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Optimal ontrol of a linear ellipti equation with a

supremum-norm funtional

Thomas Grund and Arnd R�osh

Abstrat

We onsider an optimal ontrol problem of a linear ellipti equation with a fun-

tional ontaining a supremum-norm term. The ontrol ats on the boundary. Nees-

sary �rst order optimality onditions are derived for problems with pointwise ontrol

and state onstraints. For this purpose the original problem is substituted by an

equivalent problem with a di�erentiable funtional. In a seond part we disuss a nu-

merial approah to suh problems. The ontrol problem is transformed into a linear

(resp. quadrati) programming problem. In a partiular situation we an ompare

the numerial results with the analyti solutions.

Keywords: Optimal ontrol, supremum norm, minimax, state onstraints, numerial so-

lution

AMS subjet lassi�ation: 49K35, 49K20, 90C90

1 Introdution

In this paper, we onsider an optimal ontrol problem with a ost funtional of the form

J(y; u) = ky � y

d

k

C(
)

+

�

2

Z

�

u

2

ds;

where y

d

2 C(
), 
 � R

n

(n � 2) is a bounded domain with boundary � of lass C

1;1

,

and � is a nonnegative real number. The pair (y; u) satis�es the following linear equation

��y + y = 0 in 
;

�

�

y = u on �;

(1)

where �

�

y denotes the outward normal derivative of y on �. The admissible sets for the

state and the ontrol variables are given by

U

ad

= fu 2 L

t

(�) : u

1

� u(s) � u

2

a.e. on �g;

Y

ad

= fy 2 C(
) : y

1

� y(x) � y

2

in 
g;

with t � n and real numbers u

1

; u

2

; y

1

; y

2

. The paper is onerned with the following

ontrol problem

(P) Minimize J(y; u), subjet to (1) and (y; u) 2 Y

ad

� U

ad

:

Funtionals inluding a C-norm are not di�erentiable. For that reason suh problems
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are less investigated. The neessary optimality onditions for di�erent lasses of optimal

ontrol problems with a supremum-norm funtional have been studied by several authors,

see for instane Glasho� and Wek [7℄, Tr�oltzsh [13℄, Li and Yong [9℄, Arada and Raymond

[1℄. Taking advantage of the speial struture of our ost funtional, and using a standard

tehnique in the �nite optimization, we substitute problem (P) by an equivalent ontrol

problem with a di�erentiable funtional and additional state onstraints. More preisely,

by using the equivalene

ky � y

d

k

C(
)

� Æ () �Æ � y � y

d

� Æ in 
; (2)

we an prove that (P) is equivalent (in a sense to speify later) to the ontrol problem

(P

d

) Minimize J

d

(u; Æ) = Æ +

�

2

Z

�

u

2

ds

subjet to (1), and

y � Æ � y

d

in 
; (3)

�y � Æ � �y

d

in 
; (4)

(y; u) 2 Y

ad

� U

ad

: (5)

This reformulation enables us to establish optimality onditions by applying a lassial

Lagrangian multiplier rule, see Tr�oltzsh [14℄, Casas [4℄.

In Setion 4 we handle the partiular ase of (P) orresponding to � = 0, in the absene of

ontrol and state onstraints. Sine the funtional is not oerive and U

ad

is not bounded

in this ase, lassial existene results an not be applied. Under some natural assumptions

on y

d

, we prove the existene of an optimal ontrol, and give a detailed haraterization of

the orresponding state.

Setion 5 deals with the numerial solution of (P

d

). For the numerial treatment of other

ellipti ontrol problems with ontrol and state onstraints we refer to Bergounioux and

Kunish [2℄, Casas [3℄, Maurer and Mittelmann [10℄.

Due to the partiular struture of the ost funtional we are able to apply methods of

linear (resp. quadrati) programming, suh as simplex or interior point methods. In our

paper, partiular emphasis is laid on a omparison of di�erent tehniques to build up the

programming problem. The ontrol problem is fully disretized in the �rst ase, see also

[10℄. In a seond ase we eliminate the variables orresponding to the state funtions by

using the linearity of the state equation. Numerial examples are given in Setion 6.

The approah presented in this paper an be applied to more general lasses of optimal on-

trol problems. However we on�ne ourselves to a simpli�ed linear equation to demonstrate

the tehniques to handle the supremum-norm funtional.
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2 Preliminary results

2.1 State and adjoint equation

In this setion we reall some results onerning the state equation and the adjoint equation,

see Casas [4℄ for more general results.

Theorem 1 ([4℄, Theorem 3.1) For all u 2 L

t

(�); t � n � 1, there exists a unique

solution y

u

of the state equation (1) belonging to H

1

(
) \ C(
): Moreover, there exists a

onstant C

1

independent of u suh that

ky

u

k

H

1

(
)

+ ky

u

k

C(
)

� C

1

kuk

L

t

(�)

:

In the sequel, the unique solution of (1) for a ontrol u 2 L

t

(�) is denoted by y

u

.

