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Abstract

In this paper we derive canonical forms under structure preserving equivalence

transformations for matrices and matrix pencils that have a multiple structure, which

is either an H-selfadjoint or H-skew-adjoint structure, where the matrix H is a

complex nonsingular Hermitian or skew-Hermitian matrix. Matrices and pencils of

such multiple structures arise for example in quantum chemistry in Hartree-Fock

models or random phase approximation.

Keywords. Inde�nite inner product, selfadjoint matrix, skew-adjoint matrix, matrix pen-

cil, canonical form.

AMS subject classi�cation. 15A21, 15A22, 15A57.

1 Introduction

Canonical forms for matrices and matrix pencils have been studied for more than hundred

years since work of Jordan, Kronecker and Weierstra�, see [5]. In recent years, motivated
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from applications in control theory as well as quantum physics and quantum chemistry,

there is a revived interest in such canonical forms for matrices and pencils that have

algebraic structures, like Lie groups or Lie algebras. While the possible invariants have

been characterized already some time ago [2], the emphasis in the new results lies in

structure preserving equivalence transformations, see e.g., [1, 13, 14, 15, 16].

In this paper we derive canonical forms under structure preserving equivalence trans-

formations for matrices and matrix pencils with multiple structure.

De�nition 1 Let H 2 C

n�n

be a nonsingular Hermitian or skew-Hermitian matrix, and

let X 2 C

n�n

.

1. X is called H-selfadjoint if X

�

H = HX.

2. X is called H-skew-adjoint if X

�

H = �HX.

Canonical forms for pairs (A;H), where H is Hermitian or skew-Hermitian nonsingular

and A is H-selfadjoint or H-skew-adjoint are well-known in literature (see, e.g., [7, 11]).

These forms are obtained under transformations of the form

(A;H) 7! (P

�1

AP; P

�

HP );

where P is nonsingular. Here, we are interested in canonical forms for matrix triples

(A;H;G), where G and H are Hermitian or skew-Hermitian nonsingular and A is doubly

structured with respect to G and H, i.e., A is H-selfadjoint or H-skew-adjoint and at the

same time G-selfadjoint or G-skew-adjoint. We are also interested in the pencil case, i.e.,

we will also consider pencils %A � B, where both A and B are doubly structured with

respect to H and G.

The main motivation for our interest in these types of matrices and pencils arises

from quantum chemistry. Response function models lead to the problem of solving the

generalized eigenvalue problem with a matrix pencil of the form

�E

0

�A

0

:= �

�

C Z

�Z �C

�

�

�

E F

F E

�

; (1)

where E; F; C; Z 2 C

n�n

; E = E

�

; F = F

�

; C = C

�

; Z = �Z

�

, see [8, 17]. Furthermore,

there are important special cases in which the pencil has even further structure. For

example, the simplest response function model is the time-dependent Hartree-Fock model,

also called the random phase approximation (RPA). In this case, C is the identity and Z

is the zero matrix, see [8, 17]. Thus, the generalized eigenvalue problem (1) reduces to the

problem of �nding the eigenvalues of the matrix

L

0

=

�

E F

�F �E

�

; (2)
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where E; F are as in (1). For stable Hartree-Fock ground state wave functions, it is

furthermore known that E � F and E + F are positive de�nite, see [8].

In other applications, however, like in multicon�gurational RPA [8], it is not even

guaranteed that the matrix E

0

in (1) is nonsingular.

It is easy to see that the matrices E

0

, A

0

in (1) and L

0

in (2) are doubly structured.

With

G =

�

I

n

0

0 �I

n

�

; H =

�

0 I

n

I

n

0

�

; J =

�

0 I

n

�I

n

0

�

;

we have that E

0

is I-selfadjoint and H-skew-adjoint, A

0

is I-selfadjoint and H-selfadjoint,

while L

0

is G-selfadjoint and J-skew-adjoint.

When designing structure preserving numerical methods for large scale structures eigen-

value problems sometimes di�culties in the convergence of the methods were observed in

[3, 4] that have to do with the invariants of these pencils under structure preserving equiva-

lence transformations, see also [1]. It is another motivation for our work to derive canonical

forms that allow a better understanding of those properties of the pencils that lead to these

di�culties.

We will derive the canonical form for matrix triples (A;H;G) under structure preserving

transformations of the form

(A;H;G) 7! (P

�1

AP; P

�

HP; P

�

GP );

where P is nonsingular. This preserves the (skew-)Hermitian structure ofH and G and also

the structure of A with respect to H and G. Based on the classical results, see Section 2,

we clearly have canonical forms for (A;H), (A;G) or the pencil %H � G, and hence the

invariants of the pairs (A;H) and (A;G), as well as the invariants of the pencil %H � G

under congruence are invariants of the triple (A;H;G).

It is our goal to obtain a canonical form that displays simultaneously the Jordan struc-

ture of A and the invariants of the canonical forms of (A;H) and (A;G). In general this is

a very di�cult problem, such a form may not even exist. Consider the following example.

Example 2 Consider matrices

A =

2

4

1 0 1

0 1 0

0 0 1

3

5

; G =

2

4

0 0 1

0 1 0

1 0 0

3

5

and H =

2

4

0 0 1

0 1 1

1 1 0

3

5

:

Then A is G-selfadjoint and H-selfadjoint. But it is impossible to simultaneously decom-

pose A, H, and G further into smaller block diagonal forms. This follows from the obvious

fact that the pencil %G � H can not be further decomposed. On the other hand, A has

the Jordan canonical form

2

4

1 1 0

0 1 0

0 0 1

3

5

:

3



Hence, both (A;G) and (A;H) are decomposable into smaller blocks (see Theorems 9

and 11 below).

Due to this di�culty, we restrict ourselves to an important special case. In most

applications, the matrices H and G, that induce the structure, are contained in the set

S =

�

I

n

;

�

0 I

m

�I

m

0

�

;

�

I

m

0

0 �I

n�m

�

;

�

0 I

m

I

m

0

�

; m; n 2 N

�

: (3)

If this is the case then the pencil %H �G is nondefective.

De�nition 3 Let %A�B 2 C

n�n

be a matrix pencil. We say that %A�B is nondefective,

if there exists nonsingular matrices P;Q 2 C

n�n

, such that both PAQ and PBQ are

diagonal.

We will show that if G;H are Hermitian nonsingular, such that the pencil %H � G

is nondefective, then a canonical form for the triple (A;H;G) exists, which is also unique

except for the permutation of blocks. In particular, this canonical form includes the Jordan

structure of A, and also the canonical forms of the pairs (A;H) and (A;G) and the pencil

%H �G can easily be read o�.

The paper is organized as follows. After providing some preliminary results in Sec-

tion 2, we review canonical forms for matrices that are structured with respect to only one

Hermitian matrix in Section 3. In Section 4 we then discuss doubly structured matrices

and in Section 5 we discuss canonical forms for structured pencils of the form �A � B,

where both A and B are singly or doubly structured matrices.

2 Preliminaries

Throughout the paper, we use the following notation:

By �(A) we denote the spectrum of the matrix A. J

p

(�) denotes p�p upper triangular

Jordan block with eigenvalue �. By sign(t) we mean the sign of a real number t 2 Rnf0g.

A = A

1

� : : : � A

m

stands for the block diagonal matrix A with diagonal blocks A

1

, . . . ,

A

m

.

Furthermore, we introduce the following p� p matrices.

Z

p

:=

2

4

0 1

.

.

.

1 0

3

5

; D

p

:=

2

6

4

(�1)

2

0

.

.

.

0 (�1)

p+1

3

7

5

;
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and F

p

:=

2

4

0 (�1)

2

.

.

.

(�1)

p+1

0

3

5

Note that F

p

2 R

p�p

is symmetric if p is odd and skew-symmetric if p is even, whereas

Z

p

and D

p

are symmetric for all p. We list some properties of these matrices and the

matrix J

p

(0) which can be easily veri�ed, and will be used in the following.

Lemma 4 Let p 2 N.

1. Z

2

p

= I

p

; D

2

p

= I

p

; F

2

p

= (�1)

p+1

I

p

.

2. F

p

Z

p

= D

p

= (�1)

p+1

Z

p

F

p

; D

p

F

p

= Z

p

= (�1)

p+1

F

p

D

p

:

3. D

p

Z

p

= F

p

= (�1)

p+1

Z

p

D

p

; F

p

Z

p

F

p

= Z

p

.

4. Z

�1

p

J

p

(0)Z

p

= J

p

(0)

�

.

5. D

�1

p

J

p

(0)D

p

= �J

p

(0).

6. F

�1

p

J

p

(0)F

p

= �J

p

(0)

�

.

Another important result that will frequently be used throughout the paper is the

following well-known result, [5].

Lemma 5 Let A;B;X be square matrices, such that the spectra of A and B are disjoint.

If AX = XB, then X = 0.

Finally, we review the canonical forms for regular Hermitian pencils, i.e., pencils %H�G,

where both H and G are Hermitian and det(%H�G) 6� 0. This result goes back to results

from Weierstra� (see [19]) and Kronecker (see [10]).

Theorem 6 Let %H � G be a regular Hermitian pencil. Then there exists a nonsingular

matrix P 2 C

n�n

such that

P

�

(%H �G)P = (%H

1

�G

1

)� : : :� (%H

l

�G

l

); (4)

where the blocks %H

j

�G

j

have one and only one of the following forms:

1. Blocks associated with paired nonreal eigenvalues �, �, where Im(�) > 0:

%H

j

�G

j

= %

�

0 I

r

I

r

0

�

�

�

0 J

r

(�)

J

r

(�)

�

0

�

: (5)
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2. Blocks associated with real eigenvalues � and sign " 2 f1;�1g:

%H

j

�G

j

= %"Z

r

� "Z

r

J

r

(�) = %"

2

4

0 1

.

.

.

1 0

3

5

� "

2

6

6

4

0 �

� 1

.

.

.

.

.

.

� 1 0

3

7

7

5

: (6)

3. Blocks associated with the eigenvalue 1 and sign " 2 f1;�1g:

%H

j

�G

j

= %"Z

r

J

r

(0)� "Z

r

= %"

2

6

6

4

0 0

0 1

.

.

.

.

.

.

0 1 0

3

7

7

5

� "

2

4

0 1

.

.

.

1 0

3

5

: (7)

Moreover, the decomposition (4) is unique up to a block permutation that exchanges blocks

�H

i

�G

i

.

Proof. For a full proof, see [18], Lemmas 1.{4. There, the result is shown without

the additional condition Im(�) > 0 for the blocks associated with nonreal eigenvalues,

but applying a permutation, we may always place the block that is associated with the

eigenvalue � in the (1; 2)-block position of the form in (5).

If %H �G is nondefective then we immediately have the following corollary.

Corollary 7 Let %H � G be a nondefective Hermitian pencil, where both H and G are

nonsingular. Then there exists a nonsingular matrix P 2 C

n�n

such that

P

�

(%H �G)P = (%H

1

�G

1

)� : : :� (%H

l

�G

l

);

where the spectra of %H

j

� G

j

and %H

l

� G

l

are disjoint for j 6= l, and where each block

%H

j

�G

j

has either only one pair of complex conjugate eigenvalues or only one single real

eigenvalue. Moreover, the block %H

j

�G

j

has one and only one of the following forms.

1. Blocks with nonreal eigenvalues �, �, where Im� > 0 and r 2 N:

%H

j

�G

j

= %

�

0 I

r

I

r

0

�

�

�

0 �I

r

�I

r

0

�

:

2. Blocks with real eigenvalue �, where r; p 2 N:

%H

j

�G

j

=

�

I

p

0

0 �I

r�p

�

� �

�

I

p

0

0 �I

r�p

�

:

Moreover the decomposition is unique up to a block permutation.

6



Proof. Since the size of every Jordan blocks equals one, the result follows directly from

Theorem 6 after proper permutations such that equal eigenvalues are combined in a single

block.

