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Introduction

Preconditioned gradient iterative methods have been studied for the symmetric eigen-

value problem Au = �Bu in an Euclidean space H, for example, in the papers [1{11].

These iterative methods for computing the smallest eigenvalue have the following form:

C

~u

n+1

� u

n

�

n

+ (A� �

n

B)u

n

= 0;

u

n+1

=

~u

n+1

k~u

n+1

k

B

;

�

n

= R(u

n

); n = 0; 1; : : : ;

where R(v) = (Av; v)=(Bv; v), v 2 H n f0g, the symmetric operator C satis�es the condi-

tion: �

0

(Cv; v) � (Av; v) � �

1

(Cv; v), v 2 H, the iteration parameters �

n

can be chosen

by the formula �

n

= �

�1

1

or to maximize R(u

n+1

). A survey of results on preconditioned

iterative methods is presented in the paper [12].

Here, we generalize these methods for solving the symmetric nonlinear eigenvalue prob-

lem: � 2 �, u 2 H n f0g, A(�)u = �B(�)u. We propose preconditioned gradient iterative

methods of the following kind:

C(�

n

)

~u

n+1

� u

n

�

n

+ (A(�

n

)� �

n

B(�

n

))u

n

= 0;

u

n+1

=

~u

n+1

k~u

n+1

k

B(�

n

)

;

�

n

= R(�

n

; u

n

); n = 0; 1; : : : ;

where R(�; v) = (A(�)v; v)=(B(�); v; v), v 2 H n f0g, � 2 �, � is an interval on the real

axis, the symmetric operator C(�) satis�es the condition: �

0

(�)(C(�)v; v) � (A(�)v; v) �

�

1

(�)(C(�)v; v), v 2 H n f0g, � 2 �, the iteration parameters �

n

are de�ned by the

formula �

n

= �

�1

1

(�

n

) or to maximize R(�

n

; u

n+1

). In the paper [13], the preconditioned

gradient subspace iteration method for computing a group of the smallest eigenvalues of

�nite{dimensional symmetric nonlinear eigenvalue problems was investigated. Nonlinear

�nite{dimensional eigenvalue problems arise after the discretization of in�nite{dimensional

nonlinear eigenvalue problems (see, for example, [14{32]).

In section 1 of the present paper, we give the statement of a symmetric eigenvalue

problem in a �nite{dimensional space with a nonlinear entrance of a spectral parameter.

In section 2, results about existence and properties of the eigenvalues of the nonlinear

eigenvalue problem are proved. Similar results were obtained earlier in the papers [14{

16, 18{23]. In section 3, we describe auxiliary results obtained in the papers [2,6]. These

results are used further for constructing and investigating the iterative methods. In sections

4, 5 and 6, we formulate the preconditioned gradient iterative methods for the nonlinear

eigenvalue problem, and we investigate the convergence and the error of these methods for

computing the smallest eigenvalue.
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1. Formulation of the problem

Let H be an N{dimensional real Euclidean space with the scalar product (:; :) and

the norm k:k, and let � be an interval on the real axis IR, � = (�; �), 0 � � < � � 1.

Introduce the operators A(�) andB(�) that, for �xed � 2 �, are symmetric linear operators

from H to H satisfying the following conditions:

a) positive de�niteness, i.e. there exist positive continuous functions �

1

(�) and �

1

(�),

� 2 �, such that

(A(�)v; v) � �

1

(�)kvk

2

; (B(�)v; v) � �

1

(�)kvk

2

8v 2 H; � 2 �;

b) continuity with respect to the numerical argument, i.e.

kA(�)� A(�)k ! 0; kB(�)� B(�)k ! 0;

as �! �, �; � 2 �. By k:k also denote the norm of an operator from H to H.

De�ne the Rayleigh quotient by the formula:

R(�; v) =

(A(�)v; v)

(B(�)v; v)

; v 2 H n f0g; � 2 �:

Assume that the following additional conditions are ful�lled:

c) the Rayleigh quotient R(�; v), � 2 �, is, for �xed v 2 H, a nonincreasing function

of the numerical argument, i.e.