To derive optimality onditions we need the so alled adjoint equation. As we see below,

the adjoint equation of the optimality onditions for the problem (P ) has measures as data

in 
 and on �. More preisely, we deal with the following problem

��p + p = �




in 
;

�

�

p = �

�

on �;

(6)

where � = �




+ �

�

is a Radon measure on 
, �




is the restrition of � to 
, �

�

is the

restrition of � to �. We denote by M(
) the spae of Radon measures on 
. M(
) is

the dual spae of C(
): The duality pairing in M(
)� C(
) is denoted by h�; �i




:

De�nition 1 A weak solution of (6) is a funtion p 2 W

1;1

(
) suh that

Z




(rp(x)r'(x) + p') dx = h�; 'i




for all ' 2 D(R

n

):

Theorem 2 ([4℄, Theorem 4.3) For every � 2 M(
), there exists a unique weak solu-

tion p of (6) satisfying

Z




p (��y + y) dx+

Z

�

p �

�

y ds = h�; yi




for all y 2 W

2;r

(
); r > n:

Moreover, p belongs to W

1;s

(
) for every s 2 [1; n=(n � 1)), and there exists a positive

onstant C

2

, not depending on �, suh that

kpk

W

1;s

(
)

� C

2

k�k

M(
)

:

3



2.2 Lagrangian multipliers for ontrol problems

In this setion, we state a Lagrangian multiplier theorem for an abstrat ontrol problem

appliable to (P

d

). For this, suppose that V and Z are real Banah spaes, and K � V

is a losed onvex set. Let P � Z be a onvex losed one, f : K ! R be a funtional

and G : K ! Z be an operator. In Z we have a partial ordering by z � 0 , z 2 P: If

P � Z is a onvex one, then its dual one P

+

is de�ned by P

+

= fz 2 Z

�

: hz; pi

Z

�

�Z

�

0 for all p 2 Pg; where Z

�

denotes the dual spae of Z and h�; �i

Z

�

�Z

the duality pairing.

Consider the abstrat ontrol problem (CP),

(CP) Minimize f(v), G(v) � 0; v 2 K:

An element v

0

2 K is alled regular if

there exists v 2 K suh that G(v

0

) +G

0

(v

0

)(v � v

0

) 2 �intP (7)

holds, intP being the interior of P . The following optimality onditions hold.

Theorem 3 ([14℄, Theorem 1.2.4) Let v

0

be a regular solution of (CP). Let us suppose

that

� f is Fr�ehet-di�erentiable,

� G is ontinuous Fr�ehet-di�erentiable.

Then there is a Lagrangian multiplier � at v

0

, that is a � 2 P

+

suh that

hf

0

(v

0

) +G

0

(v

0

)

�

�; v � v

0

i

V

�

�V

� 0 for all v 2 K (8)

holds. Moreover, the omplementary slakness ondition

h�;G(v

0

)i

Z

�

�Z

= 0 (9)

is ful�lled.

3 Study of the optimal ontrol problem (P)

3.1 Existene result

Theorem 4 If there exists a ontrol u 2 U

ad

satisfying y

u

2 Y

ad

, then (P) has at least one

solution. This solution is unique, if in addition � > 0 holds.

The proof is standard, see for instane Casas [4℄. �

3.2 Equivalene of (P) and (P

d

)

Theorem 5 If (u; Æ) is a solution of (P

d

), then (y

u

; u) solves (P). Conversely, if (y

u

; u)

solves (P) then (u; Æ), with Æ = ky

u

� y

d

k

C(
)

, solves (P

d

).

4



Proof. Let (y

u

; u) be a solution of (P). We prove that (u; Æ) with Æ = ky

u

� y

d

k

C(
)

is

a solution of (P

d

). Argue by ontradition, suppose that (û;

^

Æ) is a solution of (P

d

) with

J

d

(û;

^

Æ) < J

d

(u; Æ). From (2) it follows that

J(y

û

; û) = ky

û

� y

d

k

C(
)

+

�

2

Z

�

û

2

ds �

^

Æ +

�

2

Z

�

û

2

ds = J

d

(û;

^

Æ);

and therefore J(y

û

; û) � J

d

(û;

^

Æ) < J

d

(u; Æ) = J(y

u

; u); a ontradition to the optimality

of (y

u

; u).