Remark 8 Following from Theorem 6 and Corollary 7 it is obvious that if � 2 C nR is an

eigenvalue of %H �G then so is � and both eigenvalues have the same Jordan structures.

3 Singly structured matrices

In this section, we review the well-known canonical forms for H-selfadjoint matrices and

H-skew-adjoint matrices, where H always denotes a complex nonsingular Hermitian n�n

matrix.

Theorem 9 Let A 2 C

n�n

be H-selfadjoint. Then there exists a nonsingular matrix

P 2 C

n�n

, such that

P

�1

AP = A

1

� : : :� A

k

and P

�

HP = H

1

� : : :�H

k

; (8)

where A

j

and H

j

are of the same size and the pair (A

j

; H

j

) has one and only one of the

following forms:

1. Blocks associated with real eigenvalues:

A

j

= J

p

(�) and H

j

= "Z

p

; (9)

where � 2 R, p 2 N, and " 2 f1;�1g.

2. Blocks associated with a pair of nonreal eigenvalues:

A

j

=

�

J

p

(�) 0

0 J

p

(�)

�

and H

j

=

�

0 Z

p

Z

p

0

�

; (10)

where � 2 C nR with Im(�) > 0 and p 2 N.

Moreover, the form (P

�1

AP; P

�

HP ) of (A;H) is uniquely determined up to the permuta-

tion of blocks.

Proof. See, e.g., [7].

Even though (8) is unique only up to a permutation of blocks, we call it the a canonical

form of the pair (A;H).

7



Remark 10 In some instances it will turn out be useful to use a slightly di�erent form

for the blocks of type (10) in (8). Multiplying the matrices from both sides by I

p

�Z

p

, one

�nds that (10) takes the form

A

j

=

�

J

p

(�

0

) 0

0 J

p

(�

0

)

�

�

and H

j

=

�

0 I

p

I

p

0

�

: (11)

Using the same transformation, we can also get back from the form (11) to the form (10).

This transformation will frequently be used in the following and its application will be

called the Z-trick.

Apart from the eigenvalues of an H-selfadjoint matrix A, the parameters " that are asso-

ciated with blocks to real eigenvalues are invariants of the pair (A;H). The collection of

these parameters is sometimes referred to as the sign characteristic (see, e.g., [7] and

[11]). To highlight that these parameters are related to the matrix H (we will soon have

to deal with two structures), we will use the term H-structure indices in the following.

Theorem 11 Let S 2 C

n�n

be H-skew-adjoint. Then there exists a nonsingular matrix

P 2 C

n�n

, such that

P

�1

SP = S

1

� : : :� S

k

and P

�

HP = H

1

� : : :�H

k

; (12)

where S

j

and H

j

are of the same size and each pair (S

j

; H

j

) has one and only one of the

following forms:

1. Blocks associated with purely imaginary eigenvalues:

S

j

= iJ

p

(�) and H

j

= "Z

p

; (13)

where � 2 R, p 2 N, and " 2 f1;�1g.

2. Blocks associated with a pair of non purely imaginary eigenvalues:

S

j

=

�

iJ

p

(�) 0

0 iJ

p

(�)

�

and H =

�

0 Z

p

Z

p

0

�

; (14)

where � 2 C nR with Im(�) > 0 and p 2 N.

Moreover, the form (P

�1

SP; P

�

HP ) of (S;H) is uniquely determined up to a permutation

of blocks.

Proof. This follows directly from Theorem 9 considering the H-selfadjoint matrix iS.

Again, we will call the parameter " in (13) the H-structure index of the block S

j

in (13).

Moreover, the form (12) will be called the canonical form of the pair (S;H).

Remark 12 From Theorems 9 and 11, it is easy to �nd the following symmetries in the

spectra of H-selfadjoint and H-skew-adjoint matrices. If � =2 R is an eigenvalue of the H-

selfadjoint matrix A then so is � and both eigenvalues have the same Jordan structure. If

� =2 iR is an eigenvalue of the H-skew-adjoint matrix A then so is �� and both eigenvalues

have the same Jordan structure.

8



4 Doubly structured matrices

In this section we give canonical forms for matrices that are doubly structured with respect

to Hermitian or skew-Hermitian nonsingular matrices G and H. First, we note that by

Theorem 9, Jordan blocks associated with real eigenvalues in the selfadjoint case (or purely

imaginary eigenvalues in the skew-adjoint case) have structure indices with respect to G

and/or H. We will call these indices the G- and H-structure indices of A, respectively.

Moreover, we may always assume that G and H are Hermitian. Otherwise, we may

consider iG or iH, respectively, having in mind the following remark.

Remark 13 Let H 2 C

n�n

be nonsingular and Hermitian or skew-Hermitian and let

A 2 C

n�n

. Then the following conditions hold.

1. A is H-selfadjoint if and only if A is iH-selfadjoint.

2. A is H-skew-adjoint if and only if A is iH-skew-adjoint.

3. A is H-selfadjoint if and only if iA is H-skew-adjoint.

Remark 13 implies in particular that we may assume that the structure on A induced

by one of the matrices G and H, say H, is the structure of a selfadjoint matrix. In other

words, we may assume that A is H-selfadjoint. Otherwise, we may consider iA. Hence, it

remains to discuss the following cases.

� Matrices that are H-selfadjoint and G-selfadjoint (Section 4.1)

� Matrices that are H-selfadjoint and G-skew-adjoint (Section 4.2)

Finally, we always assume that the pencil %H �G is nondefective.

Remark 14 Instead of requiring that %H�G is nondefective, we may as well consider the

generalization of this case, that for the matrices A;G;H at least one of the three pencils

%H�G, %H�HA and %G�GA is nondefective. For example, if A is nonsingular and both

H- and G-selfadjoint then we can consider the matrix triple (H

�1

G;H;HA) for which H,

HA are Hermitian and H

�1

G is H and HA selfadjoint, since (H

�1

G)

�

= GH

�1

. Thus, if

%H �HA is nondefective then we can get the canonical form of this new triple. But once

we have this, we can easily get the canonical form of the original triple (A;H;G). So our

results will cover more general cases.

9



4.1 Matrices that are H-selfadjoint and G-selfadjoint

In this section we will derive a canonical form for matrices that are selfadjoint with respect

to nonsingular Hermitian matrices H and G, such that the pencil %H �G is nondefective.

For the proof of our main result, the following lemma will be needed.

Lemma 15 Let G;H 2 C

n�n

be Hermitian and nonsingular. Let A 2 C

n�n

be H-

selfadjoint and G-selfadjoint. Then there exists a nonsingular matrix P 2 C

n�n

such

that

P

�1

AP = A

1

� : : :� A

k

;

P

�

HP = H

1

� : : :�H

k

;

P

�

GP = G

1

� : : :�G

k

;

where A

j

, H

j

and G

j

have corresponding sizes. Moreover, each pencil %H

j

� G

j

has as

spectrum either f

j

; 

j

g for some 

j

2 C nR or f

j

g for some 

j

2 R and the spectra of

two subpencils %H

j

�G

j

and %H

l

�G

l

, j 6= l, are disjoint.

Proof. By Theorem 6, there exists a nonsingular matrix Q 2 C

n�n

such that

Q

�

GQ =

�

G

1

0

0

~

G

2

�

; Q

�

HQ =

�

H

1

0

0

~

H

2

�

; and Q

�1

AQ =

�

A

11

A

12

A

21

A

22

�

;

where the pencil %H

1

�G

1

has as spectrum either f

1

; 

1

g for some 

1

2 C nR or f

1

g for

some 

1

2 R and such that the spectra of the pencils %H

1

�G

1

and %

~

H

2

�

~

G

2

are disjoint.

Since A is H-selfadjoint and G-selfadjoint, we obtain that

�

A

�

11

H

1

A

�

21

~

H

2

A

�

12

H

1

A

�

22

~

H

2

�

=

�

H

1

A

11

H

1

A

12

~

H

2

A

21

~

H

2

A

22

�

and

�

A

�

11

G

1

A

�

21

~

G

2

A

�

12

G

1

A

�

22

~

G

2

�

=

�

G

1

A

11

G

1

A

12

~

G

2

A

21

~

G

2

A

22

�

:

Since with G also

~

G

2

is nonsingular, this implies

A

�

21

~

H

2

~

G

�1

2

= H

1

A

12

~

G

�1

2

= H

1

G

�1

1

G

1

A

12

~

G

�1

2

= H

1

G

�1

1

A

�

21

:

Since the pencils %H

1

� G

1

and %

~

H

2

�

~

G

2

have disjoint spectra, we obtain that A

�

21

= 0

and therefore A

12

= H

�1

1

A

�

21

~

H

2

= 0. The rest of the proof now follows by induction.

Theorem 16 Let G;H 2 C

n�n

be Hermitian and nonsingular such that the pencil %H�G

is nondefective. Let A 2 C

n�n

be H-selfadjoint and G-selfadjoint. Then there exists a

nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

P

�

GP = G

1

� : : :�G

k

(15)

P

�

HP = H

1

� : : :�H

k

;

10



where the blocks A

j

, G

j

, H

j

have corresponding sizes and are of one and only one of the

following forms.

Type (1):

A

j

= J

p

(�); H

j

= "Z

p

; and G

j

= "Z

p

;

where � 2 R, p 2 N, " 2 f1;�1g, and  2 Rnf0g. The H-structure index of A

j

is " and

the G-structure index of A

j

is sign(").

Type (2):

A

j

=

�

J

p

(�) 0

0 J

p

(�)

�

; H

j

=

�

0 Z

p

Z

p

0

�

; and G

j

=

�

0 Z

p

Z

p

0

�

;

where � 2 R, p 2 N, and  2 C , Im() > 0. The H-structure indices of A

j

are 1;�1 and

the G-structure indices of A

j

are 1;�1.

Type (3):

A

j

=

�

J

p

(�) 0

0 J

p

(�)

�

; H

j

=

�

0 Z

p

Z

p

0

�

; and G

j

=

�

0 Z

p

Z

p

0

�

;

where � 2 C nR , p 2 N, and  2 C nf0g, where Im() � 0.

Moreover, the canonical form (15) is unique up to permutation of blocks.

Proof. By Lemma 15 we may assume that the pencil %H � G has the eigenvalues either

;  for some  2 C nR or  for some  2 R.

Case 1:  2 R.

Since the pencil %H�G is nondefective, by Corollary 7 there exists a nonsingular matrix

P 2 C

n�n

such that

P

�

(%H �G)P = %

�

I

m

0

0 �I

n�m

�

� 

�

I

m

0

0 �I

n�m

�

;

i.e., in particular that G is a scalar multiple of H. Applying Theorem 9, we �nd that

there exists a nonsingular matrix Q 2 C

n�n

such that (Q

�1

AQ;Q

�

HQ) is in canonical

form (8). Since G = H, we obtain that A, H, and G can be reduced simultaneously to

block diagonal form with diagonal blocks of types 1 and 3.

Case 2: ;  2 C nR .

In this case, we obtain from Corollary 7 that there exists a nonsingular matrix P 2 C

n�n

such that

P

�

(%H �G)P = %

�

0 I

m

I

m

0

�

�

�

0 I

m

I

m

0

�

;

11



where 2m = n and Im() > 0. Let

A =

�

A

11

A

12

A

21

A

22

�

be partitioned conformably. Then we obtain from A

�

H = HA and A

�

G = GA that

A

�

12

= A

12

and A

�

12

= A

12

:

Since  6= , this implies that A

12

= 0. In an analogous way we show that A

21

= 0, and

moreover, we have A

22

= A

�

11

by symmetry. Let Q

1

be such that Q

�1

1

A

11

Q

1

is in Jordan

canonical form and set

Q = P

�

Q

1

0

0 Q

��

1

�

:

Then we obtain

Q

�1

AQ =

�

Q

�1

1

A

11

Q

1

0

0 Q

�

1

A

�

11

Q

��

1

�

;

Q

�

HQ =

�

0 I

m

I

m

0

�

; and Q

�

GQ =

�

0 I

m

I

m

0

�

:

After a proper block permutation, we obtain that A, H, and G can be reduced simultane-

ously to block diagonal form with diagonal blocks of the forms

~

A =

�

J

p

(�) 0

0 J

p

(�)

�

�

;

~

H =

�

0 I

p

I

p

0

�

; and

~

G =

�

0 I

p

I

p

0

�

;

respectively, where p 2 N and � 2 C . The result then follows by applying the Z-trick, see

Remark 10.

