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ON AN AUGMENTED LAGRANGIAN SQP METHOD FOR A CLASS OF

OPTIMAL CONTROL PROBLEMS IN BANACH SPACES

Nadir Arada

1

, Jean-Pierre Raymond, Fredi Tr�oltzsh

2

Abstrat

An augmented Lagrangian SQP method is disussed for a lass of nonlinear opti-

mal ontrol problems in Banah spaes with onstraints on the ontrol. The onver-

gene of the method is investigated by its equivalene with the generalized Newton

method for the optimality system of the augmented optimal ontrol problem. The

method is shown to be quadratially onvergent, if the optimality system of the

standard non-augmented SQP method is strongly regular in the sense of Robinson.

This result is applied to a test problem for the heat equation with Stefan-Boltzmann

boundary ondition. The numerial tests on�rm the theoretial results.

Keywords: Augmented Lagrangian SQP method in Banah spaes, optimal ontrol, on-

trol onstraints, two-norm disrepany, generalized equation, generalized Newton method,

semilinear paraboli equation.

AMS subjet lassi�ation: 49K20, 35J25

1 Introdution

We onsider an Augmented Lagrangian SQP method (ALSQP method) for the following

lass of optimal ontrol problems, whih inludes some meaningful appliations to ontrol

problems for semilinear partial di�erential equations:

(P)

Minimize f(y; u);

subjet to �y + �(y)� u = 0; y 2 Y; u 2 U

ad

� U:

In this setting Y and U are real Banah spaes, f : Y � U ! R and �: Y ! U are

di�erentiable mappings, and U

ad

is a nonempty, losed, onvex and bounded subset of U .

The operator � is a ontinuous linear operator from Y to U . In general, (P) is a non-onvex

problem. We will refer to u as the ontrol, and to y as the state.

In the past years, the appliation of ALSQP methods to optimal ontrol or identi�ation

problems for partial di�erential equations has made onsiderable progress. The list of

ontributions to this �eld has already beome rather extensive so that we shall mention

only the papers by Bergounioux and Kunish [6℄, Ito and Kunish [13℄, [14℄, Kau�mann

[15℄, Kunish and Volkwein [16℄, and Volkwein [25℄, [26℄.
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In this paper, we extend the analysis of the ALSQP method to a Banah spae setting.

This generalization is needed, if, for instane, the nonlinearities of the problem annot be

well de�ned in Hilbert spaes. In our appliation, this will onern the nonlinear mapping

�. A natural onsequene of this extension is that, in ontrast to the literature about the

ALSQP method, we have to deal with the well known two-norm disrepany. Another

novelty in our approah is the presene of the ontrol onstraints u 2 U

ad

in (P) , whih

ompliates the disussion of the method. To resolve the assoiated diÆulties, we rely

on known results on the onvergene of the generalized Newton method for generalized

equations.

One of the main goals of this paper is to redue the onvergene analysis to one main

assumption, whih has to be heked for the partiular appliations { the strong regularity

of the optimality system. In this way, we hope to have shown a general way to perform

the onvergene analysis of the ALSQP method.

For (P) we onentrate on a partiular type of augmentation, applied only to the

nonlinearity of the state equation. Splitting up the state equation into �y + z � u = 0

and z � �(y) = 0 we will augment only the seond equation. This type of augmentation

is useful for our appliation to paraboli boundary ontrol problems. The onvergene

analysis is on�rmed by numerial tests, whih are ompared with those performed for the

(non-augmented) SQP method.

We obtain the following main results: If the optimality system of �rst order neessary

optimality onditions for (P) is strongly regular in the sense of Robinson, then the ALSQP

method will be loally quadrati onvergent under natural assumptions. This result is

applied to a boundary ontrol problem for a semilinear paraboli equation. In [23℄, the

onvergene of the (non-augmented) SQP method was shown for this partiular problem

by verifying this strong regularity assumption. In this way, our result is immediately

appliable to obtain the onvergene of the augmented method in our appliation.

The paper is organized as follows: In Setion 2 we �x the general assumptions and

formulate �rst order neessary and seond order suÆient optimality onditions. Setion

3 ontains our example, a semilinear paraboli ontrol problem. The ALSQP method is

presented in Setion 4, where we show that its iterates are well de�ned in the assoiated

Banah spaes. The onvergene analysis is developed in Setion 5 on the basis of the

Newton method for generalized equations. The last part of our paper reports on our

numerial tests with the ALSQP method.

2 General assumptions and optimality onditions

We �rst �x the assumptions on the spaes and mappings. The Banah spaes Y and U

mentioned in the introdution stand for the ones where the following holds:

� f is a mapping of lass C

2

from Y � U into R,
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� � is a mapping of lass C

2

from Y into U .

For several reasons, among them, the formulation of the SQP method and the suÆient

seond order optimality onditions, we have to introdue real Hilbert spaes Y

2

and U

2

suh that Y (respetively U) is ontinuously and densely imbedded in Y

2

(respetively U

2

).

Moreover, we identify U

2

with its dual U

�

2

. Therefore, denoting by U

�

the dual spae of U ,

we have the ontinuous imbeddings

U � U

2

� U

�

:

Let us introdue the produt spae V = Y � U , endowed with the norm jjvjj

V

= jjyjj

Y

+

jjujj

U

, and the spae V

2

= Y

2

� U

2

, endowed with the norm jjvjj

V

2

= jjyjj

Y

2

+ jjujj

U

2

.

Notations: We shall denote the �rst and seond order derivatives of f and � by

f

0

(v); f

00

(v), �

0

(y); �

00

(y), respetively. Partial derivatives are indiated by assoiated

subsripts suh as f

y

(v), f

yu

(v), et. Notie that, by their very de�nition, f

0

(v) 2 V

�

,

f

00

(v) 2 L(V; V

�

), �

0

(y) 2 L(Y; U) and �

00

(y) 2 L(Y;L(Y; U)). The open ball in V en-

tered at v, with radius r is denoted by B

V

(v; r). The same notation is used in other

Banah spaes. We will denote the duality pairing between U

�

and U (resp. Y

�

and Y )

by h� ; �i

U

�

�U

(resp. h� ; �i

Y

�

�Y

), while h� ; �i is reserved in this paper for the salar produt

of U

2

.

Below we list our main assumptions:

(A1) � is a linear, ontinuous, and bijetive operator from Y

2

to U

2

. Moreover, its

restrition to Y , still denoted by �, is ontinuous and bijetive from Y to U . In

addition, we assume that U

ad

is losed in U

2

.

(A2) (Extension properties) For all r > 0 there is a onstant (r) > 0 suh that, for

all v

o

2 B

V

(0; r), we have

jf

0

(v

o

)vj+ jj�

0

(y

o

)yjj

U

2

� (r)jjvjj

V

2

for all v 2 V; (2.1)

jf

00

(v

o

)[v

1

; v

2

℄j+ k�

00

(y

o

)[y

1

; y

2

℄k

U

�

� (r)jjv

1

jj

V

2

jjv

2

jj

V

2

(2.2)

for all v

1

; v

2

2 V . From (2.1) it follows that f

0

(v) an be onsidered as a ontinuous

linear operator from V

2

to R, and �

0

(y) an be onsidered as a ontinuous linear

operator from Y

2

to U

2

.

Sine �

00

(y

o

)[y

1

; y

2

℄ belongs to U , and U � U

�

, the term k�

00

(y

o

)[y

1

; y

2

℄k

U

�

is meaning-

ful. Moreover, f

00

(v) (respetively �

00

(y)) an be onsidered as a ontinuous bilinear

operator from V

2

� V

2

(respetively Y

2

� Y

2

) into R (respetively U

�

). In the seond

order derivatives we shall write [v; v℄ = v

2

.

(A3) (Lipshitz properties) For all v

i

2 B

V

(0; r), i = 1; 2, there is a (r) > 0 suh

that

kf

0

(v

1

)� f

0

(v

2

)k

V

�

2

+ k�

0

(y

1

)� �

0

(y

2

)k

L(Y

2

;U

2

)

� (r)jjv

1

� v

2

jj

V

; (2.3)
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j(f

00

(v

1

)� f

00

(v

2

))[z

1

; z

2

℄j+ k(�

00

(y

1

)� �

00

(y

2

))[�

1

; �

2

℄k

U

�

� (r) jjv

1

� v

2

jj

V

jjz

1

jj

V

2

jjz

2

jj

V

2

for all z

i

= (�

i

; u

i

) 2 V; i = 1; 2:

(2.4)

(A4) (Remainder terms) Let r

F

i

(x

o

; h) denote the i-th order remainder term for the

Taylor expansion of a mapping F at the point x

o

in the diretion h. Following Io�e

[11℄ and Maurer [18℄ we assume

jr

f

1

(v

o

; v)j

kvk

V

2

+

jr

f

2

(v

o

; v)j

kvk

2

V

2

! 0 as kvk

V

! 0; (2.5)

kr

�

1

(y

o

; y)k

U

2

kyk

Y

2

+

kr

�

2

(y

o

; y)k

U

2

kyk

2

Y

2

! 0 as kyk

Y

! 0: (2.6)

(A5) (Regularity)

� For all y 2 Y , the operator (�+ �

0

(y)) is bijetive from Y

2

to U

2

. Its restrition to

Y , still denoted by � + �

0

(y), is bijetive from Y to U .

