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We study the behavior of the thermal transport properties in three-dimensional disordered sys-

tems lose to the metal-insulator transition within linear response. Using a suitable form for the

energy-dependent ondutivity �, we show that the value of the dynamial saling exponent for

noninterating disordered systems suh as the Anderson model of loalization an be reprodued.

Furthermore, the values of the thermopower S have the right order of magnitude lose to the transi-

tion as ompared to the experimental results. A sign hange in the thermoeletri power S | as is

often observed in experiments | an also be modeled within the linear response formulation using

modi�ed experimental � data as input.
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I. INTRODUCTION

Transport phenomena in disordered quantum systems

have been studied for many years,

1;2

yet many open prob-

lems remain. One fous of these investigations is the

metal-insulator transition (MIT). This quantum phase

transition from a good onduting material to an insu-

lator may be indued by disorder due to loalization

1

or

by interations suh as eletron-eletron interations and

eletron-lattie oupling.

2;3

In three-dimensional (3D)

amorphous materials the MIT is mainly attributed to

disorder.

1

For example, in heavily doped semiondutors

the disorder is brought about by the random distribution

of dopant atoms in the rystalline host. However, indi-

ations of eletron-eletron interations have also been

found, e.g., in the d.. ondutivity � (or resistivity

� = 1=�) in doped semiondutors in both metalli

4

and

insulating regimes.

5

A further open problem is the behavior of the ther-

moeletri power S or the Seebek oeÆient of disor-

dered materials near the MIT. In amorphous alloys and

both ompensated Si:(P,B) and unompensated Si:P, S

ontinuously hanges from negative to positive values or

vie versa at low temperature T . This orresponds to a

hange of thermal ondutors from eletrons to holes or

onversely and has been attributed to eletron-phonon

interation in amorphous alloys.

6;7

On the other hand

in heavily doped semiondutors the sign hange is be-

lieved to be aused by eletron-eletron interations or

attributed to the existene of loal magneti moments

and their interations with eletrons.

5;8;9

This onlu-

sion is based on the suppression of the anomalous be-

havior by a magneti �eld.

8;9

We remark that the sign

hange in S is also observed in metals, high-T



materi-

als and quasirystals.

10{12

Analytial treatments of met-

als as a degenerate free-eletron gas taking into aount

inelasti sattering with phonons

13{15

as well as numer-

ial onsiderations inorporating eletroni orrelations

in superondutors

16

have also been shown to generate a

sign hange in S. But in these systems the sign hange

ours at a T value whih is 2 orders of magnitude higher

than in disordered systems. Note that S is mainly due

to two distint e�ets: (i) the di�usion of the harge ar-

riers and (ii) the net momentum transfer from phonons

to arriers.

17

But for T < 0:3 K as onsidered in this

work, the di�usive part of the thermopower dominates

that of the phonon-drag ontribution.

17;18

Hene, from

this point on in this paper S denotes only the di�usion

thermopower.

The prototype for a theoretial desription of 3D dis-

ordered systems is the Anderson model of loalization.

19

Near the MIT at T = 0, � behaves as
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where E

F

is the Fermi energy, E



is the mobility edge

whih separates the extended onduting states from lo-

alized insulating states, and � is a universal ritial

exponent.

1

By using Eq. (1) for � in a linear response

formulation the behavior of the thermoeletri trans-

port properties suh as S,

20{23

the thermal ondutivity

K

21{23

and the Lorenz number L

0

22;23

at the MIT have

been omputed. Moreover, similar to �, the quantities

S, K and L

0

have also been found to obey saling.

24

The

saling form of the dynamial ondutivity � lose to the

MIT in 3D is given as

2;25{27

�(t; T )

T

1=z

= F

�

t

T

�z

�

: (2)

Here t measures a dimensionless distane from the rit-

ial point, suh as t = (E

F

� E



)=E



, the orrelation-

length exponent � in 3D is equivalent to the ondutiv-

ity exponent as given in Eq. (1), and z is the dynamial

exponent.

2

For a noninterating system suh as the An-

derson model, one expets z = d in d dimensions.

2

But,

instead of obtaining z = 3 in the saling form of �, one

1



�nds z� = 1.

20;23;24

In addition to this disrepany, S

turns out to be at least one order of magnitude larger

22;23

than the experimental results in doped semiondutors

9

and in amorphous alloys.

