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1 Introdution

We onsider problems of the form

Ax = b;(1)

with A 2 R

n;n

nonsingular and b 2 R

n

. We fous on problems where A is sparse and where

we do not have muh information about the system beforehand. These systems might be

highly inde�nite or ill{onditioned. Sine often these systems are very large solving them

is a hallenge for numerial algorithms. Sometimes it is exeedingly diÆult to solve them

by iterative tehniques and in these ases diret solvers might be preferred. However, there

are situations in whih `general purpose' or `blak{box' iterative solvers are required. The

most popular and promising iterative tehniques so far are preonditioned Krylov{subspae

solvers, see, e.g., [15, 22, 12℄. Among many tehniques, preonditioners based on inomplete

LU{fatorizations, see e.g., [17, 18, 19℄ are known to give exellent results for many im-

portant lasses of problems, suh as those arising from the disretization of ellipti partial

di�erential equations.

Nevertheless, there are still many situations where inomplete LU deomposition give poor

results. One often has to play around with the parameters, e.g., to adapt a drop tolerane

in the inomplete LU deomposition to obtain a suessful preonditioner. This is time{

onsuming sine for any problem one has to selet the orret values. This redues the

exibility as a `blak{box' solver. In addition by dereasing parameters to obtain a su-

essful preonditioner we might get enormous �ll{in or an unaeptable omputational

time. In this ase diret solvers are the only alternative.

The intention of this paper is to take a loser look at inomplete LU deompositions and

espeially on how entries are dropped. The main key used here for analyzing dropping in

the inomplete LU deomposition is its strong relation [7, 8℄ to fatored sparse approximate

inverse methods [3, 4, 2, 16, 21℄. In an earlier paper [8℄ omparisons between an inom-

plete LU deompositions with pivoting and a fatored approximate inverse with pivoting

have shown several examples where the approximate inverse was superior to the ILU . So

apparently ILUs may gain more stability from approximate inverses by taking a lose look

at their relations and espeially at the way how entries are dropped.

The main idea is to monitor the growth of the inverse fators of L; U while omputing L,

U and to use this information as feedbak for a re�ned dropping strategy for the entries of

L and U .

2 A simple ILU approah

We start with a simple desription of a lass of inomplete LU fatorizations. For the

solution of (1) we onstrut an approximate deomposition

A � LDU;
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where L; U

>

are lower triangular matries with unit diagonal and D is diagonal. One way

to onstrut these deompositions is to partition A as

A =

�

B F

E C

�

2 R

n;n

with B 2 R and the other bloks have orresponding size. Then A is fatored as

�

B F

E C

�

=

�

1 0

L

E

I

�

| {z }

L

�

D

B

0

0 S

�

| {z }

D

�

1 U

F

0 I

�

| {z }

U

;(2)

where

S = C � L

E

D

B

U

F

2 R

n�k;n�k

(3)

denotes the so{alled Shur{omplement. The exat LU{deomposition of A (if it exists)

an be obtained by suessively applying (2) to the Shur{omplement S. Even if there

exists a deomposition (2) for A and for S, there is no need to ompute L

E

; U

F

; S exatly

when onstruting a preonditioner. A ommon approah for reduing �ll{in onsists of

disarding entries in L

E

; U

F

of small size and de�ning the approximate Shur{omplement

only with these sparsi�ed vetors

~

L

E

;

~

U

F

. Here we will onentrate on

~

S = B �

~

L

E

F �

�

E �

~

L

E

B

�

~

U

F

(4)

as one possible de�nition of an approximate Shur{omplement. Equation (4) an be ob-

tained from the lower right blok of

~

L

�1

A

~

U

�1

.

We use the MATLAB notation [1℄ for onveniene. For two integers k; l, k : l denotes the

sequene (k; k + 1; : : : ; l) with the onvention that whenever k > l the set is empty. For a

matrix A = (A

ij

)

i=1;:::;m; j=1;:::;n

, we de�ne

A

k:l;q:r

:= (A

ij

)

i=k;:::;l; j=q;:::;r

:

The notation : as a subsript indiates that all olumns/rows entries are taken. Thus, A

:;2

denotes the seond olumn of A and A

2;:

denotes its seond row. Similarly for a nonempty

set s � f1; : : : ; mg we denote by A

s;:

the matrix (A

ij

)

i2s; j=1;:::;n

. With this notation the

assoiated ILU algorithm is roughly as follows.

Algorithm 1 (Inomplete LU fatorization (ILU))

Given A = (A

ij

)

ij

2 R

n;n

and a drop tolerane � 2 [0; 1℄. Compute A � LDU .

L = U = I; S = A;D

11

= S

11

.

for i = 1 : n� 1

p

i+1:n

= S

>

i+1:n;i

=S

ii

, q

i+1:n

= S

i;i+1:n

=S

ii

Drop all entries jp

i

j; jq

i

j if they are less than � .

