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This paper is concerned with the implementation of the wavelet Galerkin scheme for the Laplacian

in two dimensions. We utilize biorthogonal wavelets constructed by A. Cohen, I. Daubechies and J.-C.

Feauveau in [3] for the discretization leading to quasi-sparse system matrices which can be compressed

without loss of accuracy. We develop algorithms for the computation of the compressed system matrices

whose complexity is optimal, i.e., the complexity for assembling the system matrices in the wavelet basis

is O(N

J

), where N

J

denotes the number of unknowns.

1. Introduction

Various problems in science and engineering can be formulated by integral equa-

tions. One of the most prominent type of those integral equations are boundary

integral equations. Usually, these equations are solved numerically by the bound-

ary element method (BEM). The boundary element method has been considered

as an appropriate tool to solve certain boundary value problems. For example,

the boundary element method is a favourable approach for the treatment of exte-

rior boundary value problems. Nevertheless, traditional discretizations of integral

equations su�er from a major disadvantage. The corresponding system matrices

are densely populated. Therefore, the complexity for solving such equations is at

least O(N

2

J

), where N

J

denotes the number of equations. This fact restricts the

maximal size of the linear equations seriously.

Modern methods for the fast solution of BEM reduce the complexity to a subop-

timal rate, i.e., O(N

J

log

�

N

J

), or even an optimal rate, i.e., O(N

J

). Prominent

examples for such methods are the fast multipole method [19], the panel clus-

tering [22] or hierarchical matrices [21, 36]. As introduced by [1] wavelet bases

o�er another tool for the fast solution of integral equations. In fact, a Galerkin

discretization based on wavelet bases results in numerically sparse matrices, i.e.,

many matrix entries are negligible and can be treated as zero. Discarding these

nonrelevant matrix entries is called matrix compression. Therefore, the full ma-

trix is replaced by a sparse matrix. Of course, the compression procedure induces

a perturbation of the original Galerkin discretization. Consequently, the resulting

solution di�ers from the solution of the uncompressed scheme. In [1] this error

has been estimated in L

2

. It has been shown that, for any " > 0, a sparse matrix

exists such that the compression introduces an error � ".

The article [1] has initiated the investigation of wavelet methods for integral

equations, pseudodi�erential equations and boundary integral equations [8, 9, 10].

These papers written by Siegfried Pr�o�dorf and coauthors considered also op-

erators of nonzero order by an appropriate preconditioning. Based on norm

equivalences [7, 17, 27] it has been shown that for strongly elliptic operators

after a diagonal preconditioning the wavelet Galerkin matrices are well condi-

tioned. A new strategy has been introduced to retain the convergence behaviour

of the corresponding Galerkin scheme without compromising the complexity of

the compression. These early results have been improved by several authors

[11, 12, 35] and [30, 31, 33, 34]. Concerning boundary integral equations a strong

e�ort has been spent on the construction of appropriate wavelet bases on sur-

faces [6, 13, 14, 30, 35]. Furthermore, the e�cient computation of the relevant
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matrix coe�cients turned out to be an important task for the successful applica-

tion of the wavelet Galerkin method [12, 32, 33, 35].

The purpose of the present paper is to describe a fully discrete wavelet Galerkin

scheme for boundary integral equations in 2D since this has been omitted in the

previous papers. Although the three dimensional boundary value problems are of

higher interest, the development and practical realization of 2D wavelet Galerkin

methods is of importance by its own. Two dimensional or axial symmetric bound-

ary value problems play an important role in practical applications. Wavelets o�er

a highly accurate tool to solve these equations. This fact is mainly retained in the

presence of piecewise smooth boundaries. In particular, the combination of the

�nite element method with the boundary element method, or equivalently, the

exact use of arti�cial boundary conditions, is a practically and highly interest-

ing approach for which wavelets seems to be advantageous [24, 25]. For all kind

of those problems, the two dimensional case is an excellent object for numerical

studies and experiments. One reason is that, in connection with wavelet methods,

on curves more scales can be realized. Therefore, one can achieve a relatively high

accuracy of the discretization. This allows the study of the asymptotic behaviour

of the solution together with the complexity of the algorithm. Furthermore, the

implementation is much easier than it is in the three dimensional case. For this

reason, testing or modifying algorithms and ideas can be realized quickly. Further

developments and improvements of higher dimensional methods will bene�t from

the experiences in two dimensions. Of course, there are particularities in the two

dimensional case which have no counterpart in three dimensions. A proper real-

ization has also to exploit the special properties of the two dimensional case. One

purpose of the present paper is to focus on these particular properties, whereas

for the theoretical foundations we refer to [5, 11, 12, 24, 31, 35].

The present paper is organized as follows. As typical examples for boundary inte-

gral equations, we consider in section 2. the indirect formulations for the Dirichlet

problem. Then, only a single function appears on the right hand side of the in-

tegral equation. We employ all kind of integral operators resulting from second

order boundary value problems and derive Fredholm integral equations of the �rst

kind and of the second kind. For the sake of completeness we mention also Neu-

mann problems. In this respect, we indicate the treatment of the hypersingular

operator. It is worth to mention that the present approach can also be applied

to direct formulations, see e.g. [24, 25] for more details. For the sake of brevity,

in the present paper we treat only the Laplacian explicitly. For further literature

on boundary integral equations we refer for example to [4, 20, 28]. The present

variational formulations are chosen such that only globally smooth kernels must

be handled by numerical integration while the singular parts can be computed

analytically. This trick simpli�es and accelerates the matrix generation.

In section 3. we de�ne the multiresolution analysis and the wavelet bases on

curves through a regular parametrization. Since the coarse scale bases are de�ned

on rather coarse grids, we need a global representation of the boundary curve.

From this perspective it becomes obligatory that a wavelet Galerkin scheme has to

be a fully discrete one [12, 32, 35], i.e., the computation of the relevant matrix en-

tries requires numerical integration. There are two approximating steps: The �rst

one is the matrix compression, the other one results from numerical integration.
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The proposed matrix compression strategy has been developed in [8, 12, 31, 35].

In order to avoid logarithmic terms in complexity a second compression step, in-

troduced in [35], is applied to the matrix entries corresponding to wavelets with

overlapping supports. Moreover, we brie
y recall the wavelet preconditioning.

We explain in section 4. concretely how to establish the matrix pattern of the

compressed matrix and how to compute the required matrix entries. It turns out

that a naive calculation of the required entries leads to a repeated computation

of integrals. To avoid this multiple computation an improved strategy is pro-

posed. We mention that the described algorithms are also practicable in higher

dimensions.

Section 5. is devoted to the analysis of the numerical integration. Similarly to the

matrix compression, the perturbation resulting from the numerical integration is

studied in [12, 32, 35]. It turns out that one has to achieve a certain accuracy "

j;j

0

which depends strongly on the corresponding scales (j; j

0

). In order to achieve the

desired accuracies, we utilize exponentially convergent quadratures rules [12, 32,

35], e.g. Gau�-Legendre formulas. For this reason we require (piecewise) analytic

curves and parametric representations. The present quadrature algorithm di�ers

from those proposed in [12, 32, 35] since global analyticity of the underlying

kernels is exploited. Moreover, we describe a strategy improving the stability and

accuracy of the quadrature while the e�ciency is not compromised. We want to

remark, that this strategy can also be used in 3D, but the present analysis of the

convergence and the complexity is valid only for two dimensional problems.

At the end of the paper, in section 6., we present various numerical experiments.

These experiments con�rm the theoretical results quite well. The accuracy of the

Galerkin scheme has never been deteriorated by the matrix compression. In fact,

in many cases the solution of the compressed scheme is even slightly better than

the solution of the uncompressed scheme. Though it has not been considered in

the present paper, the fast wavelet Galerkin scheme can be applied to nonsmooth

boundaries as well.

Finally, let us remark, that we have left open several problems. We have not

fully exploited the operator splitting A = A

sing

+A

1

into the operator A

sing

with

a singular kernel and the operator A

1

with an analytical kernel. In fact, A

1

can

be compressed in a more appropriate way, cf. [29]. Whereas, this strategy fails for

nonsmooth boundaries, e.g. on boundaries with corners. Perhaps, the treatment

of nonsmooth boundaries requires a more careful analysis combined with some

minor modi�cations. The development will be deferred to a forthcoming paper.

However, this would be performed in conjunction with an adaptive strategy [2].

Throughout the present paper we only consider asymptotical behaviour. There

are situations where this might be far from realistic computations. For instance,

if highly oscillating solutions occur, like for the Helmholtz equation with a large

Helmholtz number, or homogenization phenomena, the realization of asymptotic

convergence and high accuracy is far beyond hardware facilities.

Incorporating the adaptive approximation of the solution or the multiscale ap-

proximation of the geometry �t completely into the multiscale concept [2, 16].

From this perspective the fast wavelet method o�ers a highly powerful tool for the

numerical solution of two dimensional problems. However, for three dimensional

problems the situation is still quite di�erent. Due to geometric and topological
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subtleties, the realization of the present concept of wavelet Galerkin schemes is

much more di�cult in 3D. A strong e�ort has been spent into this direction dur-

ing the past �ve years. Nevertheless, at the present stage of development, the

methods based on a hp-approximation of the potentials, like the fast multipole

method or the panel clustering, are more 
exible and robust to handle complex

three dimensional geometries.

Throughout this paper a . b expresses that a can be bounded by a constant

multiple of b uniformly in any parameter on which a and b may depend. Likewise

a � b means that a . b and a & b.

2. The boundary element method

2.1. Dirichlet problems

Let 


�

2 R

2

be a bounded and simply connected domain with smooth boundary

� := @


�

. We set 


+

= R n 


�

and choose 
 = 


+

or 
 = 


�

. We denote by

L

2

(�) the function space of all square integrable functions on � with respect to

the canonical inner product

(u; v)

L

2

(�)

=

Z

�

u(x)v(x)ds

x

(2.1)

and by H

q

(�) (q 2 R) the corresponding Sobolev spaces. Moreover, L

2

(
) indi-

cates the function space of all square integrable functions on 
 with respect to

the inner product

(u; v)

L

2

(
)

=

Z




u(x)v(x)dx:

For q 2 R the space H

q

(
) denotes the corresponding Sobolev space.

For a given f 2 H

1=2

(�) we consider a Dirichlet problem, i.e., we seek u 2 H

1

(
)

such that

�4u= 0 in 
;

u= f on �:

(2.2)

For 
 = 


�

the problem is called interior Dirichlet problem. On the other hand,

for 
 = 


+

we obtain an exterior Dirichlet problem. In the latter case one

additionally demands that

u(x) = O(1) as jxj ! 1

uniformly for all directions x=jxj.
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1. Fredholm's integral equation of the �rst kind for Dirichlet problems: For

solving an interior or exterior Dirichlet problem (2.2) by a Fredholm's integral

equation of the �rst kind we introduce the single layer operator V

(V�)(x) :=

Z

�

E(x; y)�(y)ds

y

; x 2 �; (2.3)

where the fundamental solution E(x; y) is given by

E(x; y) = �

1

2�

log jx� yj: (2.4)

Then, one �nds the boundary integral equation

V� = f on � (2.5)

for the unknown density �. Knowing � the solution u of the Dirichlet problem (2.2)

is given by

u(x) =

Z

�

E(x; y)�(y)ds

y

; x 2 
:

In the context of the boundary integral equation (2.5) the single layer operator

V : H

�1=2

(�)! H

1=2

(�) de�nes an operator of order �1, which is symmetric and

positive de�nite if diam


�

< 1, cf. [26].