� For all v 2 V , f

y

(v) belongs to

b

Y , where

b

Y is a Banah spae ontinuously imbedded

in Y

�

. For all v 2 V , f

u

(v) belongs to U .

� The restrition of (� + �

0

(y))

��

to

b

Y is ontinuous from

b

Y to U .

The �rst assumption onerns the linearized state equation. The seond and third

assumptions are needed to get optimal regularity for the adjoint equation. Indeed, the

adjoint state orresponding to �v = (�y; �u) is de�ned by �p = (� + �

0

(�y))

��

f

y

(�v) 2 U

�

.

To study the onvergene of the SQP method we need that �p belongs to U . Sine by

de�nition f

u

(v) belongs to U

�

, the ondition f

u

(v) 2 U is a regularity ondition on

f

u

(v).

In the analysis of the Generalized Newton Method, we need the following additional regu-

larity onditions.

(A6) For every y 2 Y , �

0

(y)

�

belongs to L(U;

^

Y ). The mapping y 7! �

0

(y)

�

is loally of

lass C

1;1

from Y into L(U;

b

Y ). For every y

1

; y

2

2 Y , [�

00

(y

1

)y

2

℄

�

belongs to L(U;

b

Y ).

The mapping (y

1

; y

2

) 7! [�

00

(y

1

)y

2

℄

�

is loally of lass C

1;1

from Y �Y into L(U;

b

Y ).

(A7) The mapping v 7! f

0

(v) is loally of lass C

1;1

from V into

^

V , where

^

V =

^

Y �U .

3 Example - Control of a semilinear paraboli equa-

tion

Let us onsider the following partiular ase of (P) :
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(E) Minimize f(y; u) =

1

2

ky(T )� y

T

k

2

L

2

(
)

+

�

2

kuk

2

L

2

(�)

+

Z

�

a

u

u�

Z

�

a

y

y

subjet to

y

t

��y = d in Q = 
� (0; T );

y(0) = a in 
;

�

�

y + y = b + u� '(y) on � = �� (0; T );

u

a

� u(x; t) � u

b

:

Here, 
 � R

n

is a bounded domain with boundary � of lass C

2

, T > 0; � > 0, y

T

2

L

1

(
); d 2 L

1

(Q); a

u

2 L

1

(�), a

y

2 L

1

(�), b 2 L

1

(�), a 2 L

1

(
), and u

a

< u

b

are

given �xed. The funtion ' : R ! R is nondereasing, and loally of lass C

2;1

. (The hoie

' = jyj

3

y �ts into this setting.)

Let us verify that problem (E) satis�es all our assumptions. This problem is related to (P)

as follows:

� = (y

t

��y; y(0); �

�

y + y);

�(y) = (d; a; '(y(�)));

U = L

1

(Q)� L

1

(
)� L

1

(�);

Y = fy 2 W (0; T ) j y

t

��y 2 L

1

(Q); y(0) 2 L

1

(
); �

�

y 2 L

1

(�)g;

U

ad

= f(0; 0; u) 2 U j u

a

� u(x; t) � u

b

a.e. on �g;

U

2

= L

2

(Q)� L

2

(
)� L

2

(�);

Y

2

= fy 2 W (0; T ) j y

t

��y 2 L

2

(Q); y(0) 2 L

2

(
); �

�

y 2 L

2

(�)g;

where W (0; T ) is the Hilbert spae de�ned by

W (0; T ) = fy 2 L

2

(0; T ;H

1

(
)) j

dy

dt

2 L

2

(0; T ; (H

1

(
))

0

)g:

The spae Y (respetively Y

2

) is endowed with the norm kyk

Y

= kyk

W (0;T )

+ ky

t

�

�yk

L

1

(Q)

+ ky(0)k

L

1

(
)

+ k�

�

yk

L

1

(�)

(respetively kyk

Y

2

= kyk

W (0;T )

+ ky

t

��yk

L

2

(Q)

+

ky(0)k

L

2

(
)

+ k�

�

yk

L

2

(�)

). Let us hek the assumptions.

� The operator � is obviously ontinuous from Y

2

to U

2

, and is bijetive from Y

2

to U

2

(see [17℄). It is also a bijetion from Y to U . (see [8℄, [20℄.) Thus (A1) is satis�ed.

� Sine Y � L

1

(Q) with ontinuous imbedding ([8℄, [20℄), we an verify that � is a map-

ping of lass C

2

from Y into U , and that f is a mapping of lass C

2

from Y � U into R.

Moreover, for all v

o

= (y

o

; u

o

) 2 Y � U , we have

f

y

(y

o

; u

o

)y =

Z




(y

o

(x; T )� y

T

(x))y(x; T ) dx�

Z

�

a

y

(x; t)y(x; t) dSdt

f

u

(y

o

; u

o

)u =

Z

�

(�u

o

(x; t) + a

u

(x; t))u(x; t) dSdt;
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�

0

(y

o

)y = (0; 0; '

0

(y

o

)y):

Thus, the derivative f

y

(v

o

) (respetively f

u

(v

o

)) an be identi�ed with the triplet (0; y

o

(T )�

y

T

;�a

y

) 2 L

1

(Q) � L

1

(
) � L

1

(�) (respetively (0; 0; �u

o

+ a

u

) 2 L

1

(Q) � L

1

(
) �

L

1

(�)). The assumptions (2.1) and (2.3) an be easily satis�ed.

� To verify assumption (A5), let us introdue the spae

b

Y = L

1

(Q)� L

1

(
)� L

1

(�).

This spae an be identi�ed with the subspae of Y

�

of all elements having the form

y 7!

Z

Q

ŷ

Q

y dxdt+

Z




ŷ




y(x; T ) dx+

Z

�

ŷ

�

y(x; t) dSdt;

where (ŷ

Q

; ŷ




; ŷ

�

) belongs to

b

Y . >From the above alulations, it is lear that f

y

(v

o

)

belongs to

b

Y . Let y

(d;a;u)

be the solution to the equation

y

t

��y = d

y(0) = a

�

�

y + y + '

0

(y

o

)y = u:

(3.1)

The operator (d; a; u) 7! y

(d;a;u)

is ontinuous and bijetive from U

2

into Y

2

([17℄), and from

U into Y ([8℄, [20℄). The �rst part of (A5) is satis�ed. To prove the seond part, let us

onsider the adjoint equation

��

t

��� = ŷ

Q

�(T ) = ŷ




�

�

� + � + '

0

(y

o

)� = ŷ

�

:

(3.2)

For all (d; a; u) 2 U , and all ŷ = (ŷ

Q

; ŷ




; ŷ

�

) 2

b

Y , by using a Green formula, we obtain

Z

Q

�d+

Z




�(0)a+

Z

�

�u =

Z

Q

ŷ

Q

y

(d;a;u)

+

Z




ŷ




y

(d;a;u)

(T ) +

Z

�

ŷ

�

y

(d;a;u)

= hŷ; (� + �

0

(y

o

))

�1

(d; a; u)i

Y

�

�Y

= h(� + �

0

(y

o

))

��

ŷ; (d; a; u)i

U

�

�U

:

Therefore p = (� + �

0

(v

o

))

��

(ŷ) is nothing else than (�; �(0); �j

�

). With this identity, we

an easily verify the seond part of assumption (A5).

� Let us �nally disuss properties of some seond order derivatives. The seond derivative

�

00

(y

o

) is given by

(�

00

(y

o

)[y

1

; y

2

℄) = (0; 0; '

00

(y

o

)y

1

y

2

):

For y

i

2 Y and ky

o

k

Y

� r we have

k�

00

(y

o

)y

1

y

2

k

L

1

(�)

� k'

00

(y

o

)k

L

1

(�)

kv

1

k

L

2

(�)

kv

2

k

L

2

(�)

� (r)kv

1

k

L

2

(�)

kv

2

k

L

2

(�)

:

We an interprete �

00

(y

o

)y

1

y

2

as an element of L

1

(�) � L

1

(�)

�

, and (2.2) an be heked.

The other assumptions on the seond order derivatives, preisely (2.4) and (A4), are also

satis�ed.
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4 Optimality onditions

This setion is devoted to the disussion of the �rst and seond order optimality onditions.

Let �v = (�y; �u) be a loal solution of (P) . This means that

f(�v) � f(v) (4.3)

holds for all v, whih belong to a suÆiently small ball B

V

(�v; ") and satisfy all onstraints

of (P) .