Uniqueness: Suppose that

A =

�

A

1

0

0 A

2

�

; H =

�

H

1

0

0 H

2

�

; G =

�

G

1

0

0 G

2

�

and

~

A =

�

~

A

1

0

0

~

A

2

�

;

~

H =

�

~

H

1

0

0

~

H

2

�

;

~

G =

�

~

G

1

0

0

~

G

2

�

;

are in canonical form, where H, G,

~

H,

~

G are Hermitian nonsingular, A is H-selfadjoint and

G-selfadjoint and

~

A is

~

H-selfadjoint and

~

G-selfadjoint and all matrices have corresponding

block structures. If P

�1

AP =

~

A, �(A

1

) = �(

~

A

1

) and �(A

2

) = �(

~

A

2

), such that the spectra

of A

1

and A

2

are disjoint, then it follows immediately that P has a corresponding block

diagonal structure. Analogously, assuming that the spectra of %H

1

� G

1

and %

~

H

2

�

~

G

2

(and of %H

2

� G

2

and %

~

H

1

�

~

G

1

, respectively) are disjoint and that P

�

HP =

~

H and

P

�

GP =

~

G, where P is nonsingular, we obtain again that P has a corresponding block

diagonal structure. Indeed, partitioning

P =

�

P

11

P

12

P

21

P

22

�

and P

��

=

�

Q

11

Q

12

Q

21

Q

22

�

12



conformably with H, we obtain that

G

11

P

12

= Q

12

~

G

22

and H

11

P

12

= Q

12

~

H

22

:

This implies that

H

�1

11

G

11

P

12

= P

12

~

H

�1

22

~

G

22

;

and from that, we obtain P

12

= 0, since the spectra of H

�1

11

G

11

and

~

H

�1

22

~

G

22

are disjoint.

Analogously, we show P

21

= 0.

Hence, it is su�cient to prove the uniqueness for the case that A has only one pair

of eigenvalues �; � and that %G � H has only a pair of eigenvalues ; . But then, the

uniqueness is clear, since we obtain from Theorem 9 the uniqueness of the canonical form

for the pair (A;H). Note that the structure G is then uniquely de�ned by the invariant 

with Im() � 0.

In both cases it is easy to verify that the H and G-structure indices of each block are

as claimed in the theorem.

4.2 Matrices that are H-selfadjoint and G-skew-adjoint

In this section we present a canonical form for a matrix A that isH-selfadjoint and G-skew-

adjoint, where H and G are Hermitian nonsingular matrices, such that the pencil %H �G

is nondefective. By Remark 12, the eigenvalues of A satisfy more symmetry properties. If

� 2 C is an eigenvalue of A then, because A is G-skew-adjoint, so is �� having the same

Jordan structure as �. On the other hand, A is H-selfadjoint and thus, with � and ��

also � and �� are eigenvalues of A having the same Jordan structures as �. Thus, the

eigenvalues of A occur in quadruples f�; �;��;��g, where all these eigenvalues have the

same Jordan structures. If � is real or purely imaginary, this set is equal to f�;��g, and

if � = 0, this set is just f0g.

The following lemmas will be needed for constructing the canonical form.

Lemma 17 Let G;H 2 C

n�n

be Hermitian and nonsingular. Furthermore, let A 2 C

n�n

be H-selfadjoint and G-skew-adjoint. Then there exists a nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

;

P

�

HP = H

1

� : : :�H

k

;

P

�

GP = G

1

� : : :�G

k

;

where A

j

, H

j

and G

j

have corresponding sizes. Moreover, each matrix A

j

has the spectrum

f�

j

; �

j

;��

j

;��

j

g and the spectra of two matrices A

j

and A

l

, where j 6= l, are disjoint.

13



Proof. By using the eigenvalue properties of A mentioned above, one can �nd a matrix

Q 2 C

n�n

such that

Q

�

GQ =

�

G

11

G

12

G

�

12

G

22

�

; Q

�

HQ =

�

H

11

H

12

H

�

12

H

22

�

; and Q

�1

AQ =

�

A

1

0

0

~

A

2

�

;

where A

1

has the spectrum f�

1

; �

1

;��

1

;��

1

g for some �

1

2 C , such that the spectra of

A

1

and

~

A

2

are disjoint. Then we obtain from A

�

H = HA and A

�

G = GA that

A

�

1

H

12

= H

12

~

A

2

and � A

�

1

G

12

= G

12

~

A

2

By construction, the spectra of �A

�

1

and

~

A

2

are disjoint. This impliesH

12

= 0 and G

12

= 0.

The proof then follows by induction.

Lemma 18 Let G;H 2 C

n�n

be Hermitian and nonsingular. Furthermore, let A 2 C

n�n

be H-selfadjoint and G-skew-adjoint. Then there exists a nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

;

P

�

HP = H

1

� : : :�H

k

;

P

�

GP = G

1

� : : :�G

k

;

where A

j

, H

j

and G

j

have corresponding sizes. The spectrum of each pencil %H

j

� G

j

is

contained in f

j

;�

j

; 

j

;�

j

g for some 

j

2 C and the spectrum of %H

l

� G

l

is disjoint

from the set f

j

;�

j

; 

j

;�

j

g if j 6= l.

Proof. The proof proceeds analogously to the proof of Lemma 15 using the equations

A

�

H = HA and �A

�

G = GA.

Note that in contrast to the eigenvalue of A, the eigenvalues of the pencil %H �G need

not occur in quadruples f

j

;�

j

; 

j

;�

j

g. If 

j

is an eigenvalue of %H � G then from

Theorem 6, we only know that also 

j

is an eigenvalue, but �

j

and �

j

need not be.

However, to get corresponding block diagonal forms of A, G, H, we have to group 

j

and



j

together with �

j

and �

j

if they are also eigenvalues of %H �G.

In view of Lemma 18, it is su�cient to consider pencils %H � G whose spectrum is

contained in f;�; ;�g. Therefore, a discussion of properties of such pencils will be

helpful.

Lemma 19 Let G, H 2 C

n�n

be nonsingular and Hermitian such that the pencil %H �G

is nondefective.

(i) If the spectrum of %H �G is contained in f;�g, where 

2

2 Rnf0g, then

H

�1

GH

�1

G = 

2

I

n

:

14



(ii) If the spectrum of %H � G is contained in f;�; ;�g, where 

2

2 C nR , then

there exists a matrix P such that for

~

H = P

�

HP ,

~

G = P

�

GP and

~

A = P

�1

AP ,

~

H

�1

~

G

~

H

�1

~

G =

�



2

I

m

0

0 

2

I

m

�

: (16)

Moreover,

~

A =

�

A

1

0

0 A

�

1

�

:

Proof. (i) We consider the problem in two cases.

Case (1): Im() = 0.

Since the pencil %H � G is nondefective and has only the eigenvalues ;� 2 R, by

Corollary 7 there exists a nonsingular matrix P 2 C

n�n

and numbers p; q; r; s 2 N such

that

H = P

�

2

6

6

4

I

p

0 0 0

0 �I

q

0 0

0 0 I

r

0

0 0 0 �I

s

3

7

7

5

P and G = P

�

2

6

6

4

I

p

0 0 0

0 �I

q

0 0

0 0 �I

r

0

0 0 0 I

s

3

7

7

5

P:

This implies H

�1

GH

�1

G = P

�1

(

2

I

n

)P = 

2

I

n

.

Case (2): Re() = 0.

Since the pencil %H � G is nondefective and has only the eigenvalues ;� 2 iR, by

Corollary 7 there exists a nonsingular matrix P 2 C

n�n

such that

H = P

�

�

0 I

m

I

m

0

�

P and G = P

�

�

0 I

m

�I

m

0

�

P;

where m =

n

2

2 N . This implies H

�1

GH

�1

G = P

�1

(

2

I

n

)P = 

2

I

n

.

(ii) By Corollary 7 there exists a nonsingular matrix P such that

%

~

H �

~

G = %P

�

HP � P

�

GP = %

�

0 I

m

I

m

0

�

�

�

0 �

� 0

�

;

where m =

n

2

2 N and � = I

p

� (�I

m�p

), 0 � p � m. We then obtain that

~

H

�1

~

G =

�

� 0

0 �

�

; (17)

and hence we have (16). Note that

~

A is

~

H-selfadjoint and

~

G-skew-adjoint. This implies

that

~

A(

~

H

�1

~

G) =

~

H

�1

~

A

�

~

G = �(

~

H

�1

~

G)

~

A:

Since in this case  �  6= 0, from the block form (17) we get

~

A = A

1

� A

2

. Since

~

A is

~

H-selfadjoint, we obtain that A

2

= A

�

1

.

15



Theorem 20 Let G;H 2 C

n�n

be Hermitian nonsingular such that the pencil %H � G is

nondefective. Furthermore, let A 2 C

n�n

be H-selfadjoint and G-skew-adjoint. Then there

exists a nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

;

P

�

GP = G

1

� : : :�G

k

; (18)

P

�

HP = H

1

� : : :�H

k

;

where, for each j, the blocks A

j

, G

j

, H

j

have corresponding sizes and are of one and only

one of the following forms.

Type (1a):

A

j

=

2

6

6

4

J

p

(�) 0 0 0

0 �J

p

(�) 0 0

0 0 J

p

(�) 0

0 0 0 �J

p

(�)

3

7

7

5

; (19)

H

j

=

2

6

6

4

0 0 Z

p

0

0 0 0 Z

p

Z

p

0 0 0

0 Z

p

0 0

3

7

7

5

; and G

j

=

2

6

6

4

0 0 0 Z

p

0 0 Z

p

0

0 Z

p

0 0

Z

p

0 0 0

3

7

7

5

; (20)

where � 2 C with Re(�)Im(�) > 0, p 2 N and 

2

2 Rnf0g, Re(); Im() � 0.

Type (1b):

A

j

=

�

J

p

(�) 0

0 J

p

(��)

�

; H

j

= "

�

Z

m

0

0 (



jj

)

2

Z

m

�

; G

j

=

�

0 Z

m

Z

m

0

�

; (21)

where � > 0, p 2 N and 

2

2 Rnf0g, Re(); Im() � 0. The H

j

-structure index of � is "

and the H

j

-structure index of �� is "(



jj

)

2

.

Type (1c):

A

j

= i

�

J

p

(�) 0

0 J

p

(��)

�

; H

j

=

�

0 Z

m

Z

m

0

�

; G

j

= "jj

�

Z

m

0

0 (

jj



)

2

Z

m

�

; (22)

where � > 0, p 2 N and 

2

2 Rnf0g, Re(); Im() � 0. The G

j

-structure index of � is "

and the G

j

-structure index of �� is "(

jj



)

2

.

Type (1d1):

A

j

= J

p

(0); H

j

= "Z

p

; and G

j

= ~"F

p

; (23)

where 

2

2 Rnf0g, Re(); Im() � 0, and p 2 N is odd if  2 R and even if  2 iR.

Moreover, the eigenvalue � = 0 has the H

j

-structure index " and the G

j

-structure index

sign(~") if  2 R and sign(�i~") if  2 iR.
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Type (1d2):

A

j

=

�

J

p

(0) 0

0 J

p

(0)

�

; H

j

=

�

0 Z

p

Z

p

0

�

; and G

j

=

�

0 F

p

�F

p

0

�

; (24)

where 

2

2 Rnf0g, Re(); Im() � 0, and p 2 N is even if  2 R and odd if  2 iR.

Moreover, the eigenvalue � = 0 has the H

j

-structure indices +1;�1 and the G

j

-structure

indices +1;�1.