2. Fredholm's integral equation of the second kind for Dirichlet problems: For

solving the Dirichlet problem (2.2) by a Fredholm's integral equation of the second

kind we de�ne the double layer operator

(K�)(x) :=

Z

�

@

@n

y

E(x; y)�(y)ds

y

; x 2 �; (2.6)

with E(x; y) from (2.4). Note that, here and in the sequel, n

y

denotes the unit

normal at y 2 � which is oriented to the outside of 


�

. One �nds the equation

�

K �

1

2

I

�

� = f on �; (2.7)

where one chooses \+" for an exterior and \�" for an interior problem. In both

cases the solution u is represented by

u(x) =

Z

�

@

@n

y

E(x; y)�(y)ds

y

; x 2 
:

The operator on the left hand side of (2.7) de�nes an operator of order zero,

i.e., K �

1

2

I : L

2

(�) ! L

2

(�). Let us remark that sometimes it is convenient to

consider K �

1

2

I : H

1=2

(�)! H

1=2

(�), see e.g. [24]. The equation for the interior

problem is uniquely solvable while the equation for the exterior problem has no
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unique solution since �

1

2

is an eigenvalue of K. Hence, to ensure uniqueness

of the solution � in the case of the exterior problem we have to suppose that

R

�

f(x)ds

x

= 0 and

R

�

�(x)ds

x

= 0.

It is well known [20, 28], that these formulations yield a unique solution u 2

H

1

(
) of the Dirichlet problem (2.2). Since the solution u is not obtained directly

by the boundary integral equations (2.5) and (2.7), respectively, these formulations

are called indirect methods.

2.2. Variational formulations

The smooth boundary � can be parametrized by a 1-periodic function 
 : [0; 1]!

� such that

�(t) := j


0

(t)j > 0 (2.8)

for all t 2 [0; 1]. Indeed, we suppose that 
 is analytic in [0; 1]. In addition to

the spaces L

2

(�) and H

q

(�) we introduce 1-periodic spaces L

2

(0; 1) and H

q

(0; 1),

respectively. Precisely, let L

2

(0; 1) be the space of all 1-periodic square integrable

functions. Its inner product is denoted by

(v; w)

L

2

(0;1)

:=

Z

1

0

v(t)w(t)dt: (2.9)

Then, for any real number q the 1-periodic Sobolev space H

q

(0; 1) is de�ned as

the closure with respect to the norm

kvk

2

H

q

(0;1)

=

X

n2Z

(1 + jnj)

2q

jv̂(n)j

2

of the space of all 1-periodic C

1

-functions. Here, v̂(n) indicate the Fourier coef-

�cients

v̂(n) =

Z

1

0

e

�2�ins

v(s)ds; n 2 Z:

Invoking the de�nition (2.8) the comparison of (2.1) and (2.9) implies

(v; w)

L

2

(�)

=

�

v � 
; (w � 
)�

�

L

2

(0;1)

(2.10)

for all v 2 H

q

(�) and w 2 H

�q

(�).

1. Variational formulation for the equation of the �rst kind: The variational

formulation of (2.5) in the L

2

(�) inner product (2.1) is given by

seek � 2 H

�1=2

(�) : (V�; �)

L

2

(�)

= (f; �)

L

2

(�)

8 � 2 H

�1=2

(�):

We de�ne the integral operator

V : H

�1=2

(0; 1)! H

1=2

(0; 1); (V �)(s) :=

Z

1

0

E

�


(s); 
(t)

�

�(t)dt: (2.11)
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Using (2.10) we �nd for �; � 2 H

�1=2

(�) the identity (V�; �)

L

2

(�)

=

�

V

�

(� �


)�

�

; (��
)�

�

L

2

(0;1)

. Thereby, V inherits symmetry and positive de�niteness from

the operator V. Setting � := (��
)� 2 H

�1=2

(0; 1) and � := (��
)� 2 H

�1=2

(0; 1)

leads to the variational formulation in L

2

(0; 1)

seek � 2 H

�1=2

(0; 1) :

(V �; �)

L

2

(0;1)

= (f � 
; �)

L

2

(0;1)

8 � 2 H

�1=2

(0; 1): (2.12)

Knowing the density � the solution u is obtained from

u(x) =

Z

1

0

E

�

x; 
(t)

�

�(t)dt; x 2 
: (2.13)

2. Variational formulation for the equation of the second kind: The variational

formulation of (2.7) in L

2

(�) is given by

seek � 2 L

2

(�) : (K�; �)

L

2

(�)

�

1

2

(�; �)

L

2

(�)

= (f; �)

L

2

(�)

8 � 2 L

2

(�):

For t 2 [0; 1] it is convenient to abbreviate here and in the sequel n

t

:= n


(t)

. We

introduce

K : L

2

(0; 1)! L

2

(0; 1); (K�)(s) :=

Z

1

0

@

@n

t

E

�


(s); 
(t)

�

�(t)�(t)dt; (2.14)

with E(x; y) from (2.4). Comparing the de�nitions of K (2.6) and K (2.14) one

�nds for �; � 2 L

2

(�) the identity (K�; �)

L

2

(�)

=

�

K(� � 
); (� � 
)�

�

L

2

(0;1)

. The

substitutions � := ��
 2 L

2

(0; 1) and � := (��
)� 2 L

2

(0; 1) yield the formulation

seek � 2 L

2

(0; 1) :

(K�; �)

L

2

(0;1)

�

1

2

(�; �)

L

2

(0;1)

= (f � 
; �)

L

2

(0;1)

8 � 2 L

2

(0; 1): (2.15)

For the exterior problem we suppose (f � 
; �)

L

2

(0;1)

= 0. Further, the density �

has to satisfy the side condition

(�; �)

L

2

(0;1)

= 0: (2.16)

The solution u is represented by the potential evaluation

u(x) =

Z

1

0

@

@n

t

E

�

x; 
(t)

�

�(t)�(t)dt; x 2 
: (2.17)
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2.3. Discretization

For a given j 2 N , j � j

0

, choose N

j

= 2

j

and 4

j

:= f0; 1; : : : ; N

j

� 1g. We

subdivide the (periodic) interval [0; 1] by t

(j)

k

= k=N

j

, k 2 4

j

, to obtain an

equidistant partition with step width h

j

:= 1=N

j

= 2

�j

. For the sake of simplicity

we identify here and in the sequel the points t

(j)

k+lN

j

, l 2 Z, with the points t

(j)

k

.

For the discretization we employ L

2

-normalized piecewise constant functions

�

(1)

j;k

:= 2

j=2

�

[t

(j)

k

;t

(j)

k+1

]

; k 2 4

j

; (2.18)

or piecewise linear functions

�

(2)

j;k

(x) := 2

3j=2

8

<

:

x� t

(j)

k�1

; for x 2 [t

(j)

k�1

; t

(j)

k

];

t

(j)

k+1

� x; for x 2 [t

(j)

k

; t

(j)

k+1

];

0; elsewhere;

k 2 4

j

: (2.19)

The spaces V

j

:= span

�

�

(d)

j;k

: k 2 4

j

	

, j � j

0

, d = 1; 2, form a nested sequence

of subspaces in L

2

(0; 1)

V

j

0

� V

j

0

+1

� : : : ;

[

j�j

0

V

j

= L

2

(0; 1);

\

j�j

0

V

j

= V

j

0

:

For the Galerkin scheme we replace the energy spaces H

�1=2

(0; 1) and L

2

(0; 1)

in the variational formulations (2.12) and (2.15) by the �nite dimensional spaces

V

j

, respectively. Then, for the equation of the �rst kind (2.12), the Ansatz � =

P

�

k

�

(d)

j;k

together with

[V

�

]

k;k

0

=

�

V �

(d)

j;k

0

; �

(d)

j;k

�

L

2

(0;1)

;

[�

�

]

k

= �

k

; [f

�

]

k

=

�

f � 
; �

(d)

j;k

�

L

2

(0;1)

;

(2.20)

leads to the linear system of equations

V

�

�

�

= f

�

: (2.21)

Likewise, with �

�

, f

�

as in (2.20) and

[K

�

]

k;k

0

=

�

K�

(d)

j;k

0

; �

(d)

j;k

�

L

2

(0;1)

; [B

�

]

k;k

0

=

�

�

(d)

j;k

0

; �

(d)

j;k

�

L

2

(0;1)

: (2.22)

we obtain for the equation of the second kind (2.15) the linear system of equations

�

K

�

�

1

2

B

�

�

�

�

= f

�

: (2.23)
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For an exterior Dirichlet problem the system matrixK

�

+

1

2

B

�

is singular. Hence,

we discard in this case one of the unknowns in (2.23) which yields a reduced but

regular system matrix with a unique solution ~�. Without loss of generality we may

assume that the skipped unknown is the last one. Then, the vector

�

~�

0

�

solves the

original singular linear system of equations. To satisfy the side condition (2.16)

one computes the vector [a]

k

:=

�

�

(d)

j;k

; �

�

L

2

(0;1)

and sets �

�

:=

�

~�

0

�

�

�

a

T

�

~�

0

��

a.

The most expensive work for solving a given Dirichlet problem is the compu-

tation of the system matrices V

�

(2.20) and K

�

(2.22). For assembling these

matrices one has to evaluate for all k; k

0

2 4

j

the integrals

�

(d)

(j;k);(j;k

0

)

:=

Z

1

0

Z

1

0

k(s; t)�

(d)

j;k

0

(t)�

(d)

j;k

(s)dtds (2.24)

with some kernel function k(s; t). More precisely, for piecewise constant functions,

that is d = 1, one has to compute for all k; k

0

2 4

j

the values

�

(1)

(j;k);(j;k

0

)

= h

j

Z

1

0

Z

1

0

k

�

t

(j)

k

+ h

j

s; t

(j)

k

0

+ h

j

t

�

dtds: (2.25)

Since the piecewise linear functions (d = 2) are not smooth in their support

we compute in this case for all k; k

0

2 4

j

the required integrals on the domain

[t

(j)

k

+ t

(j)

k+1

]� [t

(j)

k

0

+ t

(j)

k

0

+1

]

�

(2;i)

(j;k);(j;k

0

)

:= h

j

Z

1

0

Z

1

0

k

�

t

(j)

k

+ h

j

s; t

(j)

k

0

+ h

j

t

�

p

i

(s; t) dtds; (2.26)

where p

i

(s; t), i = 1; 2; 3; 4, are the polynomials

p

1

(s; t) := st; p

3

(s; t) := (1� s)t;

p

2

(s; t) := s(1� t); p

4

(s; t) := (1� s)(1� t):

(2.27)

Then, we add them to the corresponding matrix entries according to

�

(2)

(j;k);(j;k

0

)

= �

(2;1)

(j;k�1);(j;k

0

�1)

+ �

(2;2)

(j;k�1);(j;k

0

)

+ �

(2;3)

(j;k);(j;k

0

�1)

+ �

(2;4)

(j;k);(j;k

0

)

: (2.28)

A full quadrature scheme for the calculation of the integrals (2.25) and (2.26) by

employing Gau�-Legendre quadrature rules is given in section 5..

2.4. Solving Neumann problems

For a given g 2 H

�1=2

(�) with

Z

�

g(x)ds

x

= 0; (2.29)
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we consider a Neumann problem on the domain 
, that is, we seek u 2 H

1

(
)

such that

�4u= 0 in 
;

@u

@n

= g on �:

(2.30)

Analogously to the Dirichlet problem, depending on the choice of 
 the prob-

lem indicates an interior Neumann problem and an exterior Neumann problem,

respectively. For an exterior Neumann problem it is additionally required that

u(x) = O(1) as jxj ! 1

uniformly for all directions x=jxj.

1. Fredholm's integral equation of the �rst kind for Neumann problems: The

hypersingular operator W is given by

(W�)(x) := �

@

@n

x

Z

�

@

@n

y

E(x; y)�(y)ds

y

; x 2 �; (2.31)

and de�nes an operator of order +1, i.e., W : H

1=2

(�)! H

�1=2

(�). We seek the

density � satisfying the Fredholm integral equation of the �rst kind

W� = g on �: (2.32)

Since W is symmetric and positive semide�nite, cf. [20, 28], one restricts � by

R

�

�(x)ds

x

= 0. The variational formulation of (2.32) reads

seek � 2 H

1=2

(�) : (W�; �)

L

2

(�)

= (g; �)

L

2

(�)

8 � 2 H

1=2

(�):

With W : H

1=2

(0; 1)! H

�1=2

(0; 1),

(W�)(s) := �

@

@n

s

Z

1

0

@

@n

t

E

�


(s); 
(t)

�

�(t)�(s)�(t)dt; (2.33)

it follows for all �; � 2 H

1=2

(�) the equation (W�; �)

L

2

(�)

=

�

W (��
); � �


�

L

2

(0;1)

.

