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Abstrat

In this paper we onsider a pieewise linear olloation method for the solu-

tion of a pseudo-di�erential equation of order r = 0;�1 over a losed and smooth

boundary manifold. The trial spae is the spae of all ontinuous and pieewise lin-

ear funtions de�ned over a uniform triangular grid and the olloation points are

the grid points. For the wavelet basis in the trial spae we hoose the three-point

hierarhial basis together with a slight modi�ation near the boundary points of

the global pathes of parametrization. We hoose linear ombinations of Dira delta

funtionals as wavelet basis in the spae of test funtionals. For the orrespond-

ing wavelet algorithm, we show that the parametrization an be approximated by

low order pieewise polynomial interpolation and that the integrals in the sti�ness

matrix an be omputed by quadrature, where the quadrature rules are omposite

rules of simple low order quadratures. The whole algorithm for the assembling of

the matrix requires no more than O(N [logN ℄

3

) arithmeti operations, and the er-

ror of the olloation approximation, inluding the ompression, the approximative

parametrization, and the quadratures, is less than O(N

�(2�r)=2

). Note that, in on-

trast to well-known algorithms by v.Petersdor�, Shwab, and Shneider, only a �nite

degree of smoothness is required. In ontrast to an algorithm of Ehrih and Raths-

feld, no multipliative splitting of the kernel funtion is required. Beside the usual

mapping properties of the integral operator in low order Sobolev spaes, estimates

of Calder�on-Zygmund type are the only assumptions on the kernel funtion.

1 Introdution

It is a well-known fat that usual �nite element disretizations of linear integral equa-

tions (e.g: of boundary integral equations) lead to systems of linear equations with fully

populated matries. Thus, even an iterative solution method requires a huge number of

arithmeti operations and a large storage apaity. In order to improve these �nite ele-

ment approahes for integral equations, several algorithms have been developed. One of

these onsists in employing wavelet bases of the �nite element spaes. The basi idea goes

bak to Beylkin, Coifman, and Rokhlin [3℄, and has been thoroughly investigated by Dah-

men, v.Petersdor�, Pr�o�dorf, Shneider, and Shwab [11, 12, 30, 29, 28, 40℄ (f: also the

ontributions by Alpert, Harten, Yad-Shalom, Ehrih, and Rathsfeld [1, 21, 36, 18℄). In

the present paper, we shall apply the wavelet tehnique to the pieewise linear olloation

of two-dimensional boundary integral equations of order r = 0 and r = �1 orresponding

to three-dimensional boundary value problems.

First we shall reall the de�nition of a simple biorthogonal wavelet basis analyzed in

[38℄ (f: the familiar onstrutions in [22, 42, 24℄ and ompare [13, 14, 15, 5, 6, 7, 16℄). The

grids will be supposed to be uniform re�nements of a oarse initial triangulation, and the

basis will be the system of three-point hierarhial basis funtions, i.e: eah basis funtion

will be a linear ombination of no more than three �nite element funtions de�ned over

the orresponding level of a grid hierarhy. In omparison to other bases of ontinuous

wavelet funtions our basis funtions will have a rather small support, and we believe that
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this property is essential for the wavelet algorithm. Indeed, small supports lead to better

ompression rates, espeially, for higher levels and to faster quadrature algorithms for the

assembling of the sti�ness matrix.

For the basis in the test spae spanned by Dira delta funtionals, we shall take

the usual test funtionals whih an be onsidered at as saled versions of di�erene

formulas (f: the wavelet olloation methods by Dahmen, Pr�o�dorf, Shneider, Harten,

Yad-Shalom, and Rathsfeld [12, 21, 36, 35, 37℄). Applying the wavelet basis funtions

of the trial and test spae, we shall obtain the well-known ompression results for trial

wavelets with vanishing moments due to Dahmen, v.Petersdor�, Pr�o�dorf, Shneider, and

Shwab [12, 30, 40℄. The ompression for trial funtions without vanishing moments is

the same as in [35℄ (f: also the univariate analogue for the Galerkin method treated in

[30, 4℄). Note that we have to assume that the derivatives of the kernel funtion up to a

�nite order satisfy the Calder�on-Zygmund estimate. This is the fundamental relation not

only for the wavelet ompression but also for the fast assembling of the sti�ness matrix

via quadrature.

In general, the sti�ness matrix annot be omputed exatly. This is the ase, for

instane, if the boundary manifold is given by a disrete set of points or if no analyti

formula is available to integrate the kernel and trial funtions. Therefore, we shall onsider

an algorithm for the approximation of the boundary surfae and for the quadrature of

the integrals. We emphasize that this is the most time onsuming and the most diÆult

part of the wavelet method. To set up the sti�ness matrix, we shall proeed as follows.

We shall replae the parametrization of the boundary manifold by a low order pieewise

polynomial interpolation over the �nest grid. Depending on the test funtional and on the

trial funtion, we shall de�ne an appropriate partition of the supports of the trial basis

funtions. We shall apply a low order omposite quadrature rule over this partition. This

way, we shall arrive at a fully disretized wavelet algorithm with O(N [logN ℄

3

) arithmeti

operations to ompute the O(N [logN ℄) entries of the ompressed sti�ness matrix. If

r = �1, then even O(N [logN ℄

2

) arithmeti operations are suÆient. Here N stands

for the number of degrees of freedom. Assuming that the olloation without wavelet

algorithm is stable, the asymptoti error of the exat olloation solution is known to be

less than O(N

�(2�r)=2

) whih is optimal for pieewise linear trial spaes. The fully disrete

wavelet algorithm will be shown to be stable and onvergent with an optimal error less

than O(N

�(2�r)=2

).

Notie that alternative quadrature algorithms have been onsidered by Beylkin, Coif-

man, Rokhlin [3℄ for integral operators with smooth kernels and by v.Petersdor�, Shwab,

and Shneider [30, 40℄ (f: also the numerial implementation by Lage and Shwab [23℄) for

boundary integral operators with analyti Green kernels over pieewise analyti bound-

aries. Another quadrature algorithm due to Ehrih and Rathsfeld [19℄ applies to produt

kernels, where one fator has a �nite degree of smoothness and no singularity whereas the

seond fator an be singular but must be analyti outside the singularity. In ontrast

to these, the fully disrete algorithm of the present paper applies to boundary integral

equations over surfaes with �nite degree of smoothness and inluding kernel funtions

with �nite degree of smoothness. In fat, the required degree of smoothness for the ge-
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ometry will be equal to 2[2 � r℄ + 1, i.e: to the doubled order of onvergene inreased

by one. Moreover, the kernel funtion of the integral operator will be assumed to have

ontinuous mixed derivatives up to order 2[2�r℄ outside the diagonal. In the proof of the

orresponding error estimates, we shall show that the tehniques developed for the om-

pression algorithm apply to the analysis of the disretization as well. The only thing to do

is to replae the deay properties in the matrix entries due to the vanishing moments of

the trial funtions and the norm estimates due to the smoothness of the solution by error

estimates of the approximate parameter mappings and by estimates of the quadrature

rules, respetively.

The plan of the paper is as follows. In Set.2 we shall desribe the boundary manifold,

the integral equation, and the onventional pieewise linear olloation method. We shall

introdue the three-point hierarhial wavelet funtions of the pieewise linear trial spae,

the test wavelet funtionals, and the orresponding ompression algorithm in Set.3. Set.

4 will be devoted to the desription of the interpolation of the parameter mappings and

to the quadrature algorithm. All proofs will be deferred to Sets. 5 and 6. In partiular,

in Set. 5 we shall reall some tehnial results from the ompression estimates, and the

disretization inluding the approximation of the parametrizations and of the integration

will be analyzed in Set. 6.

