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Exploiting the results of the exat solution for the ground state of the one-dimensional spinless

quantum gas of Fermions and impenetrable Bosons with the �=x

2

ij

partile-partile interation,

the Hellmann-Feynman theorem yields mutually ompensating divergenes of both the kineti and

the interation energy in the limiting ase �! � 1=4. These divergenes result from the peuliar

behavior of both the momentum distribution (for large momenta) and the pair density (for small

inter-partile separation). The available analytial pair densities for � = �1=4; 0; and 2 allow

to analyze partile-number utuations. They are suppressed by repulsive interation (� > 0),

enhaned by attration (� < 0), and may therefore measure the kind and strength of orrelation.

Other reently proposed purely quantum-kinematial measures of the orrelation strength arise from

the small-separation behavior of the pair density or | for Fermions | from the non-idempoteny

of the momentum distribution and its large-momenta behavior. They are ompared with eah

other and with referene-free, short-range orrelation-measuring ratios of the kineti and potential

energies.

71.10.-w, 05.40.-a, 71.45.Gm, 71.10.Hf, 71.10.Pm

I. INTRODUCTION

In the ground state of eletron systems, it has been

shown that exhange (X) due to the Pauli `repulsion' and

orrelation (C) due to the Coulomb repulsion suppress

partile-number utuations and onsequently redue the

energy [1{3℄. This energy redution provides most of the

`glue' that binds atoms together to form moleules and

solids [4℄. Partile-number utuations mean that the

partile number in a domain (whih may be a muÆn-tin

sphere, a Wigner-Seitz ell, a Bader basin [5℄, a Daudel

loge [6℄, a bond region between atoms in a moleule, et.)

utuates due to zero temperature quantum motion with

a ertain probability. Fulde [1℄ takes C

2

H

2

as an example

for suh utuations. The number of valene eletrons

in a sphere ontaining a C atom utuates around its

average value 4. Comparison of Hartree-Fok (HF) al-

ulations for C

2

H

2

with alulations whih inlude or-

relation shows that the probability for �nding 0, 1, 7, 8

valene eletrons goes pratially down to zero due to or-

relation. A similar utuation-orrelation analysis is per-

formed in Ref. [2℄ for several dimers and in Ref. [3℄ for the

uniform eletron gas in one, two, and three dimensions

(1D, 2D, 3D). These alulations for the above mentioned

narrowing of the partile-number distribution need the

pair density (PD) n(~r

1

; ~r

2

) and this narrowing is used to

derive from the PD a quantum-kinematial measure for

the orrelation strength [1℄. Correlation and its strength

is furthermore haraterized by the small-separation (or

on-top) behavior of the PD. The spherially averaged on-

top urvature of the spin-parallel PD may serve as a loal

orrelation measure [7℄ and from the topologial analy-

sis of the intraule PD a short-range orrelation strength

is de�ned [8℄. In addition to these PD based quantities

the onept of a orrelation `entropy' has been developed

for Fermi systems [9{12℄ (in Ref. [11℄ the term Jaynes

entropy is used). It is based on the orrelation indued

non-idempoteny of the orrelated one-partile density

matrix (1PDM) (~r;~r

0

). All these orrelation measures

intend to make the qualitative terms `weak and strong

orrelation' quantitatively preise. For a survey on suh

measures and on relations between orrelation, utua-

tion, and loalization see Ref. [13℄ and referenes ited

therein. Note that strong orrelation means extreme

narrowing whih is usually desribed as eletron loal-

ization. The reent utuation-orrelation analysis has

an anteedent in Ref. [14℄, where utuation and orre-

lation of eletrons in moleules have been studied with

the onlusion that all measures of the spatial loaliza-

tion of an eletron are determined by the orresponding

Fermi hole of the parallel-spin PD. For a summary of

this work we refer the reader to Ref. [5℄. Therein also

the topologial analysis of the density �(~r) has been de-

veloped whih allows to identify (visualize) loal groups

of eletrons (like atomi shells, moleular bonds, lone

eletron pairs, �-eletron subsystems). An alternative

to this density-based analysis is the PD based method

of an `eletron loalization funtion' [15℄. What an be

derived when the PD is known is summarized in Ref.

[16℄, where also referenes are given for the omparison

of alulated PDs with PDs determined from experiment

(X-ray or eletron sattering) via the dynami struture

fator.

Correlated 1PDM and orrelated PD need orrelated

1



many-body wave funtions (beyond the HF ariature),

whih in quantum hemistry [17,18℄ are traditionally

obtained from on�guration interation (CI), oupled

luster (CC), M�ller-Plesset, quantum Monte Carlo al-

ulations or reently from the ontrated-Shr�odinger-

equation method [19℄ (used in onjuntion with a ertain

generation of higher-order redued density matries from

the 2PDM via reonstrution and deoupling) or the in-

remental method [20℄ whih suessfully applies the a-

urate standard quantum-hemial methods CI and CC

to extended non-metalli systems. All these proedures

involve ertain approximations or have restrited appli-

ability. So the existene of non-trivial exatly solvable

models whih an provide 1PDM and PD should be of

muh interest for the above mentioned orrelation, u-

tuation, and loalization analysis. The system whih is of

paramount importane for quantum hemistry and solid

state theory but unfortunately annot be solved exatly is

the 3D eletron gas with the Coulomb repulsion �

2

=j~r

12

j

between its partiles [21℄. All of its properties (like en-

ergy, momentum distribution, quasi-partile weight z

F

,

PD, stati struture fator, and the more general dy-

nami struture fator, whih ontains the plasmon dis-

persion and damping as well as via the utuation-

dissipation theorem the dynamial sreening) depend on

the dimensionless density parameter r

s

= r

0

=a

B

, where

r

0

is the radius of the Wigner-Seitz sphere ontaining in

average one eletron and a

B

= ~

2

=m�

2

is the Bohr ra-

dius whih is harateristi for all eletron systems. In

the eletron gas model at ritial values of r

s

the zero-

temperature quantum phase transitions from an unpolar-

ized gas to a polarized uid and on to a polarized Wigner

lattie appear [22℄. In the following the eletron gas often

serves as a referene system for omparison.

In the present paper, we apply the above mentioned

utuation-orrelation analysis to the exatly solvable

Calogero-Sutherland (CS) model [23℄. The CS model

is a model of long-range-interating spinless partiles in

1D and has been solved exatly by means of the Bethe-

Ansatz tehnique [23,24℄. The solution is valid for both

fermioni and bosoni partile symmetry. Here we will

mostly onentrate on the Fermi systems. Furthermore,

the model an be shown to be the universal quantum

model underlying the dynamial interpretation of ran-

dom matrix theory [25,26℄. This latter onnetion has

been used to also ompute several orrelation funtions

exatly at three speial values of the interation strength,

among them the 1PDM and the PD [23℄. Thus although

the information is restrited to the 1D ase, the model

nevertheless is ideally suited for testing the utuation-

orrelation measures disussed above.

We shall onsider the ground state properties of the

CS model [23℄. The interation is pairwise inversely pro-

portional to the distane x

ij

= jx

i

� x

j

j of two parti-

les with interation strength �, i.e., �=x

2

ij

. The intera-

tion strength � � �1=4 is oasionally parametrized as

� = �(��1) with a parameter � = 1=2+

p

1=4 + � � 1=2.

We shall mostly use the parameterization � =

p

1=4 + �,

suh that � = �

2

� 1=4 and � = 1=2 + �. In the ther-

modynami limit we assume onstant density �(x) = n,

so the CS-ground state has only two parameters, � and

n. The 1=x

2

ij

interation has the peuliarity not to pos-

sess a natural length suh as the Bohr radius a

B

of the

Coulomb interation, it has no length sale per onstru-

tion. Therefore it is a model showing ritial behavior,

whih an be disussed in terms of universality lasses

and their onformal anomalies [27{30℄. This beauty of

the 1=x

2

ij

interation shows up also in the analytial

Bethe-Ansatz solutions [23,31{35℄ and the expliit knowl-

edge of the orrelated many-body wave funtions [23,36℄.