Hence, replacing ��
 2 H

1=2

(0; 1) and � �
 2 H

1=2

(0; 1) by � and �, respectively,

gives the variational formulation

seek � 2 H

1=2

(0; 1) : (W�; �)

L

2

(0;1)

= (g � 
; ��)

L

2

(0;1)

8 � 2 H

1=2

(0; 1):

Herein, the restriction on the density takes the form (2.16). Since the energy

space is H

1=2

(0; 1) we have to discretize the variational formulation by piecewise

linear functions, that is d = 2, which yields the Galerkin system

W

�

�

�

= g

�

(2.34)
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with �

�

as in (2.20) and

[W

�

]

k;k

0

=

�

W�

(2)

j;k

0

; �

(2)

j;k

�

L

2

(0;1)

; [g

�

]

k

=

�

g � 
; �

(2)

j;k

�

�

L

2

(0;1)

:

Since the piecewise linear functions lie in H

1

(0; 1) we may employ the identity

(W�; �)

L

2

(0;1)

= (V �

0

; �

0

)

L

2

(0;1)

, which holds for all �; � 2 H

1

(0; 1) , see [18, 24]

for details. Hence, observing that the derivatives of the Ansatz functions are

piecewise constant functions, we �nd for the system matrix W

�

the equation

W

�

= HV

�

H

T

; (2.35)

where H 2 R

N

j

�N

j

is a band matrix de�ned by

H :=

1

h

j

2

6

6

6

6

4

�1 1

1 �1

1

.

.

.

.

.

.

�1

1 �1

3

7

7

7

7

5

;

and V

�

given by (2.20) corresponds to the single layer operator discretized via

piecewise constant functions (d = 1). Since W

�

inherits the symmetry and pos-

itive semide�niteness from W the linear system of equations (2.34) is singular.

To solve this system under the given side condition, one proceeds exactly as for

the equation of the second kind for exterior Dirichlet problems. The density

� =

P

�

k

�

(2)

j;k

approximates the solution u of the Neumann problem (modulo

some constant in the case of an interior problem) by the potential evaluation

(2.17).

2. Fredholm's integral equation of the second kind for Neumann problems: We

introduce the adjoint K

?

of the double layer operator

(K

?

u)(x) :=

Z

�

@

@n

x

E(x; y)v(y)ds

y

; x 2 �; (2.36)

which indicates an operator of order zero, i.e., K

?

: L

2

(�) ! L

2

(�). Then, for

the Neumann problem (2.30) we formulate the Fredholm integral equation of the

second kind

�

�

1

2

I �K

?

�

� = g on �; (2.37)

where we have to choose \+" for an exterior and \�" for an interior problem.

Since

�

�

1

2

I � K

?

�

= �

�

1

2

I + K

�

?

this equation is not uniquely solvable in the

case of the interior problem. Hence, again the side condition

R

�

�(x)ds

x

= 0 is

required for the unknown density �. We employ (K

?

�; �)

L

2

(�)

= (�;K�)

L

2

(�)

and

substitute � = (� � 
)�, � = � � 
 to �nd the variational formulation

seek � 2 L

2

(0; 1) :

�

1

2

(�; �)

L

2

(0;1)

� (�;K�)

L

2

(0;1)

= (g � 
; ��)

L

2

(0;1)

8 � 2 L

2

(0; 1):
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Herein, the required side condition for the interior problem reads (�; 1)

L

2

(0;1)

= 0.

With �

�

from (2.20), K

�

, B

�

from (2.22) and g

�

similarly as above the Galerkin

system is given by

�

�

1

2

B

�

�K

?

�

�

�

�

= g

�

: (2.38)

Note, the system corresponding to the exterior Neumann problem is uniquely

solvable while for the interior problem it is singular. To solve the singular system

one proceeds likewise to the equation of the second kind for the Dirichlet problem.

Note that, this time, we get [a]

k

:= (�

(d)

j;k

; 1)

L

2

(0;1)

= 1=

p

h

j

. The density � =

P

�

k

�

(d)

j;k

de�nes an approximated solution to the Neumann problem (modulo

some constant in the case of an interior problem) by (2.13).

3. Wavelet approximation for BEM

3.1. Motivation

We have introduced in subsection 2.3. an equidistant partition of the interval

[0; 1]. On this partition the unknown density is discretized via (periodic) piecewise

constant and linear functions, respectively. Instead of using this single-scale basis

we want to apply wavelets with vanishing moments (more precisely: biorthogonal

wavelet bases) yielding numerically sparse system matrices.

The outline is as follows. We �rst introduce biorthogonal wavelet bases on

R. Next, we obtain the wavelet bases on the interval [0; 1] by periodization.

According to [35] we brie
y recall in the third subsection the compression strategy

of matrices arising from BEM. Since the system matrices resulting from boundary

integral operators of order 6= 0 are ill conditioned, we give a simple diagonal

preconditioner based on the wavelet expansion in the last subsection.

3.2. Biorthogonal multiresolution on R

On R the piecewise polynomial splines of degree d � 1 can be de�ned as fol-

lows. Denoting by [x

0

; : : : ; x

d

]f the d-th order divided di�erence at the points

x

0

; : : : ; x

d

2 R (see e.g. [15]) the (centered) cardinal B-spline of order d is given

by

�

(d)

(x) = d[0; 1; : : : ; d]

�

� �x�

j

d

2

k�

d�1

+

:

where x

l

+

:= (maxf0; xg)

l

and bxc (dxe) is the largest (smallest) integer less

(greater) than or equal to x. This scaling function is normalized







�

(d)







L

1

(R)

= 1;
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compactly supported

supp �

(d)

=

h

�

j

d

2

k

;

l

d

2

mi

(3.1)

and re�nable

�

(d)

(x) =

1

p

2

X

k2Z

a

k

�

(d)

(2x� k) (3.2)

with mask coe�cients

a

k

=

�

2

1�d

�

d

k

�

; �b

d

2

c � k � d

d

2

e;

0; elsewhere:

(3.3)

Introducing for j; k 2 Z the translates and dilates of the scaling function �

(d)

j;k

:=

2

j=2

�

(d)

(2

j

� �k), the sets �

(d)

j

:=

�

�

(d)

j;k

: k 2 Z

	

generate a sequence of spaces

V

j

:= span�

(d)

j

, which is nested

: : : � V

j

� V

j+1

� : : :

and dense in L

2

(R)

[

j2Z

V

j

= L

2

(R);

\

j2Z

V

j

= f0g:

The spaces V

j

are exact of order d, i.e., denoting the space of all polynomials of

degree < d by �

d

(R), there holds

�

d

(R) � V

j

:

Furthermore, �

(d)

j

forms a Riesz basis in V

j







�

(d)

j

c







L

2

(R)

� kck

l

2

(Z)

8 c 2 l

2

(Z):

Due to [3] there exists for every integer

~

d � d with

~

d + d even a dual scaling

function

e

�

(d;

~

d)

2 L

2

(R) which is biorthogonal to the �rst scaling function

�

�

(d)

;

e

�

(d;

~

d)

(� � k)

�

L

2

(R)

= �

0;k

; k 2 Z:

Moreover, similarly to the primal scaling function, this function is normalized,

compactly supported

supp

e

�

d;

~

d

=

h

�

j

d

2

k

+ 1�

~

d;

l

d

2

m

� 1 +

~

d

i

(3.4)
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and re�nable

e

�

(d;

~

d)

(x) =

1

p

2

X

k2Z

~a

k

e

�

(d;

~

d)

(2x� k): (3.5)

The mask coe�cients in (3.5) can be derived by the z-notation: The coe�cient

~a

k

of the sequence

P

k

~a

k

z

k

= p(z)q(z),

p(z) = 2

1�

~

d

~

d

X

k=0

�

~

d

k

�

z

k�b

~

d

2

c

;

q(z) =

d+

~

d

2

�1

X

k=0

2

�k

�

d+

~

d

2

� 1 + k

k

�

2k

X

l=0

�

2k

l

�

(�z)

l�k

;

coincides with the mask coe�cient ~a

k

, see [3] for details. Exactly like the primal

side, the translates and dilates of the dual scaling function

e

�

(d;

~

d)

j;k

:= 2

j=2

e

�

(d;

~

d)

(2

j

�

�k), j; k 2 Z, generate collections of Riesz bases

e

�

(d;

~

d)

j

:=

�

e

�

(d;

~

d)

j;k

: k 2 Z

	

in the

spaces

e

V

j

:= span

e

�

(d;

~

d)

j

which are nested, dense in L

2

(R) and exact of order

~

d.

According to [3] a dual pair of wavelets  

(d;

~

d)

,

e

 

(d;

~

d)

2 L

2

(R) satisfying

�

 

(d;

~

d)

;

e

 

(d;

~

d)

(� � k)

�

L

2

(R)

= �

0;k

; k 2 Z;

is de�ned by

 

(d;

~

d)

(x) :=

1

p

2

X

k2Z

b

k

�

(d)

(2x� k);

e

 

(d;

~

d)

(x) :=

1

p

2

X

k2Z

~

b

k

e

�

(d;

~

d)

(2x� k);

(3.6)

where the mask coe�cients b

k

and

~

b

k

are given by

b

k

= (�1)

k

~a

1�k

;

~

b

k

= (�1)

k

a

1�k

; k 2 Z; (3.7)

with a

k

from (3.3) and ~a

k

from (3.5). As a consequence of the �nite masks and the

compact supports of the scaling functions both wavelets are compactly supported

supp 

(d;

~

d)

= supp

~

 

(d;

~

d)

=

h

1�

d+

~

d

2

;

d+

~

d

2

i

: (3.8)

Setting analogously to the scaling functions

 

(d;

~

d)

j;k

:= 2

j=2

 

(d;

~

d)

(2

j

� �k);

e

 

(d;

~

d)

j;k

:= 2

j=2

e

 

(d;

~

d)

(2

j

� �k);
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the sets

	

(d;

~

d)

j

:=

�

 

(d;

~

d)

j;k

: k 2 Z

	

;

e

	

(d;

~

d)

j

:=

�

e

 

(d;

~

d)

j;k

: k 2 Z

	

;

generate complement spaces W

j

:= span	

(d;

~

d)

j

and

f

W

j

:= span

e

	

(d;

~

d)

j

with

V

j

�W

j

= V

j+1

;

e

V

j

�

f

W

j

=

e

V

j+1

;

where � denotes the direct sum. Thus, recursively one obtains

M

j2Z

W

j

=

M

j2Z

f

W

j

= L

2

(R):

Since biorthogonality implies W

j

?

e

V

j

the primal wavelets have vanishing mo-

ments of order

~

d, i.e.,

�

(�)

�

;  

(d;

~

d)

j;k

�

L

2

(R)

= 0; 0 � � <

~

d:

Furthermore, the wavelets

	

(d;

~

d)

:=

[

j2Z

	

(d;

~

d)

j

;

e

	

(d;

~

d)

:=

[

j2Z

e

	

(d;

~

d)

j

;

form Riesz bases in L

2

(R)

kck

2

l

2

(Z�Z)

�







	

(d;

~

d)

c







2

L

2

(R)

�






e

	

(d;

~

d)

c







2

L

2

(R)

8 c 2 l

2

(Z� Z): (3.9)

3.3. Periodization

The above setting is clearly not suitable for the treatment of equations which are

de�ned on bounded domains. In the sequel we will utilize a periodic version of a

multiscale resolution. It essentially retains all the structural and computational

advantages of the stationary and shift-invariant case considered in the previous

subsection.

