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We study the behavior of the thermal transport properties in three-dimensional disordered sys-

tems 
lose to the metal-insulator transition within linear response. Using a suitable form for the

energy-dependent 
ondu
tivity �, we show that the value of the dynami
al s
aling exponent for

nonintera
ting disordered systems su
h as the Anderson model of lo
alization 
an be reprodu
ed.

Furthermore, the values of the thermopower S have the right order of magnitude 
lose to the transi-

tion as 
ompared to the experimental results. A sign 
hange in the thermoele
tri
 power S | as is

often observed in experiments | 
an also be modeled within the linear response formulation using

modi�ed experimental � data as input.

71.30+h, 71.55Jv, 72.15.Cz

I. INTRODUCTION

Transport phenomena in disordered quantum systems

have been studied for many years,

1;2

yet many open prob-

lems remain. One fo
us of these investigations is the

metal-insulator transition (MIT). This quantum phase

transition from a good 
ondu
ting material to an insu-

lator may be indu
ed by disorder due to lo
alization

1

or

by intera
tions su
h as ele
tron-ele
tron intera
tions and

ele
tron-latti
e 
oupling.

2;3

In three-dimensional (3D)

amorphous materials the MIT is mainly attributed to

disorder.

1

For example, in heavily doped semi
ondu
tors

the disorder is brought about by the random distribution

of dopant atoms in the 
rystalline host. However, indi-


ations of ele
tron-ele
tron intera
tions have also been

found, e.g., in the d.
. 
ondu
tivity � (or resistivity

� = 1=�) in doped semi
ondu
tors in both metalli


4

and

insulating regimes.

5

A further open problem is the behavior of the ther-

moele
tri
 power S or the Seebe
k 
oeÆ
ient of disor-

dered materials near the MIT. In amorphous alloys and

both 
ompensated Si:(P,B) and un
ompensated Si:P, S


ontinuously 
hanges from negative to positive values or

vi
e versa at low temperature T . This 
orresponds to a


hange of thermal 
ondu
tors from ele
trons to holes or


onversely and has been attributed to ele
tron-phonon

intera
tion in amorphous alloys.

6;7

On the other hand

in heavily doped semi
ondu
tors the sign 
hange is be-

lieved to be 
aused by ele
tron-ele
tron intera
tions or

attributed to the existen
e of lo
al magneti
 moments

and their intera
tions with ele
trons.

5;8;9

This 
on
lu-

sion is based on the suppression of the anomalous be-

havior by a magneti
 �eld.

8;9

We remark that the sign


hange in S is also observed in metals, high-T




materi-

als and quasi
rystals.

10{12

Analyti
al treatments of met-

als as a degenerate free-ele
tron gas taking into a

ount

inelasti
 s
attering with phonons

13{15

as well as numer-

i
al 
onsiderations in
orporating ele
troni
 
orrelations

in super
ondu
tors

16

have also been shown to generate a

sign 
hange in S. But in these systems the sign 
hange

o

urs at a T value whi
h is 2 orders of magnitude higher

than in disordered systems. Note that S is mainly due

to two distin
t e�e
ts: (i) the di�usion of the 
harge 
ar-

riers and (ii) the net momentum transfer from phonons

to 
arriers.

17

But for T < 0:3 K as 
onsidered in this

work, the di�usive part of the thermopower dominates

that of the phonon-drag 
ontribution.

17;18

Hen
e, from

this point on in this paper S denotes only the di�usion

thermopower.

The prototype for a theoreti
al des
ription of 3D dis-

ordered systems is the Anderson model of lo
alization.

19

Near the MIT at T = 0, � behaves as
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where E

F

is the Fermi energy, E




is the mobility edge

whi
h separates the extended 
ondu
ting states from lo-


alized insulating states, and � is a universal 
riti
al

exponent.

1

By using Eq. (1) for � in a linear response

formulation the behavior of the thermoele
tri
 trans-

port properties su
h as S,

20{23

the thermal 
ondu
tivity

K

21{23

and the Lorenz number L

0

22;23

at the MIT have

been 
omputed. Moreover, similar to �, the quantities

S, K and L

0

have also been found to obey s
aling.