Finally, we remark that our algorithm applies in partiular to the double layer poten-

tial equation (f: the examples in Set: 2.2). However, though the double layer operator

is a pseudodi�erential operator of order zero, the kernel funtion is the kernel of a pseu-

dodi�erential operator of order minus one. Moreover, the onstant funtions are eigen

funtions orresponding to the eigen value one. Using these additional properties and

the tehnique of the present paper, a rate of onvergene O(N) multiplied by logarithmi

fators an be derived for a modi�ed algorithm, whih applies to thrie ontinuously dif-

ferentiable manifolds, whih replaes the exat parametrization by a pieewise quadrati

interpolation, and whih is based on omposite quadrature rules of onvergene order two.

2 The Pieewise Linear Colloation Method

2.1 The Manifold

We suppose that the integral equation to be solved is given on a losed boundary manifold

� � IR

3

with �nite degree of smoothness. More exatly, we assume that � is the union of

m

�

triangular pathes �

m

, i:e:

� = [

m

�

m=1

�

m

; �

m

:= �

m

(T ); (2.1)

T :=

n

(s; t) 2 IR

2

: 0 � s � 1; 0 � t � minfs; 1� sg

o

:

Here the �

m

denote parametrization mappings from the standard triangle T to the man-

ifold �. We assume that the �

m

extend to mappings from the larger triangle

T

e

:=

n

(s; t) 2 IR

2

: �3 � s � 5; �1 � t � minfs+ 2; 4� sg

o
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to � and that these extensions are d

�

times ontinuously di�erentiable. Here d

�

is an

integer whih is assumed to be greater or equal to three when dealing with zero order

operators and greater or equal to four when dealing with operators of order r = �1. This

degree of smoothness is suÆient for the usual onvergene estimates of the linear ollo-

ation and for an almost optimal ompression algorithm. For the quadrature, however,

we need more smoothness. We assume that d

�

is greater or equal to �ve when dealing

with zero order operators and greater or equal to seven when dealing with operators of

order r = �1.

Further we suppose that the intersetion of two pathes �

m

and �

m

0

is either empty

or a orner point for both pathes or a whole side for �

m

and �

m

0

. In the last ase we

assume that the representations

�

m

\ �

m

0

=

n

�

m

�



1

+ �(

2

� 

1

)

�

: 0 � � � 1

o

;

�

m

\ �

m

0

=

n

�

m

0

�



0

1

+ �(

0

2

� 

0

1

)

�

: 0 � � � 1

o

satisfy the ondition

�

m

�



1

+ �(

2

� 

1

)

�

= �

m

0

�



0

1

+ �(

0

2

� 

0

1

)

�

; 0 � � � 1: (2.2)

Note that, for the numerial method, the parameter mappings �

m

need not to be given

for all points of T . We shall use only the values of �

m

at the points of a uniform grid over

the triangle T .

To seure stability of the so onstruted basis (f: [38℄), we even need two further

assumptions. In onnetion with the numbering we suppose that, if the orner P of a

path �

m

is ontained in the union [

m�1

m

0

=1

�

m

0

of the preeding pathes, then at least one

of the sides of �

m

ending at P is ontained in [

m�1

m

0

=1

�

m

0

. It is not hard to see that, for a

boundary manifold � homeomorphi to the sphere and for any �xed triangulation, there

always exists a numbering of the triangular pathes whih ful�lls the assumption. Finally,

for the parametrizations, we suppose the following assumption. For anym = 2; : : : ; m

�

�1,

we suppose that, if one of the two \shorter" sides �

m

(f(s; s) : 0 � s � 0:5g) and

�

m

(f(s; 1 � s) : 0:5 � s � 1g) is ontained in [

m�1

m

0

=1

�

m

, then the other must also be

ontained in [

m�1

m

0

=1

�

m

. This last assumption an always be satis�ed if the parameter

mappings �

m

are replaed by a omposition of �

m

with a suitable aÆne automorphism of

T .

Sine the manifold is at least ontinuously di�erentiable, for eah Q 2 �, there exists

a unit vetor n

Q

normal to � at Q and pointing into the exterior domain bounded by �.

The Sobolev spaes H

s

(�) over � an be de�ned in the usual way. We de�ne the spae

H

s

(�

m

) over �

m

as the image of the Sobolev spae over T , i:e:

H

s

(�

m

) := ff : f Æ �

m

2 H

s

(T )g :

Consequently, we get

H

s

(�) =

(

(f

m

)

m

�

m=1

2

m

�

M

m=1

H

s

(�

m

) : f

m

j

�

m

\�

m

0

= f

m

0

j

�

m

\�

m

0

)

;

1

2

< s <

3

2

;
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H

s

(�) =

m

�

M

m=1

H

s

(�

m

); �

1

2

< s <

1

2

; (2.3)

kfk

H

s

(�)

�

v

u

u

t

m

�

X

m=1

kf j

�

m

k

2

H

s

(�

m

)

; f 2 H

s

(�); �

1

2

< s <

3

2

:

2.2 The Integral Equation

Over � we onsider a pseudo-di�erential operator A of order r = 0 or r = �1 mapping

H

r=2

into H

�r=2

. We suppose that A is an integral operator of the form A = K for r = �1

and A = aI+K for r = 0, where aI stands for the operator of multipliation by a funtion

a whih may be zero, and the integral operator K is de�ned by

Ku(P ) :=

Z

�

k(P;Q)u(Q) d

Q

�; k(P;Q) := k(P;Q; n

Q

): (2.4)

The funtion k depends on the points P;Q 2 �, and k and a are supposed to have a �nite

degree of smoothness, i.e: the funtion a and the kernel k are supposed to be d

k

times

ontinuously di�erentiable. More preisely, for any d

k

-th order derivative �

�

P

; j�j = d

k

taken with respet to variable P 2 � and for any d

k

-th order derivative �

�

Q

; j�j = d

k

taken

with respet to the variables Q 2 �, we require that �

�

P

�

�

Q

k(P;Q) is ontinuous if P 6= Q.

The degree of smoothness d

k

is supposed to be greater or equal to two for r = 0 and to

three for r = �1. Moreover, we assume the so-alled Calder�on-Zygmund estimate, i.e: the

existene of a onstant C > 0 suh that, for any multiindies � and � with j�j; j�j � d

k

,

�

�

��

�

P

�

�

Q

k(P;Q)

�

�

� � C

k;�;�

jP �Qj

�2�r�j�j�j�j

: (2.5)

The funtion k need not to be a restrition to � � � of a funtion de�ned on the spae

IR

3

� IR

3

. It may depend for instane on the unit normals n

P

and n

Q

pointing into

the exterior or on any di�erent kind of di�erentiable vetor �eld over �. To speify the

notation, we assume a speial dependene and take k = k(P;Q) = k(P;Q; n

Q

) with k

de�ned on at least a neighbourhood of f(P;Q; n) : P;Q 2 �; n = n

Q

g � � � � � IR

3

.

If r = 0, then the integrand in (2.4) an be strongly singular and the integral is to be

understood in the sense of a Cauhy prinipal value. To ensure the existene of this

prinipal value, we assume the Mikhlin-Gireaud property (parity property)

k

�

P; P + (Q� P )

�

= �k

�

P; P � (Q� P )

�

+ O

�

jQ� P j

�1

�

:

For the operator A inluding the just de�ned integral operator K, we assume the

ontinuity of the mapping

A : H

s+r

(�) �! H

s

(�) (2.6)

with s = 0 and s = 1:1 (or s = 1:1 replaed by a di�erent s with 1 < s < 1:5) and the

invertibility of (2.6) with s = 0. For an operator A whih satis�es all these assumptions,

5



we shall solve the operator equation Au = v with known right-hand side v and unknown

u. To get error estimates with optimal order 2 � r, we �nally assume u 2 H

2

(�). Un-

fortunately, the smoothness of the kernel is not suÆient for the quadrature algorithm.