To this end, the simple trick is to replace the meaning of u

j;k

:= 2

j=2

u(2

j

� �k),

k 2 Z, for compactly supported u 2 L

2

(R) by its periodized counterpart

u

j;k

:= 2

j=2

X

n2Z

u(2

j

(�+ n)� k):

In this way, given any dual pair �

(d)

and

e

�

(d;

~

d)

on R of compactly supported scaling

functions, and setting 4

j

:= Z n 2

j

Z, the corresponding sets

�

(d)

j

:=

�

�

j;k

: k 2 4

j

	

; 	

(d;

~

d)

j

:=

�

 

(d;

~

d)

j;k

: k 2 4

j

	

; j � j

0

;
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and likewise

e

�

(d;

~

d)

j

and

e

	

(d;

~

d)

j

, have �nite cardinality 2

j

and consist of functions

which are 1-periodic. Note that this de�nition preserves the biorthogonality rela-

tions. One easily checks that the scaling functions are biorthogonal

�

�

(d)

j

;

e

�

(d;

~

d)

j

�

L

2

(0;1)

= I;

where (�; �) denotes the inner product on L

2

(0; 1) de�ned by (2.9). Moreover, the

wavelet bases

	

(d;

~

d)

:= �

(d)

j

0

[

j�j

0

	

(d;

~

d)

j

;

e

	

(d;

~

d)

:=

e

�

(d;

~

d)

j

0

[

j�j

0

e

	

(d;

~

d)

j

are biorthogonal, i.e.,

�

	

(d;

~

d)

;

e

	

(d;

~

d)

�

L

2

(0;1)

= I:

For the sake of simplicity in representation, we will indicate in the sequel the

scaling functions on the coarsest level of the wavelet bases by 	

(d;

~

d)

j

0

�1

:= �

(d)

j

0

and

e

	

(d;

~

d)

j

0

�1

:=

e

�

(d;

~

d)

j

0

. Moreover, we set 4

j

0

�1

:= 4

j

0

. Clearly, the coarsest level j

0

has to be chosen large enough to ensure that the diameter of the supports of the

scaling functions and the wavelets is smaller that 1. Comparing (3.1), (3.4) and

(3.8) implies

j

0

� log

2

�

diam

�

supp

e

�

(d;

~

d)

��

= log

2

(d+ 2

~

d� 2):

3.4. Matrix compression

Discretizing an integral operatorA : H

q

(0; 1)! H

�q

(0; 1) by biorthogonal wavelet

bases leads to quasi-sparse matrices. In a �rst compression step all matrix en-

tries, for which the distances of the supports (on the given boundary �) of the

corresponding Ansatz and test functions are bigger than a level depending cut-o�

parameter B

j;j

0

, are set to zero. In the second compression step some of those ma-

trix entries are set to zero, for which the corresponding Ansatz and test functions

have overlapping supports.

More precisely, for a given J > j

0

we discretize the integral operator A by the

wavelet basis 	

(d;

~

d)

J

:=

S

J�1

j=j

0

�1

	

(d;

~

d)

j

instead by the single-scale basis �

(d)

J

. We

introduce the abbreviations

�

(d;

~

d)

j;k

:=

�

x = 
(s) 2 R

2

: s 2 supp 

(d;

~

d)

j;k

	

;

�

(d;

~

d)

j;k

:=

�

x = 
(s) 2 R

2

: @ " > 0

�

�

 

(d;

~

d)

j;k

2 C

1

(s� "; s+ ")

	

:

Note that �

(d;

~

d)

j;k

denotes the support of  

(d;

~

d)

j;k

�


�1

while �

(d;

~

d)

j;k

denotes the so-called

singular support of  

(d;

~

d)

j;k

� 


�1

, i.e., those points where  

(d;

~

d)

j;k

� 


�1

is not smooth.
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The compressed system matrix A

 

corresponding to A is given by

[A

 

]

(j;k);(j

0

;k

0

)

:=

8

>

>

>

>

<

>

>

>

>

:

0; dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

j;j

0

; j; j

0

� j

0

;

0; dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

0

j;j

0

; j

0

> j;

0; dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

0

j;j

0

; j > j

0

;

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

�

L

2

(0;1)

; otherwise:

(3.10)

Herein, choosing

a; a

0

> 1; d < �; �

0

<

~

d+ 2q; (3.11)

the cut-o� parameters B

j;j

0

and B

0

j;j

0

are set as follows

B

j;j

0

= a max

n

2

�minfj;j

0

g

; 2

2J(��q)�(j+j

0

)(�+

~

d)

2(

~

d+q)

o

;

B

0

j;j

0

= a

0

max

n

2

�maxfj;j

0

g

; 2

2J(�

0

�q)�(j+j

0

)�

0

�maxfj;j

0

g

~

d

~

d+2q

o

:

(3.12)

It is shown in [35] that this compression strategy reduces the number of nonzero

entries to O(N

J

) without any loss of accuracy and stability of the underlying

Galerkin scheme. The resulting structure of the compressed matrix is �guratively

called �nger structure, cf. �gure 1.

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 73000

Figure 1: The structure of the compressed system matrix.
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3.5. Wavelet preconditioning

The single layer operator and the hypersingular operator are operators of order

di�erent from zero. Hence, the system matrix A

 

is ill conditioned. According to

[5, 35], for example, the wavelet approach o�ers an simple diagonal preconditioner.

Let us de�ne the number q := sup

�

q 2 R :

e

 

(d;

~

d)

2 H

q

(0; 1)

	

which characterizes

the regularity of the dual wavelet basis. Moreover, we introduce the diagonal

matrix D

r

by

�

D

r

�

(j;k);(j

0

;k

0

)

= 2

rj

�

j;j

0

�

k;k

0

; k 2 4

j

; k

0

2 4

j

0

; j

0

� 1 � j; j

0

< J: (3.13)

Then, ifA : H

q

(0; 1)! H

�q

(0; 1) denotes an integral operator of order 2q with>�

q, the corresponding system matrixA

 

is spectrally equivalent to D

2q

. Therefore,

the system matrix D

�q

A

 

D

�q

is well conditioned, i.e.,

cond

l

2

(D

�q

A

 

D

�q

) � 1:

Note that the coe�cients on the main diagonal of A

 

satisfy

�

A 

(d;

~

d)

j;k

;  

(d;

~

d)

j;k

�

L

2

(0;1)

� 2

2qj

; k 2 4

j

; j

0

� 1 � j < J:

Therefore, the above preconditioning can be replaced by a diagonal scaling. In

fact, the diagonal scaling improves and simpli�es the wavelet preconditioning.

4. The discrete wavelet Galerkin scheme

4.1. Changing bases

Generally written, in the single-scale basis we obtain the Galerkin system

(A

�

+ �B

�

)�

�

= f

�

(4.1)

with the unknown density vector �

�

. Hereby, A

�

is the system matrix corre-

sponding to a boundary integral operator A : H

q

(0; 1) ! H

�q

(0; 1), B

�

is the

mass matrix belonging to the identity operator, f

�

is the vector of the right hand

side and � is some real constant. We denote by T the transposed fast wavelet

transform, i.e., the basis transform for the dual bases given by

X

k24

J

a

k

e

�

(d;

~

d)

k;J

=

J�1

X

j=j

0

�1

X

k24

j

b

j;k

e

 

(d;

~

d)

j;k

; [b

j;k

]

k24

j

;j

0

�1�j<J

= T[a

k

]

k24

J

;
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see [3] for details. Then, the change from the single-scale basis into the biorthog-

onal wavelet basis corresponds to the system

T(A

�

+ �B

�

)T

?

�

 

= Tf

�

; �

�

= T

?

�

 

:

Clearly, assemblingB

�

and f

�

has a complexity O(N

J

). Moreover, it is well known

that the application of T and T

?

to a vector requires only O(N

J

) operations,

cf. [3]. Hence, utilizing iterative methods for the solution of the linear system of

equations we may concentrate in the sequel on the e�cient computation of the

compressed matrix A

 

� TA

�

T

?

solving the system

(A

 

+ �TB

�

T

?

)�

 

= Tf

�

; �

�

= T

?

�

 

: (4.2)

Remark 4.1. The equation of the second kind for the exterior Dirichlet prob-

lem (2.23), the equation of the second kind for the interior Neumann prob-

lem (2.38) and the equation of the �rst kind for the Neumann problem (2.34),

lead to a singular linear system (4.2). Therefore, we discarded one unknown of

the single-scale basis solving a reduced system. Analogously in the multiscale

basis we omit one of the scaling functions on the coarsest grid. Without loss of

generality we discard the �rst scaling function �

(d)

j

0

;0

=  

(d;

~

d)

j

0

�1;0

. Then, the appli-

cation of TB

�

T

?

to the reduced vector ~� in the iterative solver is performed as

follows: We compute the vector

�

a

b

�

:= TB

�

T

?

�

0

~�

�

and continue the iteration

with b. At the end we get the solution �

�

= T

?

[

0

~�

�

, for which the postulated side

conditions are computed as seen in section 2..

4.2. Computing distances between wavelets

To set up the compression pattern according to (3.10), we have to compute the

distances dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

and dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

. The �rst distance is required

if j; j

0

� j

0

while the second distance is required if j

0

> j � j

0

� 1.

The crucial idea for the evaluation of the distance dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

is to �nd

disks B(m

j;k

; r

j;k

) := fx 2 R

2

: jx�m

j;k

j � r

j;k

g with �

(d;

~

d)

j;k

� B(m

j;k

; r

j;k

). Then,

consequently, one has

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

� maxf0; jm

j;k

�m

j

0

;k

0

j � r

j;k

� r

j

0

;k

0

g:

We start on the �nest level J � 1 to compute these disks. For this, note that we

obtain for all k 2 4

j

, j � j

0

, from (3.8)

supp 

(d;

~

d)

j;k

= 2

�j

h

k + 1�

d+

~

d

2

; k +

d+

~

d

2

i

=: 2

�j

[k + l; k + l]: (4.3)

Invoking (4.3) we calculate

x

k

:= 


�

2

1�J

(k + l)

�

; x

k

:= 


�

2

1�J

(k + l)

�

; k 2 4

J�1

:



20

Then, assuming that J is large enough, the disk determined by m

J�1;k

:= (x

k

+

x

k

)=2 and r

J�1;k

:= jx

k

� x

k

j=2 satis�es �

(d;

~

d)

J�1;k

� B(m

J�1;k

; r

J�1;k

). Next, from

(4.3) we deduce

supp 

(d;

~

d)

j;k

= supp 

(d;

~

d)

j+1;2k+l

[ supp 

(d;

~

d)

j+1;2k+l

for all k 2 4

j

, j � j

0

. Hence, computing recursively B(m

j;k

; r

j;k

) with

B(m

j;k

; r

j;k

) � B(m

j+1;2k+l

; r

j+1;2k+l

) [B(m

j+1;2k+l

; r

j+1;2k+l

)

we obtain for all k 2 4

j

, J � 1 > j � j

0

, the disks on the coarser levels. Note,

the complexity for determining all the disks B(m

j;k

; r

j;k

) is O(N

J

) +O(N

J

=2) +

O(N

J

=4) + : : : + O(1) = O(N

J

), i.e., the complexity is linear. Moreover, with

these disks we also can determine the distance dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

in the following

way. For j � j

0

the singular support �

(d;

~

d)

j;k

consists only of points 
(s), where

s 2 [0; 1] is a point of the grid on the level j + 1. Consequently, observing (4.3),

we de�ne

S

j;k

:= f
(2

�(j+1)

l) : l 2 4

j+1

and 2(k + l) � l � 2(k + l)g

to obtain a set of 2(d+

~

d)�1 points with �

(d;

~

d)

j;k

� S

j;k

. Furthermore, (3.1) implies

that the singular support of the scaling functions �

(d)

j

0

= 	

(d;

~

d)

j

0

�1

consists of the d+1

points contained in

S

j

0

�1;k

:= f
(2

�j

0

l) : l 2 4

j

0

and k � bd=2c � l � k + dd=2eg:

By these sets we obtain

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

� maxf0; min

x2S

j;k

jx�m

j

0

;k

0

j � r

j

0

;k

0

g:

4.3. Setting up the compression pattern

The compression strategy introduced in subsection 3.4. leads to a sparse system

matrix A

 

. We �rst collect some important properties concerning the structure

of this matrix.