Theorem 1 Let �v = (�y; �u) be a loal solution of (P ) and suppose that the assumptions

(A1), (A2), and (A5) are satis�ed. Then there exists a unique Lagrange multiplier �p 2 U

suh that

f

y

(�y; �u)y + h�p;�y + �

0

(�y)yi = 0 for all y 2 Y; (4.4)

hf

u

(�y; �u)� �p; u� �ui � 0 for all u 2 U

ad

: (4.5)

Proof. Sine f is Fr�ehet-di�erentiable at �v = (�y; �u), � is of lass C

1

from Y to U , and

�+ �

0

(�y) is surjetive from Y to U , there exists a unique �p 2 U

�

suh that (4.4) and (4.5)

be satis�ed (see [12℄, and also Theorem 2.1 in [1℄). The variational equation (4.4) admits a

unique solution �p de�ned by �p = (� + �

0

(�y))

��

f

y

(�v). Due to assumptions (A5), it follows

that �p belongs to U . 2

We next introdue the Lagrange funtion L : Y � U � U ! R,

L(v; p) = L(y; u; p) = f(y; u) + hp;�y + �(y)� ui: (4.6)

The system (4.4)-(4.5) is equivalent to

L

y

(�v; �p) = 0 and L

u

(�v; �p)(u� �u) � 0 for all u 2 U

ad

:

For shortening, we shall write the adjoint equation (4.4) in the form f

y

(�v)+�p(�+�

0

(�y)) = 0.

Thus the �rst order optimality system for (P) is

f

y

(�v) + �p(� + �

0

(�y)) = 0;

hf

u

(�v) + �p; u� �ui � 0; for all u 2 U

ad

;

��y + �(�y)� �u = 0;

�u 2 U

ad

:

(4.7)

In what follows, the derivatives in L

0

and L

00

refer only to the variable v, but not to the

Lagrange multiplier p. Let us assume that �v also satis�es the following:

(SSC) Seond order suÆient optimality ondition

7



There is Æ > 0 suh that

L

00

(�v; �p)v

2

� Æ kvk

2

V

2

(4.8)

holds for all v = (y; u) 2 Y � U that satisfy the linearized equation

�y + �

0

(�y)y � u = 0: (4.9)

Remark 1 The ondition (SSC) is a quite strong assumption, and does not onsider

ative ontrol onstraints, whih might our in U

ad

. For instane, this an be useful

for onstraints of the type U

ad

= fu 2 L

1

(D) j u

a

� u(x) � u

b

for all x 2 Dg. In

onrete appliations, the use of an assoiated seond order assumption is possible (see for

example [23℄). However, we intend to shed light on the main steps, whih are needed for

a onvergene analysis of the augmented Lagrangian SQP method, rather than to present

the diÆult tehnial details onneted with weakening (SSC) . We shall adress this issue

again in setion 6.

Let us omplete this setion by some simple results, whih follow from the seond order

suÆient ondition.

Lemma 1 Suppose that the assumptions (A1)-(A5) are satis�ed. Suppose in addition

that �v satis�es the seond order suÆient ondition (SSC). Then there exists � > 0 suh

that, for every (ŷ; û; p̂) given in B

V�U

((�y; �u; �p); �), we have

L

00

(ŷ; û; p̂)v

2

�

Æ

2

kvk

2

V

2

(4.10)

for all v = (y; u) 2 V that satisfy the perturbed linearized equation

�y + �

0

(ŷ) y � u = 0: (4.11)

Proof. We briey explain the main ideas of this quite standard result, to show where

the di�erent assumptions are needed. If (ŷ; û; p̂) is suÆiently lose to (�y; �u; �p), then the

quadrati form L

00

(ŷ; û; p̂) is arbitrarily lose to L

00

(�y; �u; �p). By (SSC), (A2), and (A3)

we derive that

L

00

(ŷ; û; p̂)v

2

�

7Æ

8

kvk

2

V

2

(4.12)

provided that �y+�

0

(ŷ) y�u = 0: An analogous estimate has to be shown for the solutions

of the perturbed equation (4.11), where �

0

is taken at ŷ. Write for short B := L

00

(ŷ; û; p̂)

and de�ne z as the unique solution of �z +�

0

(�y) z� u = 0 (we use the �rst part of (A5)).

Then

�(y � z) + �

0

(�y)(y � z) = �(�

0

(ŷ)� �

0

(�y))y: (4.13)

The assumptions (A1), (A3), and (A5) ensure the estimate

ky � zk

Y

2

� k(�

0

(ŷ)� �

0

(�y))yk

U

2

� kŷ � �yk

Y

kyk

Y

2

�  � kyk

Y

2

(4.14)
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(here and below  stands for a generi onstant). Therefore,

B v

2

= B(z + (y � z); u)

2

= B(z; u)

2

+ 2B[(z; u); (y � z; 0)℄ +B(y � z; 0)

2

� 7=8 Æ k(z; u)k

2

V

2

� " k(z; u)k

2

V

2

� (")ky � zk

2

Y

2

� 6=8 Æ k(z; u)k

2

V

2

� �

2

kyk

2

Y

2

follows by (4.12), (4.14) and Young inequality, where " > 0 an be taken arbitrarily small.

Now we re-substitute z by y + (z � y) and arrive by similar estimates at

B v

2

�

5Æ

8

k(y; u)k

2

V

2

� �

2

kyk

2

Y

2

�

4Æ

8

kvk

2

V

2

;

provided that � is suÆiently small. Thus (4.10) is proven. 2

Although we shall not diretly apply the next result, we state it to show why the di�erent

assumptions are needed. Some of them have been assumed to deal with the well known

two-norm disrepany.

Lemma 2 Let (�v; �p) = (�y; �u; �p) satisfy the optimality system (4:7) of (P ) and the seond

order suÆient ondition (SSC). Suppose that the assumptions (A1)-(A5) are ful�lled.

Then there are onstants " > 0 and � > 0 suh that the quadrati growth ondition

f(v)� f(�v) � �kv � �vk

2

V

2

(4.15)

holds for all admissible v 2 B

V

(�v; ").

Proof. The �rst order optimality system implies

f(v)� f(�v) = L(v; �p)� L(�v; �p) � 1=2 L

00

(�v; �p)(v � �v)

2

+ r

L

2

(�v; �p; v � �v): (4.16)

Subtrating the state equations for y and �y, analogously to (4.13) we �nd that

(� + �

0

(�y))(y � �y)� (u� �u) = �r

�

1

(�y; y � �y):

De�ne h by (�+�

0

(�y))h = r

�

1

. Then v

h

:= (y� �y+ h; u� �u) solves the linearized equation

(4:9), and the oerivity estimate of (SSC) an be applied to v

h

. Moreover, (A5) yields

khk

Y

2

�  kr

�

1

k

U

2

:

We insert v

h

in (4.16), write for short B := L

00

(�v; �p) and proeed similarly to the estimation

of Bv

2

in the last proof:

f(v)� f(�v) � 1=2B(v

h

+ v � �v � v

h

)

2

+ r

L

2

� Æ=2 kv

h

k

2

V

2

� �kv

h

k

2

V

2

� kv � �v � v

h

k

2

V

2

+ r

L

2

� Æ=3 kv � �vk

2

V

2

� kv � �v � v

h

k

2

V

2

+ r

L

2

9



= kv � �vk

2

V

2

fÆ=3� 

kv � �v � v

h

k

2

V

2

kv � �vk

2

V

2

�

jr

L

2

j

kv � �vk

2

V

2

g:

In these estimates, the assumptions (A2) and (A3) were used. We have kv� �v� v

h

k

V

2

=

khk

Y

2

, and the estimate of h by the �rst order remainder term r

�

1

an be inserted. Let

" ! 0. Then (A4) yields kr

�

1

k

U

2

=ky � �yk

Y

2

! 0 and jr

L

2

j=kv � �vk

2

V

2

! 0. Then, the

quadrati growth estimate follows from lassial arguments. 2

This Lemma shows that the seond order ondition (SSC) is suÆient for loal optimality

of (�y; �u) in the sense of V , whenever (�y; �u) solves the �rst order optimality system. Notie

that we annot show loal optimality in the sense of V

2

.

5 Augmented Lagrangian method

5.1 Augmented Lagrangian SQP method

In this setion we introdue the Augmented Lagrangian SQP method (ALSQP) with some

speial type of augmentation. For this, we �rst represent (P) in the equivalent form

(

e

P)

Minimize f(y; u);

subjet to z � �(y) = 0; �y + z � u = 0; z 2 U; u 2 U

ad

:

The augmentation takes into aount only the nonlinear equation z � �(y) = 0. The

ALSQP method is obtained by applying the lassial SQP method to the problem

(P

�

)

Minimize f

�

(y; u) = f(y; u) +

�

2

kz � �(y)k

2

U

2

;

subjet to z � �(y) = 0; �y + z � u = 0; z 2 U; u 2 U

ad

;

where � > 0 is given. We de�ne the Lagrange funtional L for (

~

P ), and the orresponding

augmented funtional L

�

on Y � U

4

as follows:

L(y; u; z; p; �) = f(y; u) + hp;�y + z � ui+ h�; z � �(y)i;

L

�

(y; u; z; p; �) = L(y; u; z; p; �) +

�

2

kz � �(y)k

2

U

2

:

One again, the derivatives L

0

and L

00

will stand for derivatives with respet to (y; u; z)

and do not refer to the Lagrange multipliers (p; �). The same remark onerns L

�

. Let

(y

n

; u

n

; z

n

; p

n

; �

n

) denote the urrent iterate of the ALSQP method, and onsider the linear-

quadrati problem

(QP

�

n+1

)

Minimize f

0

�

(y

n

; u

n

; z

n

)(y � y

n

; u� u

n

; z � z

n

)

+

1

2

L

00

�

(y

n

; u

n

; z

n

; p

n

; �

n

)(y � y

n

; u� u

n

; z � z

n

)

2

;

subjet to z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0;

�y + z � u = 0; y 2 Y; z 2 U; u 2 U

ad

:

10



The new iterate (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

) is obtained by taking the solution (y

n+1

; u

n+1

; z

n+1

)

of (QP

�

n+1

) (if it exists), and the multipliers (p

n+1

; �

n+1

) assoiated with the onstraints

�y+ z� u = 0, and z� �(y

n

)� �

0

(y

n

)(y� y

n

) = 0, respetively. For � = 0 we reover the

lassial SQP method.