From the Bethe-Ansatz tehnique the omplete energy

spetrum and in partiular the ground state energy per

partile as a funtion of the interation strength param-

eter � is available [23℄. We show that its kineti and

interation `omponents' an be dedued with the help

of a theorem due to Shr�odinger, Born, Fok, G�uttinger,

but usually referred to as Hellmann-Feynman theorem

[37℄. Surprisingly, when the interation strength param-

eter � approahes its limiting value 0, both the kineti

and the interation energy diverge in suh a way that

they ompensate eah other leaving the total energy �-

nite. As we outline in the following, these divergenes

result from the peuliar behavior of the 1PDM and the

PD for � ! 0 and are related to the \fall-into-the-origin"

already mentioned in Ref. [38℄.

For � = 0; 1=2, and 3=2 | orresponding to � =

�1=4; 0 and 2 or � = 1=2; 1, and 2 | it has been shown

[23℄ that the square of the ground state wave funtion is

intimately related to the eigenvalue distribution of ran-

dom matries of the Gaussian orthogonal ensemble, the

Gaussian unitary ensemble, and the Gaussian sympleti

ensemble, respetively. Using this onnetion, Suther-

land had shown how to onstrut the 1PDM and the PD

using integral relations of random matrix theory. The re-

sulting formulas redue the problem, say for the 1PDM,

from the evaluation of a high-dimensional integral to the

omputation of a determinant of a matrix [24℄. From

the 1PDM (x � x

0

), the momentum distributions n

�

for the three speial values of � follow via Fourier trans-

form. Due to orrelation the latter quantities are non-

idempotent. They determine the mentioned orrelation

`entropy' per partile s = �

P

�

n

�

lnn

�

=

P

�

n

�

. Also

the PD n(x

12

) is available from the orrelatedmany-body

wave funtion. This allows us to alulate the utua-

tion �N

X

of the partile-number around its mean value

N

X

= nX in any piee (domain) X of the x-axis. Com-

paring this variane of the partile-number distribution

P

X

(N) for the ases `no orrelation' (� = 1=2 or HF

approximation) and `orrelation' shows the above men-

tioned narrowing for repulsion (� > 1=2) in a smaller

�N

X

. For attration (� < 1=2) a broadening with a
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larger �N

X

appears.

The availability of exat solutions for ertain values

of the interation strength reminds of a similar situa-

tion for the Hooke's law model, where two eletrons with

Coulomb repulsion are bound by a harmoni osillator

potential. In this ase exat (orrelated) wave funtions

are known for ertain values of the fore onstant (or

equivalently of the interation strength) [39℄. Within this

spirit also two eletrons or an eletron-positron pair in a

magneti �eld an be treated [40,41℄.

In Setion II, we introdue the CS model, de�ne the

kinematial quantities used throughout the text, and

present the Hellmann-Feynman theorem. Setion III is

devoted to the thermodynami limit. In Setion IV, after

presenting the HF approximation, we disuss �rst qual-

itatively and then analytially the inuenes of the CS

interation on 1PDM and PD. In partiular, we show

that the above mentioned divergenes in kineti and po-

tential energies are aused by a peuliar behavior of the

PD n(x

ij

) for small inter-partile separations x

ij

� k

�1

F

and of the momentum distribution n

�

for large momenta

k � k

F

or � � k=k

F

� 1. In Setion V we then apply

the mentioned utuation-orrelationmeasures to the CS

model. Setion VI is devoted to details of the numeris

and in Setion VII we disuss extensions of our approah

to impenetrable bosons and lattie gases. We onlude

in Setion VIII with a disussion of our results.

II. THE SYSTEM AND ITS GROUND STATE

A. Hamiltonian, energies, and quantum kinematial

quantities

The Hamiltonian of the CS model is

^

H =

^

T +

^

V with

^

T =

N

X

i

1

2

p

2

i

;

^

V =

N

X

i

v

ext

(x

i

) +

N

X

i<j

�

x

2

ij

; (1)

with p

2

i

= ��

2

=�x

2

i

, and N equal to the number of parti-

les. We assume the system to be on�ned to the length L

by an external potential v

ext

(x), e.g., a box or harmoni

osillator potential. In the following we alternatively as-

sume periodi boundary onditions with v

ext

(x) = 0 and

a density in the k spae desribed by L�k=(2�) = 1. The

average partile density is n = N=L. Furthermore, it fol-

lows from dimensional reasons that all energies for the

Hamiltonian (1) are proportional to n

2

and all lengths

are measured in units of 1=n and all wave numbers in

units of n (thus k

F

� n) [23℄.

We denote the ground state energy and its kineti and

potential `omponents' by E

N

= h

^

Hi, T

N

= h

^

T i, and

V

N

= h

^

V i, respetively. Then E

N

= T

N

+ V

N

and

the orresponding energies per partile are e

N

= E

N

=N ,

t

N

= T

N

=N , v

N

= V

N

=N with e

N

= t

N

+ v

N

. Let

further �(x

1

; : : : ; x

N

) be the antisymmetri ground state

wave funtion, normalized aording to

Z

dx

1

: : : dx

N

N !

j�(x

1

; : : : ; x

N

)j

2

= 1 ; (2)

where eahN -partile on�guration is ounted only one.

Then the 1PDM is given as



N

(x;x

0

) =

Z

dx

2

: : : dx

N

(N � 1)!

�

�(x; x

2

; : : : ; x

N

)�

�

(x

0

; x

2

; : : : ; x

N

); (3)

and the PD is

n

N

(x

1

; x

2

) =

Z

dx

3

: : : dx

N

(N � 2)!

j�(x

1

; x

2

; x

3

: : : ; x

N

)j

2

: (4)

The PD desribes the XC hole, vanishing for zero separa-

tion and approahing the Hartree produt �

N

(x

1

)�

N

(x

2

)

for large separations. This PD is normalized as

R

dx

1

R

dx

2

n

N

(x

1

; x

2

) = N(N � 1). For the XC hole or

umulant PD w

N

(x

1

; x

2

) � �

N

(x

1

)�

N

(x

2

) � n

N

(x

1

; x

2

)

this means

Z

dx

1

Z

dx

2

w

N

(x

1

; x

2

) = N: (5)

So the umulant PD w

N

(x

1

; x

2

) is size-extensively

normalized. We note that the partile density

follows either from �

N

(x) = 

N

(x;x) or from

�

N

(x

1

) =

R

dx

2

w

N

(x

1

; x

2

), of ourse with the property

R

dx �

N

(x) = N .

Furthermore with the abbreviation y = k

F

x | for

spinless partiles in 1D the Fermi wave number is k

F

=

�n [23℄, with spin it would be k

F

= �n=2 | and with the

dimensionless funtions f

N

(y; y

0

) hermitian, g

N

(y; y

0

)

non-negative, and h

N

(y

1

; y

2

) � f

N

(y

1

; y

1

)f

N

(y

2

; y

2

) �

g

N

(y

1

; y

2

), we an write for the 1PDM



N

(x;x

0

) = n f

N

(y; y

0

); (6)

for the PD

n

N

(x

1

; x

2

) = n

2

g

N

(y

1

; y

2

); (7)

and for the umulant PD we have

w

N

(x

1

; x

2

) = n

2

h

N

(y

1

; y

2

): (8)

The dimensionless umulant PD is thus h

N

= 1�g

N

and

normalized as

1

N

Z

dy

1

�

dy

2

�

h

N

(y

1

; y

2

) = 1; (9)

whih follows from Eq. (5). With these dimensionless

1PDM and PD and with the Fermi energy �

F

= k

2

F

=2 the

energies t

N

and v

N

are given by

3



t

N

=

1

N

Z

dy

�

�

�

�

2

�y

2

f

N

(y; y

0

)

�

y

0

=y

�

F

(10a)

and

v

N

=

1

N

Z

dy

1

�

dy

2

�

g

N

(y

1

; y

2

)

�

y

2

12

�

F

(10b)

Therefore t

N

=�

F

, v

N

=�

F

and e

N

=�

F

are funtions of �

and N . The latter dependene disappears for the ther-

modynami limit as shown in Setion III.