L

i+1:n;i

= p

>

i+1:n

, U

i;i+1:n

= q

i+1:n

.

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

D

i;i+1:n

� (S

i+1:n;i

� L

i+1:n;i

S

ii

)U

i;i+1:n

D

i+1;i+1

= S

i+1;i+1

end
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Pratial versions of inomplete LU deompositions are typially implemented in a slightly

di�erent way. It is usually not advisable to update the whole S

i+1:n;i+1:n

by a rank{one or

rank{two modi�ation. Instead, typially only the leading row of S

i+1:n;i+1:n

is omputed,

and the transformations on the other rows are post{poned. This orresponds to the so{

alled I,K,J version of Gaussian elimination[21℄. Besides saving memory, this approah is

easier to implement sine all updates and modi�ations are performed only one for eah

row. Thus one an use simple sparse row storage shemes, e.g. the Compressed Sparse Row

(CSR) format [21℄.

Algorithm 2 (Inomplete LU fatorization, I;K; J version)

Given A = (A

ij

)

ij

2 R

n;n

and a drop tolerane � 2 [0; 1℄. Compute A � LDU .

L = U = I; S = A; C = R = ;.

for i = 1 : n

w = A

i;:

for j = 1; : : : ; i� 1 and when w

k

6= 0

w

j

= w

j

=D

jj

if jw

j

j 6 � , w

j

= 0, else w

j+1:n

:= w

j+1:n

� w

j

U

j;j+1:n

end

for all j > i: if jw

j

=w

i

j 6 � , w

j

= 0

De�ne D

ii

= w

i

; U

i;i:n

= w

i:n

=D

ii

; L

i;1:i�1

= w

1:i�1

end

Mathematially Algorithm 2 an be read as a speial version of Algorithm 1, if the approx-

imate Shur{omplement is replaed by

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

D

i;i

U

i;i+1:n

:

Clearly this replaement would also end up in an exat LU deomposition one we do not

drop entries anymore.

3 Stabilized ILU

One problem in dropping entries in Algorithm 1 or Algorithm 2 is that we do not have

ontrol of the hanges whih are a�eted by dropping. One way to get a more reliable

dropping riterion is to take the norm of the i{th row of A into aount, e.g. replae � by

� �kA

i;:

k

1

. This is essentially what the ILUT{Algorithm [19℄ does. A slightly re�ned version

of this strategy, at least if the information on the Shur{omplement is available, ould be

to onsider the norm of the i{th row of the Shur{omplement as well. This makes sense

espeially when the orresponding row of the Shur{omplement has signi�antly smaller

entries. I.e., instead of dropping entries that are less than � or � � kA

i;:

k

1

in absolute value,

we ould drop entries that are less than � �minfkA

i;:

k

1

; kS

i;i:n

k

1

g in absolute value. Often

both hoies are a very good ompromise but learly there may still be ases where we

ould end up in a poor preonditioner.
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Algorithm 1, 2 an be supplemented with pivoting. When olumn pivoting is added to Al-

gorithm 2 it essentially orresponds to the ILUTP{Algorithm whih is part of SPARSKIT,

see e.g. [21, 20℄. So far we have ignored this option to have more lear presentation. Later

on, we will return to this point and �nally inlude pivoting. For simpliity let us onsider

the algorithms without pivoting at this stage.

Reently it has been shown in [7℄ that Algorithm 1 has a strong relation to sparse approx-

imate inverse preonditioners. Without going into the details, we will roughly desribe the

idea of AINV{type algorithms [3, 4, 2, 8℄. The idea is to diretly ompute upper triangular

matries W;Z suh that W

>

AZ = D, with a diagonal matrix D. The version whih we

will fous on is the so{alled right looking AINV, where W and Z are updated by a rank{1

update. Essentially a biorthogonalization proess forW and Z is performed, in whihW

>

A

and Z

>

A

>

are transformed step by step to upper triangular form. Clearly this only holds

if no dropping is applied to W;Z.

Algorithm 3 (Fatored Approximate INVerse, rank{1 update version)

Given A = (A

ij

)

ij

2 R

n;n

and a drop tolerane � 2 [0; 1℄. Compute A

�1

� ZD

�1

W

>

.

p = q = (0; : : : ; 0) 2 R

n

; Z = W = I

n

; C = R = ;.

for i = 1 : n

p

i:n

= Z

>

:;i

A

>

i:n;:

, q

i:n

= W

>

:;i

A

:;i:n

Set p

i+1:n

:= p

i+1:n

=p

i

; q

i+1:n

:= q

i+1:n

=q

i

W

:;i+1:n

= W

:;i+1:n

�W

:;i

p

i+1:n

, Z

:;i+1:n

= Z

:;i+1:n

� Z

:;i

q

i+1:n

Drop entries W

kl

of W

1:i;i+1:n

, if jW

kl

j 6 �

Drop entries Z

kl

of Z

1:i;i+1:n

, if jZ

kl

j 6 �

end

Choose diagonal entries of D as the omponents of p (or equivalently of q).