� For the opposite let (u; Æ) be a solution of (P

d

) and (y

û

; û) a solution of (P) with

J(y

û

; û) < J(y

u

; u). With

^

Æ = ky

û

� y

d

k

C(
)

it follows that

J

d

(û;

^

Æ) = J(y

û

; û) < J(y

u

; u) � J

d

(u; Æ);

a ontradition whih ompletes the proof. The last inequality is a onsequene of (2). �

3.3 Optimality system for (P

d

)

Contrary to the problem (P), the problem (P

d

) possesses some interesting properties

(Frehet-di�erentiability of the orresponding ost funtional). This enables us to establish

the optimality onditions by using the lassial Lagrangian multipliers theorem.

Theorem 6 Let (u; Æ) be a regular solution of (P

d

). Then there exist elements p 2

W

1;s

(
), for all s 2 [1; n=(n� 1)), and �

i

2 M(
), i = 1; : : : ; 4, �

i

� 0, satisfying

� the adjoint equation

��p + p = �

1




� �

2




+ �

3




� �

4




in 
;

�

�

p = �

1

�

� �

2

�

+ �

3

�

� �

4

�

on �;

(10)

� omplementary slakness onditions

Z




(y

u

� Æ � y

d

) d�

1

= 0;

Z




(y

u

� y

2

) d�

3

= 0; (11)

Z




(�y

u

� Æ + y

d

) d�

2

= 0;

Z




(�y

u

+ y

1

) d�

4

= 0; (12)

� the variational inequality

Z

�

(p+ �u)(u� u) ds � 0 for all u 2 U

ad

; (13)

� and

Z




d(�

1

+ �

2

) = 1: (14)

5



Proof. To apply Theorem 3 we set

V = L

t

(�)� R;

Z = C(
)

4

= C(
)� C(
)� C(
)� C(
);

K = f(u; Æ) : u 2 U

ad

; Æ 2 Rg;

P = f(z

1

; z

2

; z

3

; z

4

) 2 Z : z

i

� 0; i = 1; : : : ; 4g;

f(u; Æ) = J

d

(u; Æ) = Æ +

�

2

Z

�

u

2

ds;

G(u; Æ) = (y

u

� Æ � y

d

;�y

u

� Æ + y

d

; y � y

2

;�y + y

1

):

The assumptions of Theorem 3 are obviously ful�lled, the set P

+

is given by

P

+

= f(�

1

; �

2

; �

3

; �

4

) 2 M(
)

4

: �

i

� 0; i = 1; : : : ; 4g:

From Theorem 3 we dedue the existene of measures �

i

, i = 1; : : : ; 4, �

i

� 0, satisfying

(11) and (12). Setting v = (u; Æ) for arbitrary u 2 L

t

(�) and Æ 2 R, v = (u; Æ), and

� = (�

1

; �

2

; �

3

; �

4

) we have

hf

0

(v) + [G

0

(v)℄

�

�; vi = Æ + �

Z

�

uu ds+

Z




(y

u

� Æ) d�

1

+

Z




(�y

u

� Æ) d�

2

+

Z




y

u

d�

3

+

Z




(�y

u

) d�

4

= Æ

�

1�

Z




d(�

1

+ �

2

)

�

+ �

Z

�

uu ds

+

Z




y

u

d(�

1

� �

2

+ �

3

� �

4

);

Following the proof of Theorem 5.3 in Casas [4℄ we an show that

Z




y

u

d(�

1

� �

2

+ �

3

� �

4

) =

Z

�

p u ds

holds, where p is the unique solution of the adjoint equation (10). Together with (8) it

follows that

(Æ � Æ)

�

1�

Z




d(�

1

+ �

2

)

�

+

Z

�

(�u+ p) (u� u) ds � 0 for all (u; Æ) 2 K:

Beause Æ is free we dedue (14) and �nally (13). �

Remark 1 Consider the ase of (P

d

) with absene of state onstraints. Then the regularity

ondition (7) is ful�lled for eah pair (u

0

; Æ

0

) 2 U

ad

� R : In this ase, (7) is equivalent to

the existene of a pair (u; Æ) 2 U

ad

� R and a real number " > 0 satisfying

y

u

� Æ � y

d

� �" in 
;

and � y

u

� Æ + y

d

� �" in 
;

whih is satis�ed for Æ suÆiently large.

6



4 A partiular ase

In this setion we study the ontrol problem

(P

1

) Minimize J

1

(y; u) = ky � y

d

k

C(
)

,

subjet to the state equation (1) and u 2 L

t

(�); t � n;

with y

d

2 W

2;n

(
): Notie that ontrol and state are unonstrained. Our goal is to prove

the existene of a solution provided that y

d

satis�es the following inequality

��y

d

+ y

d

� 0 in 
: (15)

In this ase we derive a haraterization of the state orresponding to this optimal ontrol.

4.1 Auxiliary problem

Let us start by onsidering the auxiliary optimization problem

(P

aux

) Minimize F (y) = ky � y

d

k

C(
)

,

subjet to y 2 W

2;n

lo

(
) \ C(
) and the equation

��y + y = 0 in 
: (16)

The following lemmas are useful for the sequel.