Let us also introdue the following problem:

(

d

QP

�

n+1

)

Minimize f

0

(v

n

)(v � v

n

) +

1

2

f

00

(v

n

)(v � v

n

)

2

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i;

subjet to �y + �(y

n

) + �

0

(y

n

)(y � y

n

)� u = 0; u 2 U

ad

:

The problems (QP

�

n+1

) and (

d

QP

�

n+1

) are equivalent in the sense preised below.

Theorem 2 Let (y

n+1

; u

n+1

; z

n+1

) be a solution of (QP

�

n+1

) with assoiated Lagrange mul-

tipliers (p

n+1

; �

n+1

) 2 U � U . Then (y

n+1

; u

n+1

) must solve the problem (

d

QP

�

n+1

), and the

multiplier p

n+1

is the solution to the equation

p

n+1

(� + �

0

(y

n

)) = f

y

(v

n

) + f

yy

(v

n

)(y

n+1

� y

n

) + f

yu

(v

n

)(u

n+1

� u

n

)

�(�

n

+ �(z

n

� �(y

n

)))�

00

(y

n

)(y

n+1

� y

n

):

(5.1)

Moreover, z

n+1

and �

n+1

must satisfy

�

n+1

=�p

n+1

(5.2)

z

n+1

= �(y

n

) + �

0

(y

n

)(y

n+1

� y

n

): (5.3)

Conversely, if (y

n+1

; u

n+1

) is a solution of (

d

QP

�

n+1

), and (z

n+1

; p

n+1

; �

n+1

) are de�ned by

(5:1) { (5:3), then (y

n+1

; u

n+1

; z

n+1

) is a solution to (QP

�

n+1

) with assoiated Lagrange

multipliers (p

n+1

; �

n+1

).

Proof. Let us �rst assume that (y

n+1

; u

n+1

; z

n+1

) solves (QP

�

n+1

). To show that (y

n+1

; u

n+1

)

solves (

d

QP

�

n+1

) and that the relations (5.1){(5.3) are satis�ed, we investigate the following:

� Expliit form of (QP

�

n+1

). We expand all derivatives ouring in the problem (QP

�

n+1

)

. Write for short k � k = k � k

U

2

and introdue for onveniene the funtional g(y; z) =

�

2

kz � �(y)k

2

. Then

g

0

(y

n

; z

n

)(y; z) = �hz

n

� �(y

n

); z � �

0

(y

n

)yi;

g

00

(y

n

; z

n

)(y; z)

2

= �(kz � �

0

(y

n

)yk

2

� hz

n

� �(y

n

); �

00

(y

n

)y

2

i):

Having this, the objetive to minimize in (QP

�

n+1

) is given by

J(y; u; z) = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) + �hz

n

� �(y

n

); z � z

n

� �

0

(y

n

)(y � y

n

)i

+

1

2

f

00

(y

n

; u

n

)(y � y

n

; u� u

n

)

2

+

�

2

kz � z

n

� �

0

(y

n

)(y � y

n

)k

2

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i:
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The minimization is subjet to the onstraints

� y + z � u = 0; u 2 U

ad

z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0:

(5.4)

� Redution to (

d

QP

�

n+1

). To redue the dimension of the problem, we exploit the seond

one of the equations (5.4): We insert the expression z � z

n

� �

0

(y

n

)(y � y

n

) = �(y

n

)� z

n

in the funtional J . Then the seond and fourth items in the de�nition of J are onstant

with respet to (y; z; u). They depend only on the urrent iterate and an be negleted

during the minimization of J . The assoiated funtional to be minimized is

~

J(y; u) = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) +

1

2

f

00

(y

n

; u

n

)(y � y

n

; u� u

n

)

2

i

�

1

2

h�

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i:

Moreover, we an delete the seond equation of (5.4) by inserting the expression for z in

the �rst one. This explains why (y

n+1

; u

n+1

) is a solution of (

d

QP

�

n+1

).

� Neessary optimality onditions. To derive the neessary onditions for the triplet

(y

n+1

; u

n+1

; z

n+1

), we work with the Lagrange funtional

~

L = J + hp;�y + z � ui+ h�; z � �(y

n

)� �

0

(y

n

)(y � y

n

)i:

The onditions are

~

L

y

= 0;

~

L

z

= 0;

~

L

u

(u�u

n+1

) � 0, for all u 2 U

ad

. An evaluation yields

0 = f

y

(v

n

) + f

yy

(v

n

)(y

n+1

� y

n

) + f

yu

(v

n

)(u

n+1

� u

n

)� �

0

(y

n

)

�

�

n+1

(5.5)

�(�

n

+ �(z

n

� �(y

n

)))�

00

(y

n

)(y

n+1

� y

n

) + p

n+1

�;

0 = �

n+1

+ p

n+1

; (5.6)

0 � hf

u

(v

n

) + f

uu

(v

n

)(u

n+1

� u

n

) + f

yu

(v

n

)(y

n+1

� y

n

)� p

n+1

; u� u

n+1

i (5.7)

for u 2 U

ad

. We mention for later use, that the equations (5.4) belong to the optimality

system of (QP

�

n+1

), too. The update formulas for p

n+1

and �

n+1

follow from (5.5), (5.6).

We have shown one diretion of the statement. The onverse diretion an be proved in

a ompletely analogous manner. If (y

n+1

; u

n+1

) solves (

d

QP

�

n+1

), then we substitute z for

�(y

n

)+�

0

(y

n

)(y�y

n

) and ��

n+1

for p

n+1

in the orresponding positions. Then it is easy to

verify that (y

n+1

; u

n+1

; z

n+1

) minimizes J subjet to (5.4), and that �

n+1

is the multiplier

assoiated to the equation z � �(y

n

)� �

0

(y

n

)(y � y

n

) = 0. 2

Remark 2 The update rules (5:2) { (5:3) imply that the Lagrange multiplier � oinides

with �p during the iteration, while this is not neessarily true for the initial values of �

n

and p

n

. Therefore, with possible exeption of the �rst step, up to a onstant, the objetive

funtional of (

d

QP

�

n+1

) is

~

J = f

0

(y

n

; u

n

)(y � y

n

; u� u

n

) +

1

2

L

00

(y

n

; u

n

; p

n

)(y � y

n

; u� u

n

)

2

�

�

2

hz

n

� �(y

n

); �

00

(y

n

)(y � y

n

)

2

i:
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This easily follows by alulating L

00

(y

n

; u

n

; p

n

) from the formula (4:6). Moreover, we are

justifed to replae �

n

by �p

n

in the variational equation (5:1).

Theorem 2 shows that the iterates of the ALSQP method an be obtained by solving

the redued problem (

d

QP

�

n+1

), provided that solutions of (QP

�

n+1

) exist. This question of

existene, an be answered by onsidering (

d

QP

�

n+1

) as well:

Theorem 3 Let (�y; �u; �p) satisfy the assumptions of Lemma 1 and let �z = �(�y). If k(�y; �u; �p; �z)�

(y

n

; u

n

; p

n

; z

n

)k

Y�U

4

is suÆiently small, then (

d

QP

�

n+1

) has a unique solution (y

n+1

; u

n+1

).

Moreover, (y

n+1

; u

n+1

; z

n+1

) (with z

n+1

being de�ned by (5:3)) is the unique solution of

(QP

�

n+1

).

Proof. Assume that k(�y; �u; �p; �z)� (y

n

; u

n

; p

n

; z

n

)k

Y�U

4

< �, and let us prove the existene

for (

d

QP

�

n+1

). In view of the remark above, the funtional

~

J an be taken instead of J for

the minimization in (

d

QP

�

n+1

). Its quadrati part is

L

00

(v

n

; p

n

)(v � v

n

)

2

� �hz

n

� �(y

n

); �

00

(y

n

)(y � y

n

)

2

i

= f

00

(v

n

)(v � v

n

)

2

� hp

n

+ �(z

n

� �(y

n

)); �

00

(y

n

)(y � y

n

)

2

i

= L

00

(v

n

; ~p

n

)(v � v

n

)

2

;

where ~p

n

:= p

n

+ �(z

n

� �(y

n

)). For � # 0, ~p

n

tends to �p in U , sine z

n

� �(y

n

) !