R(�; v) � R(�; v); � < �; �; � 2 �; v 2 H n f0g;

d) there exists � 2 � such that

� � min

v2Hnf0g

R(�; v) � 0;

e) there exists � 2 � such that

� � max

v2Hnf0g

R(�; v) � 0:

Consider the following eigenvalue problem: �nd � 2 �, u 2 H n f0g, such that

A(�)u = �B(�)u: (1)

The number � that satis�es (1) is called an eigenvalue, and the element u is called an

eigenelement of problem (1) corresponding to �. The set U(�) that consists of the eigenele-

ments corresponding to the eigenvalue � and the zero element is a closed subspace in H,

which is called the eigensubspace corresponding to the eigenvalue �. The dimension of this

subspace is called a multiplicity of the eigenvalue �.
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2. Existence of the eigenvalues

For �xed � 2 � we introduce the auxiliary linear eigenvalue problem: �nd (�) 2 IR,

u = u(�) 2 H n f0g, such that

A(�)u = (�)B(�)u: (2)

For a symmetric positive de�nite linear operator A from H to H, denote by H

A

the

Euclidean space of elements from H with the scalar product (u; v)

A

= (Au; v) and the

norm kvk

A

= (v; v)

1=2

A

, u; v 2 H

A

.

Lemma 1. For �xed � 2 � problem (2) has N real positive eigenvalues 0 < 

1

(�) �



2

(�) � : : : � 

N

(�). The eigenelements u

i

= u

i

(�), i = 1; 2; : : : ; N , correspond to these

eigenvalues:

(A(�)u

i

; u

j

) = 

i

(�)�

ij

; (B(�)u

i

; u

j

) = �

ij

; i; j = 1; 2; : : : ; N:

The elements u

i

= u

i

(�), i = 1; 2; : : : ; N , form an orthonormal basis of the space H

B(�)

.

The proof is given, for example, in [33].

Lemma 2. The formula of the minimax principle is valid:



i

(�) = min

W

i

�H

max

v2W

i

nf0g

R(�; v); i = 1; 2; : : : ; N;

whereW

i

is an i{dimensional subspace of the space H. In particular, the following relations

hold:



1

(�) = min

v2Hnf0g

R(�; v); 

N

(�) = max

v2Hnf0g

R(�; v):

The proof is given, for example, in [33].

For a �xed segment [a; b] on � we set

�

1;min

(a; b) = min

�2[a;b]

�

1

(�); �

1;min

(a; b) = min

�2[a;b]

�

1

(�):

Lemma 3. Suppose that for �; � 2 [a; b] the following condition holds:

kA(�)� A(�)k

�

1;min

(a; b)

�

1

2

:

Then for �; � 2 [a; b] the following inequalities are valid:

jR(�; v)� R(�; v)j � 2

 

kA(�)� A(�)k

�

1;min

(a; b)

+

kB(�)� B(�)k

�

1;min

(a; b)

!

R(a; v); v 2 H n f0g;

j

i

(�)� 

i

(�)j � 2

 

kA(�)� A(�)k

�

1;min

(a; b)

+

kB(�)� B(�)k

�

1;min

(a; b)

!



i

(a); i = 1; 2; : : : ; N:

The proof is given in [13].
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Lemma 4. The functions 

i

(�), � 2 �, i = 1; 2; : : : ; N , are continuous nonincreasing

functions with positive values.

Proof. The continuity of the functions 

i

(�), � 2 �, i = 1; 2; : : : ; N , follows from

Lemma 3 and condition b). Using the minimax principle of Lemma 2 and condition c), we

obtain that the functions 

i

(�), � 2 �, i = 1; 2; : : : ; N , are nonincreasing functions. Thus,

the lemma is proved.

Lemma 5. The functions ��

i

(�), � 2 �, i = 1; 2; : : : ; N , are continuous and strictly

increasing functions with negative and positive values in the neighbourhoods of the points

� and �, respectively.

The proof is given in [13].

Lemma 6. A number � 2 � is an eigenvalue of problem (1) if and only if the number

� is a solution of an equation from the set �� 

i

(�) = 0, � 2 �, i = 1; 2; : : : ; N .

Proof. If � is a solution of the equation �� 

i

(�) = 0, � 2 �, for some i, 1 � i � N ,

then it follows from (1) and (2) that � is an eigenvalue of problem (1). If � is an eigenvalue

of problem (1), then (1) and (2) imply � � 

i

(�) = 0 for some i, 1 � i � N . This proves

the lemma.

