problem is de�ned by

(P

h

) inf J

h

(u

h

) =

Z




h

L(x; y

h

(u

h

)(x); u

h

(x)) dx; u

h

2 U

ad

h

:

Existene of a solution for (P

h

) follows from the ontinuity of J

h

and the ompatness of

U

ad

h

.

Remark 6 We taitly assume that we are able to evaluate the integrals in (5:2) and (P

h

)

exatly. In general, numerial integration has to be used, whih generates another sort of

errors. We do not inlude them in our analysis.

6 Charaterization of solutions of (P

h

)

The aim of this setion is to haraterize solutions of the problem (P

h

) similarly to the ideas

introdued in Setion 4.2 for the haraterization of optimal solutions for the ontinuous

problem (P ).

Proposition 5 Suppose that assumptions A1-A2 are satis�ed. If �u

h

is a solution of (P

h

),

then there exists a unique '

h

(�u

h

) 2 H

1

0

(
)\C

0;1

(
) suh that the following onditions hold:

Z




(

n

X

i;j=1

a

ij

D

j

'

h

(�u

h

)D

i

�

h

) dx+

Z




D

y

f(x; y

h

(�u

h

); �u

h

)'

h

(�u

h

)�

h

dx

=

Z




D

y

L(x; y

h

(�u

h

); �u

h

)�

h

dx 8 �

h

2 V

h

; (6.1)

Z




h

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �u

h

))(u� �u

h

) dx � 0 8 u 2 U

ad

h

: (6.2)

Throughout the sequel, for v �xed in L

1

(
), we denote by y

h

(v) and '

h

(v) respetively

the solutions of (5:2) and (6:1) orresponding to v.

Lemma 3 Suppose that assumptions A1-A2 are satis�ed, and that �u

h

is an optimal so-

lution of (P

h

). Then there exists a unique funtion �s

h

: 


h

�! IR suh that �s

h

(x) = s

T

is

onstant on eah triangle T 2 T

h

, and the equation

Z

T

('

h

(�u

h

)(x) +D

u

L(x; y

h

(�u

h

); s

T

)) dx = 0 8 T 2 T

h

; (6.3)

is satis�ed.
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Proof. Existene of a unique solution of equation

Z

T

('

h

(�u

h

)(x) +D

u

L(x; y

h

(�u

h

); t)) dx = 0;

an be proved upon de�ning g(t) =

R

T

('

h

(�u

h

)(x)+D

u

L(x; y

h

(�u

h

); t)) dx, along the lines of

proof of Lemma 1. 2

Remark 7 In the ase of (E), equation 6:3 is obvious again. We obtain

Z

T

('

h

(�u

h

)(x) + �s

T

) dx = 0;

and this equation has the unique solution s

T

= �

1

�jT j

Z

T

'

h

(�u

h

)(x) dx.

Theorem 6 Suppose that A1-A2 are satis�ed. Let �u

h

be an optimal solution of (P

h

), and

let �s

h

be the solution of (6:3) orresponding to �u

h

. Then �u

h

is given by

�u

h

(x) = Proj

[�;�℄

(�s

h

(x)) = max(�;min(�; �s

h

(x))) for a.e. x 2 


h

:

Proof. First, let us observe that (6.2) an be rewritten as:

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �u

h

j

T

) dx (t� �u

h

j

T

)) � 0

for all t 2 [�; �℄ and all T 2 T

h

. Following the proof of Lemma 2, we �nd

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

)); �) dx � 0 i� �u

h

j

T

= �;

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); �)) dx � 0 i� �u

h

j

T

= �:

Moreover, if

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �)) dx < 0 <

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �)) dx;

then

Z

T

('

h

(�u

h

) +D

u

L(�; y

h

(�u

h

); �u

h

j

T

))) dx = 0:

The haraterization of �u

h

an be derived by proeeding as in the proof of Theorem 5. 2

Remark 8 Let us omplete this disussion by the example (E). Here we get

�u

h

j

T

= Proj

[�;�℄

(�

1

�jT j

Z

T

'

h

(�u

h

)(x) dx) 8 T 2 T

h

:

7 Error-estimates for the state and the adjoint state

In this setion, we reall some results onerning the �nite element approximation of the

state equation (1.1) and its adjoint equation (3.1).
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Theorem 7 Let (v; v

h

) 2 L

1

(
)� U

h

ful�l kvk

1;


+ kv

h

k

1;


� M , and suppose that y

v

and y

h

(v

h

) are the solutions of (1:1) and (5:2) orresponding to v and v

h

. Moreover, let

'

w

and '

h

(v

h

) be the solutions of (4:3) and (6:1) orresponding to v and v

h

. Then the

following estimates hold

ky

v

� y

h

(v

h

)k

H

1

(
)

+ k'

v

� '

h

(v

h

)k

H

1

(
)

� C(h+ kv � v

h

k

2;


); (7.1)

ky

v

� y

h

(v

h

)k

2;


+ k'

v

� '

h

(v

h

)k

2;


� C(h

2

+ kv � v

h

k

2;


); (7.2)

ky

v

� y

h

(v

h

)k

1;


+ k'

v

� '

h

(v

h

)k

1;


� C(h

�

+ kv � v

h

k

2;


); (7.3)

where C � C(
; n;M) is a positive onstant independent of h, and � = 2�n=2. Moreover,

if the triangulation is of nonnegative type, then

ky

v

� y

h

(v

h

)k

1;


h

+ k'

v

� '

h

(v

h

)k

1;


h

� (Ch+ kv � v

h

k

2;


); (7.4)

holds independently of h.

Proof. Aording to Theorem 8.2.9 in [20℄, the following estimates hold

ky

v

h

� y

h

(v

h

)k

H

1

(
)

+ k'

v

h

� '

h

(v

h

)k

H

1

(
)

� Ch; (7.5)

ky

v

h

� y

h

(v

h

)k

2;


+ k'

v

h

� '

h

(v

h

)k

2;


� Ch

2

; (7.6)

ky

v

h

� y

h

(v

h

)k

1;


+ k'

v

h

� '

h

(v

h

)k

1;


� Ch

2�

n

2

; (7.7)

and if the triangulation is of nonnegative type, then

ky

v

h

� y

h

(v

h

)k

1;


h

+ k'

v

h

� '

h

(v

h

)k

1;


h

� Ch: (7.8)

To prove (7.1), notie that due to (7.5), and Propositions 2, 3, we have

ky

v

� y

h

(v

h

)k

H

1

(
)

+ k'

v

� '

h

(v

h

)k

H

1

(
)

� ky

v

� y

v

h

k

H

1

(
)

+ ky

v

h

� y

h

(v

h

)k

H

1

(
)

+k'

v

� '

v

h

k

H

1

(
)

+ k'

v

h

� '

h

(v

h

)k

H

1

(
)

� C(h+ kv � v

h

k

2;


):

The estimates (7.2), (7.3), and (7.4), an be obtained by using similar arguments together

with (7.6), (7.7), and (7.8). 2

Remark 9 From Theorems 1, 2, and 7, we an easily see that

ky

h

(v

h

)k

1;


+ k'

h

(v

h

)k

1;


� C;

where C � C(
; n;M) is a positive onstant independent of h.

Remark 10 In all what follows, let us �x � = 2�n=2 for regular triangulations and � = 1,

if the regular triangulation if of nonnegative type.
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The following proposition will be useful for the sequel.

Proposition 6 Let (v

h

; w

h

) be in U

h

� U

h

satisfy kv

h

k

1;


+ kw

h

k

1;


� M , and let z

v

h

and z

h

(v

h

) be the solutions of the following equations

Az +D

y

f(x; y

w

h

)z = v

h

in 
; z

j�

= 0; (7.9)

a(z

h

(v

h

); �

h

) +

Z




D

y

f(x; y

h

(w

h

)) z

h

(v

h

)�

h

dx =

Z




v

h

�

h

dx (7.10)

for all �

h

2 V

h

, where y

w

h

and y

h

(w

h

) are the solutions of (1:1) and (5:2) orresponding to

w

h

. Then the following estimates hold

kz

v

h

� z

h

(v

h

)k

2;


� C h

2

kv

h

k

2;