6;7

Furthermore, the sign hange

in S annot be explained using the Anderson model and

Eq. (1). One may argue that the disrepanies between

the transport alulations and the experimental measure-

ments are due to the absene of interations in the An-

derson model. Indeed, interations may inuene the be-

havior of the thermoeletri transport properties. Yet we

emphasize that the neglet of interations in the Ander-

son model is not entirely inonsistent with the experimen-

tal situation in 3D amorphous materials. For example,

reent measurements in Si:P yield � saling with z � 3

and � � 1.

28

This agrees with z = d as predited by the

saling arguments

2;25

for noninterating systems.

The goal of this paper is to show that the orret value

of z, the right order of magnitude of S at the MIT, and

perhaps even the sign hange in S at low T , an be de-

sribed within a linear response formulation using the

noninterating Anderson model of loalization. However,

in order to do so, we have to use a more suitably hosen

energy-dependent �



instead of Eq. (1). After a brief re-

view of linear transport theory, we onstrut a new form

for �



as a funtion of energy E and T from experimental

data. By using this model data as input for the linear

response formulation, we ompute the temperature de-

pendene of S, K, L

0

and also � and show that they

have the expeted qualitative and quantitative behavior

lose to the MIT. Finally, we show that a small variation

in �



(E; T ) an hange the sign of S. This e�et annot

be produed simply by varying the density of states % or

the hemial potential �(T ).

II. LINEAR THERMOELECTRIC TRANSPORT

THEORY

In the presene of a small temperature gradient rT ,

the eletri urrent density hj

1

i and the heat urrent den-

sity hj

2

i indued in a system are given (to linear order)

as

hj

i

i = jej

�i

�

jejL

i1

E� L

i2

T

�1

rT

�

; (3)

where e is the eletron harge and E is the indued ele-

tri �eld. L

ij

are the kineti oeÆients. Sine we do not

onsider the presene of a magneti �eld in this work, the

Onsager relation L

ij

= L

ji

holds.

29

Ohm's law,

hj

1

i = �E; (4)

implies that in Eq. (3)

� = L

11

: (5)

The ow of thermal ondutors due to rT is ounter-

ated by an eletri fore arising from E making hj

1

i = 0.

Equation (3) then yields the thermoeletri power S

whih relates rT to E,

S =

L

12

jejTL

11

: (6)

The sign of S determines whether the thermal arriers

are eletrons or holes. Using the Sommerfeld expansion

for jE

F

�E



j > k

B

T , S is given as

20;21;23;30;31

S = �

�

2

k

2

B

T

3jej

d ln�(E)

dE

�

�

�

�

E=E

F

; (7)

where E

F

is the Fermi energy, k

B

is Boltzmann's onstant

and �(E) is assumed to be a slowly varying funtion on

the sale of k

B

T . Equation (7) is also known as the Mott

formula.

32

The thermal ondutivity K determines the ontribu-

tion to hj

2

i stemming fromrT . Using Eqs. (5) and (6) in

hj

2

i we obtainK in terms of the kineti oeÆient as

22;23

K =

L

22

L

11

� L

21

L

12

jej

2

TL

11

: (8)

From the de�nition of the Lorenz number it follows

that

22;23

L

0

�

e

2

k

2

B

K

�T

=

L

22

L

11

� L

21

L

12

(k

B

TL

11

)

2

: (9)

In metals at room T , L

0

= �

2

=3.

31

. It also takes on the

same value at T . 10 K in metals where the eletrons

su�er no inelasti sattering proesses.

31

The primary onsideration then in determining �, S,

K and L

0

is to alulate L

ij

. Under the assumptions

that the system is noninterating and inelasti satter-

ing proesses are absent, L

ij

are given in the Chester-

Thellung-Kubo-Greenwood formulation

33{35

as

L

ij

=

Z

1

�1

A(E)[E � �(T )℄

i+j�2

�

�

�f(E; �; T )

�E

�

dE;

(10)

where i; j = 1; 2, �(T ) is the hemial potential,

f(E; �; T ) is the Fermi distribution funtion and A(E)

ontains all the system-dependent features.

Lastly, we note that the T dependene of � an be

obtained for noninterating systems from

n(�; T ) =

Z

1

1

dE%(E)f(E; �; T ) (11)

where n is the number density of eletrons and % is the

density of states.

31

Knowing % and keeping n onstant,

we �nd numerially that �(T ) � T

2

in the 3D Ander-

son model with an inreased e�etive mass due to the

disorder.

23

2



III. A PHENOMENOLOGICAL APPROACH

There are only two parameters that are model depen-

dent in the transport theory disussed in Se. II. These

are A(E) and �(T ). In order to determine the behavior

of the thermoeletri transport properties lose to the

Anderson MIT, previous authors

20{23;30

had set A(E) in

Eq. (10) equal to the ritial behavior of � given by Eq.