Theorem 1. Problem (1) has N eigenvalues �

i

, i = 1; 2; : : : ; N , which are repeated

according to their multiplicity: � < �

1

� �

2

� : : : � �

N

< �. Each eigenvalue �

i

is a

unique root of the equation �� 

i

(�) = 0, � 2 �, i = 1; 2; : : : ; N .

Proof. By Lemma 5, each equation of the set � � 

i

(�) = 0, � 2 �, i = 1; 2; : : : ; N ,

has a unique solution. Denote these solutions by �

i

, i = 1; 2; : : : ; N , i. e. �

i

� 

i

(�

i

) = 0,

i = 1; 2; : : : ; N . To check that the numbers �

i

, i = 1; 2; : : : ; N , are put in an increasing

order, let us assume the opposite, i. e. �

i

> �

i+1

. Then, according to Lemma 4, we obtain

a contradiction, namely

�

i

= 

i

(�

i

) � 

i

(�

i+1

) � 

i+1

(�

i+1

) = �

i+1

:

By Lemma 6, the numbers �

i

, i = 1; 2; : : : ; N , are eigenvalues of problem (1). Thus, the

theorem is proved.

Remark 1. If � = 0, then condition d) follows from condition c).

Proof. Let us �x � 2 � and put � = minf

1

(�); �g=2. Taking into account condition

c), Lemma 2, and the relations � � 

1

(�)=2, � � �=2 < �, we have

� � min

v2Hnf0g

R(�; v) = � � 

1

(�) � 

1

(�)=2� 

1

(�) = �

1

(�)=2 < 0:

Thus, condition d) is satis�ed for chosen � 2 �.
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Remark 2. If � =1, then condition e) follows from condition c).

Proof. For �xed � 2 � put � = 2maxf

N

(�); �g. Since � � 2

N

(�) and � � 2� > �,

according to condition c) and Lemma 2, we obtain the relations:

� � max

v2Hnf0g

R(�; v) = � � 

N

(�) � 2

N

(�)� 

N

(�) = 

N

(�) > 0;

which implies that condition e) is satis�ed.

3. Auxiliary results

Assume that the symmetric positive de�nite linear operator C(�) from H to H is

given for �xed � 2 �, and that there exist continuous functions �

0

(�), �

1

(�), � 2 �,

0 < �

0

(�) � �

1

(�), � 2 �, such that

�

0

(�)(C(�)v; v) � (A(�)v; v) � �

1

(�)(C(�)v; v); v 2 H; � 2 �:

For a given element v 2 H, kvk

B(�)

= 1, we de�ne an element w 2 H and numbers �

0

and �

1

by the formulas:

C(�)

~w � v

�(�)

+ (A(�)� R(�; v)B(�))v = 0;

w =

~w

k ~wk

B(�)

; �

0

= R(�; v); �

1

= R(�; w);

for �xed � 2 �, �(�) = �

�1

1

(�), � 2 �.

Lemma 7. Let 

1

(�) and 

2

(�) be eigenvalues of problem (2) with � 2 � such that



1

(�) < 

2

(�). Assume that �

0

< 

2

(�). Then 

1

(�) � �

1

� �

0

, and the following estimate

is valid:

�

1

� 

1

(�) � �(�; �

0

)(�

0

� 

1

(�));

where 0 < �(�; �) < 1;

�(�; �) =

1� �(�)(1� �=

2

(�))

1 + �(�)(1� �=

2

(�))(�=

1

(�)� 1)

;

�(�) = �

0

(�)=�

1

(�); � 2 [

1

(�); 

2

(�)); � 2 �:

The proof is given in [2], [6].

Remark 3. For �xed � 2 �, the gradient of the Rayleight quotient R(�; v) in the

space H

C(�)

is de�ned by the formula:

grad

C(�)

R(�; v) = 2kvk

�2

B(�)

C

�1

(�)(A(�)� R(�; v)B(�))v:
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Hence

~w = v � �(�)C

�1

(�)(A(�)� R(�; v)B(�))v =

= v �

1

2

�(�)kvk

2

B(�)

grad

C(�)

R(�; v) =

= v � c

0

grad

C(�)

R(�; v);

where c

0

= 0:5 �(�)kvk

2

B(�)

.