Type (2a):

A

j

=

2

6

6

4

J

p

(�) 0 0 0

0 �J

p

(�) 0 0

0 0 J

p

(�) 0

0 0 0 �J

p

(�)

3

7

7

5

; (25)

H

j

=

2

6

6

4

0 0 Z

p

0

0 0 0 Z

p

Z

p

0 0 0

0 Z

p

0 0

3

7

7

5

; and G

j

=

2

6

6

4

0 0 0 Z

p

0 0 Z

p

0

0 Z

p

0 0

Z

p

0 0 0

3

7

7

5

; (26)

where � 2 C with Re(�)Im(�) > 0, p 2 N, and 

2

2 C with Re()Im() > 0.

Type (2b):

A

j

=

2

6

6

4

J

p

(�) 0 0 0

0 �J

p

(�) 0 0

0 0 J

p

(�) 0

0 0 0 �J

p

(�)

3

7

7

5

; (27)

H

j

=

2

6

6

4

0 0 Z

p

0

0 0 0 Z

p

Z

p

0 0 0

0 Z

p

0 0

3

7

7

5

; and G

j

=

2

6

6

4

0 0 0 Z

p

0 0 Z

p

0

0 Z

p

0 0

Z

p

0 0 0

3

7

7

5

; (28)

where � > 0, p 2 N, and 

2

2 C with Re()Im() > 0. The H

j

-structure indices of � are

+1;�1 and the H

j

-structure indices of �� are +1;�1.

Type (2c):

A

j

= i

2

6

6

4

J

p

(�) 0 0 0

0 �J

p

(�) 0 0

0 0 J

p

(�) 0

0 0 0 �J

p

(�)

3

7

7

5

; (29)

H

j

=

2

6

6

4

0 0 0 Z

p

0 0 Z

p

0

0 Z

p

0 0

Z

p

0 0 0

3

7

7

5

; and G

j

=

2

6

6

4

0 0 Z

p

0

0 0 0 Z

p

Z

p

0 0 0

0 Z

p

0 0

3

7

7

5

; (30)
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where � > 0, p 2 N, and 

2

2 C with Re()Im() > 0. The G

j

-structure indices of � are

+1;�1 and the G

j

-structure indices of �� are +1;�1.

Type (2d):

A

j

=

�

J

p

(0) 0

0 J

p

(0)

�

; H

j

=

�

0 Z

p

Z

p

0

�

; G

j

= "

�

0 F

p

(�1)

p+1

F

p

0

�

; (31)

where p 2 N, " 2 f+1;�1g, and 

2

2 C with Re()Im() > 0. Moreover, the eigenvalue

� = 0 has the H

j

-structure indices +1;�1 and the G

j

-structure indices +1;�1.

In the blocks of type (1a){(1d) the subpencil %H

j

�G

j

has only real or purely imaginary

eigenvalues and in the blocks (2a){(2d) the subpencil %H

j

� G

j

has only eigenvalues that

are neither real nor purely imaginary.

Moreover, the canonical form (18) is unique up to permutation of blocks.

Proof. In view of Lemma 18, we may assume that the spectrum of the pencil %H � G is

contained in f;�; ;�g for some  2 C nf0g, Re(); Im() � 0, and it is su�cient to

distinguish the following two cases.

Case (1): Re()Im() = 0.

In view of Lemma 17, we may distinguish the following four subcases.

Subcase (1a): The spectrum of A is f�;��; �;��g, where Re(�)Im(�) > 0.

Since A is H-selfadjoint and G-skew-adjoint, it follows from Remark 12 that � �, ��,

and �� have the same Jordan structures. Applying Theorem 9, the Z-trick, and a block

permutation, we may assume that A and H have the following forms.

A =

2

6

6

4

J (�) 0 0 0

0 �J (�) 0 0

0 0 J (�)

�

0

0 0 0 �J (�)

�

3

7

7

5

; H =

2

6

6

4

0 0 I

m

0

0 0 0 I

m

I

m

0 0 0

0 I

m

0 0

3

7

7

5

; (32)

where m =

n

4

2 N and J (�) is an (m �m) matrix in Jordan canonical form only having

the eigenvalue �. Then, the equation �A

�

G = GA and the fact that �, ��, �, and �� are

pairwise distinct, imply that G necessarily has the form

G =

2

6

6

4

0 0 0 G

2

0 0 G

3

0

0 G

�

3

0 0

G

�

2

0 0 0

3

7

7

5

; (33)

where G

2

; G

3

2 C

m�m

. By Lemma 19, we obtain that H

�1

GH

�1

G = 

2

I

n

. This implies

in particular that

G

3

G

2

= 

2

I

m

: (34)

18



Note that the equation �A

�

G = GA also implies that J (�)

�

G

2

= G

2

J (�)

�

, i.e., G

2

commutes with J (�)

�

. Hence, setting

Q :=

2

6

6

6

4



1

2

G

��

2

0 0 0

0 

�

1

2

I

m

0 0

0 0 

�

1

2

G

2

0

0 0 0 

1

2

I

m

3

7

7

7

5

;

we obtain that Q

�1

AQ = A, Q

�

HQ = H; and

Q

�

GQ =

2

6

6

4

0 0 0 I

m

0 0 

�1

G

3

G

2

0

0 

�1

G

�

2

G

�

3

0 0

I

m

0 0 0

3

7

7

5

: (35)

Then it follows from (34) and (35) that the triple (A;H;G) can be reduced to blocks of

the form given by (19) and (20), by applying a proper block permutation and the Z-trick.

Subcase (1b): The spectrum of A is f�;��g, where � > 0.

Theorem 11 implies that � and�� have the same Jordan structures. Moreover, applying

Theorem 9, we may assume that A, H, and G have the following forms.

A =

�

A

1

0

0 �A

1

�

; H =

�

H

1

0

0 H

2

�

; and G =

�

G

1

G

2

G

�

2

G

3

�

;

where

A

1

= J

p

1

(�)� : : :� J

p

k

(�);

H

1

= "

1

Z

p

1

� : : :� "

k

Z

p

k

;

H

2

= ~"

1

Z

p

1

� : : :� ~"

k

Z

p

k

and G

j

2 C

m�m

for m =

n

2

. Observing that �A

�

G = GA, we obtain that G

1

= G

3

= 0,

since � 6= 0, and A

�

1

G

2

= G

2

A

1

. Moreover, H

�1

GH

�1

G = 

2

I

n

implies that

H

�1

1

G

2

H

�1

2

G

�

2

= 

2

I

m

= H

�1

2

G

�

2

H

�1

1

G

2

: (36)

Setting

Q =

�

I

m

0

0 

�1

H

�1

2

G

�

2

�

;

then from (36), A

�

1

G

2

= G

2

A

1

, Z

�1

p

J

p

(0)

�

Z

p

= J

p

(0) (Lemma 4), and the block forms of

H

2

and A

1

, we obtain that

Q

�1

AQ =

�

A

1

0

0 �G

��

2

H

2

A

1

H

�1

2

G

�

2

�

=

�

A

1

0

0 �A

1

�

;

Q

�

HQ =

�

H

1

0

0

1

j

2

j

G

2

H

�1

2

H

2

H

�1

2

G

�

2

�

=

�

H

1

0

0 (



jj

)

2

H

1

�

and

Q

�

GQ =

�

0 

�1

G

2

H

�1

2

G

�

2



�1

G

2

H

�1

2

G

�

2

0

�

=

�

0 H

1

H

1

0

�

:
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Thus, it follows from a proper block permutation that we may assume that

A =

�

J

p

(�) 0

0 �J

p

(�)

�

; H =

�

"Z

p

0

0 "(



jj

)

2

Z

p

�

; and G =

�

0 "Z

p

"Z

p

0

�

:

Hence, setting

~

Q =

�

"

�1

I

m

0

0 I

m

�

;

we �nd that

~

Q

�1

A

~

Q,

~

Q

�

H

~

Q, and

~

Q

�

G

~

Q have the desired forms.

Subcase (1c): The spectrum of A is f�;��g, where � 2 iR, Im(�) > 0.

The matrix�iA is G-selfadjoint,H-skew-adjoint and has only a pair of real eigenvalues.

Noting that the spectrum of %G�H is contained in f

�1

;�

�1

g, we can reduce the problem

to Case (1b), i.e., it is su�cient consider the case that �iA, G, and H have the form (21).

�iA =

�

J

p

(�) 0

0 J

p

(��)

�

; G =

�

~"Z

m

0

0 ~"(

jj



)

2

Z

m

�

; H =

�

0 

�1

Z

m



�1

Z

m

0

�

;

where ~" 2 f+1;�1g. Setting

Q =

�



1

2

I

m

0

0 

1

2

I

m

�

;

we obtain that Q

�1

(�iA)Q = �iA,

Q

�

HQ =

�

0 Z

m

Z

m

0

�

; and Q

�

GQ = ~"jj

�

Z

m

0

0 ~"(

jj



)

2

Z

m

�

:

Subcase (1d): The spectrum of A is f0g.

It follows from Lemma 27 in the appendix that the triple (A;H;G) can be reduced to

blocks of the forms (23) or (24).

Case (2): Re()Im() 6= 0.

By Corollary 7 we may assume that the pencil %H �G is already in the form

%H �G = %

�

0 I

m

I

m

0

�

�

�

0 �

� 0

�

;

where m =

n

2

2 N and � = diag(I

p

; I

m�p

), 1 � p � m and, furthermore, we have that (16).

Then Lemma 19 implies that A has the form

A =

�

A

1

0

0 A

�

1

�

:

Note, that by Lemma 19 a similarity transformation on A with a corresponding block

diagonal matrix and simultaneous congruence transformations on H, G will not change

20



the block structure of A and the identity (16), but it does change the block forms in H

and G. Hence we can apply similarity transformations on A

1

and at the same time keep

the relation (16). Again, we will consider the following four subcases.

Subcase (2a): The spectrum of A is f�;��; �;��g, where Re(�)Im(�) > 0.

Again, the eigenvalues �;��; �, and �� have the same Jordan structures. Moreover,

there exists a nonsingular matrix

Q =

�

Q

1

0

0 Q

��

1

�

2 C

n�n

such that

Q

�1

AQ =

2

6

6

4

A

11

0 0 0

0 A

22

0 0

0 0 A

�

11

0

0 0 0 A

�

22

3

7

7

5

and Q

�

HQ = H;

where A

11

2 C

k�k

has the eigenvalues � and �� and A

22

2 C

(

n

2

�k)�(

n

2

�k)

has the eigenvalues

� and ��. Partitioning Q

�

GQ conformably, i.e.,

Q

�

GQ =

2

6

6

4

0 0 G

1

G

2

0 0 G

3

G

4

G

�

1

G

�

3

0 0

G

�

2

G

�

4

0 0

3

7

7

5

;

we obtain from the equation �A

�

G = GA and the fact that A

11

and �A

22

have no common

eigenvalues that G

2

= G

3

= 0. Thus, after a proper block permutation, we may consider

two smaller subproblems. The �rst one is

~

A =

�

A

11

0

0 A

�

11

�

;

~

H =

�

0 I

k

I

k

0

�

; and

~

G =

�

0 G

1

G

�

1

0

�

;

and (16) implies that

~

H

�1

~

G

~

H

�1

~

G =

�



2

I

k

0

0 

2

I

k

�

:

Hence, after applying a similarity transformation on A

11

, we may assume that

~

A,

~

G, and

~

H are in the forms (32) and (33), where (G

1

)

2

= 

2

I. The remainder of the proof then

proceeds analogously to Subcase (1a). The second subproblem with respect to A

22

can be

transformed in the same way.

Subcase (2b): The spectrum of A is f�;��g, where � > 0.

We obtain from Theorem 11 that � and �� have the same Jordan structures. Hence,

both A

1

and A

�

1

must have the eigenvalues � and �� with the same Jordan structures.