24

The

s
aling form of the dynami
al 
ondu
tivity � 
lose to the

MIT in 3D is given as

2;25{27

�(t; T )

T

1=z

= F

�

t

T

�z

�

: (2)

Here t measures a dimensionless distan
e from the 
rit-

i
al point, su
h as t = (E

F

� E




)=E




, the 
orrelation-

length exponent � in 3D is equivalent to the 
ondu
tiv-

ity exponent as given in Eq. (1), and z is the dynami
al

exponent.

2

For a nonintera
ting system su
h as the An-

derson model, one expe
ts z = d in d dimensions.

2

But,

instead of obtaining z = 3 in the s
aling form of �, one

1



�nds z� = 1.

20;23;24

In addition to this dis
repan
y, S

turns out to be at least one order of magnitude larger

22;23

than the experimental results in doped semi
ondu
tors

9

and in amorphous alloys.

6;7

Furthermore, the sign 
hange

in S 
annot be explained using the Anderson model and

Eq. (1). One may argue that the dis
repan
ies between

the transport 
al
ulations and the experimental measure-

ments are due to the absen
e of intera
tions in the An-

derson model. Indeed, intera
tions may in
uen
e the be-

havior of the thermoele
tri
 transport properties. Yet we

emphasize that the negle
t of intera
tions in the Ander-

son model is not entirely in
onsistent with the experimen-

tal situation in 3D amorphous materials. For example,

re
ent measurements in Si:P yield � s
aling with z � 3

and � � 1.

28

This agrees with z = d as predi
ted by the

s
aling arguments

2;25

for nonintera
ting systems.

The goal of this paper is to show that the 
orre
t value

of z, the right order of magnitude of S at the MIT, and

perhaps even the sign 
hange in S at low T , 
an be de-

s
ribed within a linear response formulation using the

nonintera
ting Anderson model of lo
alization. However,

in order to do so, we have to use a more suitably 
hosen

energy-dependent �




instead of Eq. (1). After a brief re-

view of linear transport theory, we 
onstru
t a new form

for �




as a fun
tion of energy E and T from experimental

data. By using this model data as input for the linear

response formulation, we 
ompute the temperature de-

penden
e of S, K, L

0

and also � and show that they

have the expe
ted qualitative and quantitative behavior


lose to the MIT. Finally, we show that a small variation

in �




(E; T ) 
an 
hange the sign of S. This e�e
t 
annot

be produ
ed simply by varying the density of states % or

the 
hemi
al potential �(T ).

II. LINEAR THERMOELECTRIC TRANSPORT

THEORY

In the presen
e of a small temperature gradient rT ,

the ele
tri
 
urrent density hj

1

i and the heat 
urrent den-

sity hj

2

i indu
ed in a system are given (to linear order)

as

hj

i

i = jej

�i

�

jejL

i1

E� L

i2

T

�1

rT

�

; (3)

where e is the ele
tron 
harge and E is the indu
ed ele
-

tri
 �eld. L

ij

are the kineti
 
oeÆ
ients. Sin
e we do not


onsider the presen
e of a magneti
 �eld in this work, the

Onsager relation L

ij

= L

ji

holds.

29

Ohm's law,

hj

1

i = �E; (4)

implies that in Eq. (3)

� = L

11

: (5)

The 
ow of thermal 
ondu
tors due to rT is 
ounter-

a
ted by an ele
tri
 for
e arising from E making hj

1

i = 0.

Equation (3) then yields the thermoele
tri
 power S

whi
h relates rT to E,

S =

L

12

jejTL

11

: (6)

The sign of S determines whether the thermal 
arriers

are ele
trons or holes. Using the Sommerfeld expansion

for jE

F

�E




j > k

B

T , S is given as

20;21;23;30;31

S = �

�

2

k

2

B

T

3jej

d ln�(E)

dE

�

�

�

�

E=E

F

; (7)

where E

F

is the Fermi energy, k

B

is Boltzmann's 
onstant

and �(E) is assumed to be a slowly varying fun
tion on

the s
ale of k

B

T . Equation (7) is also known as the Mott

formula.

32

The thermal 
ondu
tivity K determines the 
ontribu-

tion to hj

2

i stemming fromrT . Using Eqs. (5) and (6) in

hj

2

i we obtainK in terms of the kineti
 
oeÆ
ient as

22;23

K =

L

22

L

11

� L

21

L

12

jej

2

TL

11

: (8)

From the de�nition of the Lorenz number it follows

that

22;23

L

0

�

e

2

k

2

B

K

�T

=

L

22

L

11

� L

21

L

12

(k

B

TL

11

)

2

: (9)

In metals at room T , L

0

= �

2

=3.