To get a onvergene order 2� r even with wavelet ompression and adapted quadrature

approximation, we need d

k

= 2[2� r℄. Furthermore, we suppose that Ap is 2[2 + r℄ times

ontinuously di�erentiable for all funtions p whih are linear polynomials with respet to

the parametrization. Note that this higher di�erentiability and this higher d

k

is needed

for the quadrature in the Sets: 4.2.2, 4.3.2, and 4.3.3. The ompression in Theorem 3.1

and the quadrature in the Sets: 4.1, 4.2.1, and 4.3.1 an easily be modi�ed suh that a

degree of smoothness d

k

equal to 2�r is suÆient. Of ourse, there would arise additional

logarithmi fators in the estimates of the modi�ed method.

Let us onsider some examples. For instane, single and double layer potential equa-

tions belong to our lass of operator equations. Indeed, for the single layer ase A = A

s

orresponding to Laplae's equation, the order r

s

is �1, and

k

s

(P;Q) :=

1

4�

1

jP �Qj

:

In ase of the double layer operator A = A

d

we get the order r

d

= 0, and the multipliation

funtion a

d

� 0:5 is onstant. The integral operator K

d

is de�ned by

k

d

(P;Q; n

Q

) = �

1

4�

n

Q

� (P �Q)

jP �Qj

3

:

Note that the operatorK

d

without aI is a pseudo-di�erential operator of order�1. Bound-

ary integral operators for the Stokes system or for Lam�e's system an be represented in a

similar fashion (f: [25℄).

To get a further example, we take the adjoint operator K

�

d

and replae the normal

vetor �eld n

Q

by an oblique �eld o

Q

. We arrive at a strongly singular boundary integral

operator A = A

o

whih orresponds to the oblique derivative boundary value problem for

Laplae's equation. In this ase, a

o

:= �0:5n

P

� o

P

and K

o

is given by

k

o

(P;Q; o

P

) = �

1

4�

o

P

� (P �Q)

jP �Qj

3

:

2.3 Grid and Colloation Points

Let us introdue a hierarhy of uniform grids over the standard triangle T . For the step

sizes 2

�l

, l = 0; : : : ; L, we set

4

T

l

:=

1

4

T

l

[

2

4

T

l

;

1

4

T

l

:=

n

(i2

�l

; j2

�l

) : 0 � i � 2

l

; 0 � j � minf2

l

� i; ig

o

;

2

4

T

l

:=

n

(2

�l�1

; 2

�l�1

) + (i2

�l

; j2

�l

) : 0 � i < 2

l

; 0 � j < minf2

l

� i; i+ 1g

o

6
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� �
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Figure 1: Grid 4

IR

2

0

.

and denote the grid points by � = (s; t) 2 4

T

l

. The grid 4

T

l

is the restrition of the grid

(f: Figure 1)

4

IR

2

l

:=

n

(i2

�l

; j2

�l

) : i; j 2 ZZ

2

o

[

n

(2

�l�1

; 2

�l�1

) + (i2

�l

; j2

�l

) : i; j 2 ZZ

2

o

to the triangle T . Using the parametrizations, we arrive at a grid hierarhy on �.

4

�

l

:=

n

�

m

(�) : m = 1; : : : ; m

�

; � 2 4

T

l

o

:

Clearly, a grid point P = �

m

(�) may have more than one representation. If P is in the

interior of a side of the triangular path �

m

whih is a ommon side with �

m

0

, then there

are exatly two representations P = �

m

(�) and P = �

m

0

(�

0

). If P is a orner point of a

path, then there exist k > 2 representations P = �

m

1

(�

1

) = �

m

2

(�

2

) = : : : = �

m

k

(�

k

).

We introdue

i

4

�

l

as the set of those P 2 4

�

l

whose representation P = �

m

(�) with the

smallest m satis�es � 2

i

4

T

l

, i:e:,

i

4

�

l

:= [

m

�

m=1

n

�

m

(�) : � 2

i

4

T

l

; �

m

(�) 62 [

m�1

m

0

=1

�

m

0

(4

T

l

)

o

;

and arrive at 4

�

l

=

1

4

�

l

[

2

4

�

l

. The points of 4

�

l

will be denoted by upper apital letters

like P and Q.

To eah grid 4

�

l

there orresponds a partition of � into triangular piees. Indeed, let

us introdue the sets of entroids

ut

IR

2

0

:=

��

1

2

;

1

6

�

+ k;

�

1

2

;

5

6

�

+ k;

�

1

6

;

1

2

�

+ k;

�

5

6

;

1

2

�

+ k : k 2 ZZ

2

�

;

ut

IR

2

l

:=

n

2

�l

� : � 2ut

IR

2

0

o

; ut

T

l

:= T \ ut

IR

2

l

;

ut

�

l

:=

n

�

m

(�) : � 2ut

T

l

; m = 1; 2; : : : ; m

�

o

:

For eah point � 2 ut

T

l

, there exist three uniquely de�ned neighbour points �

1

, �

2

, and

�

3

suh that �

1

; �

2

; �

3

2 4

T

l

, that the triangle T

�

spanned by the three orners �

1

, �

2

,

7



and �

3

is of square measure 2

�2l

=4, and that � is the entroid of T

�

. We arrive at the

triangulation fT

�

: � 2 ut

T

l

g of T . Note that, for l

0

> l, the entroids in ut

T

l

are loated

at the boundaries of the smaller triangles T

�

0

with �

0

2 ut

T

l

0

. Hene there is a one to one

orrespondene between the triangles T

�

over several levels and the entroids in [

L

l=0

ut

T

l

.

Similarly to the triangulation over T , we de�ne the triangulation fT

�

: � 2ut

IR

2

l

g of IR

2

.

For � and a point Q = �

m

(�) 2 ut

�

l

, we set �

Q

:= f�

m

(�) : � 2 T

�

g and arrive at the

triangulation f�

Q

: Q 2 ut

�

l

g. Further, we denote the level l of the points Q 2 ut

�

l

by

l(Q). Notie that eah partition triangle �

Q

; Q 2ut

�

l

; of the generation l splits into four

subtriangles of the generation l + 1.

Beside the grids 4

�

l

we introdue the di�erene grids

r

�

l

:=

(

4

�

0

if l = �1

4

�

l+1

n 4

�

l

if l = 0; : : : ; L� 1;

and obtain 4

�

L

=

S

L�1

l=�1

r

�

l

. For P 2 4

�

L

, we denote the unique level l for whih P 2 r

�

l

by l(P ). Analogously to r

�

l

, we de�ne the di�erene grids and the point levels over T

and IR

2

and get 4

T

L

=

S

L�1

l=�1

r

T

l

as well as 4

IR

2

L

=

S

L�1

l=�1

r

IR

2

l

. Finally, in aordane

to the splitting 4

T

l

=

1

4

T

l

[

2

4

T

l

, we introdue

i

r

T

l

= r

T

l

\

i

4

T

l+1

for i = 1; 2 and get

r

T

l

=

1

r

T

l

[

2

r

T

l

as well as

2

r

T

l

=

2

4

T

l+1

. Similarly, we de�ne

i

r

IR

2

l

and

i

r

�

l

.

Now the set of olloation points will be the grid 4

�

L

, i.e: the test funtionals of the

olloation sheme are the Dira delta funtionals Æ

P

with P 2 4

�

L

. The test spae Dir

�

L

is the span of all these Æ

P

.

2.4 The Trial Funtions

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

s

t

'

(0,0,0) (1,0,0)

(0,1,0)

(0,0,1)

Figure 2: Hat funtion (s; t) 7!

1

'(s; t).
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To prepare the introdution of linear spaes, we �rst de�ne two-dimensional hat fun-

tions for the grid 4

IR

2

0

.