(1). As mentioned in the introdution, this leads to the

unphysial value for z = 1=� and therefore an unphysial

frequeny and T dependene of �. The main reason for

this behavior is easily understood: there is no T depen-

dene in Eq. (1) and thus all T dependene in Eq. (5) is

due to the broadening of the Fermi funtion in Eq. (10)

with inreasing T . Thus in order to model the orret T

dependene, we should add to Eq. (1), valid at T = 0, the

desired T dependenies suh as � / T

1=z

in the metalli

and � / exp (�T ) in the insulating (say, variable-range-

hopping) regimes. Suh a purely theoretial model for

�



(E; T ) will then inorporate a multitude of onstants

that an be adjusted to �t the experimental results. Of

ourse this is of limited pratial use sine the validity of

these �tting parameters is hard to justify.

Here we will instead use as input for �



(E; T ) reent ex-

perimental data obtained by Wa�enshmidt et al.

28

who

measured � in Si:P at the MIT under uniaxial stress.

Their data yield good saling of � aording to Eq. (2)

with a dynamial exponent z = 2:94�0:3 and � = 1�0:1.

These values agree with the saling arguments

2;25

and

reasonably well with the numerial results

36{38

for non-

interating systems.

In the �(t; T ) saling of Ref. 28, t = (s� s



)=s



where

s is the stress and s



the orresponding value at the tran-

sition. We sample their saled data for several values of

(t; T ) and �t a spline urve

39

�



to these points in order

to get a smooth funtional form for �(t; T ). Transform-

ing the spline �



as a funtion not only of T but also of E,

we set t = (E � E



)=E



. Finally, we substitute �



(E; T )

for A(E) in Eq. (10). Consequently, the thermoeletri

transport properties are diretly obtained from Eqs. (5){

(9).

In this paper we onsider temperatures from 0:01 K

to 0:2 K. Far from the transition we ould not probe

lower than T < 0:02 K. This is due to the limited input

data and onsequently a limited range of the spline fun-

tion that generated �



(E; T ). The unit of �



is taken

as 


�1

m

�1

onsistent with the experiments. The E

sale is (arbitrarily) �xed at 1 meV whih is the order

of magnitude of the binding energy of an isolated donor

in a heavily doped semiondutor.

5

In order to ompare

with the previous results in the Anderson model

23

we let

E



= 7:5. We emphasize that this value is of no sig-

ni�ane and an be assigned (nearly) arbitrarily. The

important point to onsider is the loation of the Fermi

energy E

F

with respet to E



. This distinguishes the

eletroni regimes. Thus, the metalli, ritial and insu-

lating regimes are identi�ed as jE

F

j < E



, E

F

= E



, and

jE

F

j > E



, respetively. Usually, �(T ) is derived in Eq.

(11) from % of the 3D Anderson model of loalization. In

the next setion we shall also show the e�et of using a

di�erent funtional form of �(T ).

IV. RESULTS AND DISCUSSIONS

A. Temperature dependene of the thermoeletri

transport properties

Consistent with the dynamis of the experiment in Ref.

28, we expet �(T ) � T

1=z

at the ritial regime with

z � 3. This is indeed the behavior of �(T ) lose to E



as we show in Fig. 1. For jE

F

� E



j � 0:2 meV we

obtain z = 3:2 � 0:3. Note that �(T ) = L

11

has been

integrated aording to Eq. (10) over the energy range

where �f=�E � 10

�20

meV. Thus our numerial alu-

lation of � is onsistent sine it reprodues losely the

original result in Ref. 28. If we plot the results in Fig.

1 with respet to (� � E



)=E



T

1=�z

we obtain a rough

saling of � similar to Fig. 3 of Ref. 28.

We next turn our attention to the thermoeletri power

S. In the 3D Anderson model of loalization, we know

that when using Eq. (1) one obtains S ! 0 in the metalli

regime

20;23;30

while in the insulating regime S does not

approah zero but seems to diverge as T ! 0.

23;24

At the

MIT S is a onstant

20

of the order of 100 �V/K.

22;23;40

In Fig. 2, we show that in the present approah S in the

viinity of the MIT is two orders of magnitude smaller

ompared to previous results for the Anderson model.

The magnitude of S is in fat omparable to the exper-

imental results in disordered systems.