� As one easily checks by (3.12), the cut-o� parameters B

j;j

0

and B

0

j;j

0

, respec-

tively, are symmetric with respect to the levels j and j

0

, i.e.,

B

j;j

0

= B

j

0

;j

; B

0

j;j

0

= B

0

j

0

;j

:

Therefore, due to the symmetry of the distance function, one deduces that

the structure of the compressed system matrix is symmetric.



21

� Naturally, the wavelet basis has a father-son relation with respect to the

supports. More precisely, there holds

�

(d;

~

d)

j+1;2k

;�

(d;

~

d)

j+1;2k+1

� �

(d;

~

d)

j;k

; k 2 4

j

; j � j

0

; (4.4)

cf. (4.3). In addition, (3.12) implies

B

j+1;j

0

+1

� B

j+1;j

0

� B

j;j

0

; j; j

0

� j

0

:

Hence, combining the father-son relation (4.4) with the latter relation, it

follows for j; j

0

� j

0

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

j;j

0

=)

(

dist

�

�

(d;

~

d)

j+1;2k

;�

(d;

~

d)

j

0

;k

0

�

> B

j+1;j

0

;

dist

�

�

(d;

~

d)

j+1;2k+1

;�

(d;

~

d)

j

0

;k

0

�

> B

j+1;j

0

;

(4.5)

and

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

j;j

0

=)

8

>

>

>

>

<

>

>

>

>

:

dist

�

�

(d;

~

d)

j+1;2k

;�

(d;

~

d)

j

0

+1;2k

0

�

> B

j+1;j

0

+1

;

dist

�

�

(d;

~

d)

j+1;2k

;�

(d;

~

d)

j

0

+1;2k

0

+1

�

> B

j+1;j

0

+1

;

dist

�

�

(d;

~

d)

j+1;2k+1

;�

(d;

~

d)

j

0

+1;2k

0

�

> B

j+1;j

0

+1

;

dist

�

�

(d;

~

d)

j+1;2k+1

;�

(d;

~

d)

j

0

+1;2k

0

+1

�

> B

j+1;j

0

+1

:

(4.6)

� On the other hand, for the cut-o� parameter B

0

j;j

0

we �nd by (3.12)

B

0

j+1;j

0

� B

j;j

0

; j > j

0

� j

0

� 1:

Invoking (4.4) this inequality yields

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

> B

0

j;j

0

=)

(

dist

�

�

(d;

~

d)

j+1;2k

;�

(d;

~

d)

j

0

;k

0

�

> B

0

j+1;j

0

;

dist

�

�

(d;

~

d)

j+1;2k+1

;�

(d;

~

d)

j

0

;k

0

�

> B

0

j+1;j

0

;

(4.7)

for j > j

0

� j

0

� 1.

Performing the compression we are interested in the index sets I

j;j

0

, j

0

�1 � j; j

0

<

J , consisting of all pairs (k; k

0

) of indices corresponding to matrix entries which

have to be evaluated. Combining (4.5), (4.6) and (4.7) with the symmetric com-

pression structure, one may formulate the following algorithm, given in pseudo
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code language. Herein, the result of the function compute

�

 

(d;

~

d)

j;k

;  

(d;

~

d)

j

0

;k

0

�

is sup-

posed to be true, if the matrix entry

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

�

L

2

(0;1)

has to be computed

according to (3.10). Else it is false.

Algorithm 4.2.

initialisation: I

j

0

�1;j

0

�1

:= I

j

0

�1;j

0

:= I

j

0

;j

0

�1

:= I

j

0

;j

0

:= f4

j

0

�4

j

0

g

for j := j

0

+ 1 to J � 1 do begin

for j

0

:= j

0

� 1 to j � 1 do begin

I

j;j

0

:= fg C: compute I

j;j

0

from I

j�1;j

0

(4.5), (4.7)

for all (k; k

0

) 2 I

j�1;j

0

do begin

if

�

compute

�

 

(d;

~

d)

j;2k

;  

(d;

~

d)

j

0

;k

0

�

= true

�

I

j;j

0

:= I

j;j

0

[ f(2k; k

0

)g

if

�

compute

�

 

(d;

~

d)

j;2k+1

;  

(d;

~

d)

j

0

;k

0

�

= true

�

I

j;j

0

:= I

j;j

0

[ f(2k + 1; k

0

)g

end

I

j

0

;j

:= I

j;j

0

C: according to symmetry

end

I

j;j

:= fg C: compute I

j;j

from I

j�1;j�1

(4.6)

for all (k; k

0

) 2 I

j�1;j�1

do begin

if

�

compute

�

 

(d;

~

d)

j;2k

;  

(d;

~

d)

j;2k

0

�

= true

�

I

j;j

:= I

j;j

[ f(2k; 2k

0

)g

if

�

compute

�

 

(d;

~

d)

j;2k+1

;  

(d;

~

d)

j;2k

0

�

= true

�

I

j;j

:= I

j;j

[ f(2k + 1; 2k

0

)g

if

�

compute

�

 

(d;

~

d)

j;2k

;  

(d;

~

d)

j;2k

0

+1

�

= true

�

I

j;j

:= I

j;j

[ f(2k; 2k

0

+ 1)g

if

�

compute

�

 

(d;

~

d)

j;2k+1

;  

(d;

~

d)

j;2k

0

+1

�

= true

�

I

j;j

:= I

j;j

[ f(2k + 1; 2k

0

+ 1)g

end

end

Obviously, the complexity of this algorithm can be estimated by the number of

nonzero elements of the compressed system matrix A

 

, that is by O(N

J

).

4.4. Computing the system matrix

For the computation of the system matrix A

 

one has to calculate for j

0

� 1 �

j; j

0

< J all coe�cients

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

�

L

2

(0;1)

, for which the pair (k; k

0

) is found in

the set I

j;j

0

. For the sake of simplicity we assume that j; j

0

� j

0

, i.e., we omit the

scaling functions on the coarsest level j

0

�1. The described strategy can also used

in the case j = j

0

� 1 or j

0

= j

0

� 1 but the formulas must be modi�ed slightly.
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We abbreviate in the sequel analogously to (2.24)

�

(d)

(j;k);(j

0

;k

0

)

:=

�

A�

(d)

j

0

;k

0

; �

(d)

j;k

�

L

2

(0;1)

: (4.8)

Then, utilizing the re�nement relation (3.6) each matrix entry splits into the �nite

sum

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

�

L

2

(0;1)

=

X

l

X

l

0

b

l

b

l

0

�

(d)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

(4.9)

with b

k

from (3.7). Since the intersection of the supports of di�erent wavelets

might not be empty, a naive calculation of (4.9) leads to repeated computation of

the values �

(d)

(j;k);(j

0

;k

0

)

. Hence, we develop a strategy to avoid multiple calculation.

In the case of piecewise constant functions one �nds analogously to (2.25)

�

(1)

(j;k);(j

0

;k

0

)

=

p

h

j

h

j

0

Z

1

0

Z

1

0

k

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

dtds; (4.10)

where k(s; t) is the given kernel function. We introduce the sets Q

j;j

0

, j

0

<

j; j

0

� J , where every calculated triple

�

(k; k

0

); �

(1)

(j;k);(j

0

;k

0

)

�

is stored. Then, if

a special value �

(1)

(j;k);(j

0

;k

0

)

is required, one �rst checks if the corresponding triple

�

(k; k

0

); �

(1)

(j;k);(j

0

;k

0

)

�

is contained in Q

j;j

0

, else one computes and stores it.

For piecewise linear function we perform a related strategy. We de�ne analo-

gously to (2.26)

�

(2;i)

(j;k);(j

0

;k

0

)

:=

p

h

j

h

j

0

Z

1

0

Z

1

0

k

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p

i

(s; t) dtds; (4.11)

with p

i

(s; t), i = 1; 2; 3; 4, given by (2.27). Then, similar to (2.28), one �nds

�

(2)

(j;k);(j

0

;k

0

)

= �

(2;1)

(j;k�1);(j

0

;k

0

�1)

+ �

(2;2)

(j;k�1);(j

0

;k

0

)

+ �

(2;3)

(j;k);(j

0

;k

0

�1)

+ �

(2;4)

(j;k);(j

0

;k

0

)

: (4.12)

Inserting this equation into (4.9) yields

�

A 

(2;

~

d)

j

0

;k

0

;  

(2;

~

d)

j;k

�

L

2

(0;1)

=

X

l

X

l

0

b

l

b

l

0

h

�

(2;1)

(j+1;2k+l�1);(j

0

+1;2k

0

+l

0

�1)

+ �

(2;2)

(j+1;2k+l�1);(j

0

+1;2k

0

+l

0

)

+ �

(2;3)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

�1)

+ �

(2;4)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

i

:
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Resorting the sums leads to

�

A 

(2;

~

d)

j

0

;k

0

;  

(2;

~

d)

j;k

�

L

2

(0;1)

=

X

l

X

l

0

h

b

l+1

b

l

0

+1

�

(2;1)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

+ b

l+1

b

l

0

�

(2;2)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

+ b

l

b

l

0

+1

�

(2;3)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

+ b

l

b

l

0

�

(2;4)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

i

: (4.13)

Hence, to avoid multiple calculations we de�ne sets Q

j;j

0

, j

0

< j; j

0

� J , where

we store the required tuples

�

(k; k

0

); �

(2;1)

(j;k);(j

0

;k

0

)

; �

(2;2)

(j;k);(j

0

;k

0

)

; �

(2;3)

(j;k);(j

0

;k

0

)

; �

(2;4)

(j;k);(j

0

;k

0

)

�

.

Then, the strategy is similar to above, i.e., before calculating values we search for

them in the corresponding set Q

j;j

0

. If these values are not contained in this set,

we calculate and store them.

Remark 4.3. As we have seen in subsection 2.4., in the single-scale basis the

system matrix corresponding to the hypersingular can be derived from the system

matrix corresponding to the single layer operator. A similar approach exists for

the wavelet bases: According to [3] we conclude

�

 

(d;

~

d)

�

0

=  

(d�1;

~

d+1)

which implies

�

W 

(2;

~

d)

j

0

;k

0

;  

(2;

~

d)

j;k

�

L

2

(0;1)

=

�

V  

(1;

~

d+1)

j

0

;k

0

;  

(1;

~

d+1)

j;k

�

L

2

(0;1)

:

In other words, one computes an entry of the system matrix of the hypersingular

operator with respect to piecewise linear wavelets 	

(2;

~

d)

like an entry of the system

matrix of the single layer operator with respect to piecewise constant wavelets

	

(1;

~

d+1)

.

Since we have to compute O(N

J

) entries in A

 

, the required memory for storing

the sets Q

j;j

0

, j

0

< j; j

0

� J , is O(N

J

). Moreover, note that, if one has evaluated

all pairs (k; k

0

) 2 I

j;j

0

, one may delete the set Q

j+1;j

0

+1

to reduce the required

main memory.

5. Numerical quadrature

5.1. Error estimations on the reference domain

As we have seen in the last sections it is su�cient to develop quadrature schemes

on � := [0; 1]

2

for the single layer and the double layer kernel, cf. (2.25), (2.26),

(4.10) and (4.11). For the quadrature we utilize tensor product Gau�-Legendre

rules on �, for which we state �rst a general error estimation. For this, let us set

I

[0;1]

f :=

Z

1

0

f(s)ds:
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The g-point Gau�-Legendre formula on [0; 1]

Q

[0;1]

g

f :=

g

X

i=1

!

g;i

f

�

�

g;i

�

applied to f 2 C

2g

(0; 1) can be estimated as

R

[0;1]

g

f :=

�

�

I

[0;1]

f �Q

[0;1]

g

f

�

�

.