31

. It also takes on the

same value at T . 10 K in metals where the ele
trons

su�er no inelasti
 s
attering pro
esses.

31

The primary 
onsideration then in determining �, S,

K and L

0

is to 
al
ulate L

ij

. Under the assumptions

that the system is nonintera
ting and inelasti
 s
atter-

ing pro
esses are absent, L

ij

are given in the Chester-

Thellung-Kubo-Greenwood formulation

33{35

as

L

ij

=

Z

1

�1

A(E)[E � �(T )℄

i+j�2

�

�

�f(E; �; T )

�E

�

dE;

(10)

where i; j = 1; 2, �(T ) is the 
hemi
al potential,

f(E; �; T ) is the Fermi distribution fun
tion and A(E)


ontains all the system-dependent features.

Lastly, we note that the T dependen
e of � 
an be

obtained for nonintera
ting systems from

n(�; T ) =

Z

1

1

dE%(E)f(E; �; T ) (11)

where n is the number density of ele
trons and % is the

density of states.

31

Knowing % and keeping n 
onstant,

we �nd numeri
ally that �(T ) � T

2

in the 3D Ander-

son model with an in
reased e�e
tive mass due to the

disorder.

23

2



III. A PHENOMENOLOGICAL APPROACH

There are only two parameters that are model depen-

dent in the transport theory dis
ussed in Se
. II. These

are A(E) and �(T ). In order to determine the behavior

of the thermoele
tri
 transport properties 
lose to the

Anderson MIT, previous authors

20{23;30

had set A(E) in

Eq. (10) equal to the 
riti
al behavior of � given by Eq.

(1). As mentioned in the introdu
tion, this leads to the

unphysi
al value for z = 1=� and therefore an unphysi
al

frequen
y and T dependen
e of �. The main reason for

this behavior is easily understood: there is no T depen-

den
e in Eq. (1) and thus all T dependen
e in Eq. (5) is

due to the broadening of the Fermi fun
tion in Eq. (10)

with in
reasing T . Thus in order to model the 
orre
t T

dependen
e, we should add to Eq. (1), valid at T = 0, the

desired T dependen
ies su
h as � / T

1=z

in the metalli


and � / exp (�T ) in the insulating (say, variable-range-

hopping) regimes. Su
h a purely theoreti
al model for

�




(E; T ) will then in
orporate a multitude of 
onstants

that 
an be adjusted to �t the experimental results. Of


ourse this is of limited pra
ti
al use sin
e the validity of

these �tting parameters is hard to justify.

Here we will instead use as input for �




(E; T ) re
ent ex-

perimental data obtained by Wa�ens
hmidt et al.

28

who

measured � in Si:P at the MIT under uniaxial stress.

Their data yield good s
aling of � a

ording to Eq. (2)

with a dynami
al exponent z = 2:94�0:3 and � = 1�0:1.

These values agree with the s
aling arguments

2;25

and

reasonably well with the numeri
al results

36{38

for non-

intera
ting systems.

In the �(t; T ) s
aling of Ref. 28, t = (s� s




)=s




where

s is the stress and s




the 
orresponding value at the tran-

sition. We sample their s
aled data for several values of

(t; T ) and �t a spline 
urve

39

�




to these points in order

to get a smooth fun
tional form for �(t; T ). Transform-

ing the spline �




as a fun
tion not only of T but also of E,

we set t = (E � E




)=E




. Finally, we substitute �




(E; T )

for A(E) in Eq. (10). Consequently, the thermoele
tri


transport properties are dire
tly obtained from Eqs. (5){

(9).

In this paper we 
onsider temperatures from 0:01 K

to 0:2 K. Far from the transition we 
ould not probe

lower than T < 0:02 K. This is due to the limited input

data and 
onsequently a limited range of the spline fun
-

tion that generated �




(E; T ). The unit of �




is taken

as 


�1


m

�1


onsistent with the experiments. The E

s
ale is (arbitrarily) �xed at 1 meV whi
h is the order

of magnitude of the binding energy of an isolated donor

in a heavily doped semi
ondu
tor.