B. The Hellmann-Feynman and the virial theorem

If e

N

is known as a funtion of �, then t

N

and

v

N

an be obtained from the (Shr�odinger-Born-Fok-

G�uttinger-) Hellmann-Feynman theorem [37℄ without

knowing the quantum-kinematial quantities f

N

(y; y

0

)

and g

N

(y

1

; y

2

). This theorem says

�E

N

��

=

�

�

^

H

��

�

(11)

whih for (1) gives

v

N

= �

�e

N

��

: (12)

Consequently, we have

t

N

=

�

1� �

�

��

�

e

N

(13)

and also

�

��

t

N

= ��

�

��

�

1

�

v

N

�

: (14)

Thus | with Eq. (10) in mind| the Hellmann-Feynman

relation (11) for the 1=x

2

ij

model establishes an integral

relation between the dimensionless 1PDM f

N

on the l.h.s.

and the dimensionless PD g

N

on the r.h.s. of Eq. (14).

Another interesting property of the 1=x

2

ij

interation

is that the L or n dependene of e

N

an be onluded

from the virial theorem

2t

N

+ 2v

N

= �L

�e

N

�L

: (15)

The fators 2 on the l.h.s. result from the powers of p

i

in

^

T and of 1=x

ij

in

^

V . For the 1=x

ij

interation the

l.h.s. would read 2t

N

+ v

N

. Eq. (15) means e

N

� L

�2

or

e

N

� n

2

, as disussed above by dimensional saling.

III. THERMODYNAMIC LIMIT

We wish to study the thermodynami limit with N !

1 and L!1 suh that n = N=L = onst. The result-

ing extended system has only two parameters, the (di-

mensionless) interation strength parameter � and the

Fermi wave number k

F

. So t=�

F

, v=�

F

, and e=�

F

be-

ome funtions of � only. The thermodynami limit

makes furthermore the 1PDM and the PD to depend only

on k

F

x

12

= y

12

(homogeneity, isotropy). The dimen-

sionless funtions f

N

, g

N

, and h

N

then take the forms

f(y

12

), g(y

12

), and h(y

12

) = 1�g(y

12

), respetively, with

f(0) = 1 (uniform density) and g(0) = 0 or equivalently

h(0) = 1. These funtions have � as the only parameter.

This di�ers from the eletron gas, where the additional

parameter r

s

= r

0

=a

B

ombines for dimensional reasons

the interation strength �

2

with the density n = 3=(4�r

3

0

),

1=(�r

2

0

), and 1=(2r

0

) for 3D, 2D, and 1D models, respe-

tively.

Due to the homogeneity and isotropy, the eigenfun-

tions (or natural orbitals) of the 1PDM (x�x

0

) = nf(y)

beome simply plane waves '

0

k

(x) = e

ikx

=L, suh that

(x� x

0

) =

X

�

1

L

n

�

e

i�k

F

�(x�x

0

)

= n

Z

1

0

d� n

�

os�y

� n f(y); (16)

where n

�

is the momentum distribution, � = k=k

F

, and

y = k

F

jx� x

0

j.

For � = 1=2 (ideal spinless 1D Fermi gas) the Pauli

priniple leads in the reiproal spae to the Fermi ie

blok n

0

�

= �(1� j�j) and in the diret spae to the ideal

X hole g

0

(y) = 1� [f

0

(y)℄

2

with the dimensionless 1PDM

f

0

(y) = (sin y)=y following from Eq. (16) and with its on-

top behavior g

0

(y) ! y

2

=3. The energy per partile is

e

0

= �

F

=3 = k

2

F

=6, and beause of k

F

� n it obeys the

virial theorem (15).

In general, with (0) = n, the momentum distribution

n

�

is normalized as

P

�

n

�

= N or

Z

1

0

d� n

�

= 1 : (17)

The kineti energy per partile is aording to Eq. (10a)

t = 6

Z

1

0

d� n

�

�

2

2

e

0

: (18)

n

�

is a funtion of j�j and �, so t=e

0

is a funtion of �

only with t = e

0

for � = 1=2.

The orresponding expressions for the PD g(y) are a-

ording to Eq. (9)

2

Z

1

0

dy

�

h(y) = 1; h(y) = 1� g(y) (19)
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and for the interation energy per partile aording to

Eq. (10b)

v = 6

Z

1

0

dy

�

g(y)

�

y

2

e

0

: (20)

g(y) is a funtion of y and �, so v=e

0

is a funtion of �

only. With t and v follows the integral relation

1

Z

0

d�

�

2

2

�n

�

��

= �

1

Z

0

dy

�

�

y

2

�g(y)

��

(21)

as a onsequene of the Hellmann-Feynman theorem ex-

pressed in Eq. (14). Correlation via � 6= 1=2 deforms the

X hole and the Fermi ie blok as shown in Figs. 1 and

2 in suh a way that Eq. (21) is maintained. A simi-

lar relation for the eletron gas model (with k

3

F

= 3�

2

n)

has been used for a qualitative disussion of how n

�

and

g(k

F

r

12

) mutually depend on the parameter r

s

[42℄.

IV. HARTREE-FOCK APPROXIMATION AND

CORRELATION BEYOND IT

A. Hartree-Fok approximation

The simplest approximation for the quantities n

�

, g(y),

t, and v is obtained from the HF approah. In this ase

the ground state wave funtion �

HF

(� � �) is a single Slater

determinant of one-partile wave funtions, whih are |

for an extended system | simply plane waves '

0

k

(x) as

for the ideal 1D Fermi gas. Thus the momentum dis-

tribution in Eq. (18) and the PD in Eq. (20) are to be

replaed by their `ideal' expressions n

0

�

and g

0

(y), respe-

tively. Consequently, we �nd t

HF

= e

0

and v

HF

= 2�e

0

and thus e

HF

= (1+2�) e

0

, as shown in Fig. 3. Here the

identity (A5) has been used. The total HF energy e

HF

also obeys the Hellmann-Feynman theorem (13) and the

virial theorem (15).

B. Qualitative disussion of orrelation

Due to orrelation the true ground state energy per

partile, e, is below the HF energy e

HF

and the true

ground state wave funtion �(� � �) is no longer a single

Slater determinant. Note that the de�nition of the term

`orrelation' needs a reasonable referene state, whih is

�

HF

(� � �) in our ase. So, orrelation auses a negative

orrelation energy e

orr

= e � e

HF

< 0, namely through

redistributions of g

0

(y) and n

0

�

whih are shown in Figs.

1 and 2 and desribed in the following.

As we show in Fig. 1, orrelation modi�es the X hole of

the unperturbed PD. Espeially the orrelation indued

hanges for small y are of interest, beause the intera-

tion �=y

2

is there largest. The on-top behavior of the

unorrelated X hole (� = 1=2 or HF) is desribed by

g

0

(y) = y

2

=3 + : : :. In its orrelated ounterpart with a

�-dependent exponent and �-dependent oeÆients (see

Appendix B)

g(y) = Ay

�

�

1 + a

1

y + a

2

y

2

+ � � �

�

;

� = 1 + 2�; � =

r

1

4

+ �; (22)

orrelation for � 6= 1=2 shows up in � 6= 2 and A 6= 1=3.

More preisely, repulsive partile interation (� > 1=2)

supports the Pauli `repulsion', so the X hole is broadened

(through inreasing � and dereasing A), but attrative

partile interation (� < 1=2) �ghts against (or ompetes

with) the Pauli `repulsion', so the X hole is narrowed

(through dereasing � and inreasingA) as shown in Fig.