�z � �(�y) = 0. Lemma 1 yields that the objetive funtional of (

d

QP

�

n+1

) is oerive on the

set

~

C = f(y; u) 2 Y

2

�U

2

j �y+�

0

(y

n

)y�u = 0g, hene it is stritly onvex there. The set

U

ad

is non-empty, bounded, onvex, and losed in U , and in U

2

as well. We have assumed

in (A5) that (� + �

0

(y))

�1

is ontinuous from U

2

to Y

2

at all y 2 Y , in partiular at

y = y

n

. Therefore,

~

C is non-empty, onvex, losed, and bounded in Y

2

�U

2

. Now existene

and uniqueness of a solution (y

n+1

; u

n+1

) 2 Y

2

� U

2

to (

d

QP

�

n+1

) are standard onlusions.

Moreover, U

ad

� U , hene u

n+1

2 U , and the regularity properties of (� + �

0

(y

n

))

�1

guarantee that y

n+1

2 Y . Further, z

n+1

2 U follows from (5.3). Existene and uniqueness

for (QP

�

n+1

) are obtained from Theorem 2. 2

The update rules of Theorem 2 show that (p

n+1

; �

n+1

) is uniquely determined in U

2

� U

2

.

We get even better regularity:

Corollary 1 If the initial element (y

n

; u

n

; z

n

; p

n

; �

n

) is taken from Y �U

4

, then the iterates

f(y

n

; u

n

; z

n

; p

n

; �

n

)g generated by the ALSQP method are uniquely determined and belong

to Y � U

4

.

Proof. Existene and uniqueness follows from the last theorem and the update rules (5.2){

(5.3). We also know that (y

n+1

; u

n+1

; z

n+1

) 2 Y � U

2

. The only new result we have to

derive is that (p

n+1

; �

n+1

) remains in U � U as well. Sine �

n+1

= �p

n+1

, we have to

verify p

n+1

2 U . This, however, follows instantly from the equation (5.1): We know that

f

y

(v

n

); f

yy

(v

n

)(y

n+1

� y

n

); and f

yu

(v

n

)(u

n+1

� u

n

) belong to

b

Y (assumptions (A5), (A6),

(A7)). Moreover, the same holds for (�

00

(y

n

)(y

n+1

� y

n

))

�

(p

n

+ �(z

n

� �(y

n

))) by (A6).

Therefore, (A5) ensures the solution p

n+1

of (5.1) to be in U . 2

13



5.2 Newton method for the optimality system of (P

�

)

The augmented SQP method an be onsidered as a omputational algorithm to solve the

�rst order optimality system of (P

�

) by the generalized Newton method. This equivalene

will be our tool in the onvergene analysis. The optimality system for (P

�

) onsists of the

equations

(L

�

(w))

y

= 0;

(L

�

(w))

z

= 0;

(L

�

(w))

u

(~u� u) � 0 for all u 2 U

ad

;

�y + z � u = 0;

z � �(y) = 0;

(5.8)

for the unknown variable w = (y; u; z; p; �). The optimality system (5.8) of (P

�

) is equiv-

alent to a generalized equation. To see this, let us �rst introdue the following set-valued

mappings:

N(u) =

8

<

:

fq 2 U j hq; ~u� ui � 0 for all ~u 2 U

ad

g if u 2 U

ad

;

; if u =2 U

ad

:

N (w) = f0

b

Y

g � f0

U

g �N(u)� f0

U

g � f0

U

g;

and onsider F : Y � U

4

!

b

Y � U

4

de�ned by

F (w) =

0

B

B

B

B

B

B

B

B

B

B

�

f

y

(y; u)� �(z � �(y))�

0

(y) + p�� ��

0

(y)

�(z � �(y)) + p+ �

f

u

(y; u)� p

�y + z � u

z � �(y)

1

C

C

C

C

C

C

C

C

C

C

A

: (5.9)

Notie that N(u) has a losed graph in U �U . It is the restrition to U of the normal one

at U

ad

in the point u. (For the de�nition of the normal one, we refer to [5℄.) In the �rst

omponent of F , due to (A6), we identify ��

0

(y) (resp. (z � �(y))�

0

(y)) with the element

(�

0

(y))

�

� (resp. (�

0

(y))

�

(z � �(y))) whih belongs to

^

Y . With (A5) and (A6), we an

easily verify that F takes values in

^

Y � U

4

.

Lemma 3 The optimality system (5:8) of (P

�

) is equivalent to the generalized equation

0 2 F (w) +N (w): (5.10)

Proof. By alulating the derivatives of L

�

in (5.8), we easily verify that:

F (w) =

0

B

B

B

B

B

B

�

(L

�

(w))

y

(L

�

(w))

z

(L

�

(w))

u

�y + z � u

z � �(y)

1

C

C

C

C

C

C

A

:

14



Therefore, by the de�nition of F , (5.10) is equivalent to

0 = (L

�

(w))

y

0 = (L

�

(w))

z

0 2 (L

�

(w))

u

+N(u)

0 = �y + z � u

0 = z � �(y):

The third relation an be rewritten as:

u 2 U

ad

and (L

�

(w))

u

(~u� u) � 0 for all ~u 2 U

ad

:

This is just the variational inequality of (5.8), and the equivalene of (5.8) and (5.10) is

veri�ed. 2

Next we reall some fats about generalized equations and related onvergene results

for the Generalized Newton Method (GNM). Let W and E be Banah spaes, and let O

be an open subset of W. Let F be a di�erentiable mapping from O into E , and T be a

set-valued mapping fromO into P(E) with losed graph. Consider the generalized equation

! 2 O; 0 2 F(!) + T (!): (5.11)

The generalized Newton method for (5.11) onsists in the following algorithm:

� Choose a starting point !

0

2 O,

� For k = 0; 1; : : :, ompute !

k+1

, the solution to the generalized equation:

! 2 O; 0 2 F(!

k

) + F

0

(! � !

k

) + T (!): (5.12)

The generalized Newton method is loally onvergent under some assumptions stated be-

low.

(C1) Equation (5.11) admits at least one solution �!.

(C2) There exist onstants ~r(�!) and ~(�!) suh that B

W

(�!; ~r(�!)) � O, and

kF

0

(!

1

)�F

0

(!

2

)k

L(W;E)

� ~(�!)k!

1

� !

2

k

W

for all !

1

; !

2

2 B

W

(�!; ~r(�!)).

De�nition 1 The generalized equation is said to be strongly regular at !

�

2 O, if there

exist onstants r(!

�

) and (!

�

), suh that, for all � 2 B

E

(0; r(!

�

)), the perturbed generalized

equation

! 2 O; � 2 F(!

�

) + F

0

(! � !

�

) + T (!); (5.13)

has a unique solution S(!

�

; �) satisfying

kS(!

�

; �

1

)� S(!

�

; �

2

)k

W

� (!

�

)k�

1

� �

2

k

W

for all �

1

; �

2

2 B

E

(0; r(!

�

)).
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The theorem below is a variant of Robinson's impliit funtion theorem ([21℄, Theorem

2.1).

Theorem 4 ([4℄, Theorem 2:5) Assume that (5.11) is strongly regular at some �! 2 O, and

that (C1) and (C2) are ful�lled. Then there exist �(�!) > 0, k(�!) > 0, and a mapping S

0

from B

W

(�!; �(�!)) � O into B

W

(�!; �(�!)) suh that, for every !

�

2 B

W

(�!; �(�!)), S

0

(!

�

) is

the unique solution to (5:13), and

kS

0

(!

�

)� �!k

W

� k(�!)k!

�

� �!k

2

W

:

The following theorem is an extension to the generalized equation (5.11) of the well known

Newton-Kantorovith theorem. It is a diret onsequene of Theorem 4.

Theorem 5 ([4℄, Theorem 2:6) Assume that the hypotheses of Theorem 4 are ful�lled.

Then there exists ~�(�!) > 0 suh that, for any starting point !

0

2 B

W

( �w; ~�(�!)), the gener-

alized Newton method generates a unique sequene (!

k

)

k

onvergent to �!, and satisfying

k!

k+1

� �!k

W

� k(�!)k!

k

� �!k

2

W

for all k � 1:

We apply these results to set up the generalized Newton method for the generalized equa-

tion (5.10), whih is the abstrat formulation of the optimality system of (P

�

).