1

' (s; t) := max

n

0; 1�maxfjs� tj; js+ tjg

o

;

2

' (s; t) := max

n

0; 1� 2maxfjsj; jtjg

o

:

Clearly, the funtion

1

' and the funtion

2

' shifted to the point (0:5; 0:5) are pieewise

linear funtions subordinate to the triangulation fT

�

: � 2 ut

IR

2

0

g (f: the grid in Figure

1, the graph of

1

' in Figure 2, and the graph of

2

' shifted to the point (0:5; 0:5) in Figure

3).

Now we get pieewise linear basis funtions by dilating and shifting

1

' and

2

' to eah

grid point. More preisely, for eah grid point on T , we set

'

l

�

(�) :=

i

'

�

2

l

(� � �)

�

; � 2

i

4

T

l

:

With the help of the parametrizations we introdue the pieewise linear (with respet to

the parametrization) hat funtions over �. For eah grid point P 2 4

�

l

, we set

'

l

P

(Q) :=

(

'

l

�

(�) if there exist m; �; � s.t. Q = �

m

(�); P = �

m

(�)

0 else.

(2.7)

Due to the assumptions on the parametrizations (f: (2.2)) the basis funtions are well

de�ned. Note that if P 2 4

�

l

is in the interior of the parametrization path �

m

, then the

support supp'

l

P

of '

l

P

is ontained in �

m

. If P = �

m

(�) = �

m

0

(�) is in the interior of a

side, then supp'

l

P

� �

m

[ �

m

0

. For orner points P = �

m

1

(�

1

) = �

m

2

(�

2

) = : : : = �

m

k

(�

k

)

of the triangular parametrization pathes we get supp'

l

P

� [

k

n=1

�

m

n

. We denote the span

of the funtions '

l

P

; P 2 4

�

l

by Lin

�

l

. Obviously, this is the spae of all ontinuous and

pieewise linear funtions over the partition f�

Q

: Q 2 ut

�

l

g orresponding to the grid

4

�

l

. Here linearity is understood with respet to the parametrization. The spae Lin

�

L

will be the set of trial funtions for the olloation.

2.5 The Colloation Sheme

Now the olloation method seeks an approximate solution u

L

for the exat solution u of

Au = v. This is sought in the trial spae Lin

�

L

by solving

Au

L

(P ) = v(P ); P 2 4

�

L

: (2.8)

Using the representation u

L

=

P

P24

�

L

�

P

'

L

P

, the olloation equation an be written in

form of a matrix equation A

L

� = �, where we set

� := (�

P

)

P24

�

L

; � := (�

P

)

P24

�

L

; �

P

:= v(P ):

The matrix of the linear system is the so alled sti�ness matrix given by

A

L

:= (a

P

0

;P

)

P

0

;P24

�

L

; a

P

0

;P

:= (A'

L

P

)(P

0

):

9






























B

B

B

B

B

B

B

B

B

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

s

t

'

(0,0,0) (1,0,0)

(0,1,0)

(0,0,1)

�

Figure 3: Hat funtion (s; t) 7!

2

'(s� 0:5; t� 0:5).

Moreover, using the interpolation projetion R

L

de�ned by R

L

f :=

P

P24

�

L

f(P )'

L

P

, the

olloation an be treated as a projetion equation of the form R

L

Au

L

= R

L

v.

Throughout this paper we shall assume that the olloation method applied to the

operator equation Au = v is stable. For the exat de�nition of stability and some remarks

we refer to Set. 5.3. If the olloation is stable, if the exat solution u is in H

2

(�), and

if h � 2

�L

denotes the step size of the disretization, then the approximate solution u

L

satis�es the well-known optimal onvergene estimates

ku� u

L

k

L

2

(�)

� Ch

2

; r = 0;�1; (2.9)

ku� u

L

k

H

�1

(�)

� Ch

3

; r = �1: (2.10)

3 The Wavelet Algorithm

3.1 The Wavelet Basis of the Trial spae

Now we introdue a simple wavelet basis for the pieewise linear spae. These funtions

have been onsidered �rst for the ase of di�erent grids in the plane IR

2

(f: [22, 42, 24℄)

and are alled three-point hierarhial basis funtions. More preisely, for the plane and

for any point � 2 4

IR

2

L

, we set (f: Figure 5 for the supports of suh funtions)

 

�

:=

8

>

>

<

>

>

:

'

0

�

if � 2 r

IR

2

�1

'

l+1

�

�

1

2

n

'

l+1

�

1

+ '

l+1

�

2

o

if � 2

1

r

IR

2

l

with l = l(�) 2 f0; : : : ; L� 1g

'

l+1

�

�

1

4

n

'

l+1

�

1

+ '

l+1

�

2

o

if � 2

2

r

IR

2

l

with l = l(�) 2 f0; : : : ; L� 1g:

(3.1)

Here �

1

and �

2

denote the uniquely de�ned neighbours of � on 4

IR

2

l+1

(f: Figure 4). Indeed

any di�erene grid point � 2

2

r

IR

2

l

� 4

IR

2

l+1

has exatly two neighbour points �

1

and �

2

at
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�
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�
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�

�

�

�

�

�

�� �

�� �

�� �

� �

� �

Æ

�

�

1

�

2

Æ

�

0

�

0

1

�

0

2

Figure 4: Neighbours �

1

and �

2

.
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�

0

Figure 5: Supports of wavelets  

�

and  

�

0

.

minimal distane whih belong to 4

IR

2

l

� 4

IR

2

l+1

. Any di�erene grid point �

0

2

1

r

IR

2

l

�

4

IR

2

l+1

has exatly two neighbour points �

0

1

and �

0

2

at minimal distane whih belong to

1

4

IR

2

l

� 4

IR

2

l+1

. The funtions  

�

with � 2 r

IR

2

l

; l = 0; : : : ; L � 1 have two vanishing

moments, i.e: they are orthogonal to all onstant and linear funtions.

The wavelet funtions  

�

on the manifold � are slight modi�ations of (3.1). The

de�nition is not very diÆult. However, to motivate this de�nition, we shortly explain

the onstrution:

� We start with the �rst parametrization path �

1

and the de�nition of funtions  

P

suh that P 2 4

�

L

\ �

1

. First we restrit the funtions  

�

from (3.1) to T . If these

restritions interset the boundary of T , then we modify them adding restritions

of three-point basis funtions  

�

0

with �

0

outside of T . The resulting basis funtions

 

&

�

are restritions of funtions whih are symmetri (even) with respet to the

boundary of T . For P = �

1

(�), we take the omposition  

P

=  

&

�

Æ �

�1

1

to arrive at

funtions over the parametrization path �

1

. To get ontinuous trial funtions over

11



�, we extend the  

P

with P 2 r

�

l

\ �

1

; l = �1; 0; : : : ; L� 1 from �

1

to � suh that

the extensions are pieewise linear on the partition f�

Q

: Q 2 ut

�

l+1

g orresponding

to the grid 4

�

l+1

and vanish at all grid points from 4

�

l+1

n �

1

.

� Next we de�ne the funtions  

P

suh that P 2 4

�

L

\ f�

2

n �

1

g. We start again

with the restritions of (3.1) to T . Sine we have already basis funtions over the

boundary �

1

\ �

2

, we need basis funtions on �

2

vanishing over �

1

\ �

2

, i.e: basis

funtions on T vanishing on the side S

0

for whih �

2

(S

0

) = �

2

\ �

1

. Therefore, we

modify the funtions on T suh that they are restritions of funtions antisymmetri

(odd) with respet to the side S

0

and symmetri (even) with respet to the sides

S of T with �

2

(S) 6� �

1

. Clearly all these funtions vanish on S

0

. We take the

omposition with �

�1

2

to arrive at funtions over the parametrization path �

2

whih

vanish over �

2

\�

1

. To get ontinuous trial funtions, we extend these funtions  

P

with P 2 r

�

l

\f�

2

n�

1

g; l = �1; 0; : : : ; L� 1 from �

2

to � suh that the extensions

are pieewise linear on the partition f�

Q

: Q 2 ut

�

l+1

g orresponding to the grid

4

�

l+1

and vanish at all grid points from 4

�

l+1

n �

2

.