1 and Table I. This X hole narrowing (for � < 1=2) or

broadening (for � > 1=2) makes

6

Z

1

0

dy

�

g(y)

y

2

= 1 +

1

2�

? 2 for � ?

1

2

: (23)

The equation follows from Eq. (20) together with the

Hellmann-Feynman theorem (11). Thus v<v

HF

= 2�e

0

for � 6= 1=2 as shown in Fig. 3. Below in Eq. (39) of Se-

tion VA, we will see that this PD narrowing/broadening

is aompanied by enhaned partile-number utuations

for attration (� < 1=2) and by suppressed ones for

repulsion (� > 1=2), respetively. Note the di�erene

against the eletron gas model, where only repulsion

is present with suppressed partile-number utuations,

where g(0) = g

"#

(0) 6= 0, and the PD for parallel-spin

eletrons is zero for vanishing separation and behaves

as g

""

(y) = C

""

y

2

+ : : : for small separation y. This

urvature oeÆient C

""

inreases with inreasing r

s

(=

inreasing orrelation), but the exponent of y does not

hange with r

s

.

While in the HF approximation the PD follows from

the 1PDM aording to

n

HF

(x

12

) = n

2

� j

HF

(x

12

)j

2

; (24)

orrelation auses not only the hange from the idempo-

tent 

HF

(x

12

) to the non-idempotent (x

12

) but also the

appearane of an additional (non-reduible) term u(x

12

)

in

n(x

12

) = n

2

� j(x

12

)j

2

� u(x

12

) : (25)

This is the �rst step of the umulant expansion [43℄. Its

non-reduible term u(x

12

) is normalized as

2

n

Z

1

0

dx

12

u(x

12

) = (2) ; (26)

where
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(2) = 1�

2

n

Z

1

0

dx

12

j(x

12

)j

2

= 1� 2

Z

1

0

dy

�

jf(y)j

2

= 1�

Z

1

0

d� (n

�

)

2

� 0 (27)

is referred to as seond-order non-idempoteny of the

1PDM. For � = 1=2 or for the HF approximation it is

(2) = 0. The orrelation indued non-idempoteny of

the 1PDM (x

12

) or equivalently of the momentum dis-

tribution n

�

makes (2) > 0 and let (2) inrease with

inreasing j� � 1=2j.

This orrelation indued non-idempoteny means

physially: Correlation exites partiles and holes. This

is seen in the momentum distribution n

�

as orrelation

tails for partiles with n

�

> 0 for j�j > 1 and for holes

with 1� n

�

> 0 for j�j < 1. In Fig. 2, we show how or-

relation thaws the Fermi ie blok n

0

�

= �(1� j�j). This

inreases the kineti energy independent whether the in-

teration is attrative (� < 1=2) or repulsive (� > 1=2):

t > t

HF

as an be seen in Fig. 3. We note that n

�

has

no disontinuity at j�j = 1. Its value is 1=2 and near

� = 1 it follows a power law as is typial for all Luttinger

liquids with their z

F

= 0 [44,45℄.

This thawing or melting of the Fermi ie blok (whih

aompanies the above disussed broadening/narrowing

of the PD) we model analytially with the ontinuous

funtion

n

�

=

1

2

+B(1� �)

�

�

1 + b

�

1

(1� �)

�

+ b

�

2

(1� �)

2�

+ : : :

�

for 0 � � � 1; (28a)

n

�

=

1

2

�B(�� 1)

�

�

1 + b

+

1

(�� 1)

�

+ b

+

2

(�� 1)

2�

+ : : :

�

for 1 � � � 2; (28b)

n

�

=

C

�



�

1 +



2

�

2

+



4

�

4

+ : : :

�

for 2 � � �1 (28)

with [24,46℄

� =

1

4

(1� 2�)

2

1 + 2�

(29)

and  = 3 + 2� (Appendix B). The exponents �;  and

the oeÆients B;C, and b

�

i

; 

i

depend on �. It should

be � < 1. Eqns. (28b) and (28) desribe the orrelation

tail (� > 1). This n

�

has to obey the normalization (17)

and the ondition

3

Z

1

0

d� n

�

�

2

=

�

1

2

+ �

�

2

2�

� 1 ; (30)

whih follows from Eq. (18) together with the Hellmann-

Feynman theorem (11). For � = 1=2 (or HF) it is � = 0,

B(1 +

P

i

b

�

i

) =

1

2

, and C = 0. The orrelation indued

melting for � 6= 1=2 shows up in � > 0, B(1+

P

i

b

�

i

) <

1

2

,

and C > 0.

C. Results of the exat solution

With the help of the Bethe-Ansatz tehnique one ob-

tains [23,24℄ e = �

2

e

0

. e as a funtion of the inter-

ation strength parameter � shows no speial behavior

for �

>

!

1=2, but as a funtion of the interation strength

� = �(�� 1),

e =

�

1

2

+ �

�

2

e

0

; � =

r

1

4

+ � (31)

the non-analytial behavior for �! �1=4 is inorporated

in the variable �. For � ! 1=2 it behaves like e !

(1 + 2�)e

0

.

Eq. (31) yields with the Hellmann-Feynman theorem

(13) the kineti energy per partile,

t =

�

1

2

+ �

�

2

2�

e

0

(32)

whih behaves for � � 1=2 like t � (1 + 5�

2

)e

0

in agree-

ment with the above qualitative disussion as shown in

Fig. 3. Eq. (31) yields with Eq. (12) also the interation

energy per partile

v = �

�

1 +

1

2�

�

e

0

(33)

whih behaves for � � 1=2 like v = 2� again in agreement

with the above qualitative disussion. From Fig. 3 we see

that both t and v diverge for �!0, while e remains �nite.

Eqns. (32) and (33) lead to

Z

1

0

d� n

�

�

2

= 6�

�

Z

1

0

dy

�

g(y)

y

2

�

2

; (34)

as another integral relation between the momentum dis-

tribution n

�

and the dimensionless PD g(y) in addition

to Eq. (21). These distribution funtions have to hange

with � in suh a way that these relations (21) and (34)

are obeyed together with the normalization onditions

(17) and (19).

The PD n(x

12

) = n

2

g(y) with y = k

F

x

12

is known

analytially for the values � = 0, 1=2, and 3=2 [23,24℄.

For � = 0 it is (with the notation of Appendix A)

g(y) = 1�

�

sin y

y

�

2

+ Si(y)

d

dy

sin y

y

�

�

2

d

dy

sin y

y

; (35)

for � = 1=2 (ideal Fermi gas) it is

g(y) = 1�

�

siny

y

�

2

; (36)
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and for � = 3=2 it is

g(y) = 1�

�

sin 2y

2y

�

2

+ Si(2y)

d

d(2y)

sin 2y

2y

: (37)

The orresponding dimensionless umulant PDs h(y) =

1� g(y) are given in Table II together with their Fourier

transforms

~

h(q) = 2

Z

1

0

dy os(qy) h(y): (38)

They have via S(q) = 1 �

~

h(q)=� a simple relation to

the stati struture fator (or van Hove orrelation fun-

tion) S(q) = h�̂

q

�̂

y

q

i=N , whih desribes the orrelation

of density-density utuations. �̂

q

=

P

i

exp(�iqx

i

) is

the Fourier transform of the density operator �̂(x) =

P

i

Æ(x � x

i

). The three PDs g(y) are shown in Fig. 1

and the three struture fators S(q) in Fig. 4.