4. Gradient iterative methods

Assume that the symmetric positive de�nite linear operator C(�) from H to H is

given for �xed � 2 �, and that there exist continuous functions �

0

(�), �

1

(�), � 2 �,

0 < �

0

(�) � �

1

(�), � 2 �, such that

�

0

(�)(C(�)v; v) � (A(�)v; v) � �

1

(�)(C(�)v; v); v 2 H; � 2 �:

Consider the following iterative method:

C(�

n

)

~u

n+1

� u

n

�(�

n

)

+ (A(�

n

)� �

n

B(�

n

))u

n

= 0;

(3)

u

n+1

=

~u

n+1

k~u

n+1

k

B(�

n

)

; n = 0; 1; : : : ;

where the number �

n

is de�ned as a solution of the equation:

�� '

n

(�) = 0; � 2 �; (4)

for n = 0; 1; : : : Here u

0

is a given element of H, ku

0

k

B(�

0

)

= 1, �(�) = �

�1

1

(�), � 2 �, the

functions '

n

(�), � 2 �, n = 0; 1; : : :, are de�ned by the formulas:

'

n

(�) = R(�; u

n

); � 2 �;

for n = 0; 1; : : :

Remark 4. The following formula holds:

~u

n+1

= u

n

� c

n

grad

C(�

n

)

R(�

n

; u

n

);

where c

n

= 0:5 �(�

n

)ku

n

k

2

B(�

n

)

. This formula follows from Remark 3.
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Lemma 8. The functions '

n

(�), � 2 �, n = 0; 1; : : :, are continuous nonincreasing

functions with positive values. In addition, the following inequalities are valid: '

n

(�) �



1

(�), � 2 �, n = 0; 1; : : :

The proof follows from Lemmas 2 and 3.

Lemma 9. The functions �� '

n

(�), � 2 �, n = 0; 1; : : :, are continuous and strictly

increasing functions with negative and positive values in the neighbourhoods of the points

� and �, respectively.

The proof is similar to the proof of Lemma 5 (see [13]).

Let �

1

and �

2

be eigenvalues of problem (1) such that �

1

< �

2

. Put

�(�) =

1� d(1� �=�

2

)

1 + d(1� �=�

2

)(�=�

1

� 1)

; � 2 [�

1

; �

2

);

d = min

�2[�

1

;�

2

]

�(�); �(�) = �

0

(�)=�

1

(�); � 2 �:

Note that 0 < d � 1, 0 < �(�) < 1 for � 2 [�

1

; �

2

).

Lemma 10. The half{open interval [�

1

; �

2

) is contained in the half{open interval

[

1

(�); 

2

(�)) for any � 2 [�

1

; �

2

).

Proof. Taking into account Lemma 4, we get 

1

(�) � �

1

and 

2

(�) � �

2

for � 2

[�

1

; �

2

). These inequalities prove the lemma.

Lemma 11. The following inequality holds: �(�; �) � �(�) for �; � 2 [�

1

; �

2

).

Proof. By Lemma 10, if � 2 [�

1

; �

2

) and �

1

< �

2

, then � 2 [

1

(�); 

2

(�)) and



1

(�) < 

2

(�) for � 2 [�

1

; �

2

). Now relations 

1

(�) � �

1

, 

2

(�) � �

2

, � 2 [�

1

; �

2

), imply

the desired inequality:

�(�; �) =

1� �(�)(1� �=

2

(�))

1 + �(�)(1� �=

2

(�))(�=

1

(�)� 1)

�

�

1� d(1� �=�

2

)

1 + d(1� �=�

2

)(�=�

1

� 1)

= �(�)

for �; � 2 [�

1

; �

2

) � [

1

(�); 

2

(�)). Thus, the lemma is proved.