In priniple we ould modify Algorithm 1 suh that the inverses of its triangular fators L; U

are omputed on the y. For this purpose we supplement Algorithm 1 with a progressive

inversion of L; U . At step i� 1, U is of the form

U =

�

U

1:i�1;1:i�1

U

1:i�1;i:n

O I

�

and the i-th step will ompute the entries U

i;i+1:n

and add them to the urrent U to get

U

new

. Let q

>

be the row vetor q

>

= U

i;:

� e

>

i

. Note that the 'diagonal' element q

i

of q is

zero. Then,

U

new

= U + e

i

q

>

= (I + e

i

q

>

)U:

It follows that

U

�1

new

= U

�1

(I + e

i

q

>

)

�1

= U

�1

(I � e

i

q

>

) :

Of ourse analogous arguments hold for L. This provides a formula for progressively om-

puting L

�>

; U

�1

throughout the algorithm.We all the inverse fators Z;W as in Algorithm

3. With these additional fators Z;W and a modi�ed Shur{omplement it was shown in

[7℄ that the supplemented version of Algorithm 1 is essentially equivalent to Algorithm 3.
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Theorem 4 Suppose that Algorithm 1 is supplemented with a progressive inversion of

L; U . Suppose in addition that in step i of Algorithm 1 an entry L

ji

is disarded only if

jL

ji

jmaxf1g [ fjW

ki

j : k < ig 6 � , i = 1; : : : ; n. Suppose that in Algorithm 1 and 3 W

kl

is dropped from W

1:i;i+1:n

if jW

kl

j 6 � . If the (modi�ed) Shur{omplement S

i+1:n;i+1:n

is

de�ned via

S

i+1:n;i+1:n

=W

>

:;i+1:n

A

:;i+1:n

;

then we have for any k > l:

j(L

�>

)

kl

�W

kl

j 6 �(2(k � l)� 1)

and the diagonal entries of D are those of p.

Proof. See [7℄. 2

The most interesting point about this relation is that Theorem 4 requires to modify the

dropping strategy for L (and similarly for U). Now typially applying dropping to sparse

approximate inverse fators is less harmful than for inomplete LU deompositions, beause

in dropping small entries of size � inW;Z the e�etive error inW

>

AZ is only between linear

and quadrati with respet to � . And W

>

AZ is the matrix whih needs to be transformed

to an approximately diagonal matrix D. On the other hand if we apply dropping to the

fators L; U of an ILU the related e�et is rational sine we do not know in advane the

e�et for L

�1

AU

�1

. But for preonditioning, this is preisely what we need to know. So if

we an onstrut an ILU that is somehow almost equivalent to an approximate inverse,

then we might hope that dropping is more reliable and the resulting preonditioner is muh

more eÆient for those situations where dropping has a serious impat on the quality of

the preonditioner. Numerial results in [8℄ illustrate that for some extremely inde�nite

and ill{onditioned problems the approximate inverse behaves better than an ILU .

To turn the result of Theorem 4 into an algorithm we will ertainly not invert L; U in

Algorithm 1. Let us take a look at the riterion for dropping entries in L. We need to

know maxf1g [ fjW

ki

j : k < ig, whih means we need to know the i{th row of L

�1

, i.e.,

W

1:i�1;i

= (L

�1

)

i;1:i�1

. At least it would be onvenient to have an estimate for k(L

�1

)

i;1:i�1

k

1

whih ould serve as a substitute for fjW

ki

j : k < ig. To do this we use a general ondition

estimator for triangular matries from [14, 9℄ as a helpful estimate for k(L

�1

)

i;1:i�1

k

1

.

This ondition estimator is based on solving a system with an upper triangular matrix U

where the right hand side y only onsists of �1 and the signs are hosen to suessively

maximize the solution x of Ux = y. Another look at this ondition estimator shows that

the omponents of x = U

�1

y preisely estimate k(U

�1

)

i;i:i:n

k

1

. To adapt this estimator to

our problem we will onsider Lx

L

= y

L

and U

>

x

U

= y

U

to get estimates for k(L

�1

)

i;1:i�1

k

1

and k(U

�1

)

1:i�1;i

k

1

.

Algorithm 5 (Condition Estimator for (L

�1

) adapted from [14, 9℄ )

Let L = (L

ij

)

ij

2 R

n;n

be unit lower triangular. Compute Lx = y, where y

>

2 (�1; � � � ;�1).

p = p

+

= p

�

= x = (0; : : : ; 0)

>

2 R

n

, and let � = 0 be the assoiated 1{norm of p

5



for i = 1 : n

x

+

= 1� p

i

, x

�

= �1� p

i

Let s be the set of nonzero omponents of L

i+1:n;i

p

+;s

= p

s

+ L

s;i

x

+

, p

�;s

= p

s

+ L

s;i

x

�

�

+

= � � kp

s

k

1

+ kp

+;s

k

1

, �

�

= � � kp

s

k

1

+ kp

�;s

k

1

if jx

+

j+ �

+

> jx

�

j+ �

�

x

i

= x

+

, � = �

+

p

s

= p

+;s

, p

�;s

= p

+;s

else

x

i

= x

�

, � = �

�

p

s

= p

�;s

, p

+;s

= p

�;s

end

end

In priniple one ould also use di�erent ondition estimators, e.g. [5, 6℄. But what we really

need is not an estimate for the norm of L

�1

but an estimate for the norm of eah row of

L

�1

. From this point of view to take as right hand side a vetor y whih only onsists of

�1 is reasonable and is more attrative for this problem.