� Analogously to the previous step, we de�ne the funtions  

P

suh that the point

P is in 4

�

L

\ f�

3

n (�

1

[ �

2

)g. Then we onstrut the funtions  

P

with point P

in 4

�

L

\ f�

4

n (�

1

[ �

2

[ �

3

)g and so on. Finally, we de�ne  

P

with point P in

4

�

L

\ f�

m

�

n [

m

�

�1

m=1

�

m

g.

For more details and the properties of the basis we refer to [38℄ and Set. 5.1. The �nal

de�nition of the three-point hierarhial wavelet funtions over the manifold � is

 

P

:=

8

>

>

<

>

>

:

'

0

P

if P 2 r

�

�1

'

l+1

P

�

1

2

n

"

P;P

1

'

l+1

P

1

+ "

P;P

2

'

l+1

P

2

o

if P 2

1

r

�

l

with l 2 f0; : : : ; L� 1g

'

l+1

P

�

1

4

n

"

P;P

1

'

l+1

P

1

+ "

P;P

2

'

l+1

P

2

o

if P 2

2

r

�

l

with l 2 f0; : : : ; L� 1g;

(3.2)

where P

1

and P

2

are the uniquely de�ned neighbours on 4

�

l+1

of P 2 r

�

l

, i.e. P

1

= �

m

(�

1

)

and P

2

= �

m

(�

2

) if P = �

m

(�) is the representation with the minimal m 2 f1; : : : ; m

�

g

and if �

1

; �

2

are the neighbours of � . The oeÆients "

P;P

0

are equal to one in almost all

ases. Only if the point P

0

= P

1

; P

2

is at the boundary of a parametrization path, then

a value "

P;P

0

di�erent from one is needed. More preisely, the oeÆients "

P;P

0

are given
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by (f: Set. 2.3 for the de�nition of

i

4

�

L

)

"

P;P

0

:=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if there is a parametrization path �

m

suh that P and P

0

belong

to the interior of the triangle �

m

or there exists a side �

m

\ �

m

0

of a parametrization path suh

that P and P

0

belong to the interior of the side �

m

\ �

m

0

2 if there exists a side �

m

\ �

m

0

of a parametrization path suh

that m < m

0

; that P is an interior point of �

m

; and that P

0

belongs to the interior of the side �

m

\ �

m

0

or P

0

= \

k

i=1

�

m

i

is a orner of a parametrization path, P

0

2

2

4

�

0

;

the point P is an interior point of a side �

m

1

\ �

m

2

; and

m

1

< m

i

; i = 2; : : : ; k

4 if P

0

= \

k

i=1

�

m

i

is a orner of a parametrization path, P

0

2

1

4

�

0

;

the point P is an interior point of a side �

m

1

\ �

m

2

; and

m

1

< m

i

; i = 2; : : : ; k

orP

0

= \

k

i=1

�

m

i

is a orner of a parametrization path, P

0

2

2

4

�

0

;

the point P is an interior point of the fae �

m

1

; and

m

1

< m

i

; i = 2; : : : ; k

0 else:

(3.3)

Clearly, the support of  

P

is ontained in the union of all those �

m

in whih P or at least

one of the neighbour points P

1

or P

2

is loated. The basis f 

P

: P 2 4

�

L

g spans the trial

spae Lin

�

L

sine the system is linearly independent (f: (5.1)). Moreover, it represents a

hierarhial basis, i.e.

n

 

P

: P 2 4

�

L

o

=

L�1

[

l=�1

n

 

P

: P 2 r

�

l

o

;

Lin

�

0

� Lin

�

1

� : : : � Lin

�

L

;

Lin

�

l

0

= span

l

0

�1

[

l=�1

n

 

P

: P 2 r

�

l

o

:

The funtion  

P

with P 2 r

�

l

; l = 0; : : : ; L�1 and with supp 

P

ontained in the interior

of only one parametrization path has two vanishing moments, i.e: it is orthogonal to

the set of all funtions that are onstant or linear with respet to the parametrization.

Orthogonality means here orthogonality with respet to the L

2

salar produt in the

parameter domain.

3.2 The Wavelet Basis of the Test spae

Let us retain the de�nition of neighbour points P

1

; P

2

2 4

�

l

of P 2 r

�

l

; l = 0; : : : ; L� 1

from the last subsetion, and reall that Æ

P

stands for the Dira delta funtional at point

P . With this notation, we introdue the funtionals

#

P

:=

(

Æ

P

if P 2 r

�

�1

Æ

P

�

1

2

fÆ

P

1

+ Æ

P

2

g if P 2 r

�

l

with l = l(P ) 2 f0; : : : ; L� 1g:

(3.4)

13
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Figure 6: Interpolation points for m

#

= 3.

Clearly, the support supp #

P

is ontained in �

m

if P belongs to �

m

. In partiular, supp #

P

is on the side of a parametrization path if P is on this side. If P is a orner of a

parametrization path, then supp#

P

= fPg. The set f#

P

: P 2 4

�

L

g is a hierarhial

basis of the test spae Dir

�

L

(f: the Sets.2.3 and 5.2 ). For any P 2 r

�

l

; l = 0; : : : ; L�1,

the funtional #

P

has two vanishing moments, i.e: it vanishes over the set of all funtions

that are onstant or linear with respet to the parametrization. To simplify the notation,

some times we shall write f(#

P

) for #

P

(f).

The basis f#

P

g will be suitable for the ompression applied to operators of order r = 0.

For r = �1 and for the quadrature estimates, a basis with more vanishing moments is

needed (f: [12, 40℄). Thus we have to generalize the onstrution of the test funtional

basis to get a system f#

P

g with m

#

vanishing moments, where m

#

� 2 is an arbitrarily

presribed positive integer. To this end we follow the ideas of Harten and Yad-Shalom

[21℄. We hoose the integer l

#

suh that 2

l

#

�2

< m

#

� 1 � 2

l

#

�1

. Moreover, for eah

�

Q

= �

m

(T

�

) 2 ut

�

l

with the three orner points �

m

(�

1

), �

m

(�

1

), and �

m

(�

1

), we introdue

a system fP

Q;i

: i = 1; 2; : : : ; m

#

(m

#

+ 1)=2g of interpolation points on �

Q

suh that the

�rst three points are the orner points, suh that eah side of �

Q

ontains exatly m

#

of

the points, and suh that all points are from the grid �

Q

\4

�

l+l

#

�1

. If m

#

= 2, then fP

Q;i

g

is exatly the set of orner points. For m

#

= 3, m

#

= 4, and m

#

= 5, we hoose the

points P

Q;i

= �

m

(�

i

) aording to the �gures 6, 7, and 8. By l

Q;i

; i = 1; : : : ; m

#

(m

#

+1)=2

we denote the interpolation basis (Lagrange basis) of the spae of polynomials with total

degree less than m

#

de�ned by

l

Q;i

(P

Q;j

) = Æ

i;j

; i; j = 1; 2; : : : ;

m

#

(m

#

+ 1)

2

:

14
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Figure 7: Interpolation points for m

#

= 4.

Finally, the generalized test funtional #

P

is given by

#

P

(f) :=

8

>

<

>

:

f(P ) if P 2 r

�

l

; l = 1; : : : ; l

#

� 2

f(P )�

P

m

#

(m

#

+1)=2

i=1

l

Q;i

(P ) f (P

Q;i

) if P 2 r

�

l+l

#

�1

l = 0; : : : ; L� l

#

;

P 2 �

Q

; Q 2 ut

�

l

:

(3.5)

Note that this de�nition is independent of the hoie of �

Q

if P is ontained in more than

one triangle �

Q

, i.e: for P 2 �

Q

\ �

Q

0

; Q;Q

0

2 ut

�

l

and P 2 r

�

l+l

#

�1

, we get

#

P

(f) := f(P )�

X

i=1;:::;m

#

(m

#

+1)=2

P

Q;i

2�

Q

\�

Q

0

l

Q;i

(P ) f (P

Q;j

) :

Clearly, if f is a polynomial of degree less than m

#

with respet to the parametrization

�

m

, then the interpolation polynomial R 7!