Theorem 2. Let �

1

and �

2

be eigenvalues of problem (1) such that �

1

< �

2

. Suppose

that the sequence �

n

, n = 0; 1; : : : is calculated by the formulas (3), (4), �

0

< �

2

. Then

�

n

! �

1

as n!1, and the following inequalities are valid

�

2

> �

0

� �

1

� : : : � �

n

� : : : � �

1

:

7



Moreover, the following estimate holds:

�

n+1

� 

1

(�

n+1

) � (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

1

(�

n

));

where 0 < �(�) < 1, � 2 [�

1

; �

2

), n = 0; 1; : : :

Proof. Let us show that the solutions �

n

, n = 0; 1; : : : of the equations ��'

n

(�) = 0,

� 2 �, n = 0; 1; : : : satisfy the following inequalities:

�

2

> �

0

� �

1

� : : : � �

n

� : : : � �

1

:

Assume that the equation �� '

n

(�) = 0, � 2 �, has the solution �

n

such that

�

2

> �

0

� �

1

� : : : � �

n

� �

1

; n � 0:

Hence we obtain

�

0

= '

n

(�

n

) = �

n

< �

2

= 

2

(�

2

) � 

2

(�

n

):

Consequently, by Lemma 7, we have

�

1

= '

n+1

(�

n

) � �

0

= '

n

(�

n

) = �

n

:

It follows from Lemmas 8 and 9 that the equation ��'

n+1

(�) = 0, � 2 �, has the unique

solution �

n+1

and

�

2

> �

0

� �

1

� : : : � �

n

� �

n+1

� �

1

:

Let us prove that �

n

! �

1

as n!1. Taking into account Lemma 7, 10, 11, we obtain

the following relations:

�

n+1

� 

1

(�

n+1

) = (�

n+1

� '

n+1

(�

n

)) + ('

n+1

(�

n

)� 

1

(�

n+1

)) �

� (�

n+1

� '

n+1

(�

n

)) + ('

n+1

(�

n

)� 

1

(�

n

)) =

= (�

n+1

� '

n+1

(�

n

)) + (�

1

� 

1

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

; �

0

)(�

0

� 

1

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

1

(�

n

));

where �

0

= '

n

(�

n

) = �

n

, �

1

= '

n+1

(�

n

).

Since �

2

> �

0

� �

1

� : : : � �

n

� : : : � �

1

, there exists � 2 [�

1

; �

2

) such that �

n

! �

as n!1.

By condition a) and the relations ku

n

k

B(�

n

)

= 1; n = 0; 1; : : :, we obtain that there

exists a constant c > 0 such that

ku

n

k �

ku

n

k

B(�

n

)

q

�

1

(�

n

)

=

1

q

�

1

(�

n

)

� c; n = 0; 1; : : : ;

c = max

�2[�

1

;�

2

]

1

q

�

1

(�)

:

8



Hence there exists an element w 2 H and a subsequence u

n

i

+1

, i = 1; 2; : : :, such that

u

n

i

+1

! w as i!1.

Let us prove that �

n

i

+1

� '

n

i

+1

(�

n

i

)! 0 as i!1. We have

0 � �

n

i

+1

� '

n

i

+1

(�

n

i

) = R(�

n

i

+1

; u

n

i

+1

)� R(�

n

i

; u

n

i

+1

)! 0

as i!1. Here, we have taken into account that

R(�

n

i

+1

; u

n

i

+1

)! R(�; w); R(�

n

i

; u

n

i

+1

)! R(�; w);

as i!1.

Using the relations

0 � �

n

i

+1

� 

1

(�

n

i

+1

) � (�

n

i

+1

� '

n

i

+1

(�

n

i

)) + �(�

n

i

)(�

n

i

� 

1

(�

n

i

))

as i!1, we get

0 � � � 

1

(�) � �(�)(� � 

1

(�));

where 0 < �(�) < 1, � 2 [�

1

; �

2

). Hence the number � 2 [�

1

; �

2

) satis�es the equation

� � 

1

(�) = 0, i. e. � = �

1

is an eigenvalue of problem (1) and �

n

! �

1

as n !1. This

completes the proof of the theorem.

5. Error estimates of the gradient iterative methods

Assume that there exist positive continuous functions �

0

(�; �) and �

0

(�; �), �; � 2 �,

such that

kA(�)� A(�)k � �

0

(�; �)j�� �j; kB(�)�B(�)k � �

0

(�; �)j�� �j;

for �; � 2 �.