5

In order to 
ompare

with the previous results in the Anderson model

23

we let

E




= 7:5. We emphasize that this value is of no sig-

ni�
an
e and 
an be assigned (nearly) arbitrarily. The

important point to 
onsider is the lo
ation of the Fermi

energy E

F

with respe
t to E




. This distinguishes the

ele
troni
 regimes. Thus, the metalli
, 
riti
al and insu-

lating regimes are identi�ed as jE

F

j < E




, E

F

= E




, and

jE

F

j > E




, respe
tively. Usually, �(T ) is derived in Eq.

(11) from % of the 3D Anderson model of lo
alization. In

the next se
tion we shall also show the e�e
t of using a

di�erent fun
tional form of �(T ).

IV. RESULTS AND DISCUSSIONS

A. Temperature dependen
e of the thermoele
tri


transport properties

Consistent with the dynami
s of the experiment in Ref.

28, we expe
t �(T ) � T

1=z

at the 
riti
al regime with

z � 3. This is indeed the behavior of �(T ) 
lose to E




as we show in Fig. 1. For jE

F

� E




j � 0:2 meV we

obtain z = 3:2 � 0:3. Note that �(T ) = L

11

has been

integrated a

ording to Eq. (10) over the energy range

where �f=�E � 10

�20

meV. Thus our numeri
al 
al
u-

lation of � is 
onsistent sin
e it reprodu
es 
losely the

original result in Ref. 28. If we plot the results in Fig.

1 with respe
t to (� � E




)=E




T

1=�z

we obtain a rough

s
aling of � similar to Fig. 3 of Ref. 28.

We next turn our attention to the thermoele
tri
 power

S. In the 3D Anderson model of lo
alization, we know

that when using Eq. (1) one obtains S ! 0 in the metalli


regime

20;23;30

while in the insulating regime S does not

approa
h zero but seems to diverge as T ! 0.

23;24

At the

MIT S is a 
onstant

20

of the order of 100 �V/K.

22;23;40

In Fig. 2, we show that in the present approa
h S in the

vi
inity of the MIT is two orders of magnitude smaller


ompared to previous results for the Anderson model.

The magnitude of S is in fa
t 
omparable to the exper-

imental results in disordered systems.

6;7;9

Furthermore,

S ! 0 as T ! 0 in the metalli
, 
riti
al and insulating


ases. This behavior of S(T ) in all ele
troni
 regimes

was observed

6;41

in amorphous Au

x

Sb

1�x

and in amor-

phous Ge

1�x

Au

x

. As indi
ated by the di�erent lines in

Fig. 2, S is in good agreement with Eq. (7) sin
e � in

Fig. 1 is smooth a
ross the transition at �nite T . Note

that in order to evaluate Eq. (7) properly for the system


onsidered here, the E dependen
e of the input spline

�




(E; T ) was used instead of �(T ) from Fig. 1. We em-

phasize that it is no 
ontradi
tion that S is positive here

but mainly negative in the doped semi
ondu
tors in all

ele
troni
 regimes. In the energy regions 
lose to E




> 0

the 
harge 
arriers are holes instead of ele
trons as shown

in Ref. 23. S would be negative if we had 
hosen the left

mobility edge E




< 0 for low �lling.

23;42

The 
orresponding T dependen
e of K is shown in Fig.

3. We �nd thatK ! 0 as T ! 0 in all ele
troni
 regimes.

This is also the behavior ofK using �




in Eq. (1).

23

In the

metalli
 regime K is larger than in the insulating regime

sin
e there are more heat 
arriers in the former. From the

results of � andK in Figs. 1 and 3 respe
tively, we obtain

L

0

. As shown in Fig. 4, L

0

! �

2

=3 as T ! 0 whether

it be in the metalli
, 
riti
al or insulating regime. This

is di�erent from the results using Eq. (1) for �. There

3



one obtains an L

0

whi
h depends on the 
ondu
tivity

exponent in the 
riti
al and insulating regimes while it

approa
hes the universal value

31

�

2

=3 only in the metalli


regime.

23

Here we see no markedly distin
t behavior in

the metalli
 regime 
ompared to the insulating regime.

For jE

F

�E




j = 0:1; 0:2 meV, L

0

in the metalli
 regime is

less than its 
orresponding value in the insulating regime.