2

�4g

(2g)!

max

s2[0;1]

�

�

f

(2g)

(s)

�

�

; (5.1)

cf. [23]. Further, we de�ne for a given f 2 L

2

(�)

I

�

f :=

�

I

[0;1]

� I

[0;1]

�

f =

Z

�

f(s; t)d(s; t)

and the product Gau�-Legendre quadrature formula

Q

�

g;g

0

(f) :=

�

Q

[0;1]

g

�Q

[0;1]

g

0

�

f =

g

X

i=1

g

0

X

i

0

=1

!

g;i

!

g

0

;i

0

f

�

�

g;i

; �

g

0

;i

0

�

:

Since

R

�

g;g

0

f := I

�

f �Q

�

g;g

0

f

=

h

�

I

[0;1]

� I

[0;1]

�

�

�

Q

[0;1]

g

�Q

[0;1]

g

0

�

i

f

=

h

�

I

[0;1]

� I

[0;1]

�

�

�

I

[0;1]

�Q

[0;1]

g

0

�

+

�

I

[0;1]

�Q

[0;1]

g

0

�

�

�

Q

[0;1]

g

�Q

[0;1]

g

0

�

i

f

=

h

I

[0;1]

�

�

I

[0;1]

�Q

[0;1]

g

0

�

i

f +

h

�

I

[0;1]

�Q

[0;1]

g

�

�Q

[0;1]

g

0

i

f

we obtain the estimate

�

�

R

�

g;g

0

f

�

�

� I

[0;1]

max

t2[0;1]

�

�

R

[0;1]

g

0

f(�; t)

�

�

+Q

[0;1]

g

0

max

s2[0;1]

�

�

R

[0;1]

g

f(s; �)

�

�

;

Hence, if f 2 C

2g

(0; 1)�C

2g

0

(0; 1), we estimate according to (5.1) the quadrature

error R

�

g;g

0

f by

R

�

g;g

0

f .

2

�4g

(2g)!

max

(s;t)2�

�

�

�

@

2g

f(s; t)

@s

2g

�

�

�

+

2

�4g

0

(2g

0

)!

max

(s;t)2�

�

�

�

@

2g

0

f(s; t)

@t

2g

0

�

�

�

: (5.2)

5.2. Quadrature of the double layer operator

We abbreviate

k

K

(s; t) :=

@

@n

t

E

�


(s); 
(t)

�

�(t) =

�(t)

2�

�

n

t

�


(s)� 
(t)

�

j
(s)� 
(t)j

2

: (5.3)
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Since the parametrization 
 is smooth, we may utilize a Taylor expansion


(s) = 
(t) + 


0

(t)(s� t) +

1

2




00

(t)(s� t)

2

+O(js� tj

3

):

Observing that n

t




0

(t) = 0 this implies

k

K

(s; t) =

1

2�

(

n

t

(
(s)�
(t))

j
(s)�
(t)j

2

�(t); s 6= t;

n

t




00

(t)

2�(t)

; s = t:

Moreover, employing the Taylor expansion of 
, it is easy to verify that the ker-

nel (5.3) is analytic in � if 
 is analytic in [0; 1]. Hence, there exists a constant

r > 0 such that

@

�

k

K

(s; t)

@s

�

.

�!

r

�

;

@

�

k

K

(s; t)

@t

�

.

�!

r

�

; (5.4)

uniformly for � 2 N . According to (2.25) and (4.10), we have to calculate for

piecewise constant functions

�

(1)

(j;k);(j

0

;k

0

)

=

p

h

j

h

j

0

Z

1

0

Z

1

0

k

K

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

dtds:

Setting f(s; t) :=

p

h

j

h

j

0

k

K

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

the estimate (5.4) implies

@

�

f(s; t)

@s

�

.

p

h

j

h

j

0

h

�

j

r

�

�!;

@

�

f(s; t)

@t

�

.

p

h

j

h

j

0

h

�

j

0

r

�

�!:

Combining this with (5.2) yields

R

�

g;g

0

f .

p

h

j

h

j

0

�

2

�4g

h

2g

j

r

�2g

+ 2

�4g

0

h

2g

0

j

0

r

�2g

0

�

: (5.5)

Observing h

j

= 2

�j

and h

j

0

= 2

�j

0

, a quadrature error . "

j;j

0

is ensured by the

choice

g

j;j

0

=

&

�

log

2

"

j;j

0

+

j+j

0

2

2(j + 2 + log

2

r)

'

; g

0

j;j

0

=

&

�

log

2

"

j;j

0

+

j+j

0

2

2(j

0

+ 2 + log

2

r)

'

; (5.6)

For piecewise linear functions we are interested in the degree of the quadrature

required for computing

�

(2;i)

(j;k);(j

0

;k

0

)

=

p

h

j

h

j

0

Z

1

0

Z

1

0

k

K

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p

i

(s; t)dtds

with a given precision "

j;j

0

. Herein, p

i

(s; t) are polynomials of degree one de�ned

by (2.27). One easily checks

jp

i

(s; t)j � 1;

�

�

�

@p

i

(s; t)

@s

�

�

�

� 1;

�

�

�

@p

i

(s; t)

@t

�

�

�

� 1; i = 1; 2; 3; 4: (5.7)
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Substituting f(s; t) :=

p

h

j

h

j

0

k

K

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p

i

(s; t) yields by (5.4) and

(5.7) the estimate

@

�

f(s; t)

@s

�

.

p

h

j

h

j

0

h

��1

j

r

��1

(�� 1)!;

@

�

f(s; t)

@t

�

.

p

h

j

h

j

0

h

��1

j

0

r

��1

(�� 1)!:

Consequently, from (5.2) and the latter estimate we deduce

R

�

g;g

0

f .

p

h

j

h

j

0

�

2

�4g

h

2g�1

j

r

1�2g

+ 2

�4g

0

h

2g

0

�1

j

0

r

1�2g

0

�

: (5.8)

Therefore, for getting R

�

g;g

0

f . "

j;j

0

we set

g

j;j

0

=

&

�

log

2

"

j;j

0

+

j

0

�j

2

2(j + 2 + log

2

r)

'

; g

0

j;j

0

=

&

�

log

2

"

j;j

0

+

j�j

0

2

2(j

0

+ 2 + log

2

r)

'

: (5.9)

5.3. Quadrature of the single layer operator

It is su�cient to develop a quadrature scheme for evaluating double integrals of

the kind

�

(j;k);(j

0

;k

0

)

:=

Z

1

0

Z

1

0

k

V

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p(s; t)dtds;

where k

V

(s; t) denotes the weakly singular kernel function

k

V

(s; t) := E

�


(s); 
(t)

�

= �

1

2�

log j
(s)� 
(t)j

and p(s; t) indicates a polynomial in s and t of degree � 1. The goal is to split

the kernel function

k

V

(s; t) = k

(1)

V

(s; t) + k

(2)

V

(s; t)

into a smooth kernel k

(1)

V

(s; t) and a weakly singular, but analytically integrable,

kernel k

(2)

V

(s; t). Then, the second integral on the right hand side of

�

(j;k);(j

0

;k

0

)

=

Z

1

0

Z

1

0

k

(1)

V

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p(s; t)dtds (5.10)

+

Z

1

0

Z

1

0

k

(2)

V

�

t

(j)

k

+ h

j

s; t

(j

0

)

k

0

+ h

j

0

t

�

p(s; t)dtds

can be computed exactly. In the sequel we assume that j; j

0

� 2. Consequently,

h

j

= diam[t

(j)

k

; t

(j)

k+1

] �

1

4

and h

j

0

= diam[t

(j

0

)

k

0

; t

(j

0

)

k

0

+1

] �

1

4

. This is no restriction
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since we may subdivide one or both integrals to ensure this supposition. Denoting

by m;m

0

the midpoints of the integration intervals,

m :=

1

2

�

t

(j)

k

+ t

(j)

k+1

�

; m

0

:=

1

2

�

t

(j

0

)

k

0

+ t

(j

0

)

k

0

+1

�

;

there occur three cases:

1. Case: jm�m

0

j �

1

2

We split the kernel by

k

V

(s; t) = �

1

4�

log j
(s)� 
(t)j

2

= �

1

4�

log

�

�


(s)� 
(t)

�

�

2

(s� t)

2

�

1

4�

log(s� t)

2

=: k

(1)

V

(s; t) + k

(2)

V

(s; t):

Due to the smoothness of 
 we �nd

k

(1)

V

(s; t) = �

1

4�

(

log

j
(s)�
(t)j

2

(s�t)

2

; s 6= t;

log

�

�

2

(t)

�

; s = t;

hence, the kernel k

(1)

V

(s; t) is analytic in the domainQ := f(s; t) 2 � : js�tj <

1g. From jm�m

0

j <

1

2

and h

j

; h

j

0

�

1

4

we deduce that

js� tj <

3

4

8 (s; t) 2 [t

(j)

k

; t

(j)

k+1

]� [t

(j

0

)

k

0

; t

(j

0

)

k

0

+1

];

i.e., the distance to the singularity point (s; t) with js� tj = 1 is �

1

4

.

2. Case: 1 +m�m

0

<

1

2

We choose now

k

(1)

V

(s; t) := �

1

4�

log

�

�


(s)� 
(t)

�

�

2

(1 + s� t)

2

; k

(2)

V

(s; t) := �

1

4�

log(1 + s� t)

2

:

It follows

k

(1)

V

(s; t) = �

1

4�

(

log

j
(s)�
(t)j

2

(1+s�t)

2

; (s; t) 6= (0; 1);

log

�

�

2

(t)

�

; (s; t) = (0; 1);

which implies that the kernel k

(1)

V

(s; t) is analytic in the domainQ := f(s; t) 2

� n (0; 1)g. From 1 +m�m

0

<

1

2

and h

j

; h

j

0

�

1

4

, we deduce

j1 + s� tj <

3

4

8 (s; t) 2 [t

(j)

k

; t

(j)

k+1

]� [t

(j

0

)

k

0

; t

(j

0

)

k

0

+1

];

i.e., the distance to the singularity (s; t) = (0; 1) is �

1

4

.
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3. Case: 1 +m

0

�m <

1

2

Similarly to the second case we set

k

(1)

V

(s; t) := �

1

4�

log

�

�


(s)� 
(t)

�

�

2

(1 + t� s)

2

; k

(2)

V

(s; t) := �

1

4�

log(1 + t� s)

2

:

For the kernel k

(1)

V

(s; t) one �nds

k

(1)

V

(s; t) = �

1

4�

(

log

j
(s)�
(t)j

2

(1+t�s)

2

; (s; t) 6= (1; 0);

log

�

�

2

(t)

�

; (s; t) = (1; 0):

The kernel k

(1)

V

(s; t) is analytic in the domain Q := f(s; t) 2 � n (1; 0)g.

Furthermore, analogously to the second case, the distance to the singularity

(s; t) = (1; 0) is �

1

4

.

In all three cases the second term on the left hand side of (5.10) can be derived

by the following primitives

Z Z

log(s� t)

2

dtds =

1

2

(s� t)

2

�

3� log(s� t)

2

�

;

Z Z

log(s� t)

2

s dtds =

1

18

(s� t)

2

�

16s+ 11t� (6s+ 3t) log(s� t)

2

�

;

Z Z

log(s� t)

2

t dtds =

1

18

(s� t)

2

�

16t+ 11s� (6t+ 3s) log(s� t)

2

�

;

Z Z

log(s� t)

2

s t dtds = �

1

16

(s+ t)

2

�

(s + t)

2

+ 2(s� t)

2

log(s� t)

2

�

:

We utilize numerical quadrature for the �rst term on the left hand side of (5.10).