For a �xed segment [a; b] on � we set

�

0;max

(a; b) = max

�;�2[a;b]

�

0

(�; �); �

0;max

(a; b) = max

�;�2[a;b]

�

0

(�; �):

Lemma 12. Assume that the following inequality holds:

�

0;max

(a; b)

�

1;min

(a; b)

(b� a) �

1

2

;

for a �xed segment [a; b] on �. Then the following estimate is valid:

jR(�; v)� R(�; v)j � r(a; b; v) j�� �j; �; � 2 [a; b]; v 2 H n f0g;

where

r(a; b; v) = 2

 

�

0;max

(a; b)

�

1;min

(a; b)

+

�

0;max

(a; b)

�

1;min

(a; b)

!

R(a; v):

9



The proof follows from Lemma 3.

Put

q(�) = maxf�(�

1

); �(�)g; � 2 [�

1

; �

2

);

! =

�

2

p

1� d

1 +

p

1� d

:

Note that 0 < q(�) < 1 for � 2 [�

1

; �

2

).

Lemma 13. The following equality is valid:

max

�2[�

1

;�

0

]

�(�) = q(�

0

)

for �

0

2 [�

1

; �

2

). If 0 � ! � �

1

, then q(�

0

) = �(�

0

). If �

1

� ! < �

2

and �

1

� �

0

� !,

then q(�

0

) = �(�

1

).

Proof. It is not di�cult to make sure (see also [6]) that �

0

(!) = 0, �

0

(�) < 0 for

� 2 (0; !), �

0

(�) > 0 for � 2 (!; �

2

). These relations imply desired results. Thus, the

lemma is proved.

Theorem 3. Let �

1

and �

2

be eigenvalues of problem (1) such that �

1

< �

2

. Assume

that the sequence �

n

, n = 0; 1; : : : is calculated by the formulas (3), (4), �

0

< �

2

, and that

numbers n

0

� 0 and " > 0 such that �

1

� �

n+1

� �

n

� �

1

+ " < �

2

and

�

0;max

(�

1

; �

1

+ ")

�

1;min

(�

1

; �

1

+ ")

" �

1

2

for n � n

0

. Then the following estimate is valid:

�

n+1

� 

1

(�

n+1

) � q

n

(�

n

� 

1

(�

n

));

where q

n

= r(�

1

; �

1

+ "; u

n+1

) + �(�

n

), n � n

0

.

Suppose r(�

1

; �

1

+ "; u

n+1

) � �, n � n

0

. Then

�

n+1

� 

1

(�

n+1

) � q

n+1

0

(�

0

� 

1

(�

0

));

�

n+1

� �

1

� q

n+1

0

(�

0

� 

1

(�

0

));

for q

0

= � + q(�

0

), n � n

0

.

Proof. According to Lemma 12, for n � n

0

we obtain the following relation:

�

n+1

� '

n+1

(�

n

) = '

n+1

(�

n+1

)� '

n+1

(�

n

) =

= R(�

n+1

; u

n+1

)� R(�

n

; u

n+1

) �

� r(�

1

; �

1

+ "; u

n+1

)(�

n

� �

n+1

) �

� r(�

1

; �

1

+ "; u

n+1

)(�

n

� 

1

(�

n

));

10



in which we have taken into account that



1

(�

n

) � '

n+1

(�

n

) � '

n+1

(�

n+1

) = �

n+1

:

Now, by Theorem 2 and Lemma 13, we obtain desired estimates. Thus, the theorem is

proved.

Remark 5. Assume that the operators A(�) = A, B(�) = B, C(�) = C, do not

depend on � 2 IR, and that the following relations are valid:

�

0

(Cv; v) � (Av; v) � �

1

(Cv; v); v 2 H;

for given constants �

0

and �

1

, 0 < �

0

� �

1

. In this case, the iterative method (3) and (4)

has the following form:

C

~u

n+1

� u

n

�

+ (A� �

n

B)u

n

= 0;

u

n+1

=

~u

n+1

k~u

n+1

k

B

; �

n

= R(u

n

) n = 0; 1; : : : ;

where R(v) = (Av; v)=(Bv; v), v 2 H nf0g, � = �

�1

1

, u

0

is a given element of H, ku

0

k

B

= 1.