Lemma 1 ([6℄, Theorem 9.6) If y 2 W

2;n

lo

(
) satis�es ��y+y � 0 in 
, then y annot

ahieve a nonnegative maximum in 
 unless it is a onstant.

The next result is a onsequene of Lemma 1.

Lemma 2 (Comparison priniple) Let y 2 W

2;n

lo

(
) \ C(
) be a funtion satisfying

��y + y � 0 in 
 and y(s) � 0 for all s 2 �: Then y � 0 in 
:

With these results we an prove the following theorem.

Theorem 7 If the funtion y

d

satis�es inequality (15), then problem (P

aux

) admits at least

one solution y. Moreover, this solution satis�es

y(s) = y

d

(s)� Æ for all s 2 �; (17)

where

Æ = inffF (y) : y 2 W

2;n

lo

(
) \ C(
) satis�es (16)g: (18)

7



Proof. The in�mum in (18) exists beause the funtional F is bounded from below by

zero. We have to show that the in�mum Æ is attained.

Sine y

d

2 W

2;n

(
), we an prove the existene of a unique solution y 2 W

2;n

(
) of the

Dirihlet problem

��y + y = 0 in 
; (19)

y = y

d

� Æ on �; (20)

see Grisvard [8℄, Theorem 2.4.2.5. From (20) it follows

max

s2�

(y

d

(s)� y(s)) = Æ: (21)

If we assume max

x2


(y

d

(x)� y(x)) > max

s2�

(y

d

(s)� y(s)), then the funtion y

d

� y admits a

positiv maximum in 
, due to (21) and the ontinuity of y

d

� y. From Lemma 1, together

with (15) and (19), it follows that y

d

� y is onstant, a ontradition to our assumption.

Sine � � 
 it follows that

max

x2


(y

d

(x)� y(x)) = max

s2�

(y

d

(s)� y(s)): (22)

Combining (21) and (22) leads to y � y

d

� Æ in 
:

� It remains to prove the inequality

y � y

d

+ Æ in 
: (23)

Let " be a positive real number. By the de�nition of Æ,

Æ = inffky � y

d

k

C(
)

: y 2 W

2;n

lo

(
) \ C(
) satis�es ��y + y = 0g;

there exists a funtion y

"

2 W

2;n

lo

(
) \ C(
) satisfying ��y

"

+ y

"

= 0 and

ky

"

� y

d

k

C(
)

� Æ + ": (24)

The funtion v = y

"

+ "� y ful�lls

��v + v = ��y

"

+ y

"

��"+ "��y + y = " � 0 in 
;

and, by (20) and (24),

v(s) = y

"

(s) + "� y(s) = y

"

(s) + "� y

d

(s) + Æ � 0 for all s 2 �:

From Lemma 2 it follows v � 0 in 
 and therefore y � y

"

+ ". Finally, (24) yields

y

"

+ " � y

d

+ Æ + 2" in 
: Sine " is arbitrary, (23) and the statement of the theorem are

diret onlusions. �

8



4.2 Result for (P

1

)

Now we an state the main result of this setion.

Corollary 1 Let y

d

2 W

2;n

(
) be a funtion satisfying (15). Then there exists an optimal

ontrol u of the ontrol problem (P

1

). The orresponding state funtion y

u

satis�es equation

(17).

Proof. The solution y

u

of (1) for u 2 L

t

(�) is in C(
), see Theorem 1. Therefore

y

u

j

�

2 C(�) and y

u

2 W

2;n

lo

(
) \ C(
), see Gilbarg and Trudinger [6℄, Corollary 9.18.

From the de�nition of Æ we onlude

Æ � inffJ

1

(y

u

; u) : u 2 L

t

(�)g:

Applying Theorem 7, we �nd a solution y for problem (P

aux

) whih is an element of

W

2;n

(
). The funtion u = �

�

y is an element of L

t

(�), due to an imbedding theorem.

Therefore u is an optimal ontrol for (P

1

). �

Remark 2 The orollary remains true if we substitute (15) by ��y

d

+ y

d

� 0 in 
, and

(17) by y(s) = y

d

(s) + Æ for all s 2 �.

5 Numerial approah

In this setion, we regard di�erent ways to solve (P

d

) numerially. Thus, we are looking

for funtions u

h

resp. y

h

, whih approximate the optimal ontrol funtion u resp. the

orresponding state funtion y

u

.

Using a �nite element method, ontrol funtions u resp. state funtions y are replaed

by �nite vetors of real numbers u resp. y, and the state equation by a system of lin-

ear equations Ey = Bu: Sine this disretization proedure is standard, the details are

desribed in the Appendix, see also Remark 3 below.