For � = 1=2 the weak osillations of g(y) and the

(�rst-order) kink of S(q) arise from the Fermi momen-

tum distribution n

�

with its sharp disontinuity z

F

= 1

at � = 1. With inreasing repulsion the osillations of

g(y) are enhaned, what is displayed in the reiproal

spae by the peak of S(q) at q = 2 (and a 3rd-order kink

at q = 4). The �rst maximum of g(y) runs through a

ertain trajetory from (�, 1) to (2:99, 1:24). This is

analog to the eletron gas model (where the term Friedel

osillations is used and) whih shows with inreasing r

s

(i) enhaned osillations with orresponding trajetories

of the maxima and minima [47℄ and (ii) the emergene

of an inreasing hump in S(q) at q = 2 [48℄. This hump

struture is even more marked in the (approximately fre-

queny independent) loal �eld orretion G(q) whih

appears in the dynami struture fator S(q; !) [49{52℄,

from whih then follows the stati struture fator via

S(q) =

R

d!=(2�) S(q; !) [21℄. One of the di�erenes

between the CS and the eletron gas model is that in

the latter ase z

F

ontinuously dereases with inreas-

ing r

s

starting with z

F

= 1 for r

s

= 0, whereas in the

CS model there is no adiabati ontinuity [45℄ and z

F

abruptly jumps from 1 to zero when going from � = 1=2

to � 6= 1=2. Whereas repulsion enhanes the Friedel os-

illations of g(y) and the kink struture of S(q), inreas-

ing attration let them disappear: for � = 0 both g(y)

and S(q) approah the value 1 smoothly (non-osillatory)

from below. But the kink struture of S(q) at q = 2 has

a relit in this limit: the 2nd derivative is disontinu-

ous (2nd-order kink). For the on-top behavior of g(y)

in terms of g(0), g

0

(0), g

00

(0) the following holds: It is

g(0) = 0, aording to the Pauli priniple, g

0

(0) = �=6

for � = 0, but 0 for � > 0, and it is g

00

(0) = 0 for � = 0,

in�nite for 0 < � < 1=2, but 2=3 for � = 1=2, and 0 for

� > 1=2.

With the identities (A2){(A4) the normalization on-

dition (19) is ful�lled. From Eqns. (35){(37) follow the

on-top oeÆients of Eq. (22); they are shown in Table

I. Note that the last two terms of Eq. (35) do not on-

tribute to the normalization beause of Eq. (A3) and that

the last term auses the odd on-top oeÆients of Table

I and also the linear behavior for small y. Its osillations

are exatly aneled by the ombined osillations of the

seond and the third term. Simultaneously, these terms

ensure the orret normalization.

The PD (36) for � ! 1=2 plugged into Eq. (10b) yields

with the identity (A5) the same as results from Eq. (33),

whih follows from the total energy per partile, Eq. (31),

and the Hellmann-Feynman theorem (13), namely v =

2�e

0

. Similarly the PD (37) for � ! 3=2 plugged into

Eq. (20) yields with the identities (A5) and (A6) the same

as results from Eq. (33), namely v = 4�e

0

=3.

For � = 0 a divergene appears, beause from the PD

(35) follows an on-top behavior, whih is linear in y as

shown in Fig. 1 and Table I. This linear behavior results

from the last term of Eq. (35), whih does not inuene

the normalization (19), but it makes the interation en-

ergy v �

R

1

0

dy g(y)=y

2

to diverge logarithmially in

agreement with the divergene of v ! �e

0

=8� for �

>

!

0

as displayed in Fig. 3.

The divergene of the interation energy is aompa-

nied and ompensated by the orresponding divergene

of the kineti energy t ! e

0

=8�. This indiates a spe-

ial asymptoti behavior of the momentum distribution

n

�

for �

>

!

0, namely Eq. (28) with 

>

!

3. For  > 3

the integral

R

1

0

d� n

�

�

2

is onvergent, but with 

>

!

3 for

�

>

!

0 it diverges logarithmially, whereas the normaliza-

tion integral (17) remains onvergent. The ounterpart

to this asymptoti behavior of n

�

for � ! 1 is the on-

top behavior of the PD for y ! 0 as shown in Fig. 1

and Table I with a smooth transition of the oeÆient A

in Eq. (22) from �=6 via 1=3, to 16=135 for � = 0; 1=2

and 3=2, respetively. With quadrati interpolation of

the oeÆients shown in Table I as funtions of �, one

may ontinuously swith the on-top behavior of the PD

g(y) between its form at � = 0 and 3=2. For the PD

exponent � = 1+2� we refer to Appendix B, where also

the momentum-distribution exponent is onjetured as

 = 3 + 2�.

These divergenes of the kineti and the interation

energies indiate that for attrative partile interation

�=x

2

ij

with �!� 1=4 the system beomes unstable (no

ground state with �nite kineti and potential energies).

We remark that it was shown in Ref. [38℄ that the singular

partile interation �j�j=j~r

12

j

2

makes already two parti-

les to fall together (\fall-into-the-origin") for j�j > 1=4

(ground state with E ! �1) and for j�j < 1=4 there are

only sattering states with E � 0 (no bound states with

E < 0) [23℄.

For � = 0 the exat solution of the CS model yields

the momentum-distribution data. In Setion VI we will

give the details of the neessary numerial alulation.

The oeÆients of Eq. (28a) are �tted to the n

�

values
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for � = 0 : : : 1 and the oeÆients of Eq. (28b) are �tted

to the n

�

values for � = 1 : : : 2. The oeÆients are

hosen to make also n

�

at � = 2 ontinuous and smooth.

Finally b

+

3

is �ne tuned to make the normalization equal

to 1 aording to (17). The results are shown in Fig.

2 and the values of the oeÆients are given in Table

IV. The ase � = 3=2 is similarly treated only with the

di�erene that also the kineti energy t =

4

3

e

0

an be

used for the �ne tuning in addition to the normalization

ondition (17). The results are shown also in Table IV.

Here b

+

3

and b

+

4

have been used for �ne tuning (whih

yields the normalization 0:997 and t = 1:34 e

0

, instead

of 1 and 4e

0

=3).

V. FLUCTUATION-CORRELATION ANALYSIS

A. Quantities following from the pair density

Partile-number utuations: Following Fulde [1℄ one

may ask to what extent orrelation inuenes partile-

number utuations �N

X

in a domain X , i.e., a ertain

interval of the x axis, where in the average there are

N

X

= nX partiles. These utuations are measured

quantitatively by [1,3,13℄

(�N

X

)

2

N

X

= 1�

1

nX

Z

X

0

dx

1

Z

X

0

dx

2

w(x

12

)

= 1�

1

Y

Z

Y

0

dy

1

Z

Y

0

dy

2

h(y

12

)

�

; (39)

with Y = k

F

X = �nX . Following the Appendix A of

Ref. [3℄ the 2D integral (39) is redued to a 1D integral

with the help of the Fourier transform (38), namely

(�N

X

)

2

N

X

= 1�

2

Y

Z

1

0

dq

�

1� os(qY )

q

2

~

h(q)

�

: (40)

The results are shown in Fig. 5, where also the ase �!

1 (`strit' or `perfet' orrelation [3℄) is displayed.

With h(y) = 1 � g(y) and with the expansion of g(y)

aording to Eq. (22) | see also the text after Eq. (37)

| the small-X expansion of Eq. (39) is

(�N

X

)

2

N

X

= 1 + d

1

nX + d

2

(nX)

2

+ d

3

(nX)

3

+ d

4

(nX)

4

+ d

5

(nX)

5

+ : : : : (41)

The slope d

1

at X = 0 does not depend on the intera-

tion strength parameter � as shown in Table III beause

of g(0) = 0 and h(0) = 1 not depending on �; but the o-

eÆients of the next terms do. Correlation is seen in the

hange of the oeÆients d

i

for � = 1=2 to the oeÆients

for � 6= 1=2. Thus the partile-number utuations are

suppressed due to repulsive partile interation, but en-

haned due to attrative partile interation: orrelation

makes the partile-number distribution P

X

(N) more nar-

row for repulsion (� > 1=2) and more broad for attra-

tion (� < 1=2). We remark, that utuation enhane-

ment (indued by attrative interation) generally may

support/ause lusterings (e.g., paramagnons prior the

para-to-ferromagneti phase transition). In our ase this

tendeny shows up in the sudden \fall-into-the-origin"

at � = 0. If one onsiders with X = 1=n a Wigner-Seitz

`sphere' (with `radius' X=2 and N

X

= 1), then

�

1

(�) = 1�

�(�)

�(1=2)

; �(�) =

(�N

X

)

2

N

X

(42)

is a reasonable orrelation measure based on partile-

number utuations as we show in Fig. 6.