Then the error estimates of Theorem 3 are transformed to the estimates:

�

n+1

� �

1

� �(�

n

)(�

n

� �

1

);

�

n+1

� �

1

� q

n+1

0

(�

0

� �

1

);

for n = 0; 1; : : :, where 0 < �(�) < 1 for � 2 [�

1

; �

2

), q(�) = maxf�(�

1

); �(�)g, � 2 [�

1

; �

2

),

0 < q

0

= q(�

0

) < 1,

�(�) =

1� �(1� �=�

2

)

1 + �(1� �=�

2

)(�=�

1

� 1)

; � = �

0

=�

1

; � 2 [�

1

; �

2

):

These error estimates are identical with known results (see, for example, [2], [6]).

6. Steepest descent methods

Now we shall investigate the preconditioned gradient iterative method which, unlike

method (3), (4), does not use the function �(�) = �

�1

1

(�), � 2 �, introduced in section 3:

C(�

n

)

~u

n+1

� u

n

�

n

+ (A(�

n

)� �

n

B(�

n

))u

n

= 0;

(5)

u

n+1

=

~u

n+1

k~u

n+1

k

B(�

n

)

; n = 0; 1; : : : ;

11



where the number �

n

is de�ned as a solution of the equation:

�� '

n

(�) = 0; � 2 �; (6)

for n = 0; 1; : : : Here u

0

is a given element of H, ku

0

k

B(�

0

)

= 1, the functions '

n

(�), � 2 �,

n = 0; 1; : : :, are de�ned by the formulas:

'

n

(�) = R(�; u

n

); � 2 �; n = 0; 1; : : :

The number �

n

in (5) is calculated by the formulas:

�

n

=

�b +

p

b

2

� 4ac

2a

;

a = a

2

b

1

� a

1

b

2

;

b = a

1

� �

n

a

2

;

c = (v

n

; w

n

);

a

1

= (A(�

n

)w

n

; w

n

); b

1

= (A(�

n

)u

n

; w

n

);

a

2

= (B(�

n

)w

n

; w

n

); b

2

= (B(�

n

)u

n

; w

n

);

v

n

= (A(�

n

)� �

n

B(�

n

))u

n

;

w

n

= C

�1

(�

n

)v

n

;

for n = 0; 1; : : :

Remark 6. The formulas for calculating the number �

n

were obtained from the fol-

lowing condition:

R(�

n

; u

n

� �

n

w

n

) = min

�2[0;1)

R(�

n

; u

n

� �w

n

):

Remark 7. The following formula holds:

~u

n+1

= u

n

� �

n

w

n

= u

n

� c

n

grad

C(�

n

)

R(�

n

; u

n

);

where

c

n

=

1

2

�

n

ku

n

k

2

B(�

n

)

:

This formula follows from Remark 3.

Lemma 14. The functions '

n

(�), � 2 �, n = 0; 1; : : :, are continuous nonincreasing

functions with positive values. In addition, the following inequalities are valid: '

n

(�) �



1

(�), � 2 �, n = 0; 1; : : :

The proof follows from Lemmas 2 and 3.

12



Lemma 15. The functions ��'

n

(�), � 2 �, n = 0; 1; : : :, are continuous and strictly

increasing functions with negative and positive values in the neighbourhoods of the points

� and �, respectively.

The proof is similar to the proof of Lemma 5 (see [13]).

Theorem 4. Let �

1

and �

2

be eigenvalues of problem (1) such that �

1

< �

2

. Assume

that the sequence �

n

, n = 0; 1; : : : is calculated by the formulas (5), (6), �

0

< �

2

. Then

�

n

! �

1

as n!1, and the following inequalities are valid

�

2

> �

0

� �

1

� : : : � �

n

� : : : � �

1

:

Moreover, the following estimate holds:

�

n+1

� 

1

(�

n+1

) � (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

1

(�

n

));

where 0 < �(�) < 1, � 2 [�

1

; �

2

), n = 0; 1; : : :

Proof. The solutions �

n

, n = 0; 1; : : : of the equations � � '

n

(�) = 0, � 2 �, n =

0; 1; : : : satisfy the following inequalities:

�

2

> �

0

� �

1

� : : : � �

n

� : : : � �

1

:

This is proving by analogy with Theorem 2 according to Lemmas 14 and 15.