Now we an supplement Algorithm 1 with the ondition estimator Algorithm 5 applied to

the L and U

>

fators of the ILU and the omponents of x

L

= L

�1

y

L

; x

U

= U

�1

y

u

are

serving as estimates for (L

�1

)

i;1:i�1

, (U

�1

)

1:i�1;i

. We still have to disuss the hoie of the

approximate Shur{omplement. Although Theorem 4 is based on de�ning the approximate

Shur{omplement via S

i+1:n;i+1:n

= W

>

:;i+1:n

A

:;i+1:n

, it an be seen in the proof of this

Theorem that an analogous relation will hold for the ase where p; q of Algorithm 3 are

de�ned via

p

i:n

= Z

>

:;i

A

>

W

i:n;:

; q

i:n

=W

>

:;i

AZ

:;i:n

:(5)

In this ase the related Shur{omplement for Theorem 4 is

S

i+1:n;i+1:n

=W

>

:;i+1:n

AZ

:;i+1:n

:(6)

In fat, when Algorithm 3 is supplemented with pivoting, (5) is used to ensure that p

i

=

q

i

6= 0. Furthermore (6) is related to the hoie of S in Algorithm 1 sine it onsists of

taking the lower right blok of

~

L

�1

A

~

U

�1

. Clearly the de�nition of the approximate Shur{

omplement in Algorithm 1 is not preisely the same as (6). But aording to [7℄, one has

a lose onnetion to Algorithm 3 with this hoie of an approximate Shur{omplement

if dropping is applied in slightly di�erent way.

As a next step to de�ne the ILU we introdue pivoting. We de�ne permutation vetors

�; �, suh that A(�; �) = LD(�; �)U provided that no dropping is applied. In priniple,

applying permutation matries �;� to (2), hanges this equation to

�

I O

O �

>

��

B F

E C

��

I O

O �

�

=

�

1 0

�

>

L

E

I

� �

D

B

0

0 �

>

S�

� �

1 U

F

�

0 I

�

:

This illustrates how S; L and U have to be adapted. It is lear that if we inlude the

ondition estimator, analogous hanges are made. It should also be obvious that in pratie

6



one will not physially interhange rows of L and olumns of U but instead one uses index

vetors.

In priniple we an introdue a pivoting proess to Algorithm 1 whih ensures that in the

permuted matrix jp

i

j > �max

j=i+1;:::;n

jp

j

j and jq

i

j > �max

j=i+1;:::;n

jq

j

j. This guarantees

that after the division by p

i

; q

i

the entries of p

j

=p

i

, q

j

=q

i

are less than 1=� in absolute value.

Here the parameter � 2 [0; 1℄ is hosen a priori. The hoie � = 1 refers to strit pivoting,

i.e. the maximum entry in absolute value will beome p

i

or q

i

, while any smaller hoie of

� auses only pivoting if the diagonal entry is muh smaller than the maximum entry of

jp

i+1:n

j; jq

i+1:n

j. Now we an go one step further and use the freedom in the hoie of pivots

to add a strategy of Markowitz type [10℄, i.e., we onsider the set of pivots jp

k

j that are

larger than �max

j=i+1;:::;n

jp

j

j and among these we take the one with the minimum �ll{in.

This is a typial strategy to maintain sparsity in the Shur{omplement when using diret

methods [10℄. To do this, replae max

j=i+1;:::;n

jp

j

j by z and de�ne a set piv(p) by

piv(p; z) = fk : jp

k

j > �zg:(7)

For any k, let nnz

i

(k) denote the number of nonzeros of S

i:n;k

and let nnzr

i

(k) denote the

number of nonzeros of S

k;i:n

. As pivot we will hoose j 2 piv(p; z) suh that

nnz

i

(j) = min

k2piv(p;z)

nnz

i

(k):(8)

I.e., among all admissible pivots hoose the one whih loally minimizes the �ll{in. The

same proess needs to be repeated for q. In theory this proess needs to be alternated

between p and q beause we have to make sure the diagonal pivots are not getting smaller.

For this reason we always inrease z. A loal pivoting step an then look as follows.

Algorithm 6 (Loal pivoting with respet to �ll{in)

Given A = (A

ij

)

ij

2 R

n;n

and a pivoting tolerane � 2 [0; 1℄.