6;7;9

Furthermore,

S ! 0 as T ! 0 in the metalli, ritial and insulating

ases. This behavior of S(T ) in all eletroni regimes

was observed

6;41

in amorphous Au

x

Sb

1�x

and in amor-

phous Ge

1�x

Au

x

. As indiated by the di�erent lines in

Fig. 2, S is in good agreement with Eq. (7) sine � in

Fig. 1 is smooth aross the transition at �nite T . Note

that in order to evaluate Eq. (7) properly for the system

onsidered here, the E dependene of the input spline

�



(E; T ) was used instead of �(T ) from Fig. 1. We em-

phasize that it is no ontradition that S is positive here

but mainly negative in the doped semiondutors in all

eletroni regimes. In the energy regions lose to E



> 0

the harge arriers are holes instead of eletrons as shown

in Ref. 23. S would be negative if we had hosen the left

mobility edge E



< 0 for low �lling.

23;42

The orresponding T dependene of K is shown in Fig.

3. We �nd thatK ! 0 as T ! 0 in all eletroni regimes.

This is also the behavior ofK using �



in Eq. (1).

23

In the

metalli regime K is larger than in the insulating regime

sine there are more heat arriers in the former. From the

results of � andK in Figs. 1 and 3 respetively, we obtain

L

0

. As shown in Fig. 4, L

0

! �

2

=3 as T ! 0 whether

it be in the metalli, ritial or insulating regime. This

is di�erent from the results using Eq. (1) for �. There

3



one obtains an L

0

whih depends on the ondutivity

exponent in the ritial and insulating regimes while it

approahes the universal value

31

�

2

=3 only in the metalli

regime.

23

Here we see no markedly distint behavior in

the metalli regime ompared to the insulating regime.

For jE

F

�E



j = 0:1; 0:2 meV, L

0

in the metalli regime is

less than its orresponding value in the insulating regime.

For jE

F

� E



j = 0:5; 1:0 meV, L

0

in the metalli regime

is larger than its orresponding value in the insulating

regime.

In the alulation of �(T ), S(T ), K(T ) and L

0

(T ), we

used a phenomenologial onstrution of �



(E; T ). Fur-

thermore, we have assumed that the density of states %

is the same as that of the 3D Anderson model of loal-

ization given in Ref. 23. Sine this %(E) is a smooth and

(restrited to E > 0) monotoni funtion, �(T ) obtained

from Eq. (11) is also smoothly and monotonially varying

with T as desribed in Se. II.

B. E�ets of a strutured %

We now onsider the e�ets of a possible struture in

%. We shall assume here that this struture orresponds

only to variations in �(T ) and not in �. In Fig. 5 we show

two examples of a modi�ed �(T ) in the ritial regime.

Example A has a pronouned maximum, while example

B has both a maximum and a minimum. The height of

the maximum in both examples A and B is � 0:1 meV.

Note that this is signi�antly larger than the halfwidth of

the bump whih is � 0:005 meV. This is also true for the

depth of the minimum in example B. Thus a small hange

in T orresponds to a large hange in �(T ). Applying

these forms of �(T ) together with Eq. (1) for � repro-

dues the same strutures in S. For example, using form

B of �(T ) we obtain an S having both a maximum and a

minimum in the same T interval as �(T ). But S is still of

the order of 100�V/K while the variations are only of the

order of 10�V/K and not large enough to ause a sign

hange in S. On the other hand using the phenomenolog-

ial onstrution of �



(E; T ) yields even smaller hanges.

We observe variations in L

11

and L

12

of less than 10%

from their unmodi�ed values. Consequently, we �nd neg-

ligible hanges in S. Figure 2 would appear unmodi�ed.

Hene we onlude that even a large hange in the density

of states % and thus also in �(T ) is not suÆient to ause

the hange of sign for S as observed in the experiments.

However, this weak dependene of S on % and �(T ) at

least justi�es our use of the simple Anderson density of

states in the present paper.

C. E�ets of a strutured �(E)

Let us now assume that for small T there are non-

monotoniities in �



(E; T ) | although these have not

been observed in the experiments.

6;7;9

Thus we onsider

the ase when there is a sizeable hange in �



(E; T ) in

the region lose to E



for small T . The orrespond-

ing `bumps' in �



(E; T ) are shown in Fig. 6 with dif-

ferent peak heights and with half-widths < 1 meV.

For simpliity they are essentially quadrati funtions

of E and have been generated suh that they deay

quikly as exp(�T

4

) with inreasing T . The height of

the bumps is < 1 


�1

m

�1

whih is at least an order

of magnitude smaller than the values observed for � in

the measurements.

6;28

The lowest temperature studied

is T = 6 mK and we shall only onsider metalli and

insulating regions with jE

F

�E



j � 0:1 meV.