P

l

Q;i

(R)f(P

Q;i

) oinides with f , and we get

#

P

(f) = 0. In other words, #

P

has m

#

vanishing moments if l(P ) � l

#

� 1. If m

#

= 3 and

P 2 �

Q

= �

m

(T

�

) with T

�

as in �gure 9, then we get

#

�

m

(�

1

)

(f) = f

�

�

m

(�

1

)

�

�

3

4

f

�

�

m

(�

4

)

�

�

3

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

2

)

�

;

#

�

m

(�

2

)

(f) = f

�

�

m

(�

2

)

�

�

3

4

f

�

�

m

(�

4

)

�

�

3

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

1

)

�

;

#

�

m

(�

3

)

(f) = f

�

�

m

(�

3

)

�

�

3

4

f

�

�

m

(�

6

)

�

�

3

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

3

)

�

;

#

�

m

(�

8

)

(f) = f

�

�

m

(�

8

)

�

�

3

4

f

�

�

m

(�

6

)

�

�

3

8

f

�

�

m

(�

3

)

�

+

1

8

f

�

�

m

(�

1

)

�

;
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Figure 8: Interpolation points for m

#

= 5.

#

�

m

(�

6

)

(f) = f

�

�

m

(�

6

)

�

�

3

4

f

�

�

m

(�

5

)

�

�

3

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

3

)

�

;

#

�

m

(�

9

)

(f) = f

�

�

m

(�

9

)

�

�

3

4

f

�

�

m

(�

5

)

�

�

3

8

f

�

�

m

(�

3

)

�

+

1

8

f

�

�

m

(�

2

)

�

;

#

�

m

(�

4

)

(f) = f

�

�

m

(�

4

)

�

+

1

8

f

�

�

m

(�

2

)

�

+

1

8

f

�

�

m

(�

3

)

�

�

1

4

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

6

)

�

�

1

2

f

�

�

m

(�

4

)

�

;

#

�

m

(�

5

)

(f) = f

�

�

m

(�

5

)

�

+

1

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

3

)

�

�

1

4

f

�

�

m

(�

6

)

�

�

1

2

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

4

)

�

;

#

�

m

(�

7

)

(f) = f

�

�

m

(�

7

)

�

+

1

8

f

�

�

m

(�

1

)

�

+

1

8

f

�

�

m

(�

2

)

�

�

1

4

f

�

�

m

(�

4

)

�

�

1

2

f

�

�

m

(�

5

)

�

�

1

2

f

�

�

m

(�

6

)

�

:

3.3 Wavelet Transforms

For the trial spae Lin

�

L

we have two di�erent systems of basis funtions f'

L

P

g and

f 

P

g at our disposal. We denote the basis transform by T

A

(lower index A stands for

ansatz), i.e: the matrix T

A

maps the oeÆient vetor �

L

:= (�

L

P

)

P24

�

L

of the represen-

tation u

L

=

P

P24

�

L

�

L

P

'

L

P

into the oeÆient vetor � := (�

P

)

P24

�

L

of the representation

u

L

=

P

P24

�

L

�

P

 

P

. This transform an be determined by a pyramid type algorithmwhih

16
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Figure 9: Points for test funtional if m

#

= 3.

is alled fast wavelet transform (f: e.g: [17℄). Similarly, the inverse transform T

�1

A

an be

realized by suh a pyramid sheme. Analogously to the trial spae, we have two di�erent

bases in the test spae. By T

T

(lower index T stands for test spae) we denote the linear

transform whih maps the vetor  = (

P

)

P24

�

L

:= (#

P

(f))

P24

�

L

of funtionals applied to a

funtion f into the vetor of funtion values � = (�

P

)

P24

�

L

:= (Æ

P

(f))

P24

�

L

= (f(P ))

P24

�

L

.

Again, the transform an be realized by a fast wavelet algorithm. The inverse T

�1

T

is sim-

ply a multipliation by a sparse matrix.

3.4 Wavelet Algorithm

Analogously to the sti�ness matrix A

L

in Set. 2.5 we an set up a matrix with respet to

the wavelet basis. We introdue A

w

L

by

A

w

L

:=

�

a

w

P

0

;P

�

P

0

;P24

�

L

; a

w

P

0

;P

:= #

P

0

(A 

P

): (3.6)

Note that A

L

= T

T

A

w

L

T

A

. It will turn out that most of the entries a

w

P

0

;P

are so small that

they an be negleted. Thus in the next subsetion we will give an a priori matrix pattern

P � 4

�

L

� 4

�

L

with no more than O(2

2L

L) elements. We will replae A

w

L

by the sparse

matrix obtained by the ompression

A

w;

L

:=

�

a

w;

P

0

;P

�

P

0

;P24

�

L

; a

w;

P

0

;P

:= #

P

0

(a 

P

) +

(

#

P

0

(K 

P

) if (P

0

; P ) 2 P

0 else.

(3.7)

In the numerial omputation the entries have to be omputed by approximating the

parametrization and by quadrature. We denote the approximate value for a

w;

P

0

;P

by a

w;;q

P

0

;P

17



and set

A

w;;q

L

:=

�

a

w;;q

P

0

;P

�

P

0

;P24

�

L

; A



L

:= T

T

A

w;

L

T

A

; A

;q

L

:= T

T

A

w;;q

L

T

A

: (3.8)

With this notation we an desribe two variants of the wavelet algorithm whih di�er in

the iterative solution of the disretized linear systems. The �rst is designed for integral

operators of arbitrary order r and requires the appliation of one transform T

�1

A

and one

transform T

�1

T

during the whole algorithm.

First Wavelet Algorithm

i) ompute the right-hand side  := (#

P

(v))

P

= T

�1

T

(v(P ))

P

ii) ompute the sparsity pattern P

iii) assemble A

w;;q

L

by a quadrature algorithm

iv) solve A

w;;q

L

� =  iteratively; e.g. by the diagonally preonditioned

GMRes method

v) ompute � = T

�1

A

�

vi) post proessing of the values u(P ) � �

P

; e.g. omputation

of linear funtionals of the solution u

(3.9)

The seond is designed for operators of order r = 0. Though an appliation of the two

wavelet transforms T

A

and T

T

is required in eah iteration, the orresponding number of

all iterations is often muh smaller, and the seond algorithm is faster.

Seond Wavelet Algorithm

i) ompute the right-hand side � := (v(P ))

P

ii) ompute the sparsity pattern P

iii) assemble A

w;;q

L

by a quadrature algorithm

iv) solve A

L

� = � iteratively; e.g. by the GMRes method;

whenever a multipliation by matrix A

L

is required, then

multiply by T

A

; by A

w;;q

L

; and by T

T

v) post proessing of the values u(P ) � �

P

; e.g. omputation

of linear funtionals of the solution u

(3.10)

The GMRes algorithm is desribed in [39℄, and the diagonal preonditioner for the algo-

rithm (3.9) will be derived in Set. 5.3 (f: (5.14)).