Thus, there exists a nonsingular matrix

Q =

�

Q

1

0

0 Q

��

1

�

21



such that

Q

�1

AQ =

2

6

6

4

J (�) 0 0 0

0 �J (�) 0 0

0 0 J (�) 0

0 0 0 �J (�)

3

7

7

5

and Q

�

HQ = H;

where k =

n

4

and J (�) is an k � k matrix in Jordan canonical form associated with only

one eigenvalue �. Partitioning Q

�

GQ conformably, i.e.,

Q

�

GQ =

2

6

6

4

0 0 G

1

G

2

0 0 G

3

G

4

G

�

1

G

�

3

0 0

G

�

2

G

�

4

0 0

3

7

7

5

;

we obtain from �A

�

G = GA and the fact that J (�) and �J (�) have no common eigen-

values that G

1

= G

4

= 0; and J (�)

�

G

2

= G

2

J (�), J (�)

�

G

3

= G

3

J (�). Moreover, we still

have (16), which implies that G

3

G

2

= 

2

I. Thus we may assume that A, G, and H are

in the forms (32) and (33), where G

3

G

2

= 

2

I. The remainder of the proof then proceeds

analogously to Subcase (1a).

Subcase (2c): The spectrum of A is f�;��g, where � 2 iR.

The proof proceeds analogously to the proof of Subcase (1c).

Subcase (2d): The spectrum of A is f0g.

This case follows from Lemma 30 in the appendix and by applying the Z-trick.

Uniqueness: Analogous to the proof of Theorem 16, it is su�cient to prove uniqueness

for the case that the spectrum of A is f�;��; �;��g for some � 2 C and that the spectrum

of %H�G is contained in f;�; ;�g for some  2 C . Again, the canonical form for the

pair (A;H) is unique. In any case except for the case that � = 0 and 

2

=2 R, the matrix G

is then uniquely determined by the invariants  with Re(); Im() � 0 (and signs " or ~" in

some cases that are uniquely determined by the canonical form for the pair (A;G)). Only

in the case � = 0 and 

2

=2 R, we have an additional invariant " that is not an invariant of

the canonical form for the pair (A;G). In this case, the uniqueness follows from Lemma 30

in the appendix.

In all cases (1a){(2d) it is easy to verify that the H and G-structure indices of each

block are as claimed in the theorem.

5 Singly and doubly structured pencils

In this section, we discuss canonical forms for matrix pencils %A � B, where both A and

B are matrices that are singly or doubly structured with respect to some inde�nite inner

22



product. It turns out that the case of structured pencils can be reduced to the matrix case.

This is done in the following theorem.

Theorem 21 Let the matrices G;H 2 C

n�n

be nonsingular and Hermitian or skew-

Hermitian, i.e.,

G

�

= �

G

G and H

�

= �

H

H;

where �

G

; �

H

2 f1;�1g. Furthermore, let %A�B 2 C

n�n

be a regular pencil such that

A

�

H = "

A

HA; A

�

G = �

A

GA;

B

�

H = "

B

HB; B

�

G = �

B

GB; (37)

where "

A

; "

B

; �

A

; �

B

2 f1;�1g. Then there exists nonsingular matrices P;Q 2 C

n�n

such

that

P

�1

(%A�B)Q = %

�

I

n

1

0

0 N

�

�

�

M 0

0 I

n

2

�

;

Q

�

HP =

�

H

11

0

0 H

22

�

;

Q

�

GP =

�

G

11

0

0 G

22

�

;

where M;H

11

; G

11

2 C

n

1

�n

1

and N;H

22

; G

22

2 C

n

2

�n

2

. Moreover, M and N are in Jordan

canonical form, N is nilpotent and the following conditions are satis�ed.

H

�

11

= �

H

"

A

H

11

; G

�

11

= �

G

�

A

G

11

;

M

�

H

11

= "

A

"

B

H

11

M; M

�

G

11

= �

A

�

B

G

11

M;

H

�

22

= �

H

"

B

H

22

; G

�

22

= �

G

�

B

G

22

;

N

�

H

22

= "

A

"

B

H

22

N; N

�

G

22

= �

A

�

B

G

22

N:

Proof. Let P;Q 2 C

n�n

be such that the pencil

P

�1

(%A� B)Q = �

�

I

n

1

0

0 N

�

�

�

M 0

0 I

n

2

�

(38)

is in Kronecker canonical form (see [6]), where M , N are in Jordan canonical form and N

is nilpotent. Then (37) and (38) imply in particular that

Q

�

H(%"

A

A� "

B

B) = Q

�

(%A

�

� B

�

)H =

�

%

�

I

n

1

0

0 N

�

�

�

�

M

�

0

0 I

n

2

��

P

�

H:

From this and (38) we obtain that

Q

�

HP

�

I

n

1

0

0 N

�

= Q

�

HAQ = "

A

�

I

n

1

0

0 N

�

�

P

�

HQ;

Q

�

HP

�

M 0

0 I

n

2

�

= Q

�

HBQ = "

B

�

M

�

0

0 I

n

2

�

P

�

HQ:
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Setting Q

�

HP =

�

H

11

H

12

H

21

H

22

�

and noting that P

�

HQ = �

H

(Q

�

HP )

�

, we �nd that

�

H

11

H

12

N

H

21

H

22

N

�

= �

H

"

A

�

H

�

11

H

�

21

N

�

H

�

12

N

�

H

�

22

�

and

�

H

11

M H

12

H

21

M H

22

�

= �

H

"

B

�

M

�

H

�

11

M

�

H

�

21

H

�

12

H

�

22

�

:

This implies, in particular, that

H

12

= �

H

"

B

M

�

H

�

21

= "

A

"

B

M

�

H

12

N = ("

A

"

B

)

k

(M

�

)

k

H

12

N

k

for every k 2 N :

Since N is nilpotent, it follows that H

12

= 0 and thus, also H

21

= �

H

"

A

N

�

H

�

12

= 0.

Moreover, H

11

= �

H

"

A

H

�

11

and H

22

= �

H

"

B

H

�

22

, and H

22

N = �

H

"

A

N

�

H

�

22

= "

A

"

B

N

�

H

22

,

H

11

M = �

H

"

B

M

�

H

�

11

= "

A

"

B

M

�

H

11

. Analogously we show that Q

�

GP has the structure

claimed in the theorem. This concludes the proof.

We note that M is a doubly structured matrix with structures induced by H

11

and

G

11

and that N is a nilpotent doubly structured matrix with structured induced by H

22

and G

22

, where H

11

, G

11

, H

22

, and G

22

are all Hermitian or skew-Hermitian. Therefore,

Theorem 21 gives a general description about how to obtain the canonical forms for the

pencil case from the canonical forms in the matrix case that are given in the previous

sections. We only have to further reduce M and N by applying the results from Section 4.

Note that Theorem 21 does not require the pencil %H � G to be nondefective. However,

canonical forms for the matrix case are known for this case only.

Theorem 21 also describes the case of singly structured pencils. In this case one may

choose H = G, "

A

= �

A

, and "

B

= �

B

. Thus, Theorem 21 gives a general description

how to obtain canonical forms for singly and doubly structured pencils from the canonical

forms in the matrix case. For obvious reasons, we do not give a list of the canonical forms

for all possible cases, but only one example to illustrate the e�ect of Theorem 21.

Theorem 22 Let H 2 C

n�n

be Hermitian and nonsingular and let %A � B 2 C

n�n

be a

regular pencil such that A and B are H-selfadjoint. Then there exists nonsingular matrices

P;Q 2 C

n�n

such that

P

�1

(%A� B)Q = %

2

6

4

A

1

0

.

.

.

0 A

k

3

7

5

�

2

6

4

B

1

0

.

.

.

0 B

k

3

7

5

Q

�

HP =

2

6

4

H

1

0

.

.

.

0 H

k

3

7

5

;

where the blocks A

j

, B

j

, and H

j

have corresponding sizes and are of one and only one of

the following forms:
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1. Blocks associated with real eigenvalues:

A

j

= I

p

; B

j

= J

p

(�); and H

j

= "Z

p

;

where p 2 N, � 2 R, and " 2 f1;�1g.

2. Blocks associated with a pair of nonreal eigenvalues:

A

j

= I

2p

; B

j

=

�

J

p

(�) 0

0 J

p

(�)

�

; and H

j

= Z

2p

;

where p 2 N and � 2 C nR .

3. Blocks associated with the eigenvalue 1:

A

j

= J

p

(0); B

j

= I

p

; and H

j

= "Z

p

;

where p 2 N and " 2 f1;�1g.

Moreover, this form is uniquely determined up to permutation of blocks.

Proof. This follows directly from Theorem 21 and Theorem 9.

Note that with the assumptions and notation of Theorem 22 the pencil H(%A� B) =

%HA � HB is a Hermitian pencil. It turns out that Theorem 22 is a generalization of

Theorem 6. Indeed, the pencil Q

�

HPP

�1

(%A � B)Q is a Hermitian pencil in canonical

form.

6 Conclusions

We have derived canonical forms for matrices and matrix pencils that are doubly struc-

tured in the sense that they are H-selfadjoint (or H-skew-adjoint) and at the same time

G-selfadjoint (or G-skew-adjoint), where we have assumed that G;H are nonsingular Her-

mitian (or skew Hermitian) and �G�H is a nondefective pencil. The general case that G

or H are singular, or that the pencil �G�H is defective is still an open problem. Also the

associated real canonical forms, which appear to be much more di�cult, are open.

In view of the applications in eigenvalue computations, it is also important to restrict

the transformation matrices to be unitary (or orthogonal in the real case). This case will

be covered in a forthcoming paper, that will also address numerical methods, in particular

for the classes of pencils arising in quantum chemistry that we have discussed in the

introduction.
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Appendix

In the appendix we derive some technical Lemmas. Recall the Kronecker product (see,

e.g., [9, 12]).

De�nition 23 Let A = [a

jk

] 2 C

m�n

and B 2 C

p�q

. Then

A
 B :=

2

6

4

a

11

B : : : a

1n

B

.

.

.

.

.

.

.

.

.

a

m1

B : : : a

mn

B

3

7

5

2 C

mp�nq

:

This product has the following basic properties (see, e.g., [9, 12]).

Proposition 24 Let A;C 2 C

p

1

�p

2

, B;D 2 C

q

1

�q

2

, E 2 C

p

2

�p

3

, and F 2 C

q

2

�q

3

. Then

the following identities hold.

1. A
 (B +D) = A
 B + A
D, (A+ C)
 B = A
 B + C 
 B.

2. (A
 B)(E 
 F ) = (AE)
 (BF ):

3. A 
 B is invertible if and only if A and B are invertible. In this case we have that

(A
 B)

�1

= A

�1


 B

�1

:

4. (A
 B)

T

= A

T


 B

T

, (A
B)

�

= A

�


B

�

:

5. A
 B = 0 if and only if A = 0 or B = 0.
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We will frequently need the permutation matrix




m;n

= [e

1

; e

n+1

; : : : ; e

(m�1)n+1

; e

2

; e

n+2

; : : : ; e

(m�1)n+2

; e

n

; e

2n

; : : : ; e

mn

]:

If A, B are m� n and p� q, respectively, then




�

m;p

(A
 B)


n;q

= B 
 A:

In the following we derive the canonical forms for doubly structured matrices that are

nilpotent. This case is the most complicated case, since we have least symmetry in the

spectrum. Therefore, we have to use a very technical reduction procedure.

For the sake of briefness of notation, let J

p

denote the nilpotent Jordan block J

p

(0) of

size p. O

pq

is the p� q zero matrix.

Lemma 25 Let Z

p

, D

p

, and F

p

be de�ned as in Section 2 and let k; l; p; q 2 N, (p � q).