As we have seen, in all cases the distance to the weak singularity of k

(1)

V

(s; t) is �

1

4

independently of (j; k) and (j

0

; k

0

). Since the kernel k

(1)

V

(s; t) is analytic except in

the singularity, we deduce that there exists a constant 0 < r � 1=4 such that

@

�

k

(1)

V

(s; t)

@s

�

.

�!

r

�

;

@

�

k

(1)

V

(s; t)

@t

�

.

�!

r

�

; (5.11)

uniformly for � 2 N . Since (5.11) agrees with (5.4) we may adopt the argumen-

tation of the previous subsection. Therefore, to ensure a quadrature error . "

j;j

0

we have to choose the degrees g

j;j

0

and g

0

j;j

0

from (5.6) if d = 1 and from (5.9) if

d = 2.
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5.4. The recycling scheme

Using the analysis of the wavelet Galerkin scheme as a guideline, it turns out

that the required accuracy for the computation of the integrals �

(1)

(j;k);(j

0

;k

0

)

and

�

(2;i)

(j;k);(j

0

;k

0

)

, respectively, depends strongly on the involved scales (j; j

0

), cf. [12, 32,

35]. In particular, the highest accuracy is required on the coarsest levels, that is

(j; j

0

) = (j

0

; j

0

), while for the integrals on the �nest levels, that is (j; j

0

) = (J; J),

the required accuracy is low. More precisely, it is su�cient to choose

"

j;j

0

. 2

�2J(d�q)

2

(j+j

0

)d

;

cf. [5, 12, 32]. According to the formulas (5.6) and (5.9) one has to be very careful

if the parameter r is small. In this case, one has to avoid denominators close to

zero. This requires that h

j

; h

j

0

< r. In order to satisfy this condition, one has to

subdivide the large domains of integration. On the other hand, on �ner scales we

already have to compute such integrals over small domains. Therefore, we propose

another approach. We compute integrals on the �ne scales with the accuracy

required on the coarse scales and reuse these results also for the computation of

the coarse scale coe�cients. This reduces the number of functions signi�cantly.

In particular, by the formulas (4.9) and (4.13) the computation of an matrix

entry

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

�

L

2

(0;1)

of the compressed system matrix A

 

reduces to the

computation of the integrals �

(1)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

and �

(2;i)

(j+1;2k+l);(j

0

+1;2k

0

+l

0

)

, re-

spectively. The crucial idea of the recycling scheme is to invoke the re�nement

relation (3.2) of the scaling functions. Then, for d = 1 one �nds for the integrals

�

(1)

(j;k);(j

0

;k

0

)

the relations

�

(1)

(j;k);(j

0

;k

0

)

=

1

p

2

�

�

(1)

(j+1;2k);(j

0

;k

0

)

+ �

(1)

(j+1;2k+1);(j

0

;k

0

)

�

;

�

(1)

(j;k);(j

0

;k

0

)

=

1

p

2

�

�

(1)

(j;k);(j

0

+1;2k

0

)

+ �

(1)

(j;k);(j

0

+1;2k

0

+1)

�

:

Since for d = 2 we compute the integrals over the smooth parts of the scaling

functions, we additionally invoke (4.11) which gives for the integrals �

(2;i)

(j;k);(j

0

;k

0

)

the relations

�

(2;1)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;1)

(j+1;2k);(j

0

;k

0

)

+ 2�

(2;1)

(j+1;2k+1);(j

0

;k

0

)

+ �

(2;3)

(j+1;2k+1);(j

0

;k

0

)

�

;

�

(2;2)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;2)

(j+1;2k);(j

0

;k

0

)

+ 2�

(2;2)

(j+1;2k+1);(j

0

;k

0

)

+ �

(2;4)

(j+1;2k+1);(j

0

;k

0

)

�

;

�

(2;3)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;1)

(j+1;2k);(j

0

;k

0

)

+ 2�

(2;3)

(j+1;2k);(j

0

;k

0

)

+ �

(2;3)

(j+1;2k+1);(j

0

;k

0

)

�

;

�

(2;4)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;4)

(j+1;2k);(j

0

;k

0

)

+ 2�

(2;4)

(j+1;2k);(j

0

;k

0

)

+ �

(2;2)

(j+1;2k+1);(j

0

;k

0

)

�

;
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and

�

(2;1)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;1)

(j;k);(j

0

+1;2k

0

)

+ 2�

(2;1)

(j;k);(j

0

+1;2k

0

+1)

+ �

(2;2)

(j;k);(j

0

+1;2k

0

+1)

�

;

�

(2;2)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;1)

(j;k);(j

0

+1;2k

0

)

+ 2�

(2;2)

(j;k);(j

0

+1;2k

0

)

+ �

(2;2)

(j;k);(j

0

+1;2k

0

+1)

�

;

�

(2;3)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;3)

(j;k);(j

0

+1;2k

0

)

+ 2�

(2;3)

(j;k);(j

0

+1;2k

0

+1)

+ �

(2;4)

(j;k);(j

0

+1;2k

0

+1)

�

;

�

(2;4)

(j;k);(j

0

;k

0

)

=

1

2

p

2

�

�

(2;3)

(j;k);(j

0

+1;2k

0

)

+ 2�

(2;4)

(j;k);(j

0

+1;2k

0

)

+ �

(2;4)

(j;k);(j

0

+1;2k

0

+1)

�

:

Hence, exploiting these recycling formulas one may use already computed val-

ues for the computation of �

(1)

(j;k);(j

0

;k

0

)

and �

(2;i)

(j;k);(j

0

;k

0

)

instead of applying a direct

quadrature. Starting the computation of the required values

�

A 

(d;

~

d)

j

0

;k

0

;  

(d;

~

d)

j;k

)

L

2

(0;1)

of the compressed matrix A

 

on the �nest levels, i.e., calculating �rst the entries

for which (j; j

0

) = (J � 1; J � 1), a systematically exploitation of the recycling

formulas leads to a natural subdivision of the coarser scales. We mention that the

structure of the compressed matrix implies that almost all computed �

(1)

(j;k);(j

0

;k

0

)

can be used for the computation of the required �

(1)

(j�1;k);(j

0

;k

0

)

and �

(1)

(j;k);(j

0

�1;k

0

)

,

and likewise the �

(2;i)

(j;k);(j

0

;k

0

)

. Moreover, this strategy reduces the number of those

values, for which a direct quadrature is required.

By using the above recycling techniques the computed integrals on the �ner

scales are part of the integrals on the coarser scales. Assuming the worst case,

�

(1)

(j

0

;k);(j

0

;k

0

)

and �

(2;i)

(j

0

;k);(j

0

;k

0

)

consist of 2

(j�j

0

)+(j

0

�j

0

)

values on the scale (j; j

0

). On

the other hand, we have to take into consideration the L

2

-normalization of the

scaling functions. It turns out that we attain a quadrature error . "

j

0

;j

0

on the

coarsest level (j

0

; j

0

) for both, piecewise constant and piecewise linear functions,

by choosing

g

j;j

0

=

�

�

log

2

"

j

0

;j

0

2(j + 2 + log

2

r)

�

; g

0

j;j

0

=

�

�

log

2

"

j

0

;j

0

2(j

0

+ 2 + log

2

r)

�

; (5.12)

Herein, "

j

0

;j

0

. 2

�2J(d�q)

is required to attain the optimal order of convergence

2(d � q) of the Galerkin scheme. As one easily checks, for "

j

0

;j

0

= 2

�2J(d�q)

the

quadrature degree on the �nest scale tends to the (�xed) degree g

J;J

= g

0

J;J

=

dd� qe if J !1. We mention that this degree of quadrature is also necessary to

obtain the optimal order of convergence in the traditional Galerkin scheme.

The main fact to reduce the number of the nonzero coe�cients of A

 

from

O(N

J

log

3

N

J

) to an optimal rate O(N

J

) relies on the second compression. This

compression is active if

dist

�

�

(d;

~

d)

j;k

;�

(d;

~

d)

j

0

;k

0

�

. 2

�minfj;j

0

g

:
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As shown in [35, p. 177] the block matrix

�

A

 

�

(j;4

j

);(j

0

;4

j

0

)

, j > j

0

, consists in this

case of O

�

dim(W

j

)

�

�

instead of O

�

dim(W

j

)

�

entries. Here, � = �(j; j

0

) denotes

some paramter with 0 < � < 1. Choosing the degrees of quadrature as in (5.12),

each matrix element can be computed with O

�

J

2

=((j+ c)(j

0

+ c))

�

function calls.

From an estimate of the form

2

��j

j

2

. 2

��

0

j

with some 0 < �

0

< �, the argumentation in [35] can be repeated to prove that

the over-all number of function calls is O(2

J

) = O(N

J

). Since the detailed proof

of this result is rather technical, we refer to [12] for further details. Let us remark,

that the proof in [12] is also valid in the three dimensional case where singular

kernel functions appear. Indeed, the present case is much easier since only smooth

kernels are involved. Employing the recycling technique gives a further reduction

of the complexity. However, the asymptotic behaviour cannot exceed the optimal

complexity rate.

6. Numerical results

6.1. The model problem

For testing the algorithms we introduce a numerical example for which the solution

is known analytically. We choose � given by


 : [0; 1]! �; 
(t) =

1

20

�

4 + cos(10�t) + cos(2�t)

�

�

cos(2�t)

sin(2�t)

�

;

and 
 as the interior domain 


�

, see �gure 2 for this constellation.

One easily checks that the function

U(x) =

x

1

� 2x

2

+ 0:2

(x

1

� 0:2)

2

+ (x

2

� 0:2)

2

(6.13)

is harmonic in R

2

n f[

0:2

0:2

]g. Hence, the interior Dirichlet problem

�4u= 0 in 
;

u= U

�

�

�

on �;

(6.14)

has the unique solution u = U . The function U is plotted in �gure 2. Since U is

harmonic in 
, it follows that

Z

�

@U(x)

@n

x

ds

x

=

Z

�

n

T

x

rU(x)ds

x

= 0:
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Figure 2: The test domain 
 with the points �

i

of the potential evaluation (left) and the function U(x) =

x

1

�2x

2

+0:2

(x

1

�0:2)

2

+(x

2

�0:2)

2

on 
 (right).

Therefore, the interior Neumann problem

�4u= 0 in 
;

u=

@U

@n

on �;

(6.15)

has the unique solution u = U + c, where c denotes some real constant.

In the sequel we solve both, the Dirichlet and the Neumann problem, by the

boundary integral equations described in this paper. We compute the approxi-

mated density vector �

�

corresponding to the single-scale basis by the traditionally

single-scale Galerkin scheme (4.1) and by the wavelet Galerkin scheme (4.2). For

assembling the Galerkin matrix with respect to the single-scale basis, we choose

the �xed degree of quadrature dd � qe. In the wavelet Galerkin scheme the de-

gree of quadrature is computed by (5.12) with "

j

0

;j

0

= 2

�2J(d�q)

and r = 1=4.

We determine the numerical solution u

�

and u

 

, respectively, by the potential

evaluations (2.13) and (2.17) in �xed points �

i

lying in 
, cf. �gure 2. For the

Dirichlet problem (6.14) we measure the absolute errors max

i

j(u � u

�

)(�

i

)j and

max

i

j(u � u

 

)(�

i

)j, respectively. Since for the Neumann problem (6.15) the so-

lution is given modulo a constant, we calculate in this case the absolute errors

min

c2R

max

i

j(u� u

�

+ c)(�

i

)j and min

c2R

fmax

i

j(u� u

 

+ c)(�

i

)jg, respectively.