On-top behavior: The exponent � and the oeÆients

A; a

i

of Eq. (22) desribe the short-range or dynamial

orrelation, i.e., the small-separation behavior of g(y),

see Table I. Cioslowski's orrelation age [8℄ is in our ase

simply the inter-partile-separation range y = 0 : : : y

max

with y

max

being that separation where the PD g(y) has

its �rst maximum g

max

= g(y

max

). For � = 0; 1=2; 3=2

the orresponding values are y

max

= 1, �, 2:99 and

g

max

= 1, 1, 1:24 [3℄. One may ask to what extent the

orrelation age ontributes to the interation energy and

de�ne

�

2

(�) = 1�

V

age

(�)

V

age

(1=2)

; V

age

(�) =

R

y

max

0

dy g(y)=y

2

R

1

0

dy g(y)=y

2

� 1

(43)

as an energeti orrelation measure with V

age

(0) = 1;

the expression simpli�es when using (23). Both �

1

and

�

2

vanish for � = 1=2 as shown in Fig. 6.

B. Quantities following from the momentum

distribution

Critial exponent: The ritial or orrelation expo-

nent � of Eq. (29) an be omputed from onformal �eld

theory [24,46℄. It desribes (together with the oeÆient

B) the behavior of n

�

near � = 1 aording to Eqns.

(28a) and (28b). For the three speial values � = 0; 1=2

and 3=2, this gives 1=4; 0, and 1=4, respetively. The

exponent  desribes the deay of the orrelation tail.

Non-idempoteny and orrelation `entropy': The q-

order non-idempoteny is [12℄ (q) = 1 �

R

1

0

d� (n

�

)

q

.

The derivative of (q) at q = 1 is s � 

0

(1) or

s(�) = �

Z

1

0

d� n

�

lnn

�

� 0 (44)

to be referred to as orrelation `entropy' [12,13℄. It has

been plotted in Fig. 7.
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Correlation tail properties: The relative number of

partiles (or holes) in the orresponding orrelation tail

is [12,13,53℄

N

tail

(�) =

Z

1

1

d� n

�

=

Z

1

0

d� (1� n

�

) < 1: (45)

The ontribution of the orrelation tail to s is [13℄

S

tail

(�) = �

Z

1

1

d� n

�

lnn

�

< s(�): (46)

In addition to these quantum-kinemati measures one

may use [13℄

T

tail

(�) =

R

1

1

d� n

�

�

2

R

1

0

d� n

�

�

2

� 1 (47)

as another energeti measure with T

tail

(0) = 1. Also

these orrelation measures vanish for � = 1=2 as shown

in Fig. 8.

C. The orrelation energy

For e

orr

= e� e

HF

follows

e

orr

= �

�

� �

1

2

�

2

e

0

: (48)

Kineti and interation energy ontribute t

orr

=

�

1

2�

e

orr

and v

orr

=

�

1 +

1

2�

�

e

orr

, respetively, to e

orr

.

Their �-dependene is shown in Fig. 9.

D. Comparison of the orrelation measures

When omparing the omputed orrelation measures

in Figs. 6, 7 and 8 it turns out that for small j� � 1=2j

the PD based measures �

1;2

of Eqns. (42) and (43) are

proportional to � � 1=2 (whih is �e

0

orr

=(2e

0

)), whereas

the n

�

based measures (44){(47) behave like (� � 1=2)

2

(whih is �e

orr

=e

0

). So the latter ones are not so sensi-

tive as the �rst ones. With s(�) = 0:5828je

orr

=e

0

j+ : : :

the Collins' onjeture je

orr

j � s is on�rmed at least

for weak interation. In this limit also N

tail

, S

tail

and

T

tail

are mutually proportional and their derivatives are

proportional to �

1

and �

2

.

We remark that the quantities �(�), V

age

(�), N

tail

(�),

S

tail

(�), and T

tail

(�) are referene free, i.e., they are

de�ned without referene to the non-interating ase

� = 1=2 | whih in our ase is simultaneously equiv-

alent to the Hartree-Fok approximation. Referenes ap-

pear in �

1;2

with �(1=2) and V

age

(1=2) and in s(�) with

s(1=2) = 0. Whereas this observation is important for

quantum hemistry | as stressed by J. Cioslowski [8℄ |

whenever multi on�guration appears, it is less important

in our ase whih is well desribed by single on�gura-

tion.

VI. NUMERICAL DETERMINATION OF 1PDM

AND n(�) FOR THE CS MODEL

As has been noted previously in Ref. [23℄, the square

of the ground state wave funtion in the periodi CS

model for the speial values � = 0; 1=2, and 3=2 may

be reognized as being idential to the joint probabil-

ity density funtion for the eigenvalues of matries from

Dyson's ensemble [26℄. The interation strength param-

eters � = 0; 1=2 and 3=2 orrespond to orthogonal, uni-

tary, and sympleti ensembles, respetively. Results

from the theory of random matries then enable the al-

ulation of various orrelation funtions [23℄. In parti-

ular, the 1PDM an be expressed in terms of a determi-

nant of an appropriate matrix F

(�)

pq

[24℄. The size of this

matrix is spei�ed by the number of partiles N to be

(N � 1)

2

for � = 1=2 and 3=2 and (N � 1)

2

=4 for � = 0.

Eah element of F

(�)

pq

ontains simple trigonometri 1D

(� = 1=2 and 3=2) or 2D (� = 0) integrals.

For some ases, most notably � = 1=2, the resulting de-

terminant an be omputed analytially and orrespond-

ing expressions have been given in Ref. [24℄. For the

other ases, we have evaluated the determinant numeri-

ally [24℄, using a subdivision of the system volume (peri-

odiity length) aording to L=L

0

= 42; 402, and 402 for

� = 0, 1=2, and 3=2, respetively. The partile number,

odd due to periodiity of the wave funtion [24℄, var-

ied from N = 1 to 401, orresponding to a variation in

density n from nearly 0 to nearly 1. Taking the Fourier

transform, we next ompute the momentum distribution

n

�

for all densities. In Fig. 10, we show results for one

of the three speial � values.

Next, we apply the de�nitions of orrelation measures

and orrelation energies as given in Setions III, IV, and

V and study their density dependene. In Fig. 11 we

show results for the entropy s and in Fig. 12 for the vari-

ous energies as the density is varied. As all energies sale

with n

2

, these measures should be density independent

when normalized with respet to e

0

. However, we do in

fat see a pronouned density dependene for n & 0:5=L

0

and also for n . 0:05=L

0

. This latter density dependene

is simply due to the small partile numbers, thus a small

size of F

(�)

pq

and onsequently a limited resolution when

omputing the 1PDM at �xed L=L

0

. The density depen-

dene at large n values is more intriate to explain. The

omputation of the 1PDM by the onnetion with ran-

dom matrix theory works for the periodi model. Thus

there exists a Brioullin zone and the tail of n

�

for j�j

outside this Brioullin zone is folded bak into it. The tail

of n

�

thus tends to be dominated by this e�et for large

n values as shown in Fig. 10. However, knowing that

the orrelation measures must be independent of density

in the thermodynami limit, we dedue their values by

restriting us to these density regions where the indepen-

dene holds. Then we apply the �t aording to Eq. (28)
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as explained in Setion IVB. In Fig. 7 we indiate by

error bars the small variation in the orrelation entropy

when using instead of n

�

as in Fig. 2 the n

�

as in Fig.