; (7.11)

kz

v

h

� z

h

(v

h

)k

1;


h

� C h

�

kv

h

k

2;


: (7.12)

Proof. Let ~z

v

h

be the solution of

Az +D

y

f(x; y

h

(w

h

))z = v

h

in 
; z

j�

= 0: (7.13)

Subtrating (7.9) from (7.13) we see that z = ~z

v

h

� z

v

h

satis�es

Az +D

y

f(x; y

h

(w

h

))z = (D

y

f(x; y

w

h

)�D

y

f(x; y

h

(w

h

))z

v

h

in 
; z

j�

= 0:

Proposition 1, assumption A1, and Theorem 7 yield

k~z

v

h

� z

v

h

k

1;


� Ck(D

y

f(�; y

w

h

)�D

y

f(�; y

h

(w

h

))z

v

h

k

2;


� Cky

w

h

� y

h

(w

h

)k

2;


kz

v

h

k

1;


� Cky

w

h

� y

h

(w

h

)k

2;


kv

h

k

2;


� Ch

2

kv

h

k

2;


: (7.14)

On the other hand, by arguments similar to those used in the proof of Theorem 7, and due

to Proposition 1, we have

k~z

v

h

� z

h

(v

h

)k

2;


� Ch

2

k~z

v

h

k

H

2

(
)

� Ch

2

kv

h

k

2;


; (7.15)

k~z

v

h

� z

h

(v

h

)k

1;


h

� Ch

�

k~z

v

h

k

H

2

(
)

� Ch

�

kv

h

k

2;


: (7.16)

The onlusion follows from (7.14), (7.15) and (7.16). 2

8 Convergene results

Lemma 4 Suppose that assumptions A1-A2 are satis�ed, and let v 2 L

1

(
) and v

h

2 U

h

satisfy kv

h

k

1;


+ kvk

1;


�M . If lim

h!0

kv

h

� vk

2;


= 0, then

lim

h!0

J

h

(v

h

) = J(v):

14



Proof. With assumptions on L, Remark 9, (7.2) and (5.1) we have

jJ(v)� J

h

(v

h

)j = j

Z




L(x; y

v

; v) dx�

Z




h

L(x; y

h

(v

h

); v

h

) dxj

�

Z




jL(x; y

v

; v)� L(x; y

v

; v

h

)j dx

+

Z




jL(x; y

v

; v

h

)� L(x; y

h

(v

h

); v

h

)j dx+

Z


n


h

jL(x; y

h

(v

h

); v

h

)j dx

� C(kv � v

h

k

2;


+ ky

v

� y

h

(v

h

)k

2;


+ j
 n 


h

j

1

2

) � C(kv � v

h

k

2;


+ h):

The last expression tends to zero when h! 0. 2

Lemma 5 Suppose that assumptions A1-A2 are satis�ed, and let the sequene (v

h

)

h

�

U

ad

h

onverge weakly

�

to v. Then v 2 U

ad

and

J(v) � lim inf

h!0

J

h

(v

h

):

Proof. Obviously, v is also the weak limit of (v

h

)

h>0

in L

k

(
) (for all k � 1). Sine

U

ad

h

� U

ad

and U

ad

is onvex and losed in L

k

(
), it is weakly losed and v 2 U

ad

. On the

other hand, notie that

J

h

(v

h

) =

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx+

Z




h

L(x; y

v

; v

h

) dx

=

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx+

Z




L(x; y

v

; v

h

) dx

�

Z


n


h

L(x; y

v

; v

h

) dx: (8.1)

With A2, we follow the proof of Theorem 3 to show

Z




L(x; y

v

; v) dx � lim inf

h!0

Z




h

L(x; y

v

; v

h

) dx: (8.2)

Moreover, with assumptions on L and (5.1), we easily see that

�

�

�

Z


n


h

L(x; y

v

; v

h

) dx

�

�

� � Ch �! 0 as h! 0: (8.3)

Finally, A2, (7.2), (7.3) and Proposition 4, give

�

�

�

Z




h

(L(x; y

h

(v

h

); v

h

)� L(x; y

v

; v

h

)) dx

�

�

�

� Cky

h

(v

h

)� y

v

k

2;


h

� C(ky

h

(v

h

)� y

v

h

k

2;


h

+ ky

v

h

� y

v

k

2;