Then

Z

p

J

l

p

= (J

l

p

)

�

Z

p

; D

p

J

l

p

D

p

= (�1)

l

J

l

p

; F

p

J

l

p

= (�1)

l

(J

l

p

)

�

F

p

: (39)

Z

p

J

k

p

�

J

l

q

O

p�q;q

�

=

�

O

p�q;q

Z

q

J

k+l

q

�

: (40)

F

p

J

k

p

�

J

l

q

O

p�q;q

�

= (�1)

p�q

�

O

p�q;q

F

q

J

k+l

q

�

: (41)

D

p

�

O

p�q;q

F

q

�

= (�1)

p�q

�

O

p�q;q

D

q

F

q

�

: (42)

De�nition 26 Let A = (a

jk

)

nn

2 C

n�n

. Then the l-th lower anti-diagonal of A or, in

short, the l-th anti-diagonal of A is de�ned by the elements a

jk

, where j + k = n + 1 + l.

Here, we allow l = 0. The 0-th anti-diagonal is also called the main anti-diagonal. If

B =

�

0

~

B

�

and C =

�

0

~

C

�

;

where

~

B and

~

C are square matrices, then the l-th anti-diagonal of

~

B and

~

C is called the l-th

anti-diagonal of B and C, respectively. Analogously, we de�ne the l-th block anti-diagonal

for square and non-square block matrices.

Lemma 27 Let G;H 2 C

n�n

be Hermitian nonsingular such that the pencil %H � G is

nondefective and such that its spectrum is contained in f;�g, where 

2

2 Rnf0g and

Re(); Im() � 0. Furthermore, let A 2 C

n�n

be nilpotent, H-selfadjoint and G-skew-

adjoint. Then there exists a nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

;

P

�

GP = G

1

� : : :�G

k

; (43)

P

�

HP = H

1

� : : :�H

k

;
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where the blocks A

j

, G

j

, H

j

have corresponding sizes and, for each j, are of one and only

one of the following forms.

Type (1d1):

A

j

= J

p

(0); H

j

= "Z

p

; and G

j

= ~"F

p

; (44)

where p 2 N is odd if  2 R and even if  2 iR.

Type (1d2):

A

j

=

�

J

p

(0) 0

0 J

p

(0)

�

; H

j

=

�

0 Z

p

Z

p

0

�

; G

j

=

�

0 F

p

�F

p

0

�

; (45)

where p 2 N is even if  2 R and odd if  2 iR.

Proof. Applying Theorem 9, we may assume that (A;H) is in canonical form, i.e., col-

lecting blocks of same size and representing them by means of the Kronecker product, we

may assume that

A =

2

6

4

I

m

1


 J

p

1

0

.

.

.

0 I

m

k


 J

p

k

3

7

5

; H =

2

6

4

�

m

1


 Z

p

1

0

.

.

.

0 �

m

k


 Z

p

k

3

7

5

;

where p

1

> : : : > p

k

are the sizes of Jordan blocks and �

m

j

are signature matrices for

j = 1; : : : ; k. Setting

F =

2

6

4

I

m

1


 F

p

1

0

.

.

.

0 I

m

k


 F

p

k

3

7

5

;

we obtain from �A

�

G = GA and (39) that A and FG commute. Thus, the structure of

G is implicitly given by the well-known form for matrices that commute with matrices in

Jordan canonical form (see [5]). For the sake of better clarity, we will not work directly

on A, H, and G, but �rst apply a permutation. Setting 
 = 


m

1

;p

1

� : : : � 


m

k

;p

k

and

updating A, H, G by 


�1

A
, 


�

H
, 


�

G
, we may consider the following situation.

A =

2

6

4

J

p

1


 I

m

1

0

.

.

.

0 J

p

k


 I

m

k

3

7

5

and H =

2

6

4

H

11

0

.

.

.

0 H

kk

3

7

5

: (46)

where H

jj

:= Z

p

j


 �

m

j

. Partitioning

G =

2

6

4

G

11

: : : G

1k

.

.

.

.

.

.

.

.

.

G

�

1k

: : : G

kk

3

7

5

(47)
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conformably and using the well-known structures of matrices that commute with matrices

in Jordan canonical form [5], we obtain that

G

qq

=

p

q

�1

X

l=0

(F

p

q

J

l

p

q

)
G

(l)

q;q

=

2

6

6

6

6

6

6

6

4

0 : : : : : : 0 G

(0)

q;q

.

.

.

.

.

.

�G

(0)

q;q

�G

(1)

q;q

.

.

.

.

.

.

G

(0)

q;q

G

(1)

q;q

.

.

.

0

.

.

.

.

.

.

.

.

.

(�1)

p

q

+1

G

(0)

q;q

: : : : : : : : : (�1)

p

q

+1

G

(p

q

�1)

q;q

3

7

7

7

7

7

7

7

5

(48)

for q = 1; : : : ; k, where G

(l)

q;q

2 C

m

q

�m

q

and

G

qr

=

p

r

�1

X

l=1

�

O

p

q

�p

r

;p

r

F

p

r

J

l

p

r

�


G

(l)

q;r

(49)

for 1 � q < r � k, with G

(l)

q;r

2 C

m

q

�m

r

.

We will stepwise reduce the matrix G, while keeping the forms of A and H.

Step (1): We �rst show that G

(0)

j;j

is nonsingular for j = 1; : : : ; k.

Since the pencil %H � G is nondefective and has only the eigenvalues ;�, where



2

2 Rnf0g, we obtain from Lemma 19 that

GH

�1

G = 

2

H:

Comparing the j-th diagonal blocks on both sides, this implies in particular that



2

H

jj

= G

�

1j

H

11

G

1j

+ : : :+G

jj

H

jj

G

jj

+ : : :+G

jk

H

kk

G

�

jk

: (50)

Because of the structure of the blocks G

qr

, it follows that all the block anti-diagonals

of G

�

qr

H

qq

G

qr

and G

qr

H

rr

G

�

qr

are zero for q < r, and hence, comparing the main block

anti-diagonals on both sides of (50), we obtain that



2

Z

p

j


 �

m

j

= (F

p

j


G

(0)

j;j

)(Z

p

j


 �

m

j

)(F

p

j


G

(0)

j;j

)

= (F

p

j

Z

p

j

F

p

j

)
 (G

(0)

j;j

�

m

j

G

(0)

j;j

)

Since F

p

j

Z

p

j

F

p

j

= Z

p

j

, this implies that

G

(0)

j;j

�

m

j

G

(0)

j;j

=

1



2

�

m

j

(51)

and thus, G

(0)

j;j

is nonsingular.
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Step (2): Elimination of G

12

; : : : ; G

1k

Assume that we already have G

(l�1)

1;j

= 0 for all j = 2; : : : ; k and G

(l)

1;j

= 0 for j =

2; : : : ; r � 1, where l � 0 and r � 2. We then show how to eliminate G

(l)

1;r

, while keeping

the forms of A and H. Let

X =

2

6

6

6

4

r

I X

1r

.

.

.

r X

r1

.

.

.

I

3

7

7

7

5

have a block form analogous to G, where zero blocks of the matrix are indicated by blanks

and, moreover,

X

1r

=

�

J

l

p

r

O

p

1

�p

r

;p

r

�




�

1

2

(�1)

p

1

�p

r

+1

(G

(0)

1;1

)

�1

G

(l)

1;r

�

0

B

B

B

B

B

@

=̂

2

6

6

6

6

6

4

0 � 0

.

.

.

0 �

0 : : : 0

3

7

7

7

7

7

5

1

C

C

C

C

C

A

X

r1

=

�

O

p

r

;p

1

�p

r

J

l

p

r

�




�

1

2

(�1)

l+1

(G

(0)

r;r

)

��

(G

(l)

1;r

)

�

�

:

Substep (2a) X is chosen such that it commutes with A.

Substep (2b) In the updated matrix

~

G := X

�

GX we have

~

G

(l)

1;r

= 0.

Indeed, it is easy to see that

~

G is again a matrix of the form (47), (48), and (49). The

(1; r)-block of

~

G satis�es

~

G

1r

= G

11

X

1r

+X

�

r1

G

�

1r

X

1r

+G

1r

+X

�

r1

G

rr

: (52)

From the structure of G and X, we �nd immediately that the �rst l�1 block anti-diagonals

of all the summands of the right hand side of (52) are zero. Furthermore, the l-th block

anti-diagonal of

~

G

1r

has the form

(F

p

1


G

(0)

1;1

)

��

J

l

p

r

O

p

1

�p

r

;p

r

�




�

1

2

(�1)

p

1

�p

r

+1

(G

(0)

1;1

)

�1

G

(l)

1;r

�

�

+

�

O

p

1

�p

r

;p

r

F

p

r

J

l

p

r

�


G

(l)

1;r

+

��

O

p

r

;p

1

�p

r

(J

l

p

r

)

�

�




�

1

2

(�1)

l+1

G

(l)

1;r

(G

(0)

r;r

)

�1

�

�

(F

p

r


G

(0)

r;r

)

=

1

2

(�1)

p

1

�p

r

+1

�

F

p

1

�

J

l

p

r

O

p

1

�p

r

;p

r

��


G

(l)

1;r

+

�

O

p

1

�p

r

;p

r

F

p

r

J

l

p

r

�


G

(l)

1;r

+

1

2

(�1)

l+1

��

O

p

r

;p

1

�p

r

(J

l

p

r

)

�

�

F

p

r

�


G

(l)

1;r

= 0;
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using (39) and (41).

Substep (2c) In the updated matrix

~

G := X

�

GX we still have

~

G

(l�1)

1;j

= 0 for all

j = 2; : : : ; k and

~

G

(l)

1;j

= 0 for j = 2; : : : ; r � 1.

Indeed, the elements of the �rst block row of

~

G have the form

G

1q

+X

�

r1

G

�

qr

for 1 < q < r and

G

1q

+X

�

r1

G

rq

for r < q:

From the block structure of G

1q

, G

rq

, G

qr

, and X

r1

, we obtain that the �rst p

q

� p

r

+ 2l

block anti-diagonals in X

�

r1

G

�

qr

and the �rst p

r

� p

q

+2l� 1 block anti-diagonals in X

�

r1

G

rq

are zero.

Substep (2d) We show that the matrix

~

H := X

�

HX is block diagonal.

The only changes outside the block diagonal can have happened to the (1; r)-block

~

H

1r

and the (r; 1)-block

~

H

r1

=

~

H

�

1r

. The (1; r)-block has the form

~

H

1r

= (Z

p

1


 �

m

1

)X

1r

+X

�

1r

(Z

p

r


 �

m

r

) (53)

=

1

2

�

O

p

1

�p

r

;p

r

Z

p

r

J

l

p

r

�

(54)




�

(�1)

p

1

�p

r

+1

�

m

1

(G

(0)

1;1

)

�1

G

(l)

1;r

+ (�1)

l+1

G

(l)

1;r

(G

(0)

r;r

)

�1

�

m

r

�

; (55)

using (39) and (40). On the other hand, we have GH

�1

G = 

2

H. Noting that H

�1

= H

and comparing the (1; r) blocks of both sides, we obtain that

0 = G

11

H

11

G

1r

+

 

r�1

X

q=2

G

1q

H

qq

G

qr

!

+G

1r

H

rr

G

rr

+

 

k

X

q=r+1

G

1q

H

qq

G

�

rq

!

: (56)

Clearly, the �rst l � 1 anti-diagonals of all the summands in (56) are zero. We now

consider the l-th block anti-diagonal. We note that G

11

H

11

G

1r

and G

1r

H

rr

G

rr

are the

only summands that have a nonzero l-th block anti-diagonal. For the terms G

1q

H

qq

G

qr

,

1 < q < r this follows from the fact that the l-th block anti-diagonal of G

1q

is already zero.

For G

1q

H

qq

G

�

rq

, q > r this can be seen as follows. If we write the j-th block antidiagonal

of G

1q

H

qq

G

�

rq

in the form S

j


 T

j

, then we obtain

S

j

=

�

p

q

p

1

� p

q

0

p

q

F

p

q

J

j

p

q

�

Z

p

q

0

B

@

h

p

r

� p

q

p

q

p

q

0 F

�

p

q

i

1

C

A

=

2

4

p

r

� p

q

p

q

p

1

� p

r

0 0

p

r

� p

q

0 0

p

q

0 F

p

q

J

j

p

q

Z

p

q

F

�

p

q

3

5

:
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Having in mind that the �rst l � 1 block anti-diagonals of G

1q

are zero, we �nd that the

�rst p

r

� p

q

+ l � 1 block anti-diagonals of G

1q

H

qq

G

�

rq

are zero.