Lemma 4 The generalized Newton method for solving the optimality system of (P

�

), de-

�ned by (5:12), proeeds as follows: Let w

n

= (y

n

; u

n

; z

n

; p

n

; �

n

) 2 Y � U

4

be the urrent

iterate. Then the next iterate w

n+1

= (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

) 2 Y �U

4

is the solution

of the following generalized equation for w = (y; u; z; p; �):

0 = f

y

(y

n

; u

n

) + f

yy

(y

n

; u

n

)(y � y

n

) + f

yu

(y

n

; u

n

)(u� u

n

)� (5.14)

�(�

n

+ �(z

n

� �(y

n

))�

00

(y

n

)(y � y

n

) + p�� ��

0

(y

n

)

0 = �+ p (5.15)

0 2 f

u

(y

n

; u

n

) + f

uu

(y

n

; u

n

)(u� u

n

) + f

uy

(y

n

; u

n

)(y � y

n

)� p+N(u) (5.16)

0 = �y + z � u (5.17)

0 = z � �(y

n

)� �

0

(y

n

)(y � y

n

): (5.18)

Proof. This iteration sheme is a onlusion of the iteration rule (5.12) applied to the

onrete hoie of (5.9) for F . The omputations are straightforward. We should only

mention the following equivalent transformation, whih �nally leads to (5.14), (5.15): Due

to the onrete expression for F given in (5.12), the �rst two relations in 0 2 F (w

n

) +

F

0

(w

n

)(w � w

n

) +N (w) are

0 = f

y

(y

n

; u

n

) + f

yy

(y

n

; u

n

)(y � y

n

) + f

yu

(y

n

; u

n

)(u� u

n

)� (5.19)

��(z � �(y

n

)� �

0

(y

n

)(y � y

n

))�

0

(y

n

)

�(�

n

+ �(z

n

� �(y

n

))�

00

(y

n

)(y � y

n

)

0 = �(z � �(y

n

)� �

0

(y

n

)(y � y

n

)) + p+ �: (5.20)
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Inserting (5.18) in (5.19), (5.20) we obtain (5.14), (5.15). 2

To apply Theorem 5 to the onrete generalized equation (5.10), we need that (5.10) be

strongly regular at �w, and that onditions (C1) and (C2) be satis�ed. The assumption

of strong regularity at �w must be assumed here. It has to be heked for eah partiular

appliation. In general, the veri�ation of strong regularity requires a detailed analysis. In

the ase of the optimal ontrol of paraboli partial di�erential equations, we refer to the

disussion of the SQP method in Tr�oltzsh [23℄. The strong regularity of an assoiated

generalized equation was proved there by means of a result on L

1

-Lipshitz stability from

[22℄. The assoiated semilinear ellipti ase was studied by Unger [24℄.

The onditions (C1) and (C2) an be veri�ed with assumptions (A6) and (A7).

Lemma 5 The mapping w 7! F (w) is of lass C

1;1

from Y � U

4

into

b

Y � U

4

.

Proof. This statement is an immediate onsequene of (A6) and (A7). 2

Theorem 6 Let (�y; �u) be a loal solution of (P ), and let �p be the assoiated adjoint state.

Assume that the generalized equation: Find (y; u; p) 2 Y � U

2

suh that

0 = p� + p�

0

(y) + f

y

(y; u);

0 2 f

u

(y; u) +N(u);

0 = �y + �(y)� u;

(5.21)

be strongly regular at (�y; �u; �p). Then the generalized equation

Find w 2 Y � U

4

suh that F (w) 2 N (w); (5.22)

is strongly regular at �w = (�y; �u; �z; �p;

�

�), where �z = �(�y) and

�

� = ��p.

Proof. Let e = (e

p

; e

�

; e

u

; e

y

; e

z

) be a perturbation in

b

Y � U

4

. The linearized generalized

equation for (5.22) at the point �w, assoiated with the perturbation e, is

e

p

=

�

f

y

+

�

f

yy

(y � �y) +

�

f

yu

(u� �u)� (

�

�+ �(�z �

�

�))

�

�

00

(y � �y)

��(z �

�

��

�

�

0

(y � �y))

�

�

0

+ p�� �

�

�

0

e

�

= �(z �

�

��

�

�

0

(y � �y)) + p+ �;

e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

e

y

= �y + z � u;

e

z

= z �

�

��

�

�

0

(y � �y);

(5.23)

where

�

f

yy

stands for f

yy

(�y; �u), and the same notations is used for the other mappings. To

obtain the two �rst equations of (5.23), we refer to the system (5.19), (5.20), where we

insert w

n

= �w and replae the left hand side by the perturbation.
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Sine �z �

�

� = 0 and

�

� = ��p, by straightforward alulations, we an easily prove that the

system (5.23) is equivalent to

e

p

� e

�

�

�

0

=

�

f

y

+

�

f

yy

(y � �y) +

�

f

yu

(u� �u) + �p

�

�

00

(y � �y) + p(� +

�

�

0

)

e

�

� �e

z

= p+ �;

e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

e

y

� e

z

= �y +

�

�+

�

�

0

(y � �y)� u;

e

z

= z �

�

��

�

�

0

(y � �y):

(5.24)

Now we observe that the �rst, third, and fourth relation of (5.24) form a subsystem for

(y; u; p), whih does not depend on (z; �). One (y; u; p) is given from this subsystem,

(z; �) is uniquely determined by the remaining two equations. Let us set ~e = (~e

p

; ~e

u

; ~e

y

),

with

~e

p

= e

p

� e

�

�

�

0

; ~e

u

= e

u

; ~e

y

= e

y

� e

z

: (5.25)

The subsystem of (5.24) an be rewritten in the form of the generalized equation

~e

p

=

�

f

yy

(y � �y) +

�

f

yu

(u� �u) + p� +

�

f

y

+ �p

�

�

00

(y � �y);

~e

u

2

�

f

u

+

�

f

uu

(u� �u) +

�

f

uy

(y � �y)� p+N(u);

~e

y

= �y +

�

�+

�

�

0

(y � �y)� u:

(5.26)

The generalized equation (5.26) is the linearization of the generalized equation (5.21) at

(�y; �u; �p), assoiated with the perturbation ~e. Sine (5.21) was assumed to be strongly

regular at (�y; �u; �p), there exist ~r � r(�y; �u; �p) > 0, ~ � (�y; �u; �p) > 0, and a mapping S from

B

b

V
�U

(0; ~r) into

b

V �U , suh that S(~e) is the unique solution to (5.26) for all ~e 2 B

b

V
�U

(0; ~r),

and kS(~e

1

)�S(~e

2

)k

b

V�U

� ~k~e

1

� ~e

2

k

b

V�U

. Now, we show that (5.22) is strongly regular at

�w. For any e, let ~e be given by (5.25). Then

k~ek

b

V�U

�  kek

b

Y�U

4

;

and there exists �r > 0 suh that ~e belongs to B

b

V
�U

(0; ~r) if e 2 B

b

Y
�U

4

(0; �r). De�ne a

mapping

�

S from B

b

Y�U

4

(0; �r) into

b

Y � U

4

, as follows :

�

S(e) = (S

1

(~e); S

2

(~e); z(e); S

3

(~e); �(e));

where

(S

1

(~e); S

2

(~e); S

3

(~e)) = S(~e);

z(e) = e

z

+

�

�+

�

�

0

(S

1

(~e)� �y); �(e) = e

�

� e

z

� S

3

(~e):

Then

�

S(e) is learly the unique solution to (5.23). We an easily �nd � > 0 suh that

k

�

S(e

1

)�

�

S(e

2

)k

b

Y�U

4

� �k�e

1

� �e

2

k

b

Y�U

4

. The proof is omplete. 2

Theorem 6 shows that one the onvergene analysis for the standard non augmented
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Lagrange-Newton-SQP method has been done by proving strong regularity of the assoi-

ated generalized equation, this analysis does not have to be repeated for analyzing onver-

gene of the augmented method.

Up to now, we have disussed the Augmented SQP method and the Generalized Newton

method separately. Now we shall show that both methods are equivalent. This equivalene

is used to obtain a onvergene theorem for the augmented SQP method.

Theorem 7 Let (�y; �u) a loal solution of (P ), whih satis�es together with the assoi-

ated Lagrange multiplier �p the seond order suÆient optimality ondition (SSC). De�ne

�z = �(�y);

�

� = ��p, �w = (�y; �u; �z; �p;

�

�), and suppose that the generalized equation (5:21) is

strongly regular at �w. Then there exists r = r( �w) > 0 suh that, for any starting point

(y

0

; u

0

; z

0

; p

0

; �

0

) in the neighbourhood B

W

( �w; r), the ALSQP method de�ned aording to

Theorem 2 and the generalized Newton method de�ned in Lemma 4 generate the same se-

quene of iterates (w

n

)

n

= (y

n

; u

n

; z

n

; p

n

; �

n

)

n

. Moreover, there is a onstant 

q

( �w) suh

that the estimate

kw

n+1

� �wk

W

� 

q

kw

n

� �wk

2

W

is satis�ed for all n = 0; 1; 2; : : :

Proof. First we should mention the simple but deisive fat that �w satis�es the optimal-

ity system of (P

�

), sine (�y; �u; �p) has to satisfy the optimality system for (P). There-

fore, it makes sense to determine �w by the generalized Newton method. Let w

n

=

(y

n

; u

n

; z

n

; p

n

; �

n

) be an arbitrary urrent iterate, whih is idential for the ALSQP method

and the generalized Newton method.