In a seond step the problem (P

d

) is substituted by a linear (resp. linear-quadrati)

programming problem. We onentrate on two approahes:

Complete disretization: We regard a ontrol funtion with its orresponding state

funtion as independent. The disretized form of the state equation is part of the

arising programming problem.

Redued problem: Exploiting the linearity of the state equation, we eliminate the vari-

ables belonging to the state funtion. To do so, we alulate the solutions of the

disretized state equation for basis ontrol funtions in advane.

9



We shall ompare the eÆieny and reliability of both methods. The optimality ondi-

tions are not used during the numerial approah. We will verify them later numerially.

An error analysis for the numerial solutions is not given, sine this would go far beyond

the sope of this paper.

Remark 3 For simpliity we hoose 
 to be the two dimensional open unit square 
 =

f(x

1

; x

2

) 2 R

2

: x

1

; x

2

2 (0; 1)g: However, the methods desribed in this setion extend to

other hoies of 
 as well. 
 in our ase does learly not have a boundary � of lass C

1;1

,

but the theory is on�rmed by the numerial solutions.

Remark 4 As mentioned above, some of the notation used in the sequel, is introdued in

the Appendix.

5.1 Complete disretization { programming problem (O

C

)

The vetors u and y are onsidered as independent variables. The vetor of the unknowns

is x = (u

T

;y

T

; Æ)

T

. The linear-quadrati programming problem (O

C

) is

(O

C

) Minimize Æ +

�

2

u

T

Au

subjet to Ey = Bu and

y

i;j

� Æ � y

d

(x

i;j

) (i; j) 2 I(
); (25)

�y

i;j

� Æ � �y

d

(x

i;j

) (i; j) 2 I(
);

u

i;j

� u

2

(i; j) 2 I(�);

�u

i;j

� �u

1

(i; j) 2 I(�);

y

i;j

� y

2

(i; j) 2 I(
);

�y

i;j

� �y

1

(i; j) 2 I(
):

The size of the optimization problem is given by

Number of unknowns: O(N

2

),

Number of inequalities: O(N

2

),

Number of equations: O(N

2

),

Number of oeÆients: O(N

2

);

where the disretization parameter N is de�ned in the Appendix. For the number of

oeÆients, write down all equality and inequality onstraints in matrix notation, Qx = q,

Nx � n, with matries Q, N, and vetors q, n. In this notation the number of oeÆients

is de�ned as the number of nonzero elements in Q and N.

10



5.2 Redued problem { programming problem (O

R

)

Here we regard y as depending on u. To the ontrol basis funtions e

i;j

, (i; j) 2 I(�), we

alulate the orresponding state funtions y

i;j

h

via (32), whih are represented by vetors

y

i;j

. The elements of a vetor y

i;j

are denoted by y

i;j

k;l

, (k; l) 2 I(
). Having this basis

solutions, the solution y to (32) for a given vetor u an be written as

y =

X

(i;j)2I(�)

u

i;j

y

i;j

;

due to the linearity of our state equation. With this we build up the programming problem

(O

R

),

(O

R

) Minimize Æ +

�

2

u

T

Au

subjet to

X

(i;j)2I(�)

u

i;j

y

i;j

k;l

� Æ � y

d

(x

k;l

) (k; l) 2 I(
); (26)

�

X

(i;j)2I(�)

u

i;j

y

i;j

k;l

� Æ � �y

d

(x

k;l

) (k; l) 2 I(
);

u

i;j

� u

2

(i; j) 2 I(�);

�u

i;j

� �u

1

(i; j) 2 I(�);

X

(i;j)2I(�)

u

i;j

y

i;j

k;l

� y

2

(k; l) 2 I(
);

�

X

(i;j)2I(�)

u

i;j

y

i;j

k;l

� �y

1

(k; l) 2 I(
):

Number of unknowns: O(N),

Number of inequalities: O(N

2

),

Number of equations: 0,

Number of oeÆients: O(N

3

):

The number of oeÆients highly e�ets the amount of time and memory whih is needed

to solve the programming problem. We expet that (O

C

) will be solved muh faster then

(O

R

).

5.3 Optimization odes

There exists a large number of software pakages for linear-quadrati programming prob-

lems. Surveys and deision trees for optimization software an be found in [11℄ and [5℄.

We utilized three pakages, Loqo [15℄, the Matlab Optimization Toolbox, and Mosek

[12℄.
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5.4 Veri�ation of the neessary optimality onditions

In order to verify the optimality onditions (see Theorem 6), espeially (13), we have to

approximate �

i

, i = 1; : : : ; 4, and the adjoint state p.

Approximation of �

i

The Lagrangian multipliers assoiated with inequalities (25) of (O

C

) resp. (26) of (O

R

)

are denoted by �

i;j

, (i; j) 2 I(
). We approximate �

1

by

�

h

1

=

X

(i;j)2I(
)

�

i;j

Æx

i;j

;

where Æx

i;j

is the Dira measure onentrated in x

i;j

: In an analogous way, the measures

�

2

; �

3

; and �

4

are approximated by measures �

h

2

; �

h

3

; and �

h

4

.