)

� C(ky

h

(v

h

)� y

v

h

k

2;


+ ky

v

h

� y

v

k

1;


) �! 0 if h! 0: (8.4)

The onlusion follows from (8.1), (8.2), (8.3), and (8.4). 2
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Proposition 7 Suppose that A1-A2 are satis�ed, and let (�u

h

)

h>0

be any sequene of so-

lutions to (P

h

). Then there exist weakly

�

-onverging subsequenes (still indexed by h). If

the subsequene (�u

h

)

h>0

is onverging weakly

�

to �u, then �u is a solution of (P ). Moreover,

lim

h!0

J

h

(�u

h

) = J(�u) = inf(P ): (8.5)

Proof. The sequene (�u

h

)

h>0

is bounded in L

1

(
). Then there exists a subsequene, still

indexed by h, whih onverges to some element �u in the weak-� toplogy of L

1

(
). Lemma

5 implies �u 2 U

ad

and

J(�u) � lim inf

h!0

J

h

(�u

h

): (8.6)

On the other hand, let �w be a solution of (P ), and let �

h

be the interpolation operator

de�ned by

�

h

v

jT

=

1

jT j

Z

T

v(x) dx for all T 2 T

h

:

Put

w

h

j

^

T

= �

h

�w

jT

8

^

T 2

b

T

h

;

where T 2 T

h

is the triangle assoiated with

^

T . Sine �w 2 W

1;1

(


h

), due to Theorem 16.1

in [9℄, we have

k �w � w

h

k

1;


h

� Chk �wk

W

1;1

(


h

)

:

Therefore,

k �w � w

h

k

2;


� C(k �w � w

h

k

1;


h

+ j
 n 


h

j) � Ch:

From Lemma 4, we dedue that

lim

h!0

J

h

(w

h

) = J( �w) = inf(P ):

Moreover, w

h

is obviously admissible for (P

h

), and thus

J

h

(�u

h

) � J

h

(w

h

):

Passing to the limit in the last inequality, we obtain

lim inf

h!0

J

h

(�u

h

) � lim sup

h!0

J

h

(�u

h

) � lim sup

h!0

J

h

(w

h

) = J( �w): (8.7)

By (8.6) and (8.7), we arrive at

lim

h!0

J

h

(�u

h

) = lim

h!0

inf(P

h

) = J(�u) = inf(P ): 2

Remark 11 Throughout the sequel, we �x suh a subsequene, still indexed for simpliity

by h, and we denote by �u its limit, solution of (P ).

Now, we state the main result of this setion.
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Theorem 8 If the assumptions A1-A2 are satis�ed, then

lim

h!0

k�u

h

� �uk

1;


= 0: (8.8)

Proof. The proof is split into two steps.

Step 1. Let us �rst prove the onvergene result in the L

2

-norm:

lim

h!0

k�u

h

� �uk

2;


= 0: (8.9)

Due to assumptions A2, Proposition 4, (7.2), (8.5), and the weak-� onvergene of (�u

h

)

h

to �u, we have

m

2

k�u

h

� �uk

2

2;


�

1

2

Z




Z

1

0

D

uu

L(x; y

�u

; ��u

h

+ (1� �)�u) d� (�u

h

� �u)

2

dx

=

Z




(L(x; y

�u

; �u

h

)� L(x; y

�u

; �u)) dx+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

=

Z




(L(x; y

�u

; �u

h

)� L(x; y

h

(�u

h

); �u

h

)) dx

+

Z




(L(x; y

h

(�u

h

); �u

h

)� L(x; y

�u

; �u)) dx+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

� Cky

�u

� y

h

(�u

h

)k

2;


+ J

h

(�u

h

)� J(�u) + Ch +

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx

� C(ky

�u

� y

�u

h

k

2;


+ ky

�u

h

� y

h

(�u

h

)k

2;


+ h) + J

h

(�u

h

)� J(�u)

+

Z




D

u

L(x; y

�u

; �u)(�u� �u

h

) dx �! 0

when h! 0. Thus, we have shown (8.9).