In the GNM, w

n+1

2 W is found as the unique solution of (5.14){(5.18). As onerns the

ALSQP method, (y

n+1

; u

n+1

) 2 Y �U is obtained as the unique solution of (

d

QP

�

n+1

), while

(z

n+1

; p

n+1

; �

n+1

) 2 U

3

are determined by (5.2). Therefore, (y

n+1

; u

n+1

; z

n+1

; p

n+1

; �

n+1

)

satis�es the assoiated optimality system (5.4), (5.5)-(5.7) whih is obviously idential with

(5.14)-(5.18). It is lear that both the methods deliver the same new iterate w

n+1

2 W .

All remaining statements of the theorem follow from the onvergene Theorem 5. 2

6 Numerial results

6.1 Test example

We apply the augmented SQP method to the following one-dimensional nonlinear paraboli

ontrol problem with Stefan-Boltzmann boundary ondition:

(E) Minimize f(y; u) =

1

2

`

Z

0

(y(x; T )� y

T

(x))

2

dx +

�

2

T

Z

0

u(t)

2

dt

+

T

Z

0

(�a

y

(t) y(`; t) + a

u

(t)u(t)) dt;
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subjet to

y

t

� y

xx

= 0 in (0; `)� (0; T )

y(x; 0) = a(x) in (0; `)

y

x

(0; t) = 0 in (0; T )

y

x

(`; t) + y(`; t) = b(t) + u(t)� '(y(`; t)) in (0; T );

u

a

� u(t) � u

b

:

This example is a partiular ase of problem (E) onsidered in Setion 3, where we take 
 =

(0; `) and make an assoiated modi�ation of the boundary ondition. In an early phase of

this work, we studied the numerial behaviour of the SQP method without augmentation.

Here, we ompare both methods. We performed our numerial tests for the following

partiular data:

` = �=4; T = 1; � =

p

2

2

(e

2=3

� e

1=3

)

u

a

= 0; u

b

= 1;

y

T

(x) = (e + e

�1

) os(x);

a

y

(t) = e

�2t

; a

u

(t) =

p

2

2

e

1=3

;

a(x) = os(x); b(t) =

1

4

e

�4t

�min(u

b

;max(u

a

;�(e

1=3

� e

t

)));

'(y) = y jyj

3

:

Lemma 6 The pair (�y; �u) de�ned by

�u(t) = min(u

b

;max(u

a

;

e

t

� e

1=3

e

2=3

� e

1=3

)); �y(x; t) = e

�t

os(x);

is a loally optimal solution for (6:27) in C([0; `℄�[0; T ℄)�L

1

(0; T ). The assoiated adjoint

state (Lagrange multiplier) is given by �p(x; t) = �e

t

os(x). The triplet (�y; �u; �p) satis�es

the seond order suÆient optimality ondition (SSC).

Proof. The proof is split into four steps.

Step 1. State equation. It is easy to see that �y

t

��y

xx

= 0; �y(x; 0) = os(x), and �y

x

(0; t) = 0.

Now regard the boundary ondition at x = `: The left hand side is

�y

x

(`; t) + �y(`; t) = �e

�t

sin(�=4) + e

�t

os(�=4) = 0:

The same holds for the right hand side, sine

b(t) + �u(t)� '(�y(`; t)) =

1

4

e

�4t

� �u(t) + �u(t)� (e

�t

os(�=4))

4

= 0:

Step 2. Adjoint equation. Again, the equations ��p

t

� �p

xx

= 0; �p

x

(0; t)) = 0, and �p(x; T ) =
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�y(x; T )� y

T

(x) are easy to hek. It remains to verify the boundary ondition at x = `:

p

x

(`; t) + p(`; t) = �(a

y

(t) + '

0

(�y(`; t))p(`; t)):

It is obvious that �p

x

+ �p = 0 at x = `. The right hand side of the boundary ondition has

the same value, sine

a

y

(t) + '

0

(�y(`; t))�p(`; t) = e

�2t

� 4�y(`; t)

3

e

t

os(`)

= e

�2t

� 4e

�3t

os(�=4)

3

e

t

os(�=4)

= e

�2t

(�1 + 4(

p

2

2

)

4

) = 0:

Step 3. Variational inequality. We must verify that �u 2 U

ad

{ whih is trivial { and that

T

Z

0

(��u(t) + a

u

(t) + �p(`; t))(u(t)� �u(t)) dt � 0 for all u 2 U

ad

:

It is well known that this holds if and only if

�u(t) = P

[u

a

;u

b

℄

n

�

1

�

(a

u

(t) + �p(`; t))

o

= P

[0;1℄

n

e

t

� e

1=3

e

2=3

� e

1=3

o

;

where P

[0;1℄

denotes projetion onto [0; 1℄. This is obviously veri�ed.

Step 4. Seond order suÆient ondition. The Lagrange funtion is given by

L = f �

R

Q

(y

t

� y

xx

)p dxdt+

R

l

0

(y(x; 0)� a(x))p(x; 0)dx

+

R

T

0

y

x

(0; t)p(0; t) dt+

R

T

0

(y

x

(`; t) + y(`; t)� b(t)� u(t))p(`; t) dt

�

R

T

0

'(y(`; t))p(`; t) dt:

Therefore,

L

00

(�y; �u; �p)(y; u)

2

= ky(T )k

2

L

2

(0;`)

+ kuk

2

L

2

(0;T )

� 12

Z

T

0

�y(`; t)

2

�p(`; t)y(`; t)

2

dt:

Sine �p is negative, L

00

(�y; �u; �p) is oerive on the whole spae Y � U , hene (SSC) is

satis�ed. 2

Theorem 8 The pair (�y; �u) is a global solution of (E).

Proof. Let (y; u) be any other admissible pair for (E). Due to the �rst order neessary

ondition, we have

f(y; u) � f(�y; �u) + L(�y; �u; �p)(y � �y; u� �u)

�

1

2

T

Z

0

�p(`; t)

1

Z

0

'

00

(�y(`; t) + �(y(`; t)� �y(`; t)))(y(`; t)� �y(`; t))

2

d� dt

� f(�y; �u)

�

1

2

T

Z

0

�p(`; t)

1

Z

0

'

00

(�y(`; t) + �(y(`; t)� �y(`; t)))(y(`; t)� �y(`; t))

2

d� dt:
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>From the positivity of ��p and of '

00

(�y + s(y � �y)) (independently of s and y), it follows

that f(y; u) � f(�y; �u). 2

Next we disuss the strong regularity of the optimality system at (�y; �u; �p).

Theorem 9 The optimality system of (E) is strongly regular at (�y; �u; �p).

Proof. The triplet (�y; �u; �p) satis�es (SSC). Moreover, (E) �ts into a more general lass

of optimal ontrol problems for semilinear paraboli equations, whih was onsidered in

[23℄. It follows from Theorem 5.2 in [22℄, and Theorem 5.3 in [23℄ that (SSC) ensures

the strong regularity of the generalized equation being the abstrat formulation of the

assoiated optimality system. We only have to apply this result to problem (6.27). 2

Remark 3 A study of [23℄ reveals that onvergene of the standard SQP method an be

proved for arbitrary dimension of 
 assuming a weaker form of (SSC). It requires oer-

ivity of L

00

only on a smaller subspae that onsiders strongly ative ontrol onstraints.

This weaker assumption should be helpful for proving the onvergene of the augmented

SQP method as well. We shall not disuss this, sine the tehnial e�ort will inrease

onsiderably.

Now we obtain from Theorem 7 the following result:

Corollary 2 The Augmented Lagrangian SQP method for (E) is loally quadratially on-

vergent towards (�y; �u; �p).

6.2 Algorithm

For the onveniene of the reader, let us onsider the problem (

d

QP

�

n+1

) orresponding to

our test example. After simplifying we get

Minimize

1

2

`

Z

0

y(�; T )

2

dx+

�

2

T

Z

0

u

2

dt+

1

2

T

Z

0

q

n

y(`; �)

2

dt�

`

Z

0

y(�; T ) y

T

dx (6.27)

+

T

Z

0

(� (a

y

+ q

n

y

n

(`; �)) y(`; �) + a

u

u) dt;

subjet to

y

t

� y

xx

= 0 in (0; `);�(0; T )

y(x; 0) = a(x) in (0; `);

y

x

(0; t) = 0 in (0; T );

y

x

(`; t) + 

n

y(`; t) = b

n

(t) + u(t) in (0; T );

(6.28)
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u

a

� u(t) � u

b

; (6.29)

with

q

n

= 12y

n

(`)

2

(� p

n

(`) + �(z

n

� y

n

(`)

4

)); 

n

= 1 + 4y

n

(`)

3

;

b

n

= b + 3y

n

(`)

4

:

One spei� diÆulty for solving problem (6:27)-(6:29) is partially related to the ontrol

onstraints. But the main diÆulty appears also in the unonstrained ase where a (large)

linear system has to be solved. Let us onsider for a moment the unonstrained ase. If

(u

n+1

; y

n+1

) is a solution of problem (6:27)-(6:28), then the optimal triplet (u

n+1

; y

n+1

; p

n+1

)

satis�es (6:28), the adjoint equation

p

t

+ p

xx

= 0 in (0; `)� (0; T );

p(x; T ) = y

n

(x; T )� y

T

(x) in (0; `);

p

x

(0; t) = 0 in (0; T );

p

x

(`; t) + 

n

p(`; t) = q

n

(t)y

n+1

(`; t)� q

n

(t)y

n

(`; t)� a

y

in (0; T );

(6.30)

and

u

n+1

= �

1

�

(a

u

+ p

n+1

(`; �)): (6.31)

In pratie, we solve (

d

QP

�

n

) by disretization of its optimality system. The result is taken to

solve (

d

QP

�

n+1

). The disretized version of equation (6.31) orresponds to a large-sale linear

system. To solve this system, we need the solutions orresponding to the disretization

of two oupled paraboli equations (the state and the adjoint equations). It is lear that

the auray of the Augmented Lagrangian SQP-method depends on the one for solving

the linear system, and onsequently on the numerial methods for the partial di�erential

equations. In our example, the state and adjoint equations are solved by using a seond-

order �nite di�erene sheme (Crank-Niholson sheme) appropriately modi�ed at the

boundary to maintain seond order approximation. The linear system is solved by using

the CGM (onjugate gradient method), with a step length given by the Polak-Ribiere

formula.