Let S

i:n;i:n

denote the Shur{omplement on entry to step i of Algorithm 1.

z = 0

while pivots not satisfatory

p

i:n

= S

i;i:n

, z = maxfz;max

j=i;:::;n

jp

j

jg

Choose � 2 piv(p; z) suh that nnz

i

(�) is minimal.

Interhange olumns/omponents i; � of p; �; S

i:n;:

; U

1:i�1;:

q

i:n

= S

i:n;i

, z = maxfz;max

j=i;:::;n

jq

j

jg

Choose � 2 piv(q; z) suh that nnzr

i

(�) is minimal.

Interhange olumns/omponents i; � of q; �; S

:;i:n

; L

:;1:i�1

end

The while loop only terminates if no more interhanges are performed.

Together with the ondition estimator in Algorithm 5, Algorithm 6 is used to stabilize the

inomplete LU deomposition from Algorithm 1. We summarize these hanges to a new

ILU algorithm.
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Algorithm 7 (Stabilized Inomplete LU fatorization (ILUSTAB))

Given A = (A

ij

)

ij

2 R

n;n

, a drop tolerane � 2 [0; 1℄ and a pivoting tolerane � 2 [0; 1℄.

Compute A(�; �) � LDU .

L = U = I; S = A;D

11

= S

11

; � = � = (1; : : : ; n).

x

L

= p

L

= p

+;L

= p

�;L

= x

U

= p

U

= p

+;U

= p

�;U

= (0; : : : ; 0)

>

2 R

n

, �

L

= �

U

= 0.

for i = 1 : n� 1

Apply Algorithm 6.

Whenever p requires pivoting, interhange p

U

; p

+;U

; p

�;U

; x

U

as well

Whenever q requires pivoting, interhange p

L

; p

+;L

; p

�;L

; x

L

as well

L

i+1:n;i

= p

>

i+1:n

, U

i;i+1:n

= q

i+1:n

.

Apply step i of Algorithm 5 for L with

�; x; p; p

+

; p

�

replaed by �

L

; x

L

; p

L

; p

+;L

; p

�;L

Apply step i of Algorithm 5 for U

>

with

�; x; p; p

+

; p

�

replaed by �

U

; x

U

; p

U

; p

+;U

; p

�;U

drop all entries jL

ji

j of L

i+1:n;i

, if jL

ji

jmaxf1; jx

L;i

jg 6 � minfkA

i;:

k

1

; kS

i;i:n

k

1

g

drop all entries jU

ji

j of U

i;i+1:n

, if jU

ij

jmaxf1; jx

U;i

jg 6 � minfkA

i;:

k

1

; kS

i;i:n

k

1

g

S

i+1:n;i+1:n

= S

i+1:n;i+1:n

� L

i+1:n;i

S

i;i+1:n

� (S

i+1:n;i

� L

i+1:n;i

S

ii

)U

i;i+1:n

D

i+1;i+1

= S

i+1;i+1

end

The two major di�erenes between Algorithm 1 and Algorithm 7 are the appliation of

pivoting and the inlusion of a ondition estimator. The latter is motivated by the strong

relations between inomplete LU fatorizations and fatored approximate inverse preon-

ditioners.

4 Numerial Results

This setion presents numerial experiments to validate the algorithms. So far, Algorithm

7 is implemented in MATLAB [1℄.

� The matries are initially reordered using the symmetri minimum degree ordering

[13℄.

� An a priori saling is used suh any row of the given matrix has unit 1{norm.

� For the pivoting proess � = 0:1 is used.

� Di�erent values were used for the drop tolerane � = 0:1; 0:3.

For the numerial experiments several unsymmetri matries from the Harwell{Boeing

Colletion [11℄ were hosen.
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The result are ompared with

� LU from MATLAB also with pivoting tolerane � = 0:1

� LUINC from MATLAB with � = 0:1 and drop toleranes � = 0:1, 0:01, 10

�3

,

10

�4

, 10

�5

� ILUTP from SPARSKIT using the same tolerane � = 0:1 for pivoting but � = 0:1,

0:01, 10

�3

, 10

�4

, 10

�5

for dropping.

The numerial results for ILUTP [21℄ were performed on an SGI workstation with two

190 MHz R10000 (IP25) proessors under IRIX 6.2 and 512 MB memory.

As iterative solvers GMRES(30) [22℄ is used. The iteration was stopped after the residual

norm was less than

p

eps times the initial residual norm, where eps � 2:2204 � 10

�16

denotes the mahine preision. The iteration was stopped after 500 steps. Every iterative

solution whih broke down or did not onverge within the number of steps was noted as a

failure.

We briey desribe the results for several matries and then give detailed numerial results

for several seleted examples.

To give a rough idea on how the method performed on the Harwell{Boeing olletion we

simply summarize in Table 1 whih method suessfully solved how many problems with

respet to the drop tolerane � . The tests were done on 94 matries from the Harwell-Boeing

olletion.