For jE

F

� E




j = 0:5; 1:0 meV, L

0

in the metalli
 regime

is larger than its 
orresponding value in the insulating

regime.

In the 
al
ulation of �(T ), S(T ), K(T ) and L

0

(T ), we

used a phenomenologi
al 
onstru
tion of �




(E; T ). Fur-

thermore, we have assumed that the density of states %

is the same as that of the 3D Anderson model of lo
al-

ization given in Ref. 23. Sin
e this %(E) is a smooth and

(restri
ted to E > 0) monotoni
 fun
tion, �(T ) obtained

from Eq. (11) is also smoothly and monotoni
ally varying

with T as des
ribed in Se
. II.

B. E�e
ts of a stru
tured %

We now 
onsider the e�e
ts of a possible stru
ture in

%. We shall assume here that this stru
ture 
orresponds

only to variations in �(T ) and not in �. In Fig. 5 we show

two examples of a modi�ed �(T ) in the 
riti
al regime.

Example A has a pronoun
ed maximum, while example

B has both a maximum and a minimum. The height of

the maximum in both examples A and B is � 0:1 meV.

Note that this is signi�
antly larger than the halfwidth of

the bump whi
h is � 0:005 meV. This is also true for the

depth of the minimum in example B. Thus a small 
hange

in T 
orresponds to a large 
hange in �(T ). Applying

these forms of �(T ) together with Eq. (1) for � repro-

du
es the same stru
tures in S. For example, using form

B of �(T ) we obtain an S having both a maximum and a

minimum in the same T interval as �(T ). But S is still of

the order of 100�V/K while the variations are only of the

order of 10�V/K and not large enough to 
ause a sign


hange in S. On the other hand using the phenomenolog-

i
al 
onstru
tion of �




(E; T ) yields even smaller 
hanges.

We observe variations in L

11

and L

12

of less than 10%

from their unmodi�ed values. Consequently, we �nd neg-

ligible 
hanges in S. Figure 2 would appear unmodi�ed.

Hen
e we 
on
lude that even a large 
hange in the density

of states % and thus also in �(T ) is not suÆ
ient to 
ause

the 
hange of sign for S as observed in the experiments.

However, this weak dependen
e of S on % and �(T ) at

least justi�es our use of the simple Anderson density of

states in the present paper.

C. E�e
ts of a stru
tured �(E)

Let us now assume that for small T there are non-

monotoni
ities in �




(E; T ) | although these have not

been observed in the experiments.

6;7;9

Thus we 
onsider

the 
ase when there is a sizeable 
hange in �




(E; T ) in

the region 
lose to E




for small T . The 
orrespond-

ing `bumps' in �




(E; T ) are shown in Fig. 6 with dif-

ferent peak heights and with half-widths < 1 meV.

For simpli
ity they are essentially quadrati
 fun
tions

of E and have been generated su
h that they de
ay

qui
kly as exp(�T

4

) with in
reasing T . The height of

the bumps is < 1 


�1


m

�1

whi
h is at least an order

of magnitude smaller than the values observed for � in

the measurements.

6;28

The lowest temperature studied

is T = 6 mK and we shall only 
onsider metalli
 and

insulating regions with jE

F

�E




j � 0:1 meV.

Our results in Fig. 7 using �




(E; T ) with and without

bumps indi
ate that there are only small variations in

the slope of log(�) and � � T

1=3

remains valid within

the a

ura
y of these estimations. We remark that the

lowest measured temperature in Ref. 28 is 15 mK. From

Fig. 7 we see that the variations for T � 15 mK are mu
h

smaller than for T < 15 mK. Hen
e, these variations in

� 
ould not have been observed in the experiments.

In Fig. 8 we show how the bumps a�e
t S. Even with

the very small bump 3, S 
hanges sign in the 
riti
al

regime as T ! 0. As the bump in
reases this 
hange be-


omes more pronoun
ed. The temperature T

S=0

at whi
h

the sign 
hange o

urs is 0:1 K for bump 3, T

S=0

= 0:2

K for bump 2, and T

S=0

� 0:4 K for bump 1. These

results for T

S=0

are still about one order of magnitude

less than in semi
ondu
tors

8;9

and two orders of magni-

tude smaller than in amorphous alloys.