Approximation of p

The funtion p is approximated by the solution p

h

of the disretized variational equation,

Find p

h

2 V

h

, suh that

Z




(r' � rp

h

+ 'p

h

) dx =

Z

�

' d(�

h

1

� �

h

2

+ �

h

3

� �

h

4

) (27)

holds for every ' 2 V

h

. For the de�nition of V

h

see the Appendix.

Veri�ation of (13)

Let u

h

=

X

(i;j)2I(�)

u

i;j

e

i;j

be a numerial solution of (P

d

). We an not expet that u

h

satis�es

(13) in its original form. However, we will see numerially that it ful�lls the disretized

variational inequality

X

(i;j)2I(�)

(p

i;j

+ �u

i;j

)(u

i;j

� u

i;j

) � 0 for all u

i;j

2 [u

1

; u

2

℄; (i; j) 2 I(�);

with p

h

=

X

(i;j)2I(
)

p

i;j

�

i;j

being the solution of (27). From the last inequality it follows for

the ase � = 0:

u

i;j

=

(

u

1

if p

i;j

> 0;

u

2

if p

i;j

< 0;

(28)

and for the ase � > 0:

u

i;j

= Pr

[u

1

;u

2

℄

�

�

p

i;j

�

�

; (29)

for (i; j) 2 I(�) and Pr

[u

1

;u

2

℄

being the projetion from R onto the interval [u

1

; u

2

℄.
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6 Numerial examples

6.1 Comparison of (O

C

) and (O

R

)

Consider

Example 1:

y

d

= (x

1

� 0:5)

2

+ (x

2

� 0:5)

2

+ 3; �10 � u(s) � 10 for all s 2 �;

� = 0; �10 � y(x) � 10 for all y 2 
:

The numerial solution of (O

C

) for N = 50 is shown in Figure 1. The optimal ontrol

agrees on all four edges of � and is therefore shown only along one edge. This is the ase

for all the following examples too.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

x

u

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
3

3.1

3.2

3.3

3.4

3.5

x
1

x
2

y d

Figure 1: Optimal ontrol and state for Example 1 with N = 50

In Table 1 the results are olleted for (O

C

) and (O

R

) and for di�erent mesh sizes.

Problem (O

C

) was solved up to N = 120 with the same amount of memory and using

Mosek, whereas (O

R

) was solved only up to N = 80. Up to N = 50 the solutions of (O

C

)

and (O

R

) agreed within a small tolerane. For N > 50 the numerial solution of (O

C

)

beame unstable, see Figure 2, while the solution for (O

R

) remained stable.

In the solution of Example 1 the onstraints on the ontrol are not ative. Therefore

from (28) it follows that the adjoint state has to be zero on � in this ase. This is true as

one an see in Figure 3. In Figure 4 the measures �

h

1

and �

h

2

are shown.

In the sequel we do not distinguish between the exat and the numerial solutions, that

means we drop the 'h' in the notation. All solutions are alulated via (O

C

) and N = 50.
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Table 1: Results for di�erent mesh sizes

(O



) (O

R

)

N time in s ky

h

� y

d

k

C(
)

time in s ky

h

� y

d

k

C(
)

10 1 0.0328879 1 0.0328879

20 2 0.0333261 9 0.0333261

30 7 0.0333989 48 0.0333989

40 20 0.0334234 164 0.0334234

50 46 0.0334345 424 0.0334345

60 121 0.0334406 1019 0.0334404

70 401 0.0334440 1994 0.0334440

80 405 0.0334470 4056 0.0334463

90 653 0.0334479

100 1184 0.0334490

110 1759 0.0334591

120 3509 0.0334504

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

u

Figure 2: Optimal ontrol for (O

C

) and N = 60
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Figure 3: Adjoint state for Example 1
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Figure 4: Measures �

h

1

and �

h

2

for Example 1
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6.2 Illustration of Corollary 1

Example 2:

y

d

= (x

1

� 0:5)

2

+ (x

2

� 0:5)

2

+ a; �10 � u(s) � 10 for all s 2 �;

� = 0; �10 � y(x) � 10 for all y 2 
;

with a real number a, a � 3:5 or a � 4: The funtion y

d

satis�es

��y

d

+ y

d

(

� 0 if a � 3:5

� 0 if a � 4;

and therefore the assumptions of Corollary 1 hold. The numerial solutions ful�lls the

analytially predited properties, espeially (17). As examples we illustrate the funtions

y

u

, y

d

, and y

d

� Æ for a = 3 (resp. a = 5) in Figure 5 along x

1

= 0:5. The values of the

funtional are J

d

(u; Æ) = 0:0335 (resp. J

d

(u; Æ) = 0:0389).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.95

3
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y
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y
d
+/−delta