Table 1: Summary of results | Suessful Computation

Harwell{Boeing Colletion (94 test matries)

Preonditioner Drop tolerane �

0:3 0:1 0:01 10

�3

10

�4

10

�5

ILUSTAB 89 92

LUINC 31 52 68 79 87

ILUTP 53 69 78 84 90

Note that there were only two matries whih ould not be solved with ILUSTAB for

� 2 f0:3; 0:1g. These are the matries fasimile/fs7603, grenoble/gre216b. These matries

ould be solved with � = 0:01. But LUINC ould also not solve fasimile/fs7603 and

for fasimile/fs7603 ILUTP needed � = 10

�4

. For grenoble/gre216b LUINC and ILUTP

needed � = 10

�5

.

We now omment on several matries from the Harwell{Boeing{Colletion. This olletion

onsists of many matries from di�erent areas. Related matries are put together in a group

and omments are done with respet to these groups. For some seleted examples we will

9



show separate tables. In eah table (e.g., Table 2) we will present the the hoie of the

drop tolerane � and the related �ll{in fator (that is the ratio of the number of nonzeros

of L + U divided by the number of nonzeros of A). Next the number of iteration steps

using GMRES(30) is shown. For the MATLAB algorithms LU, ILUSTAB and LUINC

we use the op ount as measure for the number of operations. The op ount is split

into the ops required for the deomposition and the ops to solve a linear system using

GMRES(30).

� CHEMWEST: These matries are some of those for whih LUINC and ILUTP needed

smallest drop toleranes to be suessful while ILUSTAB was able to solve all of

them already for � = 0:3. Detailed results for the three biggest WEST{matries are

given in Table 2, 3, 4.

Table 2: Matrix CHEMWEST/WEST0989

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 3.2 1 1:2�10

5

9:9�10

4

0:3 1.3 20 1:8�10

5

1:4�10

6

ILUSTAB

0:1 1.5 14 1:7�10

5

8:3�10

5

10

�1

0.7 | 1:1�10

4

|

10

�2

1.0 | 1:4�10

4

|

LUINC 10

�3

1.2 | 2:0�10

4

|

10

�4

1.6 | 3:8�10

4

|

10

�5

1.9 6 4:7�10

4

2:7�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.4 309

10

�5

2.7 10

� FACSIMILE: LUINC from MATLAB ould not solve most of these matries for

� = 0:1; 0:01. For � = 10

�3

it was able to solve 50% of them and for � = 10

�4

; 10

�5

only fs1836, fs7602, fs7603 ould not be solved. For those problems that ould be

solved, the �ll{in was moderate and the number of iteration steps was small.

In ontrast to this ILUSTAB ould solve all of these matries already for � = 0:3

exept fs7603 whih ould not be solved. The �ll{in was small as well. The number

of iteration steps was small exept for fs7602 whih required 60 steps for � = 0:3 and

31 for � = 0:1.

ILUTP solved most of these problems for � = 0:1. All problems inluding fs7603 were

solved for � = 10

�4

; 10

�5

.
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Table 3: Matrix CHEMWEST/WEST1505

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 4.2 1 4:0�10

5

1:7�10

5

0:3 1.4 22 3:5�10

5

2:5�10

6

ILUSTAB

0:1 1.7 17 4:0�10

5

1:7�10

6

10

�1

0.7 | 1:7�10

4

|

10

�2

1.0 | 2:2�10

4

|

LUINC 10

�3

1.2 | 3:2�10

4

|

10

�4

1.7 16 6:8�10

4

1:5�10

6

10

�5

2.0 6 8:6�10

4

4:1�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.4 |

10

�5

2.7 |

Table 4: Matrix CHEMWEST/WEST2021

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 5.6 1 1:2�10

6

2:7�10

5

0:3 1.6 20 6:8�10

5

2:9�10

6

ILUSTAB

0:1 1.7 14 6:7�10

5

1:7�10

6

10

�1

0.7 | 2:2�10

4

|

10

�2

0.9 | 3:0�10

4

|

LUINC 10

�3

1.2 | 4:6�10

4

|

10

�4

1.6 | 8:7�10

4

|

10

�5

1.9 6 1:2�10

5

5:5�10

5

10

�1

1.0 |

10

�2

1.4 |

ILUTP 10

�3

1.9 |

10

�4

2.5 |

10

�5

3.1 14
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For those problems that ould be solved the �ll{in was small. The largest number of

iterations were 155 for fs7602 and � = 0:1, 62 for fs7602 and � = 10

�3

. For all other

methods it was less, if they ould be solved at all.

� GEMAT: ILUSTAB ould not solve these matries for � = 0:3 but for � = 0:1.

LUINC ould solve these matries for � = 10

�4

but with roughly four times of the

�ll{in of ILUSTAB.

ILUTP ould solve these matries for � = 10

�3

but with more than twie as muh

�ll{in as ILUSTAB. For these matries the LU deomposition needed more than 70

times of �ll than the initial matrix.