Finally comparing the l-th block anti-diagonals in (56), we obtain

0 = (F

p

1


G

1;1;0

)(Z

p

1


 �

m

1

)

��

O

p

1

�p

r

;p

r

F

p

r

J

l

p

r

�


G

(l)

1;r

�

+

��

O

p

1

�p

r

;p

r

F

p

r

J

l

p

r

�


G

(l)

1;r

�

(Z

p

r


 �

m

r

)(F

p

r


G

(0)

r;r

)

=

�

O

p

1

�p

r

;p

r

Z

p

r

J

l

p

r

�




�

(�1)

p

1

�p

r

G

(0)

1;1

�

m

1

G

(l)

1;r

+ (�1)

l

G

(l)

1;r

�

m

r

G

(0)

r;r

�

;

using (39), (40), and (41). Using then (51) and (54) this implies

~

H

1r

= 0.

Substep (2e): Retrieving H.

Although

~

H is block diagonal, the diagonal blocks may di�er from those of H. We now

show how to retrieve H from

~

H while keeping the zero block anti-diagonals of

~

G. It follows

from Theorem 9 that there exists a nonsingular matrix T 2 C

p

1

m

1

�p

1

m

1

such that

T

�1

(J

p

1


 I

m

1

)T = J

p

1


 I

m

1

and T

�

~

H

11

T = Z

p

1


 �

m

1

:

Since T commutes with J

p

1


 I

m

1

, it has the block structure

T =

2

6

4

T

1

: : : T

m

1

.

.

.

.

.

.

0 T

1

3

7

5

with T

j

2 C

p

1

�p

1

, j = 1; : : : ; m

1

. Setting

~

T := T � I

p

2

m

2

� : : :� I

p

k

m

k

, we obtain

~

T

�1

A

~

T = A and

~

T

�

~

H

~

T = H:

Moreover, the (1; q)-block of

~

T

�

~

G

~

T has the form

~

T

�

~

G

1q

. Note that the multiplication

from the left with

~

T

�

does neither change the �rst l � 1 block anti-diagonals of

~

G

1q

for

q = 2; : : : ; k nor the l-th block anti-diagonals of

~

G

1q

for q = 2; : : : ; r.

Substep (2f): By induction, we �nally obtain that there exists a nonsingular matrix

S, such that

S

�1

AS =

�

J

p

1


 I

m

1

0

0 A

2

�

; S

�

HS =

�

Z

p

1


 �

m

1

0

0 H

2

�

;

and S

�

GS =

�

G

1

0

0 G

2

�

;

where G

1

2 C

p

1

m

1

�p

1

m

1

. Hence, it is su�cient to assume that we are in the following

situation.

A = J

p


 I

m

; H = Z

p


 � and (57)
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G =

p�1

X

k=0

(F

p

J

k

p

)
G

k

=

2

6

6

6

4

0 G

0

�G

0

�G

1

.

.

.

.

.

.

.

.

.

(�1)

p+1

G

0

: : : : : : (�1)

p+1

G

p�1

3

7

7

7

5

; (58)

where k;m; p 2 N , � is a signature matrix and G

j

2 C

m�m

for j = 0; : : : ; p� 1.

Step (3): Reducing G to block anti-diagonal form.

Assume that we already have G

1

= : : : = G

l�1

= 0 for some l � p � 1. We then

eliminate G

l

while keeping the structure of A and H.

Substep (3a): Elimination of G

l

.

Since G is Hermitian and F

p

is Hermitian for odd p and skew-Hermitian for even p, we

obtain that

G

�

k

= (�1)

p+k+1

G

k

: (59)

This implies, in particular, that

(G

�1

0

G

l

)

�

= (�1)

l

G

l

G

�1

0

: (60)

Setting

X := I

p


 I

m

�

1

2

J

l

p


 (G

�1

0

G

l

);

it follows that X commutes with A. Moreover, we obtain that the �rst l � 1 block anti-

diagonals in

~

G := X

�

GX are still zero. Then using (39), it follows that the l-th block

anti-diagonal has the form

(I

p


 I

m

)

�

(F

p

J

l

p

)
G

l

�

(I

p


 I

m

)�

1

2

(�1)

l

�

(J

l

p

)

�


 (G

l

G

�1

0

)

�

(F

p


G

0

)(I

p


 I

m

)

�

1

2

(I

p


 I

m

)(F

p


G

0

)

�

J

l

p


 (G

�1

0

G

l

)

�

= 0:

Substep (3b): Retrieving H.

Comparing the l-th block anti-diagonals on both sides of GH

�1

G = 

2

H and using

that G

1

= : : : = G

l�1

= 0, by applying (39) and Lemma 4 we obtain that

0 = (F

p


G

0

)(Z

p


 �)

�

(F

p

J

l

p

)
G

l

�

+

�

(F

p

J

l

p

)
G

l

�

(Z

p


 �)(F

p


G

0

)

= (F

p

Z

p

F

p

J

l

p

)


�

G

0

�G

l

+ (�1)

l

G

l

�G

0

�

:

This implies, in particular, that for l � p� 1

G

l

G

�1

0

� + (�1)

l

�G

�1

0

G

l

= 0:
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Here we have used the identity G

0

�G

0

= 

2

�, which follows from comparing the diagonal

blocks in GH

�1

G = 

2

H. Therefore, with this relation and (60) we obtain that

X

�

HX

= Z

p


 ��

1

2

ZJ

l

p




�

G

�

l

G

��

0

� + �G

�1

0

G

l

�

+

1

4

�

(J

l

p

)

�

Z

p

J

l

p

�


 (G

�

l

G

��

0

�G

�1

0

G

l

)

= Z

p


 ��

1

4

(Z

p

J

2l

p

)


�

�(G

�1

0

G

l

)

2

�

:

The (2l)-th block anti-diagonal of X

�

HX can now be eliminated by a congruence trans-

formation with

Y = I

r


 I

m

+

1

8

J

2l

p


 (G

�1

0

G

l

)

2

:

This transformation does not change the �rst l block anti-diagonals of

~

G but may change

the j-th block anti-diagonal of X

�

HX for some j > 2l. However, repeating the procedure

described above a �nite number of times, we can �nally retrieve H while keeping the

property that the �rst l block anti-diagonals in

~

G are zero.

Substep (3c): By induction, we �nally obtain that there exists a nonsingular matrix

S, such that

S

�1

AS = J

p


 I

m

; S

�

HS = Z

p


 � =

2

4

0 �

.

.

.

� 0

3

5

;

and S

�

GS = F

p


G

0

=

2

4

0 G

0

.

.

.

(�1)

p+1

G

0

0

3

5

:

Step (4): Final reduction of G.

Since the pencil %H �G is nondefective and its spectrum is contained in f;�g, this

also holds for each subpencil %�� (�G

0

). We will distinguish four cases.

Case (a):  2 R and p is even.

Identity (59) implies that G

0

is skew-Hermitian. Since the pencil %�� (�G

0

) has only

real eigenvalues  and/or �, it follows that %�� (�G

0

) has both eigenvalues with equal

algebraic multiplicity. This implies, in particular, that m is even and that there exists a

nonsingular matrix R 2 C

m�m

such that

R

�

�R =

�

0 I

I 0

�

and R

�

G

0

R =

�

0 I

�I 0

�

:

Set R = I

p


 R. Then

R

�1

AR = A; R

�

HR = Z

p




�

0 I

I 0

�

; and R

�

GR = F

p




�

0 I

�I 0

�

:
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Applying a transformation with 


p;m

, the form stated in (45) for the case that p is even,

follows from a proper block permutation.

Case (b):  2 R and p is odd.

In this case, (59) implies that G

0

is Hermitian. Considering the Hermitian pencil

%�� (�G

0

), there exists a nonsingular matrix R 2 C

m�m

such that

R

�

�R = � and R

�

G

0

R = 

~

�;

where

~

� is another signature matrix. Setting R := I

p


 R and applying transformations

with R and 


p;m

, the form stated in (44) for the case that p is odd follows from a proper

block permutation.

Case (c):  2 iR and p is even.

In this case, (59) implies that G

0

is Hermitian. The rest follows as in Case (b).

Case (d):  2 iR and p is odd.

This case follows analogously to Case (a). This concludes the proof.

De�nition 28 Let A = (a

jk

)

nn

2 C

n�n

. Then the l-th upper diagonal of A or, in short,

the l-th diagonal of A is de�ned by the elements a

jk

, where k = j+ l. Here, we allow l = 0.

If

B =

�

0

~

B

�

and C =

�

~

C

0

�

;

where

~

B and

~

C are square matrices, then the l-th diagonal of

~

B and

~

C is called the l-th

diagonal of B and C, respectively. Analogously, we de�ne the l-th block diagonal for square

and non-square block matrices.

Lemma 29 Supose that A

0

; G

0

2 C

n�n

anti-commute, i.e. A

0

G

0

= �G

0

A

0

. Further-

more, let A

0

be nilpotent and G

0

be diagonalizable and nonsingular. Then there exists a

nonsingular matrix P 2 C

n�n

such that

P

�1

A

0

P = A

1

� : : :� A

k

;

P

�1

G

0

P = G

1

� : : :�G

k

; (61)

where the blocks A

j

, G

j

have corresponding sizes and, for each j, are of the following form.

A

j

= J

p

(0) and G

j

= "

j

D

p

; (62)

where p 2 N,  2 C with Re() � 0 and Im() > 0 if Re() = 0, and "

j

2 f+1;�1g.

Moreover, the form (61) is unique up to the permutation of blocks.
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Proof. Let Q 2 C

n�n

be nonsingular such that

Q

�1

A

0

Q =

�

A

11

A

12

A

21

A

22

�

and Q

�1

G

0

Q =

�

G

11

0

0 G

22

�

;

where the spectrum of G

11

is contained in f;�g and the spectrum of G

22

is disjoint

from f;�g. Then �A

0

G

0

= G

0

A

0

implies A

12

= A

21

= 0. Hence, we may assume

w.l.o.g. that G

0

has at most the eigenvalues ;�, where  2 C nR with Re() � 0

and Im() > 0 if Re() = 0. Since G

0

is diagonalizable, this implies in particular that

G

2

0

= 

2

I

n

. Furthermore, we may assume that A

0

is in Jordan canonical form. Thus, we

obtain that

A

0

=

2

6

4

J

p

1


 I

m

1

0

.

.

.

0 J

p

k


 I

m

k

3

7

5

and G

0

=

2

6

4

G

11

: : : G

1k

.

.

.

.

.

.

.

.

.

G

k1

: : : G

kk

3

7

5

: (63)

for integers p

1

� : : : � p

k

, m

1

; : : : ; m

k

and G

qr

2 C

m

q

�m

r

. Setting

D :=

2

6

4

D

p

1


 I

m

1

0

.

.

.

0 D

p

k


 I

m

k

3

7

5

;

and using (39), the fact that A

0

and G

0

anti-commute is equivalent to A

0

(DG

0

) =

(DG

0

)A

0

. Therefore, we obtain the following structures for the blocks of G

0

.

G

qq

=

p

q

�1

X

j=0

(D

p

q

J

j

p

q

)
G

(j)

q;q

; G

qr

=

p

r

�1

X

j=0

�

D

p

r

J

j

p

r

O

p

q

�p

r

;p

r

�


G

(j)

q;r

for q < r; and (64)

G

qr

=

p

q

�1

X

j=0

�

O

p

q

;p

r

�p

q

D

p

q

J

j

p

q

�


G

(j)

q;r

for q > r; (65)

where G

(j)

q;q

and G

(j)

q;r

are matrices of suitable dimensions. We will now reduce G

0

stepwise

to canonical form.