10. Similarly, the orresponding variations in N

tail

, S

tail

,

and T

tail

are within the symbol sizes.

VII. EXTENSION TO IMPENETRABLE BOSONS

AND LATTICE GASES

As mentioned in the introdution, the CS model is also

solvable for bosoni partile symmetry. The bosoni wave

funtions have to obey an additional boundary ondition,

namely they have to vanish for inter-partile separations

x

ij

! 0 suh that the resulting system onsists of impen-

etrable or hard-ore partiles [23℄ with additional �=x

2

ij

interation. Both PD and 1PDM may be alulated as

before. The PD is independent of statistis [23℄, thus the

fermioni exhange hole agrees with the bosoni impen-

etrability hole and all quantities omputed before based

on the PD are the same in the bosoni and the fermioni

ase. For the 1PDM this is di�erent, the momentum dis-

tribution of bosons is quite di�erent from the fermioni

n

�

as shown in Fig. 13. However, energeti quantities and

orrelation measures based upon those are nevertheless

independent of the statistis and should thus be the same

for bosons and fermions. In Fig. 12 we show that this is

indeed the ase. Thus besides the density independene

we have another riteria that allows us to extrat the or-

ret values of the orrelation measures from these plots.

We note that the abovementioned unwanted density de-

pendene is also present in the bosoni n

�

and visible

in Figs. 11 and 12. Also present is the aliasing e�et as

shown in Fig. 14.

In Refs. [23,24℄, it had been shown to be useful to re-

strit the family of wave funtions of the CS model for

both bosoni and fermioni symmetry to a lattie suh

that the oordinates are integers x

j

= 1; 2; : : :L [54{56℄.

Only the normalization onstants of the wave funtions

hange and the 1PDM an be omputed muh as before

[23℄, replaing the integrals in F

(�)

pq

by appropriate sums

[24℄. Furthermore, the struture fator S(q) is known

exatly and therefore also the PD [24℄. The resulting lat-

tie gas has a partile-hole symmetry and thus we need

to onsider n � 1=2L

0

only. However, the density N=L

now enters all expressions in a non-trivial way and the

very useful density independene of the ontinuummodel

for the quantities onsidered here is no longer appliable.

Nevertheless, the ontinuum model orresponds to the

low-density limit of the disrete model. In Fig. 11, we

show that this is indeed the ase for, e.g., the orrelation

entropy.

VIII. DISCUSSION AND CONCLUSIONS

Both the PD based and the n

�

based orrelation mea-

sures (42){(47) vanish for � = 1=2 (no interation). But

the �rst ones are more sensitive beause of �

1;2

� ��1=2

near to the no-interation point as shown in Fig. 6, while

the seond ones are � (� � 1=2)

2

like e

orr

of Eq. (48)

as shown in Figs. 7 and 8 and therefore annot distin-

guish between attrative and repulsive interations. In

1D the PD based measures (42) and (43) are idential

for fermioni and (hard ore) bosoni partiles. The n

�

based measures (44){(47) do not apply for bosoni parti-

les, they are designed for fermioni partiles only. Thus

for orrelation measures of bosoni partiles, the mea-

sures onsidered in this work are either inappliable or

idential to their fermioni ounterparts as for the PD

based measures and e

orr

.

Whereas for repulsive partile interation results well-

known from other extended many-body systems are on-

�rmed again | enhanement of the Friedel osillations

with maxima/minima trajetories, humps/peaks of the

stati struture fator developing from its non-interating

kink, suppression of partile-number utuations | we

have found in the present work that for swithing on at-

tration partile-number utuations are ontrarily en-

haned and that this is aompanied by a smoothening

of the PD (the osillations disappear) and of the stati

struture fator (the kink disappears) as well as by the

appearane of a linear on-top behavior of the PD. The

latter behavior results in a diverging interation energy

in the strong attration limit although the total energy

remains �nite. In momentum spae the Fermi ie blok

thaws for both ases and orrelation tails develop. In

the strong attration limit the orrelation tail beomes

so long ranged that the kineti energy diverges, thereby

exatly ompensating the divergene of the interation

energy. We have shown that these divergenes an be

derived from the exatly known energy as a funtion of

the interation strength with the help of the Hellmann-

Feynman theorem (11). This theorem allows to alulate

t(�) and v(�) from e(�) and gives | in addition to their

normalizations (17) and (19) | exat relations for n

�

and the PD as shown in Eqns. (18) and (20).

In summary, we have applied the Hellmann-Feynman

theorem to the 1D quantum system of 1=x

2

ij

interat-

ing partiles making extensive use of the exat solution

available for the CS model. We have analyzed partile-

number utuations and studied measures for the or-

relation strength based on the pair density and on the

momentum distribution. Our results show that the qual-

itative terms `weak and strong orrelation' an not be

aptured quantitatively in a single index, but rather a

variety of quantities must be employed [13℄.

10



ACKNOWLEDGMENTS

RAR gratefully aknowledges support by the Deutshe

Forshungsgemeinshaft (SFB393) and the hospitality of

the Max-Plank-Institut f�ur Physik komplexer Systeme

(Dresden) for an extended stay where muh of this work

was started. PZ thanks the Max-Plank-Institut f�ur

Physik komplexer Systeme and P. Fulde for supporting

this work.

APPENDIX A: CERTAIN INTEGRALS

The following identities are valid with Si(x) =

R

x

0

dy[sin(y)=y℄:

Z

1

0

dx

�

sinx

x

=

Si(1)

�

=

1

2

; (A1)

Z

1

0

dx

�

�

sinx

x

�

2

=

1

2

; (A2)

Z

1

0

dx

�

[Si(1)� Si(x)℄

d

dx

sinx

x

= 0 ; (A3)

Z

1

0

dx

�

Si(x)

d

dx

sinx

x

= �

1

2

; (A4)

Z

1

0

dx

�

1

x

2

"

1�

�

sinx

x

�

2

#

=

1

3

; (A5)

Z

1

0

dx

�

1

x

2

Si(x)

d

dx

sinx

x

= �

2

9

: (A6)

Eqns. (A2) { (A4) determine the normalization of the

PD's (35) { (37). Eqns. (A5) and (A6) determine the

interation energy v for the HF approximation and for

� = 3=2. For the utuation analysis with Eqns. (39)

and (40)

2

�

Z

1

0

dy os(qy)

�

sin y

y

�

2

=

�

1�

q

2

�

�(2� q) ; (A7)

2

�

Z

1

0

dy sin(qy) Si(y)

sin y

y

=

�

1

2

ln j1� qj �(2� q) ; (A8)

2

�

Z

1

0

dy os(qy) Si(y)

d

dy

sin y

y

=

�

h

1�

q

2

+

q

2

ln j1� qj

i

�(2� q) ; (A9)

Z

1

0

dy os(qy)

d

dy

sin y

y

=

�

�

1�

q

2

ln

�

�

�

�

1 + q

1� q

�

�

�

�

�

; (A10)

2

�

Z

1

0

dy os(qy)

sin y

y

d

2

dy

2

siny

y

=

1

6

(q � 2)

�

q

2

� q + 1

�

�(2� q) ; (A11)

2�

Z

Y

0

dy

1

Z

Y

0

dy

2

�

sin jy

1

� y

2

j

jy

1

� y

2

j

�

2

=

2

Z

2

0

dq

1� os qY

q

2

(1�

q

2

) =

1� os 2Y � 2Y Si(2Y ) +

Z

2Y

0

dz

1� os z

z

: (A12)

APPENDIX B: KIMBALL LIKE THEOREMS

FOR n(x

12

) AND n

�

The small separation or on-top behavior of the PD

n(x

12

) is derived here similarly as Kimball found the

usp relation dg(k

F

r)=drj

r=0

= g(0)=a

B

[or g

0

(0) =

�r

s

g(0); � = (4=9�)

1=3

℄ for the pair orrelation of the 3D

uniform eletron gas [57℄. We remark that the general o-

alesing usp theorem is due to Kato [58℄. Let us onsider

two adjaent eletrons with the enter-of-mass and rela-

tive oordinates,X = (x

1

+x

2

)=2 and x = x

1

�x

2

, respe-

tively. Fousing on the x dependene the Shr�odinger

equation an be written as

�

�

d

2

dx

2

+

�(�� 1)

x

2

�

'(x)

~

�(X; x

3

; : : :) =

(E �H

0

)'(x)

~

�(X; x

3

; : : :); (B1)

where H

0

ontains the remaining terms in the Hamilto-

nian. Note the missing fator 1=2 in the kineti energy

term beause the mass there has to be replaed by the

redued mass of the eletron pair (m ! m=2). Beause

E �H

0

is non-singular as x approahes zero, it is unim-

portant for small x. To lowest order in x we therefore

have '(x) = x

�

+ : : :, from whih immediately follows

n(x) � x

2�

for the PD, see Eq. (22). This an be on-

luded for � 6= 1 also diretly from the many-body wave

funtion � � �

i<j

x

�

ij

[23℄ and for � = 1 from Eq. (36).