Step 2. Let us now on�rm (8.8). Due to Lemma 1 and Lemma 3, there exist �s 2 C

0;1

(
)

and �s

h

2 L

1

(


h

) suh that

'

�u

(x) +D

u

L(x; y

�u

(x); �s(x)) = 0 8 x 2

^

T and 8

^

T 2

b

T

h

; (8.10)

�s

h

jT

= s

T

;

Z

T

('

h

(�u

h

) +D

u

L(x; y

h

(�u

h

); s

T

)) dx = 0 8 T 2 T

h

: (8.11)

From (8.11), we dedue that for every T 2 T

h

, there exists x

T

2 T suh that

'

h

(�u

h

)(x

T

) +D

u

L(x

T

; y

h

(�u

h

)(x

T

); s

T

) = 0: (8.12)

Suppose that T 2 T

h

is given �xed, and selet an arbitrary x 2 T . By making the di�erene

between (8.10) and (8.12), and due to the assumptions on D

uu

L along with hypothesis A2,

it follows that

m j�u(x)� �u

h

(x)j = m jProj

[�;�℄

(�s(x))� Proj

[�;�℄

(�s

h

(x))j

17



� m j�s(x)� �s

h

(x)j = m j�s(x)� s

T

j

� jD

u

L(x; y

�u

(x); �s(x))�D

u

L(x; y

�u

(x); s

T

)j

= j('

�u

(x)� '

h

(�u

h

)(x

T

)) + (D

u

L(x; y

�u

(x); s

T

)�D

u

L(x

T

; y

h

(�u

h

)(x

T

); s

T

))j

� j'

�u

(x)� '

h

(�u

h

)(x

T

)j+ Cfjx� x

T

j+ jy

�u

(x)� y

h

(�u

h

)(x

T

)jg:

We know from Theorem 1 and 2 that y

�u

and '

�u

are Lipshitz, hene

m j�u(x)� �u

h

(x)j � C(jx� x

T

j+ k'

�u

� '

h

(�u

h

)k

1;T

+ ky

�u

� y

h

(�u

h

)k

1;T

)

� C(h + k'

�u

� '

h

(�u

h

)k

1;T

+ ky

�u

� y

h

(�u

h

)k

1;T

):

Invoking Theorem 7, we get

k�u� �u

h

k

1;


h

= sup

T2T

h

k�u� �u

h

k

1;T

� C(h+ k'

�u

�'

h

(�u

h

)k

1;


h

+ ky

�u

� y

h

(�u

h

)k

1;


h

) � C(h+ k�u� �u

h

k

2;


+h

�

): (8.13)

Regard now any

^

T 2 �

b

T

h

, and let T 2 �T

h

be the orresponding boundary triangle (here

�

b

T

h

and �T

h

denote the sets of boundary triangles in

b

T

h

and T

h

). For x̂ 2

^

T n T , let x be

its projetion on the boundary �

h

of 


h

. Taking into aount the Lipshitz ontinuity of

�u, we obtain

j�u(x̂)� �u

h

(x̂)j � j�u(x̂)� �u(x)j + j�u(x)� �u

h

(x̂)j = j�u(x̂)� �u(x)j+ j�u(x)� �u

h

(x)j

� Cjx̂� xj + k�u� �u

h

k

1;


h

� Ch + k�u� �u

h

k

1;


h

:

Hene k�u� �u

h

k

1;

^

TnT

� Ch + k�u� �u

h

k

1;


h

, and

k�u� �u

h

k

1;
n


h

= sup

^

T2�

b

T

h

k�u� �u

h

k

1;

^

TnT

� Ch + k�u� �u

h

k

1;


h

: (8.14)

Therefore, (8.13) and (8.14) ensure

k�u� �u

h

k

1;


� C(h+ k�u� �u

h

k

2;


+ h

�

) �! 0 when h! 0: 2

9 Error-estimates for the optimal ontrol

We start our investigations with a sequene (�u

h

)

h>0

of solutions of (P

h

), h > 0, onverging

to a solution �u of (P ). Given this a priori information, we shall establish error estimates

for k�u � �u

h

k

2;


and k�u � �u

h

k

1;