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.95

5

5.05

5.1

5.15

5.2

5.25

5.3

y
u
        

y
d
        

y
d
+/−delta

Figure 5: y

u

, y

d

and y

d

� Æ for Example 2 and a = 3 (resp. a = 5) along x

1

= 0:5

6.3 Further examples

Example 3:

y

d

= sin 3�x

1

+ sin 3�x

2

; �1:5 � u(s) � 1 for all s 2 �;

� = 0:01; �10 � y(x) � 10; for all y 2 
:

This example is to illustrate relationship (28). The funtion y

d

is shown in Figure 6 and

the numerial solution in Figure 7.
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Figure 6: Funtion y

d

for Example 3
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, and y
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for Example 3
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In addition, Figure 7 shows the funtion �p=� on one edge of �. The adjoint state also

agrees on all four edges of �. For the funtional we get J

d

(u; Æ) = 1:96:

In order to demonstrate relationship (29), onsider

Example 4:

y

d

= sin 3�x

1

+ sin 3�x

2

; �5 � u(s) � 5 for all s 2 �;

� = 0; �0:5 � y(x) � 0:5 for all y 2 
:

In Figure 8 the optimal ontrol together with the adjoint state on � and the orresponding

state funtion are illustrated; J

d

(u; Æ) = 1:87:
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x
1
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y

Figure 8: Optimal ontrol, adjoint state, and state funtion for Example 4

6.4 Comparison with minimization of the L

2

-norm

Example 5: Regard the desired state

y

d

(x

1

; x

2

) =

(

1� 10 � j(x

1

; x

2

)� (0:5; 0:5)j if j(x

1

; x

2

)� (0:5; 0:5)j < 0:1

0 otherwise;

whih is shown in Figure 9, and

�5 � u(s) � 5 for all s 2 �: (30)
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Figure 9: Funtion y

d

for Example 5

For this example we want to ompare the numerial solution (y

u

C

; u

C

) of problem

(P

C

) Minimize J

C

(y; u) = ky � y

d

k

C(
)

subjet to the state equation (1) and (30),

with the solution (y

u

L

2

; u

L

2

) of problem

(P

L

2

) Minimize J

L

2

(y; u) = ky � y

d

k

L

2

(
)

subjet to the state equation (1) and (30).

The results are shown in Figure 10 and Figure 11, the funtional values are

J

C

(y

u

C

; u

C

) = 0:518;

J

C

(y

u

L

2

; u

L

2

) = 0:989;

J

L

2

(y

u

C

; u

C

) = 0:257;

J

L

2

(y

u

L

2

; u

L

2

) = 0:00516:
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Figure 10: Optimal ontrol u
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and state y
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for Example 5
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for Example 5
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A Disretization of ontrol, state funtion, and state

equation

Choose a disretization parameter N 2 N . Following Maurer and Mittelmann [10℄, we

introdue index sets

I(
) = f(i; j) 2 N

2

: 1 � i; j � N � 1g;

I(
) = f(i; j) 2 N

2

: 0 � i; j � Ng;

I(�) = I(
)� I(
);

the mesh size h = 1=N , and grid points

x

i;j

= (i � h; j � h); (i; j) 2 I(
):

Disretization of ontrol funtions u

0

1

1

u

0;0

u

0;1

x

1

x

2

u

1;N

u

2;N

u

N�1;N

u

N;N

u

0;2

u

N;0

u

N;1

u

N;2

u

N;N�1

u

0;N

u

N�1;0

u

2;0

u

1;0

u

0;N�1

y

0;0

y

1;0

y

1;1

y

0;1




p

p

p

p

p

p

p

p

p

p pp

p pp

p pp

6

-

Figure 12: Disretization of u and y

The ontrols u 2 L

t

(�) are approximated by ontinuous, pieewise linear funtions

u

h

: �! R,

u

h

=

X

(i;j)2I(�)

u

i;j

e

i;j

;

with real numbers u

i;j

, (i; j) 2 I(�), see Figure 12, and ontinuous, pieewise linear fun-

tions e

i;j

: �! R, satisfying

e

i;j

(s) =

(

1 if s = x

i;j

0 if s = x

k;l

for some (k; l) 2 I(�); (i; j) 6= (k; l):

Furthermore, eah funtion e

i;j

, (i; j) 2 I(�), is di�erentiable in all non-grid-points of �.