Let us prove that �

n

! �

1

as n!1. Taking into account Lemma 7, 10, 11, we obtain

the following relations:

�

n+1

� 

1

(�

n+1

) = (�

n+1

� '

n+1

(�

n

)) + (R(�

n

; u

n+1

)� 

1

(�

n+1

)) �

� (�

n+1

� '

n+1

(�

n

)) + (R(�

n

; w)� 

1

(�

n

)) =

= (�

n+1

� '

n+1

(�

n

)) + (�

1

� 

1

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

; �

0

)(�

0

� 

1

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

1

(�

n

));

where �

0

= '

n

(�

n

) = �

n

, �

1

= '

n+1

(�

n

), the element w 2 H is de�ned by the formulas:

C(�

n

)

~w � u

n

�(�

n

)

+ (A(�

n

)� �

n

B(�

n

))u

n

= 0;

w =

~w

k ~wk

B(�

n

)

:

Note that from this formula and Remark 6, we have

R(�

n

; u

n+1

) = R(�

n

; u

n

� �

n

w

n

) = min

�2[0;1)

R(�

n

; u

n

� �w

n

) �

� R(�

n

; u

n

� �(�

n

)w

n

) = R(�

n

; w):

13



Now the proof is completed similarly to the proof of Theorem 2. Thus, the theorem is

proved.

Theorem 5. Let �

1

and �

2

be eigenvalues of problem (1) such that �

1

< �

2

. Assume

that the sequence �

n

, n = 0; 1; : : : is calculated by the formulas (5), (6), �

0

< �

2

, and that

numbers n

0

� 0 and " > 0 such that �

1

� �

n+1

� �

n

� �

1

+ " < �

2

and

�

0;max

(�

1

; �

1

+ ")

�

1;min

(�

1

; �

1

+ ")

" �

1

2

for n � n

0

. Then the following estimate is valid:

�

n+1

� 

1

(�

n+1

) � q

n

(�

n

� 

1

(�

n

));

where q

n

= r(�

1

; �

1

+ "; u

n+1

) + �(�

n

), n � n

0

.

Suppose r(�

1

; �

1

+ "; u

n+1

) � �, n � n

0

. Then

�

n+1

� 

1

(�

n+1

) � q

n+1

0

(�

0

� 

1

(�

0

));

�

n+1

� �

1

� q

n+1

0

(�

0

� 

1

(�

0

));

for q

0

= � + q(�

0

), n � n

0

.

The proof is similar to the proof of Theorem 3.

Remark 8. Assume that the operators A(�) = A, B(�) = B, C(�) = C, do not

depend on � 2 IR, and that the following relations are valid:

�

0

(Cv; v) � (Av; v) � �

1

(Cv; v); v 2 H;

for given constants �

0

and �

1

, 0 < �

0

� �

1

. In this case, the iterative method (5) and (6)

has the following form:

C

~u

n+1

� u

n

�

n

+ (A� �

n

B)u

n

= 0;

u

n+1

=

~u

n+1

k~u

n+1

k

B

; �

n

= R(u

n

) n = 0; 1; : : : ;

where R(v) = (Av; v)=(Bv; v), v 2 H n f0g, u

0

is a given element of H, ku

0

k

B

= 1. The

number �

n

is de�ned by the formulas:

�

n

=

�b +

p

b

2

� 4ac

2a

;

a = a

2

b

1

� a

1

b

2

;

b = a

1

� �

n

a

2

;

c = (v

n

; w

n

);

14



a

1

= (Aw

n

; w

n

); b

1

= (Au

n

; w

n

);

a

2

= (Bw

n

; w

n

); b

2

= (Bu

n

; w

n

);

v

n

= (A� �

n

B)u

n

;

w

n

= C

�1

v

n

;

for n = 0; 1; : : :

Then the error estimates of Theorem 5 are transformed to the estimates:

�

n+1

� �

1

� �(�

n

)(�

n

� �

1

);

�

n+1

� �

1

� q

n+1

0

(�

0

� �

1

);

for n = 0; 1; : : :, where 0 < �(�) < 1 for � 2 [�

1

; �

2

), q(�) = maxf�(�

1

); �(�)g, � 2 [�

1

; �

2

),

0 < q

0

= q(�

0

) < 1,

�(�) =

1� �(1� �=�

2

)

1 + �(1� �=�

2

)(�=�

1

� 1)

; � = �

0

=�

1

; � 2 [�

1

; �

2

):

These error estimates are identical with known results (see, for example, [2], [6]).
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