6;7

Of 
ourse, as

shown in Fig. 8, T

S=0

shifts to higher values as the bump

height in
reases. Nevertheless, the minimum value of S

for T < T

S=0

has the same order of magnitude as the 
or-

responding maximum value of S in Si:(P,B) and in Si:P.

We emphasize that the value of T

S=0

of 
ourse depends

on the energy unit 
hosen and thus will vary for systems

with di�erent bandwidths, e.g., a larger band width will

give rise to a larger value of T

S=0

. We observe a simi-

lar sign 
hange in the metalli
 regime but the depth of

the minimum is smaller than in the 
riti
al regime. The

Mott formula (7) with �(T ) given in Fig. 7 
an readily

model this behavior sin
e �(T ) remains slowly varying

even if �




(E; T ) has a bump near E




. In the insulating

regime, S has a shallow maximum and drops ba
k to zero

as T ! 0. This is di�erent from experiment,

5

where S


hanges sign and neither has a maximum nor minimum

in the insulating regime.

Unlike in S, there is no dramati
 
hange in K as 
an

be seen in Fig. 9. We �nd only negligible variations at

T < 15 mK. This should be expe
ted sin
e there has also

been hardly any 
hange in the slope of �(T ) ex
ept for

T < 15 mK. However, the small in
rease in � at T < 15

mK in the metalli
 regime together with the minimally

modi�ed K leads to a drasti
 
hange in L

0

even in the


ase for the smallest bump. The in
rease and de
rease in

� leads to a maximum and minimum in L

0

, respe
tively.

However, L

0

still approa
hes the universal value �

2

=3 for

T ! 0 as demonstrated in Fig. 10.

4



V. CONCLUSIONS

In this paper, we have shown that the anti
ipated

value of the dynami
al s
aling exponent z � 3 as well

as the right order of magnitude for the thermopower

S � 1�V/K at the MIT 
an be obtained when taking

into a

ount the expe
ted T dependen
ies in addition to

the simple s
aling behavior of Eq. (2). Our approa
h

is phenomenologi
al in the sense that we have refrained

from using �tting parameters and have rather taken ex-

perimental data as input. Using this data, we 
an explain

the large deviations from experimental results as reported

in the theoreti
al studies of Refs. 20{24, 30. We have

shown that our results for S agree with those predi
ted

by the Mott formula (7) sin
e we have used a � slowly

varying on the s
ale of k

B

T near the MIT. We emphasize,

however, that for a disordered system where intera
tions

are negligible, we should still expe
t the Anderson-type

transition as given in Eq. (1) at T = 0. Consequently,

S � 100�V/K at the MIT

20{23

should again be expe
ted

and one should observe a large in
rease of jSj at very low

T . However, su
h temperatures appear presently ina
-


essible by experiment.

As a further 
hallenge, we 
onsidered the sign 
hanges

observed in S at low T . We found that even large varia-

tions in the 
hemi
al potential �(T ) do not lead to a sign


hange in S. On the other hand, a variation in the input

�




(E; T ) data 
an give rise to su
h a sign 
hange in S,

while at the same time resulting in only small 
hanges in

the 
ondu
tivity �. Hen
e we have e�e
tively modeled

the underlying physi
al reasons for the sign 
hange |

whi
h have been attributed to ele
tron-ele
tron intera
-

tions or to the existen
e of lo
al magneti
 moments and

their intera
tions with ele
trons

5;8;9

or to inelasti
 s
at-

tering with phonons

13{15

| by simply 
hanging the in-

put �




(E; T ). Regarding a possible test for the existen
e

of su
h a stru
tured �




(E; T ), we have shown that the

T variation of L

0

is mu
h more sensitive to the bumps

than �. Thus we have been able to des
ribe the main

features of the 
riti
al behavior of S(T ) although it re-

mains un
lear what might 
ause bumps in �




(E; T ) 
lose

to E




. A mi
ros
opi
 and possible system-dependent ap-

proa
h to the problem may eventually a

ount for these

abrupt 
hanges in �




. Of 
ourse, if many-parti
le inter-

a
tions and ele
tron-phonon 
oupling are important, we

no longer expe
t the feasibility of the Chester-Thellung-

Kubo-Greenwood formulation

33{35

used here.
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FIG. 1. Numeri
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ulations for the ele
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al 
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