For gemat12 see Table 5. The results for gemat11 are similar.

Table 5: Matrix GEMAT/GEMAT12

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 73.5 1 1:7�10

9

1:0�10

7

0:3 1.0 | 1:4�10

6

|

ILUSTAB

0:1 1.3 67 2:0�10

6

3:5�10

7

10

�1

0.6 | 1:8�10

5

|

10

�2

1.4 | 1:6�10

5

|

LUINC 10

�3

2.7 | 1:3�10

7

|

10

�4

5.2 10 5:4�10

7

5:7�10

6

10

�5

9.2 5 1:3�10

8

3:9�10

6

10

�1

1.0 |

10

�2

2.0 |

ILUTP 10

�3

3.4 17

10

�4

5.2 7

10

�5

7.4 4

� GRENOBLE: for � = 0:1 LUINC ould only solve gre115, gre216a, gre343, gre512.

But even for some of those the �ll{in fator was already enormous ( e.g. 5:9 for

gre216a, 7:7 for gre343, 11:3 for gre512). The same problem ourred for the other

matries that ould only be solved for smaller � . All matries ould �nally be solved

with � = 10

�5

.

ILUSTAB solved all matries exept gre216b, gre1107 for � = 0:3. The �ll{in was

slightly better (e.g. i.e. 3:8 for gre216a, 4:9 for gre343, 7:8 for gre512). gre1107 ould

be solved with � = 0:1 but with a �ll{in fator 7:4. This was still better than LUINC,

whih needed � = 10

�3

and produed a �ll{in fator 23:0!

For � = 0:1, ILUTP ould solve gre115, gre185, gre216a. But even then the �ll{in

fator was sometimes large ( i.e. 7:0 for gre216a, 12:6 for gre512). The same problem

12



ourred for the other matries that ould only be solved for smaller � . For example

gre1107 ould be solved with � = 10

�3

and a �ll{in fator 21:3. All matries ould

�nally be solved with � = 10

�5

.

The problem with the �ll{in also extremely a�ets the sparse LU deomposition. For

example gre1107 required a �ll{in fator 44:1!

For those problems that ould be solved by one of these methods the number of

iteration steps was moderate.

� LNS: ILUSTAB solved them all for � = 0:3. The �ll{in was moderate (3:6 for lns3937

was already maximum) an so was the number of iteration steps (at most 29).

LUINC ould not solve any of these matries for � = 0:1; 0:01 but lns511, lnsp511,

lns3937, lnsp3937 for � = 10

�3

. The biggest matries required twie as muh �ll{in

as ILUSTAB.

ILUTP ould solve the two smallest matries for � = 0:1 and the medium size matries

for � = 10

�3

.

The two biggest matries ould only be solved for � = 10

�5

. For lns3937 see Table

6. The results for lnsp3937 were quite similar.

Table 6: Matrix LNS/LNS3937

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 46.1 1 2:9�10

8

4:9�10

6

0:3 3.6 28 2:3�10

7

1:4�10

7

ILUSTAB

0:1 4.9 16 4:1�10

7

7:7�10

6

10

�1

1.0 | 6:4�10

5

|

10

�2

3.7 | 1:0�10

7

|

LUINC 10

�3

7.4 29 3:2�10

7

2:0�10

7

10

�4

12.3 9 6:6�10

7

7:1�10

6

10

�5

17.0 9 1:0�10

8

5:0�10

6

10

�1

0.8 |

10

�2

1.4 |

ILUTP 10

�3

2.5 |

10

�4

3.5 |

10

�5

4.4 |

� NUCL: ILUSTAB ould solve all matries for � = 0:3 but the �ll{in was poor, e.g.,

28.6 for nn1374. The number of iteration steps was at most 28.

LUINC did not solve any of these matries for � = 10

�1

; : : : ; 10

�5

.

ILUTP ould solve all the problem for � = 10

�3

and a better �ll{in fator than

ILUSTAB (e.g. 6.6 for nn1374 but 463 iteration steps).
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Here the diret solver produed signi�antly less �ll{in for nn1374 (fator 14.6) than

ILUSTAB.

� PORES: PORES1, PORES3 ould be solved by ILUSTAB for � = 0:3 and ILUTP

for � = 0:1. LUINC needed � = 0:01 for PORES3. The number of iteration steps

was small exept for PORES3, � = 0:1 and ILUTP whih needed 248 steps, but for

� = 0:01 the number of steps were small while the �ll{in was still below the �ll{in of

the original matrix. For matrix PORES2 see Table 7.