. These estimations are performed under the following

seond order suÆient optimality ondition:

(SSC) There is Æ > 0 suh that

J

00

(�u)v

2

� Æ kvk

2

2;


(9.1)
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holds for all v 2 L

1

(
) satisfying

v(x)

8

>

>

>

>

>

<

>

>

>

>

>

:

� 0 if �u(x) = �;

� 0 if �u(x) = �;

= 0 if j'

�u

(x) +D

u

L(x; y

�u

(x); �u(x))j � � > 0:

(9.2)

Remark 12 It an be shown that (SSC) is equivalent to the ondition

J

00

(�u)v

2

> 0

for all v 2 L

1

(
) satisfying the two �rst relations in (9:1) together with v(x) = 0 if

j'

�u

(x)+D

u

L(x; y

�u

(x); �u(x))j > 0. Notie that this ondition leaves no gap to the neessary

onditions, whih require J

00

(�u)v

2

� 0 for the same set of funtions (f. [20℄).

In our analysis, we need an element u

h

admissible for (P

h

) (so that it an serve as a "test

funtion" in the variational inequality), lose to �u, and suh that �u

h

� u

h

belongs to the

one where our seond order suÆient ondition applies. A natural hoie is given by

u

h

2 U

h

; u

h

j

^

T

= Proj

[�;�℄

(�

h

�s)

jT

8

^

T 2

b

T

h

;

where T 2 T

h

is the triangle assoiated with

^

T 2

b

T

h

, and �s is the solution of (4.5) assoiated

with �u. This element is admissible and lose to �u, but �u

h

�u

h

does not belong to the ritial

one. To overome this diÆulty, we introdue a perturbation ~u

h

of u

h

de�ned by

~u

h

(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�u

h

(x) if x 2 
 n 


h

;

�u(x) if x 2 


h

and (�u(x) = � or �u(x) = �);

u

h

(x) if x 2 


h

and � < �u(x) < �:

Before we derive some auxiliary results, and to simplify the redation of this setion, let

us introdue the following notation:

�

d = '

�u

+D

u

L(�; y

�u

; �u); d

h

(u) = '

h

(u) +D

u

L(�; y

h

(u); u);

�

d

h

= d

h

(�u

h

);

D

��

L(w) = D

��

L(�; y

w

; w); D

��

L

h

(w) = D

��

L(�; y

h

(w); w) �; � 2 fy; ug;

D

yy

f(w) = D

yy

f(�; y

w

); D

yy

f

h

(w) = D

yy

f(�; y

h

(w)):

Lemma 6 Suppose that assumptions A1-A2 are satis�ed and that �u satis�es the seond

order suÆient ondition (SSC). Then there exists h

o

> 0, suh that for all h � h

o

J

00

(�u)(�u

h

� ~u

h

)

2

� Æ k�u

h

� ~u

h

k

2

2;


:

Proof. We have to show that v = �u

h

� ~u

h

satis�es the relations (9.2). Then the seond

order ondition yields the statement.
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� On 
 n 


h

, it is lear that v = �u

h

� ~u

h

= 0 satis�es (9.2).

� Let x 2 


h

. If �u(x) = �, then ~u

h

(x) = �. Therefore, v(x) = �u

h

(x) � ~u

h

(x) � 0.

Analogously, �u(x) = � implies v(x) � 0.

� Finally, we prove

v(x) = �u

h

(x)� ~u

h

(x) = 0 on 


�

h

= fx 2 
 j j

�

d(x)j � � > 0g \ 


h

;

for all suÆiently small h > 0. From (7.3) and Corollary 8, we onlude that lim

h!0

k

�

d�

�

d

h

k

1;


= 0. Therefore, there exists h

o

> 0 suh that for all h � h

o

, we have k

�

d�

�

d

h

k

1;


�

�=2, and hene

j

�

d

h

(x)j � j

�

d(x)j � j

�

d�

�

d

h

(x)j �

�

2

8 x 2 


�

h

:

It is easy to verify that the funtions

�

d and d

h

have the same sign on 


�

h

. Let x 2 


�

h

, and

suppose that

�

d(x) > 0. Then, for all h � h

o

, j

�

d

h

(x)j =

�

d

h

(x) �

�

2

> 0. From Lemma 2

and Theorem 6, it follows that �u(x) = �u

h

(x) = u

h

(x) = �, and thus ~u

h

(x) = �. Therefore,

�u

h

(x)�~u

h

(x) = 0. If

�

d(x) < 0, we prove in the same way that �u

h

(x) = �u(x) = ~u

h

(x) = �.2

Lemma 7 Suppose that A1-A2 are satis�ed, and let w 2 U

h

ful�l kwk

1;


� M . Then,

for all v 2 U

h

satisfying v = 0 on 
 n 


h

, we have

jJ

00

(w)v

2

� J

00

h

(w)v

2

j � Ch

�

kvk

2

2;


;

where C � C(
; n;M) is a positive onstant independent of v and h.

Proof. From [8℄, we know that

J

00

(w)v

2

=

Z




�

(D

yy

L(w)� '

w

D

yy

f(w))z

2

v

+ 2D

yu

L(w)z

v

v +D

uu

L(w)v

2

�

dx

and

J

00

h

(w)v

2

=

=

Z




h

�

(D

yy

L

h

(w)� '

h

(w)D

yy

f

h

(w))z

h

(v)

2

+ 2D

yu

L

h

(w)z

h

(v)v +D

uu

L

h

(w)v

2

�

dx

=

Z




�

(D

yy

L

h

(w)� '

h

(w)D

yy

f

h

(w))z

h

(v)

2

+ 2D

yu

L

h

(w)z

h

(v)v +D

uu

L

h

(w)v

2

�

dx

where '

w

, '

h

(w) are the solutions of (4:3) and (6:1) orresponding to w, z

v

, z

h

(v) are the

solutions of (7.9) and (7.10) orresponding to (v; w), respetively. It follows that

jJ

00

(w)v

2

� J

00

h

(w)v

2

j

�

Z




j(D

yy

L(w)� '

w

D

yy

f(w))z

2

v

� (D

yy

L

h

(w)� '

h
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Moreover, due to A1, A2, (7.3), (7.4), and Remark 9, we have
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The statement follows from (9.3), (9.9), (9.10) and (9.11). 2
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Proof. This is a diret onsequene of Lemma 6 and Lemma 7. 2
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for all v 2 U

h

, where C � C(
; n;M) is a onstant independent of v and h.

Proof. By simple alulations, and using the estimates of the last proof, we an see that
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The proof is omplete, sine � � 1 holds in all ases. 2

By (6.2) and the de�nition of
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The auxiliary ontrol u

h

will not ful�l the analogous inequality
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Instead of this, we are able to show that u
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satis�es an assoiated perturbed variational
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Lemma 9 The auxiliary ontrol u
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satis�es the variational inequality
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We on�rm again that (9.14) is true. Sine all possible ases have been onsidered, the

proof is omplete. 2
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Repeating the same arguments, we show (9.17) again. Summarizing up, we have veri�ed
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The onlusion follows from (9.19) and (9.20). 2
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Remark 13 In the next proof we shall use the variational inequality (9:13). The funtion
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tend to zero as h& 0. After rewriting �u
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From (9.21) and (9.22), we obtain
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By (9.20), (9.23), (7.2), and Lemma 10, we obtain
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This proves the assertion of the lemma. 2

Theorem 10 Suppose that the assumptions of Theorem 9 are satis�ed. Then for all suf-

�iently small h, we have
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where C is a positive onstant independent of h.

Proof. With arguments similar to those used in the proof of Theorem 8, we obtain
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The onlusion follows from Theorem 9, and (7.3). 2

Remark 14 We should underline that the error estimates of the Theorems 9 and 10 are

derived under the a priori assumption that (�u

h

)

h

is onverging weakly

�

to �u. By Theorem

27



8, (�u

h

)

h

onverges strongly to �u. Therefore, these estimates have a loal harater. This

is important to be notied, sine the approximate problem (P

h

) may have multiple global

solutions �u

h

.
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