Let us now take into aount the onstraints (6.29). The optimality ondition (6.31) is

replaed by

u

n+1

= Proj

[u

a

;u

b

℄

(�

1

�

(a

u

+ p

n+1

(`; �))) (6.32)

=

8

>

>

>

>

>

<

>

>

>

>

>

:

u

a

if �u

a

+ a

u

+ p

n+1

(`; �) > 0;

u

b

if �u

b

+ a

u

+ p

n+1

(`; �) < 0;

�

1

�

(a

u

+ p

n+1

(`; �)) if u

a

< �

1

�

(a

u

+ p

n+1

(`; �)) < u

b

:

The management of these restritions is based on (6.32) and on an projetion method

by Bertsekas [7℄. (See also [9℄ and [10℄ where this method is suessfully applied.) More

preisely, we have the following algorithm:
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1 - Let w

n

= (w

1

n

; � � � ; w

m

n

)

T

be the vetor representing the iterate orresponding to

u

n

for some �xed grid. Let " and � be �xed positive numbers, and let I = f1; � � � ; mg

be the index set assoiated to w

n

. (m is the dimension of the vetor w

n

and depends

on the disretization of u

n

)

2 - Solve (6.28), (6.30), (5.3), and denote by d

n

= (d

1

n

; � � � ; d

m

n

)

T

the vetor repre-

senting the iterate orresponding to the solution of (6.30).

3 - De�ne the sets of strongly ative inequalities

I

�

a

= fi 2 I j w

j

n

= u

a

and �w

j

n

+ d

j

n

+ A

j

u

> �g;

I

�

b

= fi 2 I j w

j

n

= u

b

and �w

j

n

+ d

j

n

+ A

j

u

< ��g;

where A

u

= (A

1

u

; � � � ; A

m

u

)

T

is the vetor representing a

u

.

4 - Set û

j

= w

j

n

for all j 2 I

�

a

[ I

�

b

.

5 - Solve the unonstrained problem (6.27)-(6.28) for w

j

n

, j 2 I n (I

�

a

[ I

�

b

). (The

remaining omponents are �xed due to 4.) Denote by v

n

the vetor representation of

the solution.

6 - Set w

n+1

= P

[u

a

;u

b

℄

v

n

, where P

[u

a

;u

b

℄

denotes the projetion onto [u

a

; u

b

℄

m

:

7 - If kw

n+1

�w

n

k � " then put w

n

:= w

n+1

, n := n+1 and go to 2. Otherwise stop

the iteration.

6.3 Numerial tests

In the numerial tests, we foused our interest on the aspets onerning the onvergene

for di�erent values of initial data and penalty parameters �, and on the rate of onvergene.

The programs were written in MATLAB.

Let us �rst summarize some general observations.

� In our example, the augmented Lagrangian algorithm performed well. In partiular, the

graphs of the exat solution and that of the numerial solution are (almost) idential.

� When ompared with the SQP method (orresponding to � = 0), the augmented La-

grangian SQP has the advantage of a more global behavior. Moreover, it is less sensitive

to the start-up values, and is signi�antly faster than the SQP method for some points.

� Graphial orretion of the omputed ontrols and preisionof optimal value (up to �ve

digits) are obtained by taking the disretization parameters with respet to the time and

the spae equal to 200.

� For �xed data, the number of iterations for the CGM and the Augmented SQP turned

out to be independent of the mesh size.

In all the sequel, we set
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n

u

= k�u� ûk

2

; n

y

= k�y � ŷk

2

; n

p

= k�p� p̂k

2

; n

z

= k�z � ẑk

2

;

e

n

=

k�u� u

n

k

2

+ k�y � y

n

k

2

+ k�p� p

n

k

2

+ �k�z � z

n

k

2

k�u� u

n�1

k

2

2

+ k�y � y

n�1

k

2

2

+ k�p� p

n�1

k

2

2

+ �k�z � z

n�1

k

2

2

;

where (�u; �y; �p; �z), (û; ŷ; p̂; ẑ) and (u

n

; y

n

; p

n

; z

n

) are the vetors respetiveely orresponding

to the exat solution of (E), the numerial solution of (E), and the solution of (

d

QP

�

n

).

Moreover, we denote by n

t

and n

x

the disretization parameters with respet to the time

and the spae. Optimal ontrols were determined for the following pairs (n

x

; n

t

): (100,100),

(200,200), (400,400).

Run 1. (SQP method.) The �rst test orresponds to (u

0

; y

0

; p

0

) = (0:5; 0:5; 0:5), and

� = 0. The rates for e

n

, n

u

, n

p

, and n

z

are given in Table 1.

Table 1:

nx n

u

n

y

n

p

e

1

e

2

e

3

e

4

100 1.7782e-06 2.5347e-06 1.6610e-06 0.2372 0.3653 1.0575 1.3886

200 1.3725e-06 2.9337e-06 1.0724e-06 0.2472 0.3663 1.0585 0.9980

400 3.4363e-06 1.2385e-06 1.2702e-06 0.2439 0.3636 1.0583 1.1952

The SQP method shows a good onvergene for this initial point. 4 iterations were needed

to get the result.

Run 2. (ALSQP method.) The seond test orresponds to the point (u

0

; y

0

; p

0

)=

(0:5; 0:5; 0:5), with z

0

= y

4

0

+ 2, and � = 1.

Table 2:

nx n

u

n

y

n

p

n

z

e

1

e

2

e

3

100 1.5391e-06 2.6824e-06 1.5013e-06 1.4459e-06 0.0150 1.0004 2.2378

200 1.2318e-06 3.8783e-07 5.2251e-07 5.5521e-07 0.0149 0.9256 1.0015

400 1.5223e-06 5.3737e-06 6.0455e-06 3.5205e-07 0.0149 0.8879 1.2290

The ALSQP method has a very good onvergene for this hoie. Convergene ould always

be ahieved by �xing (u

0

; y

0

; p

0

), and using other values of z

0

and �. However, the number

of iterations and the speed of the method depend on these hoies. As shown in Table 3,

three iterations for the ALSQP method were needed, instead of four for the SQP method.

The number of iterations for the CGM, the SQP and the ALSQP methods is independent

of the mesh-size. The exat value for the ost funtional is

�

f = 2:7198. In Table 3, we give

the values of the ost funtional orresponding to the di�erent steps for nx = nt = 200.
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Table 3:

SQP method

Iter f

n

CGM iter

1 2.6870 2

2 2.7104 3

3 2.7195 6

4 2.7198 10

ALSQP method

Iter f

n

CGM iter

1 2.6878 3

2 2.7194 6

3 2.7198 11
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u0 

u2 u1 

u3, u4 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u1 

u0 

u2, u3 

Figure 1: Controls for Run 1 and Run 2
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Figure 2: States y(`; t) for Run 1 and Run 2
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Figure 3: Adjoint states p(`; t) for Run 1 and Run 2

In Figures 1, 2, and 3, we ompare the behavior of the ontrol, the state, and the ad-

joint state obtained by taking � = 0, and � = 1. It is lear that in the ase of the

ALSQP method, the seond iteration gives a good approximation to the optimal ontrol,

the optimal state, and the optimal adjoint state.

Run 3. The last test orresponds to the initial point given by (u

0

; y

0

; p

0

) = (0:5; 1; 2).

Table 4:

nx n

u

n

y

n

p

n

z

100 9.9421e-06 2.7989e-06 4.0979e-06 3.0853e-06

200 1.1864e-05 4.7523e-06 5.0999e-06 2.3842e-06

400 1.2167e-05 5.2817e-06 5.3307e-06 2.2146e-06

nx e

1

e

2

e

3

e

4

100 0.0402 0.4017 1.3412 0.9260

200 0.0404 0.3975 1.3537 1.1471

400 0.0405 0.3956 1.3591 1.2052

For this initial point, the SQP method (orresponding to � = 0) does not onverge, while

the ALSQP method onverges for many hoies of z

0

. In our tests, the point whih gives

the best result is given by z

0

= y

4

0

+ 3 with � = 1. For this hoie, 4 iterations are needed

with 2, 5, 6 and 9 CG steps. The di�erents rates are given in Table 4, and the behavior of

the solution is shown is Figure 4.

Remark 4 The numerial results stated in Table 1, 2, and reft3 were obtained for a �xed

mesh-size (�xed grid). However, we also implemented the ALSQP method with adaptative

mesh size, i.e. we started with a oarse grid and used the obtained results as startup values
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Figure 4: Controls, states, and adjoint states for Run 3

for the next �ner grid. This method is signi�antly faster, and delivers essentially the same

results.
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