Our results in Fig. 7 using �



(E; T ) with and without

bumps indiate that there are only small variations in

the slope of log(�) and � � T

1=3

remains valid within

the auray of these estimations. We remark that the

lowest measured temperature in Ref. 28 is 15 mK. From

Fig. 7 we see that the variations for T � 15 mK are muh

smaller than for T < 15 mK. Hene, these variations in

� ould not have been observed in the experiments.

In Fig. 8 we show how the bumps a�et S. Even with

the very small bump 3, S hanges sign in the ritial

regime as T ! 0. As the bump inreases this hange be-

omes more pronouned. The temperature T

S=0

at whih

the sign hange ours is 0:1 K for bump 3, T

S=0

= 0:2

K for bump 2, and T

S=0

� 0:4 K for bump 1. These

results for T

S=0

are still about one order of magnitude

less than in semiondutors

8;9

and two orders of magni-

tude smaller than in amorphous alloys.

6;7

Of ourse, as

shown in Fig. 8, T

S=0

shifts to higher values as the bump

height inreases. Nevertheless, the minimum value of S

for T < T

S=0

has the same order of magnitude as the or-

responding maximum value of S in Si:(P,B) and in Si:P.

We emphasize that the value of T

S=0

of ourse depends

on the energy unit hosen and thus will vary for systems

with di�erent bandwidths, e.g., a larger band width will

give rise to a larger value of T

S=0

. We observe a simi-

lar sign hange in the metalli regime but the depth of

the minimum is smaller than in the ritial regime. The

Mott formula (7) with �(T ) given in Fig. 7 an readily

model this behavior sine �(T ) remains slowly varying

even if �



(E; T ) has a bump near E



. In the insulating

regime, S has a shallow maximum and drops bak to zero

as T ! 0. This is di�erent from experiment,

5

where S

hanges sign and neither has a maximum nor minimum

in the insulating regime.

Unlike in S, there is no dramati hange in K as an

be seen in Fig. 9. We �nd only negligible variations at

T < 15 mK. This should be expeted sine there has also

been hardly any hange in the slope of �(T ) exept for

T < 15 mK. However, the small inrease in � at T < 15

mK in the metalli regime together with the minimally

modi�ed K leads to a drasti hange in L

0

even in the

ase for the smallest bump. The inrease and derease in

� leads to a maximum and minimum in L

0

, respetively.

However, L

0

still approahes the universal value �

2

=3 for

T ! 0 as demonstrated in Fig. 10.

4



V. CONCLUSIONS

In this paper, we have shown that the antiipated

value of the dynamial saling exponent z � 3 as well

as the right order of magnitude for the thermopower

S � 1�V/K at the MIT an be obtained when taking

into aount the expeted T dependenies in addition to

the simple saling behavior of Eq. (2). Our approah

is phenomenologial in the sense that we have refrained

from using �tting parameters and have rather taken ex-

perimental data as input. Using this data, we an explain

the large deviations from experimental results as reported

in the theoretial studies of Refs. 20{24, 30. We have

shown that our results for S agree with those predited

by the Mott formula (7) sine we have used a � slowly

varying on the sale of k

B

T near the MIT. We emphasize,

however, that for a disordered system where interations

are negligible, we should still expet the Anderson-type

transition as given in Eq. (1) at T = 0. Consequently,

S � 100�V/K at the MIT

20{23

should again be expeted

and one should observe a large inrease of jSj at very low

T . However, suh temperatures appear presently ina-

essible by experiment.

As a further hallenge, we onsidered the sign hanges

observed in S at low T . We found that even large varia-

tions in the hemial potential �(T ) do not lead to a sign

hange in S. On the other hand, a variation in the input

�



(E; T ) data an give rise to suh a sign hange in S,

while at the same time resulting in only small hanges in

the ondutivity �. Hene we have e�etively modeled

the underlying physial reasons for the sign hange |

whih have been attributed to eletron-eletron intera-

tions or to the existene of loal magneti moments and

their interations with eletrons

5;8;9

or to inelasti sat-

tering with phonons

13{15

| by simply hanging the in-

put �



(E; T ). Regarding a possible test for the existene

of suh a strutured �



(E; T ), we have shown that the

T variation of L

0

is muh more sensitive to the bumps

than �. Thus we have been able to desribe the main

features of the ritial behavior of S(T ) although it re-

mains unlear what might ause bumps in �



(E; T ) lose

to E



. A mirosopi and possible system-dependent ap-

proah to the problem may eventually aount for these

abrupt hanges in �



. Of ourse, if many-partile inter-

ations and eletron-phonon oupling are important, we

no longer expet the feasibility of the Chester-Thellung-

Kubo-Greenwood formulation

33{35

used here.
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