6.2. The choice of the compression parameters

First we study the in
uence of the parameters a; a

0

; � and �

0

to the compression and

accuracy of the wavelet Galerkin scheme. For this, we solve the interior Dirichlet

problem (6.14) by the equation of the �rst kind (2.5) and piecewise linear wavelets

	

(2;4)

J

. Since the single layer operator V is an operator of order�1, condition (3.11)

implies that a; a

0

> 1 and 2 < �; �

0

< 3. For the sake of simplicity we set a = a

0

and � = �

0

and choose a �xed N

J

:= 2048. We measure the density of V

 

and
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the absolute error of u

 

for the parameters a and � lying in the range 1 � a � 2

and 2 � � � 3. Herein, the density is the ratio of the number of nonzero elements

divided by N

2

J

. The obtained results are shown in �gure 3. From the plot on the

left hand side one deduces that the absolute error of the numerical solution u

 

does not drop under a �xed value which is independent of a and �. Obviously,

this value is the discretization error. On the other hand, if one chooses a + �

too small the error of compression is larger than the discretization error. Hence,

the error of the numerical solution u

 

increases. The plot on the right hand side

shows the density of the system matrix V

 

while changing the parameters. One

observes that the density seems to grow linearly with a+ �. Summarizing it turns

out, that a + � has to be big enough to ensure that the compression error is not

higher than the discretization error. But a + � should be as small as possible to

obtain the best compression rate.
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Figure 3: The choice of the parameters a; a

0

; � and �

0

from (3.11) vs. the absolute error (left) and vs. the density

of the compressed matrix (right).

6.3. The asymptotic behaviour of the compression

Next, we count the number of nonzero elements in the compressed system matrices

while increasing J . To satisfy (3.11) we have to choose wavelets with a su�cient

numer of vanishing moments

~

d. Since, however, the supports of the wavelets

increase proportionally with the number of vanishing moments (which reduces in

our experience the compression rates), one has to apply wavelets with minimal

number of vanishing moments and minimal supports, respectively. Hence, we

choose 	

(1;3)

J

or 	

(2;4)

J

for the discretization of the single and double layer operator

and 	

(2;2)

J

for the discretization of the hypersingular operator, respectively. For

the computation of the compression we choose the parameters from (3.11) for

the double and single layer operator as a = a

0

= � = �

0

= 1:5 if d = 1 and

a = a

0

= 1:25, � = �

0

= 2:5 if d = 2. For the hypersingular operator we choose

a = a

0

= 1:5 and � = �

0

= 2:5. As the numerical results in the next subsections
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con�rm these settings are su�cient to attain approximatively the accuracy of the

traditional single-scale Galerkin scheme.

The diagrams in �gure 4 show the number of nonzero elements of the compressed

system matrices corresponding to the double layer operator K, the single layer

operator V and the hypersingular operator W. On the left hand side one �nds

the number of nonzero elements of the system matrices K

 

and V

 

computed

with respect to the piecewise constant wavelets 	

(1;3)

J

. On the right hand side

one sees the number of nonzero elements of the system matrices K

 

, V

 

and

W

 

computed with respect to the piecewise linear wavelets 	

(2;4)

J

and 	

(2;2)

J

,

respectively. Both diagrams con�rm that we obtain asymptotically only O(N

J

)

nonzero matrix elements, whereby the constant for the piecewise linear wavelets

is larger than for the piecewise constant wavelets.
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Figure 4: The number of nonzero elements of the compressed system matrices: the dashed line belongs to V

 

,

the dashdotted line belongs to K

 

, the dotted line belongs to W

 

and the solid line indicates linear behaviour

(125N

J

on the left hand side and 250N

J

on the right hand side).

6.4. The wavelet preconditioner

Since the single layer operator V and the hypersingular operatorW are operators

of order di�erent from zero, the resulting Galerkin matrices V

�

, V

 

, W

�

and

W

 

are ill conditioned. More precisely, without any preconditioning the condi-

tion numbers in l

2

behave like 2

J

, where J indicates the level of discretization.

According to subsection 3.5. the wavelet approach provides a simple diagonal

preconditioner.

In table 1 we compare the l

2

-condition of the matrices V

�

and W

�

and the

preconditioned matrices V

 

and W

 

. The given numbers result from a diagonal

scaling of the computed system matrices, which additionally improves the wavelet

preconditioner (3.13). As one �gures out of the given results, the behaviour of the

condition numbers of the single-scale matrices is � 2

J

while the condition numbers

of the system matrices with respect to the (preconditioned) wavelet bases seem to
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Level J 5 6 7 8 9 10 11

Unknowns N

J

32 64 128 256 512 1024 2048

�

(1)

J

54.37 107.3 219.8 447.2 900.2 1800 3588

single layer 	

(1;3)

J

8.887 8.967 8.992 9.005 9.010 9.013 9.014

operator �

(2)

J

131.2 268.8 552.8 1137 2308 4640 9291

	

(2;4)

J

58.87 65.69 72.71 77.30 81.17 84.01 86.29

hypersingular �

(2)

J

57.03 130.1 290.6 641.9 1409 3070 6645

operator 	

(2;2)

J

4.889 4.946 4.950 4.950 4.951 4.951 4.951

Table 1: The condition numbers of the diagonally scaled system matrices V

�

, V

 

,W

�

and W

 

, respectively.

be bounded. Note, since the matricesW

�

andW

 

, respectively, are only positive

semide�nite, we discard one unknown to compute the condition number.

6.5. Numerical results for the Dirichlet problem

We consider the numerical solution of the given Dirichlet problem (6.14). In the ta-

bles 2 and 3 we list the over-all computing time and the accuracy obtained by the

traditional (single-scale) Galerkin scheme and the compressed wavelet Galerkin

scheme. Precisely, table 2 shows the values attained by piecewise constant func-

tions for the equation of the �rst kind (2.21) while in table 3 we give the results for

piecewise linear functions for the equation of the second kind (2.23). We determine

for the single-scale scheme and the multiscale scheme the absolute errors of the

numerical solutions u

�

and u

 

as described above. The columns titled by \contr."

(contraction) give the ratio of the absolute error divided by the absolute error of

the previous level. Since the optimal convergence rate is given by 2(d� r), these

numbers should be close to 2

2(d�q)

. Hence, the optimal ratios 8 in table 2 and 16

in table 3 are achieved approximately. The data listed in brackets are determined

via extrapolation, since these problems do not �t into the available main memory

of the computer. As one �gures out of the tables 2 and 3, the accuracy is not

deteriorated by the compression strategy. The break even point of the compressed

wavelet Galerkin scheme is about 256 unknowns. Moreover, as the columns titled

by \density" (in %) con�rm, the compression yields an enormous save of memory.

6.6. Numerical results for the Neumann problem

For the Neumann problem (6.15) we tabulate similarly to the Dirichlet problem the

over-all computing time and the accuracy attained by the traditional (single-scale)

Galerkin scheme and the compressed wavelet Galerkin scheme. Table 4 gives the

results for the equation of the second kind (2.38) obtained with piecewise constant

functions and table 5 shows the values for the equation of the �rst kind (2.34)

measured for piecewise linear functions. Likewise to the Dirichlet problem the

optimal convergence rate is 2(d� q). Therefore, the optimal contraction is 2

2(d�q)

.
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single-scale scheme: d = 1 multiscale scheme: (d;

~

d) = (1; 3)

N

J

abs. error contr. time abs. error contr. time density

128 8.8e-01 | 0.17 8.7e-01 | 0.21 48.4

256 8.4e-02 11 0.71 8.4e-02 10 0.56 30.5

512 8.7e-03 9.6 2.91 8.7e-03 9.6 1.51 18.0

1024 1.0e-03 8.3 13.2 1.0e-03 8.3 3.75 10.5

2048 1.3e-04 8.1 54.7 1.3e-04 8.2 9.58 5.94

4096 1.6e-05 8.1 225 1.6e-05 8.1 21.4 3.31

8192 (2.0e-06) (8.0) (902) 2.0e-06 8.0 50.3 1.82

16384 (2.5e-07) (8.0) (3609) 2.5e-07 7.8 116 0.99

32768 (3.1e-08) (8.0) (14438) 3.3e-08 7.8 267 0.53

65536 (3.9e-09) (8.0) (57751) 4.2e-09 7.8 597 0.28

131072 (4.9e-10) (8.0) (231000) 5.4e-10 7.7 1439 0.15

Table 2: Over-all computing times (in seconds) and accuracy of the single-scale and the multiscale scheme

obtained for the single layer operator and piecewise constant functions.

single-scale scheme: d = 2 multiscale scheme: (d;

~

d) = (2; 4)

N

J

abs. error contr. time abs. error contr. time density

128 6.0e-01 | 0.13 6.0e-01 | 0.22 62.9

256 2.3e-02 26.5 0.51 2.3e-02 26.5 0.62 39.5

512 1.1e-03 20.3 2.18 1.1e-03 20.3 1.62 23.7

1024 4.0e-05 28.0 10.0 4.0e-05 28.0 4.18 13.6

2048 2.4e-06 16.3 40.6 2.4e-06 16.3 10.5 7.61

4096 1.5e-07 16.1 166 1.5e-07 16.1 23.7 4.18

8192 (9.5e-09) (16.0) (663) 9.5e-09 16.0 55.6 2.25

16384 (5.9e-10) (16.0) (2653) 5.9e-10 16.0 125 1.20

32768 (3.7e-11) (16.0) (10612) 3.7e-11 16.1 268 0.63

65536 (2.3e-12) (16.0) (42447) 2.3e-12 16.2 700 0.33

Table 3: Over-all computing times (in seconds) and accuracy of the single-scale and the multiscale scheme

obtained for the double layer operator and piecewise linear functions.

This is 4 in table 4 and 8 in table 5. The data listed in brackets signify again

extrapolated results.
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single-scale scheme: d = 1 multiscale scheme: (d;

~

d) = (1; 3)

N

J

abs. error contr. time abs. error contr. time density

128 1.35 | 0.02 1.35 | 0.09 42.2

256 2.0e-01 6.7 0.12 2.0e-01 6.6 0.19 24.9

512 6.1e-02 3.3 0.65 6.1e-02 3.3 0.50 13.9

1024 1.5e-02 4.0 4.03 1.5e-02 4.0 1.09 7.54

2048 3.8e-03 4.0 16.4 3.8e-03 4.0 2.69 4.02

4096 9.5e-04 4.0 66.5 9.5e-04 4.0 6.03 2.10

8192 (2.4e-04) (4.0) (266) 2.4e-04 4.0 13.4 1.09

16384 (5.9e-05) (4.0) (1064) 5.9e-05 4.0 28.3 0.56

32768 (1.5e-05) (4.0) (4255) 1.5e-05 4.0 61.6 0.29

65536 (3.7e-06) (4.0) (17019) 3.7e-06 4.0 137 0.15

131072 (9.3e-07) (4.0) (68076) 9.4e-07 4.0 326 0.08

262144 (2.3e-07) (4.0) (272304) 2.4e-07 4.0 856 0.04

Table 4: Over-all computing times (in seconds) and accuracy of the single-scale and the multiscale scheme

obtained for the double layer operator and piecewise constant functions.

single-scale scheme: d = 2 multiscale scheme: (d;

~

d) = (2; 2)

N

J

abs. error contr. time abs. error contr. time density

128 9.6e-01 | 0.18 1.09 | 0.21 48.4

256 7.1e-02 14 0.73 1.0e-01 11 0.56 30.5

512 8.3e-03 8.6 3.10 7.7e-03 13 1.52 18.2

1024 1.0e-03 8.1 17.5 8.1e-04 9.5 3.79 10.7

2048 1.3e-04 8.0 81.8 1.0e-04 8.0 9.68 6.11

4096 1.6e-05 8.0 399 1.3e-05 8.0 21.9 3.44

8192 (2.0e-06) (8.0) (1595) 1.6e-06 8.0 51.8 1.91

16384 (2.5e-07) (8.0) (6378) 2.0e-07 7.9 121 1.04

32768 (3.1e-08) (8.0) (25513) 2.6e-08 7.8 281 0.57

65536 (3.9e-09) (8.0) (102050) 3.3e-09 7.8 641 0.31

131072 (4.9e-10) (8.0) (408210) 4.3e-10 7.7 1544 0.16

Table 5: Over-all computing times (in seconds) and accuracy of the single-scale and the multiscale scheme

obtained for the hypersingular operator and piecewise linear functions.
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