A similar treatment of the asymptoti large � behav-

ior of the momentum distribution n

�

seems to lead in

Eq. (28) to the onlusion  = 2� + 2. This orre-

sponds to n

�!1

� g(0)=�

8

for the 3D uniform eletron

gas [53,57,59℄. Note that in this ase the exponent of

1=� (like the powers of y in the small-separation PD

g(y) = g(0) + �r

s

g(0)y + Cy

2

+ : : :) does not depend

on the interation strength �

2

, only the oeÆients g(0)

and C depend on r

s

� �

2

. Unlike that, in the CS model

also the exponents � and  are interation strength de-

pendent.
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quivel, M. Hô, and V. H. Smith, Jr., Phys. Rev. A58,

3507 (1998) and referenes ited therein.

[12℄ P. Zieshe, O. Gunnarsson, W. John, and H. Bek, Phys.

Rev. B55, 10270 (1997); P. Zieshe, V. H. Smith, Jr.,
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TABLE I. On-top exponent and oeÆients of the PD a-

ording to Eq. (22).

� 0 1/2 3/2

� 1 2 4

A

�

6

1

3

16

135

a

1

0 0 0

a

2

�

1

10

�

2

15

�

8

35

a

3

2

45�

0 0

a

4

1

280

1

105

32

1225

a

5

�

4

1575�

0 0

a

6

�

1

15120

�

2

4725

�

2176

1091475

a

7

4

55125�

0 0

a

8

1

1330560

2

155925

125696

1092566475

TABLE II. Dimensionless umulant PD h(y) and the stru-

ture fator S(q) used for the omputation of �N

X

and �

1

(�)

as in Eqns. (40) and (42).

� h(y) S(q) = 1�

~

h(q)=�

0

�

sin y

y

�

2

�

�

Si(y)�

�

2

�

d

dy

sin y

y

�

q �

q

2

ln(1 + q)

�

�(2� q)

+

h

2�

q

2

ln

q+1

q�1

i

�(q � 2)

1

2

�

sin y

y

�

2

q

2

�(2� q) + �(q � 2)

3

2

�

sin 2y

2y

�

2

� Si(2y)

d

d2y

sin 2y

2y

�

q

4

�

q

8

ln j1�

q

2

j

�

�(4� q)

+�(q � 4)

TABLE III. CoeÆients of the small-X expansion of

(�N

X

)

2

N

X

as in Eq. (41).
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d
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-1 -1 -1

d
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0 0
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�
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4
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0 0

d
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4
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16�

4
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TABLE IV. CoeÆients as in Eq. (28) alulated from the

numerially determined momentum distribution n

�

for � = 0

and 3=2 (at n = 1=2L

0

).

� = 0

� 2 [0; 1℄ � 2 [1; 2℄ � 2 [2;1℄

B 0.863355 B 0.863355 C 0.017788

b

�

1

�0.746775 b

+

1

�0.750439 

2

5.972791

b

�

2

0.731357 b

+

2

0.747380
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�

3

�0.420828 b

+

3

�0.433779

b

+

4

0.009552

� = 3=2

� 2 [0; 1℄ � 2 [1; 2℄ � 2 [2;1℄

B 0.552286 B 0.552286 C 1.46369
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�

1
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+

1
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2
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b

�
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+

3

4.180551

b

+

4

�1.606130
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FIG. 1. Dimensionless PD g(y) = n(x

12

)=n

2

as a funtion

of the dimensionless inter-partile separation y = k

F

x

12

for

� = 0 (dashed), 1=2 (solid), and 3=2 (dotted). The thin line

is a guide to the eye only.

0 1 2 3
κ

0.0

0.2

0.4

0.6

0.8

1.0

n κ

FIG. 2. Fermioni momentum distributions n

�

vs.

� = k=k

F

with � = 0 (dashed), 1=2 (solid), and 3=2 (dot-

ted).
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FIG. 3. Bulk energy e (solid), kineti energy t (dashed),

and potential energy v (dotted) plotted as funtions of inter-

ation strength parameter �. Thin lines denote the results of

the Hartree-Fok approximation, thik lines are exat. The

thin dashed-dotted line indiates the \fall-into-the-origin" at

� = 0.
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FIG. 4. Stati struture fator S(q) = 1�

~

h(q)=� for � = 0

(dashed), 1=2 (solid), and 3=2 (dotted). Inset: The three

urves do not oinide at a single point lose to q � 1:72.
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FIG. 5. Partile-number utuation (�N

X

)

2

=N

X

in do-

mains X of the CS model after Eq. (40) for � = 0 (dashed),

1=2 (solid), and 3=2 (dotted). The dashed-dotted line orre-

sponds to (�N

X

)

2

=N

X

for strit orrelation [3℄.
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FIG. 6. PD based orrelation measures �

1;2

aording

to (42) and (43) as funtions of the interation strength

parameter �. The thin dashed-dotted line indiates the

\fall-into-the-origin" at � = 0. The other lines are guides

to the eye only.
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FIG. 7. Correlation `entropy' s vs. � as estimated from

the fermioni momentum distributions aording to Eq. (44)

ompared with je

orr

(�)=e

0

j of Eq. (48). The solid lines are

guides to the eye only. The thin dashed-dotted line is as in

Fig. 6.
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FIG. 8. Correlation measures based on the orrelation tail

of the momentum distribution aording to (45) { (47) as

funtions of �. The thin dashed-dotted line is as in Fig. 6.

The other lines are guides to the eye only.
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FIG. 9. Bulk (solid), kineti (dashed), and potential (dot-

ted) orrelation energies as a funtion of �. The thin

dashed-dotted line is as in Fig. 3.
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FIG. 10. Fermioni momentum distributions n

�

for

� = 3=2 omputed for N = 21, 41, 81, 121, 161, 201, 241, 281,

321, 361, and 401. The data for N = 21(Æ) , 41(�), 81(�),

and 121(�) do not show any density dependene whereas the

larger density data (lines) do.
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FIG. 11. Correlation `entropy' (44) for fermions (solid line)

as a funtion of density at � = 3=2. The dashed-dotted line

orresponds to s obtained for the disrete CS model.
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FIG. 12. Kineti energy t as omputed from the Hell-

man-Feynman theorem (11) (dashed line), and t from Eq.

(13) (solid lines) for fermions (thik line) and bosons (thin

line) as a funtion of density at � = 3=2.
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FIG. 13. Bosoni momentum distributions n
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vs. � = k=k

F

with � = 0 (dashed), 1=2 (solid), and 3=2 (dotted).
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FIG. 14. Bosoni momentum distributions n

�

for � = 3=2

omputed for partile numbers idential to Fig. 10. The data

for N = 21(Æ) , 41(�), 81(�), 121(�), 161(+), and 201(�) do

not show any density-dependene e�ets.
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