3.5 The Compression Algorithm

From now on we suppose that the numberm

#

of vanishing moments of the test funtionals

is equal to 4�r. We note, however, that for the ompression and for most of the quadrature

algorithm the hoie m

#

= 2 � r would be suÆient. Only for the quadrature in Set:

4.3.3 the hoie m

#

= 4� r is ruial. In order to introdue the ompression pattern P,

we need some notation. Let us retain the de�nition of r

�

l

and 4

�

L

from Set. 2.3. For

18



P 2 4

�

L

, reall that l(P ) is the level of P (f: the end of Set. 2.3). By 	

P

we denote the

support of the funtion  

P

and by �

P

the onvex hull of the support of the test funtional

#

P

, i:e:, #

P

:= �

m

(onv(�

�1

m

(supp #

P

))). Now we take a onstant d � 1 and de�ne the set

P as the set of all (P

0

; P ) 2 4

�

L

�4

�

L

suh that 	

P

is ompletely ontained in the interior

of a single parameter path �

m

and

dist (	

P

;�

P

0

) � max

n

2

�l(P )

; 2

�l(P

0

)

; d2

0:6L�0:7 l(P )�0:9 l(P

0

)

o

(3.11)

or suh that 	

P

ontains points of at least two parameter pathes and

dist (	

P

;�

P

0

) � max

n

2

�l(P )

; 2

�l(P

0

)

; d2

L�0:7 l(P )�1:3 l(P

0

)

o

: (3.12)

In numerial omputations the ompression parameter d should be determined by exper-

iments. However, to get an asymptotially optimal ompression result whih is asymp-

totially optimal up to logarithmi fators and whih is onvenient for the subsequent

quadrature sheme, it is suÆient to hoose d suÆiently large. The well-known proof

tehniques of [12, 29, 40, 35℄ yield

Theorem 3.1 For the pattern P, the number of non-zero entries N

P

is less than CL2

2L

�

N logN , where N � 2

2L

is the number of degrees of freedom. If the pieewise linear

olloation is stable, then the olloation method with ompression is stable, too. The error

estimates (2.9) and (2.10) remain valid if u

L

=

P

�

P

 

P

is the solution of the ompressed

matrix equation A

w;

L

(�

P

)

P

= (#

P

(v))

P

.

Clearly the number of neessary arithmeti operations of all steps in the algorithms

(3.9) and (3.10) exept the steps iii) and iv) is less than C N

P

. Step iv) requires

C N

P

logN operations. However, if we solve the systems suessively over the grids

4

�

l

; l = 0; : : : ; L and if the initial solution for the grid 4

�

l+1

is the �nal solution from

the oarser grid 4

�

l

, then the number of neessary iterations is uniformly bounded. This

asadi iteration method requires no more than C N

P

operations. The key point for a

fast algorithm, however, is the implementation of step iii). Usually, this is the most time

onsuming part of the numerial omputation. For its realization and omplexity, we refer

to the results in Set. 4 and the proofs in Set. 6. Further details for the implementation

of the wavelet algorithm an be found in [23, 34℄.

4 Approximation of the Parametrization Mappings

and Quadrature

4.1 Parametrization and Quadrature for the Far Field

Now we onsider the omputation of the matrix entries a

w;;q

P

0

;P

(f: Set. 3.4). Obviously,

the terms #

P

0

(a 

P

) (f: (3.7)) an be omputed without diÆulty, and the orresponding

number of arithmeti operations is less than O(N logN). Therefore, we only have to

deal with the omputation of #

P

0

(K 

P

) orresponding to the integral operator K. In
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this subsetion we shall indiate the assembling of those entries for whih dist(	

P

;�

P

0

) is

larger or equal to maxf2

�l(P )

; 2

�l(P

0

)

g. These entries will be alled the far �eld entries.

For the quadrature over 	

P

, we shall apply a omposite quadrature rule with a �xed

basis rule of onvergene order three or four. Thus we have to start with the introdution

of the partition for the omposite rule. Clearly, 	

P

is the union of a �nite number of

triangles �

Q

with l(Q) = l(P )+1 where the trial basis funtion  

P

is linear with respet to

the parametrization parameter. In general, however, this �rst partition is not suÆiently

�ne. Instead we split 	

P

into the union of all �

Q

with level l(Q) = l(P; P

0

) + l

0

, where

l(P; P

0

) :=

8

>

<

>

:

l(P ) + 1 if dist(	;�

P

0

)

1:1

� 2

0:9L�l(P )�l(P

0

)

l + 1 if dist(	;�

P

0

)

1:1

< 2

0:9L�l(P )�l(P

0

)

and if

2

0:9L�l�l(P

0

)

� dist(	;�

P

0

)

1:1

< 2

0:9L�(l�1)�l(P

0

)

:

(4.1)

and where l

0

is a �xed integer whih is supposed to be suÆiently large. This onstant

l

0

is introdued to enfore stability. For pratial omputations, however, we expet that

the hoie l

0

= 0 is aeptable. In aordane with (3.7) and (2.4), we shall introdue

quadrature approximations a

w;;q

P

0

;P;Q

for

#

P

0

 

Z

�

Q

k(�; R; n

R

) 

P

(R) d

R

�

!

: (4.2)

Here the funtional #

P

0

is applied to the funtion in brakets depending on the variable

indiated by a dot. Using these a

w;;q

P

0

;P;Q

, we de�ne the entries a

w;;q

P

0

;P

by

a

w;;q

P

0

;P

:= #

P

0

(a 

P

) +

(

0 if (P

0

; P ) 62 P

P

Q2ut

�

l(P )+1

: �

Q

�supp 

P

a

w;;q

P

0

;P;Q

if (P

0

; P ) 2 P:

(4.3)

We shall defer the de�nition of the near �eld terms a

w;;q

P

0

;P;Q

, i.e: the terms with the property

dist(	

P

;�

P

0

) < maxf2

�l(P )

; 2

�l(P

0

)

g to Sets.4.2 - 4.3. In this subsetion we introdue the

far �eld terms a

w;;q

P

0

;P;Q

.

Let us �x a far �eld subdomain �

Q

with Q = �

m

(�) 2 ut

�

l

and l = l(P; P

0

). Using the

parametrization �

m

over T

�

= �

�1

m

(�

Q

), we write the integral of (4.2) in the form

#

P

0

�

Z

T

�

k(�; �

m

(�); n

�

m

(�)

)

~

 

P

(�)J

m

(�) d�

�

; (4.4)

where J

m

(�) := j�

�

1

�

m

(�)��

�

2

�

m

(�)j is the Jaobian determinant of the transformation

�

m

at � = (�

1

; �

2

) 2 T

�

and where

~

 

P

(�) stands for the fator  

P

(R) =  

P

(�

m

(�))

whih is independent of the parametrization �

m

(f: (3.2) and (2.7)). We derive the

approximation a

w;;q

P

0

;P;Q

for (4.4) in two steps.

In the �rst step, we replae the parametrization �

m

over T

�

by a pieewise polynomial

interpolation �

0

m

. For a �xed � 2 T

�

, the polynomial interpolant is de�ned over the level L

triangle T

�

0

determined by �

0

2 ut

T

L

and � 2 T

�

0

� T

�

. The polynomial interpolation �

0

m

is

hosen to be of degree m

p

:= 3� r whih is greater than the optimal order of onvergene
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m := 2� r. In partiular, for m

p

= 3 a ubi interpolation with ten interpolation knots

an be hosen. For m

p

= 2, whih unfortunately is less than 3 � r and whih leads

to suboptimal rates of onvergene, a quadrati interpolation with six knots would be

possible. This quadrati interpolation is de�ned as in [2℄. Denoting by �

i

; i = 1; 2; 3 the

three orner points of the triangle T

�

0

� �

�1

m

(�

Q

), respetively, and by �

i

; i = 4; 5; 6 the

mid-points

�

4

=

1

2

(�

2

+ �

3

) ; �

5

=

1

2

(�

1

+ �

2

) ; �

6

=

1

2

(�

1

+ �

3

) ;

of the three sides of the triangle, we set

�

0

m

(�) =

6

X

i=1

�

m

(�

i

)L

i

(�); (4.5)

L

1

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= s[2s� 1℄;

L

2

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= t[2t� 1℄;

L

3

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= (1� s� t)[2(1� s� t)� 1℄;

L

4

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4t(1� s� t);

L

5

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4st;

L

6

�

�

3

+ s(�

1

� �

3

) + t(�

2

� �

3

)

�

:= 4s(1� s� t):

In any ase, we approximate (4.4) by

#

P

0

�

Z

T

�

k(�; �

0

m

(�); n

0

�

0

m

(�)

)

~

 

P

(�)J

0

m

(�) d�

�

; (4.6)

where J

0

m

(�) := j�

�

1

�

0

m

(�)��

�

2

�

0

m

(�)j is the Jaobian determinant of the transformation

�

0

m

at � = (�

1

; �

2

) 2 T

�

. The symbol n

0

�

0

m

(�)

in the last formula stands for the unit vetor

at the point �

0

m

(�) whih is normal to the approximating surfae �

0

m

(T

�

).