Table 7: Matrix PORES/PORES2

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 5.1 1 2:5�10

6

2:9�10

5

0:3 1.0 54 6:8�10

5

6:9�10

6

ILUSTAB

0:1 1.2 15 9:6�10

5

1:5�10

6

10

�1

0.5 | 4:4�10

4

|

10

�2

0.6 113 6:0�10

4

1:4�10

7

LUINC 10

�3

1.1 26 1:6�10

5

3:1�10

6

10

�4

1.8 9 4:1�10

5

8:3�10

5

10

�5

2.4 5 6:7�10

5

4:7�10

5

10

�1

0.4 |

10

�2

0.8 |

ILUTP 10

�3

1.7 30

10

�4

3.2 13

10

�5

4.6 9

� SAYLOR: SAYLR1/SAYLR3 were solved by ILUSTAB for � = 0:3 and ILUTP for

� = 0:1. For SAYLR3, LUINC failed for all � . For SAYLR4 see Table 8.

� SHERMAN: ILUSTAB solved all the matries for � = 0:3, but for sherman3 it

needed 138 iteration steps. For the other matries the iteration ount was less than

half as muh. The �ll{in was less than twie as muh as the initial �ll. The number of

iterations was muh lower for � = 0:1 but with more �ll{in. LUINC ould only solve

sherman4, sherman5 for � = 0:1 and it needed 123 iteration steps for sherman5. For

� = 0:01 it needed only a moderate number of iteration steps, but sherman1 still

ould not be solved for � = 10

�2

. ILUTP ould solve all matries but for sherman2

it needed � = 10

�5

(see Table 9). For sherman4 and � = 0:1 the number of iteration

steps (449) was still big. This hanged when using � = 0:01.
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Table 8: Matrix SAYLOR/SAYLR4

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 14.7 1 3:7�10

7

1:5�10

6

0:3 2.6 44 1:6�10

7

1:8�10

7

ILUSTAB

0:1 3.1 15 2:0�10

7

5:2�10

6

10

�1

0.6 | 1:1�10

5

|

10

�2

0.6 | 1:1�10

5

|

LUINC 10

�3

0.6 | 1:1�10

5

|

10

�4

1.6 33 9:5�10

5

1:2�10

7

10

�5

2.7 11 3:5�10

6

3:1�10

6

10

�1

0.6 352

10

�2

0.6 155

ILUTP 10

�3

0.6 153

10

�4

2.4 18

10

�5

3.5 8

Table 9: Matrix SHERMAN/SHERMAN2

Method / � �ll{in # it. ops

fator steps de. solve

sparse LU 14.0 1 8:1�10

7

1:4�10

6

0:3 0.4 30 1:6�10

6

4:4�10

6

ILUSTAB

0:1 0.6 14 2:6�10

6

1:7�10

6

10

�1

0.2 | 9:7�10

4

|

10

�2

0.4 21 2:6�10

5

2:6�10

6

LUINC 10

�3

0.7 7 7:7�10

5

7:5�10

5

10

�4

1.1 5 2:4�10

6

6:2�10

5

10

�5

1.7 4 5:1�10

6

5:9�10

5

10

�1

0.3 |

10

�2

0.6 |

ILUTP 10

�3

1.0 |

10

�4

1.6 |

10

�5

2.1 61

15



The numerial examples have illustrated the robustness of taking the growth of the in-

verse triangular fators into aount when omputing an inomplete LU deomposition.

Of ourse ILUSTAB is neither always the most eÆient nor always the fastest (with respet

to the ops ) nor always the ILU with the smallest amount of �ll{in. But in many ases

it is a pretty good ompromise between standard inomplete LU deompositions and the

full sparse LU deomposition. In many examples it is not neessary to use a trial{and{

error strategy for hoosing the drop tolerane. The drop tolerane is automatially adapted

with respet to the growth of the inverse fators. In several ases where a diret solver is

superior to iterative method (f.Table 2), 3, 4 with respet to the number of ops, the

�ll{in for ILUSTAB is still moderate and often even less less than that for LUINC, ILUTP.

Conversely on some problems whih ause trouble to diret solvers (f. Table 5) ILUSTAB

gains from its sparsity and being used as iterative solver.

The drawbak of this algorithm is of ourse that it is more omparable with sparse diret

solvers beause it requires expliit knowledge of the Shur{omplement. Clearly there are

several problems where standard inomplete LU deompositions used as preonditioners

give powerful iterative solvers. In these ases apparently ILUSTAB will be slower beause

one has a ertain time onsuming overhead for omputing and administrating the approx-

imate Shur{omplement.

5 Conlusions

A version of an inomplete LU deomposition has been presented that performs dropping

with respet to the growth of the inverses of the triangular fators. We have illustrated that

the resulting preonditioner is very robust. Often one an avoid adapting the parameters

to a spei� matrix and still get a preonditioner that is omputed in a sensible time with

moderate �ll{in. For many examples this has turned out to be a good ompromise between

sparse diret solvers and standard inomplete LU deompositions. Sine this preonditioner

shares several properties with sparse diret solvers, an implementation based on modi�ed

diret solvers seems to be reasonable. Currently odes from diret solvers like the Harwell{

Subroutine{Library are under investigation to build this kind of preonditioner. Real{time

results for bigger problems will be presented in a forthoming paper.
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