21



Disretization of state funtions y

We approximate the state funtions y 2 H

1

(
) \ C(
) by ontinuous funtions y

h

: 
! R,

y

h

=

X

(i;j)2I(
)

y

i;j

�

i;j

;

with real numbers y

i;j

, (i; j) 2 I(
), and ontinuous funtions �

i;j

: 
! R , satisfying

�

i;j

(x) =

(

1 if x = x

i;j

0 if x = x

k;l

for some (k; l) 2 I(
); (i; j) 6= (k; l):

Restrited to one of the squares of size h (see Figure 12), eah funtion �

i;j

admits the

form

�

i;j

(x

1

; x

2

) = ax

1

x

2

+ bx

1

+ x

2

+ d;

with real numbers a; b; ; d:

Disretization of the onstraints

These are the inequality onstraints (3), (4), and (5). The disrete ounterparts of these

onstraints are given by

y

i;j

� Æ � y

d

(x

i;j

) (i; j) 2 I(
);

�y

i;j

� Æ � �y

d

(x

i;j

) (i; j) 2 I(
);

u

i;j

� u

2

(i; j) 2 I(�);

�u

i;j

� �u

1

(i; j) 2 I(�);

y

i;j

� y

2

(i; j) 2 I(
);

�y

i;j

� �y

1

(i; j) 2 I(
):

Disretization of the state equation

We use a �nite element method. Let V

h

be the real vetor spae V

h

=spanf�

i;j

g

(i;j)2I(
)

,

where the �

i;j

have been de�ned above. Instead of solving (1) we solve the disretized

variational equation

Find y

h

2 V

h

suh that

Z




(r' � ry

h

+ 'y

h

) dx =

Z

�

'u

h

ds (31)

holds for every ' 2 V

h

. Introduing the vetors

u = (u

0;0

; u

0;1

; : : : ; u

0;N

; : : : ; u

N;N

; : : : ; u

N;0

; : : : ; u

1;0

)

T

;
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y = (y

0;0

; y

0;1

; : : : ; y

0;N

; y

1;0

; : : : ; y

N;N

)

T

;

and evaluating equation (31) for ' = �

i;j

; (i; j) 2 I(
); we get a system of linear equations,

Ey = Bu: (32)

De�ning onstants 

1

= h

2

=9+2=3; 

2

= h

2

=36� 1=3; 

3

= h

2

=18� 1=6; this system reads

as

4

1

y

i;j

+ 2

3

(y

i�1;j

+ y

i+1;j

+ y

i;j�1

+ y

i;j+1

) + 

2

(y

i�1;j�1

+ y

i+1;j�1

+ y

i�1;j+1

+ y

i+1;j+1

) =

0 (i; j) 2 I(
)

2

1

y

i;0

+ 

3

(y

i�1;0

+ y

i+1;0

+ 2y

i;1

) + 

2

(y

i�1;1

+ y

i+1;1

)

= h=6(u

i�1;0

+ 4u

i;0

+ u

i+1;0

) 1 � i � N � 1

2

1

y

0;j

+ 

3

(y

0;j�1

+ y

0;j+1

+ 2y

1;j

) + 

2

(y

1;j�1

+ y

1;j+1

)

= h=6(u

0;j�1

+ 4u

0;j

+ u

0;j+1

) 1 � j � N � 1

2

1

y

i;N

+ 

3

(y

i�1;N

+ y

i+1;N

+ 2y

i;N�1

) + 

2

(y

i�1;N�1

+ y

i+1;N�1

)

= h=6(u

i�1;N

+ 4u

i;N

+ u

i+1;N

) 1 � i � N � 1

2

1

y

N;j

+ 

3

(y

N;j�1

+ y

N;j+1

+ 2y

N�1;j

) + 

2

(y

N�1;j�1

+ y

N�1;j+1

)

= h=6(u

N;j�1

+ 4u

N;j

+ u

N;j+1

) 1 � j � N � 1



1

y

0;0

+ 

3

(y

1;0

+ y

0;1

) + 

2

y

1;1

= h=6(u

1;0

+ 4u

0;0

+ u

0;1

)



1

y

N;0

+ 

3

(y

N;1

+ y

N�1;0

) + 

2

y

N�1;1

= h=6(u

N;1

+ 4u

N;0

+ u

N�1;0

)



1

y

0;N

+ 

3

(y

1;N

+ y

0;N�1

) + 

2

y

1;N�1

= h=6(u

1;N

+ 4u

0;N

+ u

0;N�1

)



1

y

N;N

+ 

3

(y

N�1;N

+ y

N;N�1

) + 

2

y

N�1;N�1

= h=6(u

N�1;N

+ 4u

N;N

+ u

N;N�1

):

The matries E and B are not written down expliitly but an be extrated.

Disretization of the funtional

Evaluating the integral expression in the funtional of (P

d

) at u = u

h

, we get

Z

�

u

2

h

ds =

u

T

Au; with the matrix A,

A =

h

6

0

B

B

B

B

B

�

4 1 1

1 4 1

.

.

.

.

.

.

.

.

.

1 4 1

1 1 4

1

C

C

C

C

C

A

:
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