Step (1): Since G

2

0

= 

2

I, as in Step (1) in the proof of Lemma 27, it follows that G

(l)

q;q

is nonsingular.

Step (2): Elimination of G

12

; : : : ; G

1k

and G

21

; : : : ; G

k1

.

Assume that we already have G

(l�1)

1;j

= 0 for all j = 2; : : : ; k and G

(l)

1;j

= 0 for j =

2; : : : ; r� 1, where l � 0, r > 1. We then eliminate G

(l)

1;r

. Note that G

2

0

= 

2

I implies that

G

11

G

1r

+ : : :+G

1k

G

kr

= 0
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for r > 1. From this and using an argument similar to the argument in Step (1) in the

proof of Lemma 27, we obtain that only the blocks G

11

G

1r

and G

1r

G

rr

contribute to the

l-th diagonal of the left hand side. Using (39), this implies that

0 = (D

p

1


G

(0)

1;1

)

��

D

p

r

J

l

p

r

O

p

1

�p

r

;p

r

�


G

(l)

1;r

�

+

��

D

p

r

J

l

p

r

O

p

1

�p

r

;p

r

�


G

(l)

1;r

�

(D

p

r


G

(0)

r;r

)

=

�

J

l

p

r

O

p

1

�p

r

;p

r

�




�

G

(0)

1;1

G

(l)

1;r

+ (�1)

l

G

(l)

1;r

G

(0)

r;r

�

: (66)

Setting

X

0

:=

2

6

6

6

4

r

I X

1r

.

.

.

.

.

.

I

3

7

7

7

5

;

where

X

1r

= �

1

2

�

J

l

p

r

O

p

1

�p

r

;p

r

�


 (G

(0)

1;1

)

�1

G

(l)

1;r

;

we obtain that X

0

commutes with A

0

. Furthermore, partitioning

~

G

0

:= X

�1

0

G

0

X

0

con-

formably to G

0

, we obtain for the (1; r) block

~

G

1r

that

~

G

1r

= G

1r

�X

1r

G

rr

+G

11

X

1r

�X

1r

G

r1

X

1r

:

From this and using (39) and (66), we obtain that the l-th diagonal of

~

G

1r

has the form

�

D

p

r

J

l

p

r

O

p

1

�p

r

;p

r

�


G

(l)

1;r

+

1

2

��

J

l

p

r

O

p

1

�p

r

;p

r

�

D

p

r

�


 ((G

(0)

1;1

)

�1

G

(l)

1;r

G

(0)

r;r

)

�

1

2

�

D

p

1

�

J

l

p

r

O

p

1

�p

r

;p

r

��


G

(l)

1;r

= 0:

Analogously to the proof of Lemma 27, we can show that we still have

~

G

(l�1)

1;j

= 0 for all

j = 2; : : : ; k and

~

G

(l)

1;j

= 0 for j = 2; : : : ; r � 1.

By induction, we can analogously eliminate G

12

; : : : ; G

1k

. Moreover, we can eliminate

G

21

; : : : ; G

k1

using transformations of the form

X

0

:=

2

6

6

4

I

.

.

.

r X

r1

.

.

.

I

3

7

7

5

;
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where

X

r1

= �

1

2

�

O

p

r

;p

1

�p

r

J

l

p

r

�


 (G

(l)

1;r

(G

(0)

1;1

)

�1

):

Note that these transformations do not change G

12

; : : : ; G

1k

.

To complete Step (2), we may �nally assume that

A = J

p


 I

m

; G

0

=

p�1

X

j=k

(D

p

J

k

p

)
G

0k

=

2

6

4

G

00

: : : G

0;p�1

.

.

.

.

.

.

0 (�1)

p+1

G

00

3

7

5

: (67)

where p;m 2 N .

Step (3): Reducing G

0

to block diagonal form.

Assume that we have G

01

= : : : = G

0;l�1

= 0 for some 0 < l � p � 1. We then show

how to eliminate G

0l

. The l-th block diagonal of G

2

0

has the form

0 =

�

(D

p

J

l

p

)
G

0l

�

(D

p


G

00

) + (D

p


G

00

)

�

(D

p

J

l

p

)
G

0l

�

= J

l

p




�

(�1)

l

G

0l

G

00

+G

00

G

0l

�

:

Hence

G

0l

G

00

= (�1)

l+1

G

00

G

01

: (68)

The matrix X

0

:= I

p


 I

m

�

1

2

J

l

p


 (G

�1

00

G

0l

) commutes with A

0

. Moreover, X

�1

0

has the

structure

X

�1

0

= I

p


 I

m

+

1

2

J

l

p


 (G

�1

00

G

0l

) +

1

X

k=2

J

kl

p


X

0k

for some matrices X

0k

. Hence, setting

~

G

0

:= X

�1

0

G

0

X

0

, we obtain that the �rst l�1 block

diagonals are still zero and that the l-th block diagonal has the form

�

1

2

J

l

p


 (G

�1

00

G

0l

)

�

(D

p


G

00

)(I

p


 I

m

) + (D

p

J

l

p

)
G

0l

+(I

p


 I

m

)(D

p


G

00

)

�

�

1

2

J

l

p


 (G

�1

00

G

0l

)

�

= 0;

using (39) and (68).

By an induction argument and then applying 


m;p

, we may �nally assume that

A = I

m


 J

p

and G

0

= G

00


D

p

:

Since G

0

is diagonalizable, this also holds for the matrix G

00

. Moreover, G

00

has at most

the eigenvalues  and �. Hence, there exists a nonsingular matrix R such that

R

�1

G

00

R =

�

I

q

0

0 �I

m�q

�

39



for some q 2 N . Setting R := R
 I

p

, we obtain that R

�1

A

0

R = A

0

and

R

�1

GR =

�

I

q

0

0 �I

m�q

�


D

p

:

The assertion then follows by a proper block permutation.

Uniqueness: Analogous to the argument in the proofs of Theorem 16 and 20, it is

su�cient to consider uniqueness for the case that G

0

has at most the eigenvalues ;�

with Re() � 0 and Im() > 0 if Re() = 0. Assume that

A

0

=

2

6

4

I

m

p


 J

p

.

.

.

I

m

1


 J

1

3

7

5

; G

0

= 

2

6

4

�

m

p


D

p

.

.

.

�

m

1


D

1

3

7

5

;

and

~

G

0

= 

2

6

4

~

�

m

p


D

p

.

.

.

~

�

m

1


D

1

3

7

5

;

where we allow m

j

= 0 for some j = 1; : : : ; p and where �

m

j

and

~

�

m

j

are signature

matrices. To prove the uniqueness of the form (61), we have to show that if S 2 C

n�n

is

nonsingular such that S

�1

A

0

S = A

0

and S

�1

G

0

S =

~

G

0

, then �

m

j

and

~

�

m

j

are similar for

j = 1; : : : ; p.

Note that for each Jordan block, there exists a Jordan chain fx

(1)

��

; : : : ; x

(�)

��

g, where

� = p; : : : ; 1 and � = 1; : : : ; m

p

. Let P be the permutation matrix that reorders these

chains in the following way. First, we collect x

(1)

��

for � = p; : : : ; 1, � = 1; : : : ; m

p

, then x

(2)

��

for � = p; : : : ; 2, � = 1; : : : ; m

p

, and so on. Denote q

r

=

P

r

j=1

m

j

. Then

^

A

0

:= P

�1

A

0

P =

2

6

6

6

6

6

6

6

6

6

6

6

4

q

p

q

p�1

q

p�2

: : : q

1

q

p

0

�

I

q

p�1

0

�

0

q

p

1

0

�

I

q

p�2

0

�

.

.

.

q

p�2

0

.

.

.

0

.

.

.

.

.

.

�

I

q

1

0

�

q

1

0

3

7

7

7

7

7

7

7

7

7

7

7

5

:

Moreover, we have

^

G

0

:= P

�1

G

0

P = 

2

6

4

G

11

0

.

.

.

0 G

pp

3

7

5
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and

^

~

G

0

:= P

�1

~

G

0

P = 

2

6

4

~

G

11

0

.

.

.

0

~

G

pp

3

7

5

;

where

G

jj

= (�1)

j+1

2

6

4

�

m

p

0

.

.

.

0 �

m

j

3

7

5

and

~

G

jj

= (�1)

j+1

2

6

4

~

�

m

p

0

.

.

.

0

~

�

m

j

3

7

5

:

Assume that there exists a nonsingular matrix T such that T

�1

^

A

0

T =

^

A

0

and T

�1

^

G

0

T =

^

~

G

0

. Then the structure of

^

A

0

implies that T is block upper triangular with a block structure

corresponding to

^

A

0

. But then we obtain in particular that G

jj

and

~

G

jj

are similar for

each j. This implies that �

m

j

and

~

�

m

j

are similar for each j.

Lemma 30 Let G;H 2 C

n�n

be Hermitian nonsingular such that the pencil %H � G is

nondefective and such that its spectrum is contained in f;�; ;�g, where 

2

2 C nR and

Re()Im() � 0. Furthermore, let A 2 C

n�n

be nilpotent, H-selfadjoint and G-selfadjoint.

Then there exists a nonsingular matrix P 2 C

n�n

such that

P

�1

AP = A

1

� : : :� A

k

;

P

�

GP = G

1

� : : :�G

k

; (69)

P

�

HP = H

1

� : : :�H

k

;

where, for each j, the blocks A

j

, G

j

, H

j

have corresponding sizes and are of the following

form.

Type (2d):

A

j

=

�

J

p

(0) 0

0 J

p

(0)

�

�

; H

j

=

�

0 Z

p

Z

p

0

�

;

and G

j

=

�

0 "F

p

"(�1)

p+1

F

p

0

�

; (70)

where p 2 N, and " 2 f+1;�1g.

Moreover, the form (69) is unique up to the permutation of blocks.

Proof. Using the same argument as in Case (2) of the proof of Theorem 20, we may

assume that A, H, and G have the following forms.

A =

�

A

0

0

0 A

�

0

�

; H =

�

0 I

I 0

�

; and G =

�

0 G

�

0

G

0

0

�

; (71)

where

H

�1

GH

�1

G =

�



2

I 0

0 

2

I

�

: (72)
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This implies, in particular, that G

2

0

= 

2

I. From �A

�

G = GA, we obtain that A

0

and G

0

anti-commute. We will now reduce G by congruence transformations with matrices of the

form

X =

�

X

0

0

0 X

��

0

�

:

Then

X

�1

AX =

�

X

�1

0

A

0

X

0

0

0 (X

�1

0

A

0

X

0

)

�

�

; X

�

HX = H; and

X

�

GX =

�

0 (X

�1

0

G

0

X

0

)

�

X

�1

0

G

0

X

0

0

�

:

Thus, the problem of reducing G, while keeping the forms of A and H, reduces to the

problem of �nding a canonical form for A

0

and G

0

under simultaneous similarity. This

is done in Lemma 29. Hence, the result follows from noting that the spectrum of G

0

is

contained in f;�g, and �nally applying the Z-trick.

Uniqueness: Assume that

A =

�

J 0

0 J

�

; H =

�

0 I

I 0

�

; G

1

=

�

0 G

�

11

G

11

0

�

; G

2

=

�

0 G

�

22

G

22

0

�

;

where J is a nilpotent matrix in Jordan canonical form, G

1

, G

2

are Hermitian, and

�(G

11

) = �(G

22

) � f;�g. Furthermore, assume that T

�1

AT = A, T

�

HT = H, and

T

�

G

1

T = G

2

for some nonsingular matrix T . Partitioning

T =

�

T

11

T

12

T

21

T

22

�

and T

��

=

�

S

11

S

12

S

21

S

22

�

conformably with A, H, and G, we obtain that

T

12

= S

21

and G

11

T

12

= S

21

G

�

22

= T

12

G

�

22

:

This implies T

12

= 0. Analogously, we show that T

21

= 0 and hence, we obtain by symmetry

T

22

= T

��

11

. Hence, the uniqueness of the form (69) follows from the uniqueness property

in Lemma 29.
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