In the seond step, we split the integrand of (4.6) into the produt f(�)~%(�)

f(�) := k(�; �

0

m

(�); n

�

0

m

(�)

)J

0

m

(�);

~%(�) := %

�

�

0

m

(�)

�

=

~

 

P

(�):

Note that ~% is linear with respet to �. We apply a produt quadrature with weight ~% and

of order q := 3 � r to the integral in (4.6). In general, for all following approximations,

we always assume that the order of onvergene of the quadrature rule q oinides with

the degree m

p

of the approximate pieewise polynomial parametrization. If q = 3, then

we hoose the six point rule based upon quadrati interpolation whih has been used for
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(4.5). In ase q = 2, whih unfortunately is less than 3� r and leads to suboptimal rates

of onvergene, we take the three point rule. The produt quadrature rule takes the form

Z

T

�

f(�)~%(�) d� �

3

X

�=1

f(�

�

)b

w;;q

P;Q;�

; b

w;;q

P;Q;�

:=

Z

T

�

~

�

Q;�

(�)

~

 

P

(�) d�; (4.7)

where

~

�

Q;�

is the linear funtion on T

�

de�ned by

~

�

Q;�

(�

�

0

) = Æ

�;�

0

. Similar rules inluding

more knots �

�

and higher order Lagrange interpolation polynomials

~

�

Q;�

an be de�ned

for arbitrary q. An easier but equivalent hoie for q = 2 only is to replae the three

orner points �

�

by the three mid-points of the sides of triangle T

�

. If the quadrature

weights are one third of the measure of T

�

, then the resulting quadrature is known to be

exat for quadrati funtions and we get

Z

T

�

f(�)~%(�) d� �

3

X

�=1

f(�

�

)b

w;;q

P;Q;�

; b

w;;q

P;Q;�

:=

1

3

jT

�

j

~

 

P

(�

�

): (4.8)

In any ase, the integral (4.6) is approximated by

a

w;;q

P

0

;P;Q

:= #

P

0

 

X

�

k(�; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;;q

P;Q;�

!

; (4.9)

where Q

0

�

:= �

0

m

(�

�

) denote the orner points and, possibly, some additional quadrature

knots of the triangles �

0

m

(T

�

), respetively. The symbol n

0

Q

0

�

in the last formula stands for

the unit vetor at the point Q

0

�

= �

0

m

(�

�

) whih is normal to the approximating surfae

�

0

m

(T

�

).

In Set. 6.1 we shall prove that the additional error due to the far �eld quadrature is,

roughly speaking, less than the error of the exat olloation. Analogous error estimates

are true also for the approximation of the near �eld and the singular integrals in the Sets.

4.2 - 4.3. More preisely, we get

Theorem 4.1 Consider the wavelet olloation and the matrix ompressed aording to

the pattern P of Theorem 3.1 and suppose the integer onstant l

0

is suÆiently large. If

the exat olloation desribed in Set. 2.5 is stable, then the ompressed olloation with

approximation of the boundary and with the quadrature of Sets. 4.1 - 4.3 is stable, too.

The error for the olloation solution u

L

, inluding ompression, approximation of the

parameter mappings, and quadrature, satis�es (2.9) and (2.10), respetively. The number

of quadrature knots and the number of neessary arithmeti operations for the omputation

of the sti�ness matrix A

w;;q

L

is less than C N [logN ℄

3

if r = 0 and less than C N [logN ℄

2

if r = �1.

Proof. Due to Set: 5.3, the stability and the error estimates will be a onsequene of

the Lemmata 6.1, 6.3, and 6.5. The omplexity bound will be shown in the Lemmata 6.2,

6.4, and 6.6.
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4.2 Parametrization and Quadrature for the First Part of the

Near Field

4.2.0. Let us �x #

P

0

and  

P

with 0 < dist(	

P

;�

P

0

) < maxf2

�l(P )

; 2

�l(P

0

)

g, and let us

onsider the integral (4.2) for whih we seek the partition of supp 

P

into triangles �

Q

and

the orresponding quadratures a

w;;q

P

0

;P;Q

. The near �eld part with dist(	

P

;�

P

0

) = 0 will

be treated in Set. 4.3. In partiular, the omputation of the singular integrals will be

disussed in Set. 4.3. For the �rst part of the near �eld, we shall distinguish two ases

in this subsetion.

4.2.1. We start with the ase determined by l(P ) � l(P

0

) and 0 < dist(	

P

;�

P

0

).

In view of the near �eld ondition, we have 0 < dist(	

P

;�

P

0

) � 2

�l(P

0

)

. Moreover,

there is a onstant 

�

> 0 suh that 

�

2

�l(P )

< dist(	

P

;�

P

0

) � 2

�l(P

0

)

. Indeed, suppose



0

�

is the reiproal Lipshitz onstant of the inverse parametrization mappings, i.e: for

m = 1; : : : ; m

�

and for any pair of points �

1

; �

2

2 T , there holds



0

�

j�

1

� �

2

j � j�

m

(�

1

)� �

m

(�

2

)j :

Set 

�

:= 

0

�

=2. Then the distane of a point �

1

of the level l grid to a triangle T

�

2

of

the level l triangulation not ontaining �

1

is at least 0:5 2

�l

. Hene, the distane of a

point P

1

:= �

m

(�

1

) of the level l grid over � to a triangle �

Q

:= �

m

(T

�

2

) of the level

l triangulation not ontaining �

1

is at least 

�

2

�l

. Sine the points of #

P

0

are on the

grid of level l(P

0

) + 1 and 	

P

onsists of triangles of level l(P ) + 1, the lower estimate



�

2

�l(P )

< dist(	

P

;�

P

0

) follows.

We introdue the integer l(P; P

0

) just as in (4.1) but with dist(	

P

;�

P

0

) replaed by

dist(	

P

; supp #

P

0

), i.e: this time the distane is measured to the single points in supp #

P

0

and not to their onvex hull �

P

0

. The partition of 	

P

= supp 

P

is obtained like in the far

�eld ase in Set: 4.1 as the union of all �

Q

of level l(P; P

0

)+ l

0

ontained in 	

P

. Retaining

the de�nition q = m

p

:= 3 � r and using the de�nition (4.3), we get the orresponding

quadrature approximation.

4.2.2. Next we onsider the ase determined by l(P ) < l(P

0

) and 0 < dist(	

P

;�

P

0

).

In view of the near �eld ondition and the fat that  

P

resp. #

P

0

are de�ned on the grids

of level l(P ) resp. l(P

0

), we have 

�

2

�l(P

0

)

< dist(	

P

;�

P

0

) � 2

�l(P )

. Proeeding similarly

to Set: 4.1, we set Dist := dist(	

P

;�

P

0

) and introdue l(P; P

0

) by

l(P; P

0

) :=

8

>

>

>

>

<

>

>

>

>

:

l(P ) + 1 if Dist

0:55

� 2

0:95L�1:1 l(P

0

)�0:4 l(P )

l + 1 if Dist

0:55

< 2

0:95L�1:1 l(P

0

)�0:4 l(P )

and if

2

0:95L�1:1 l(P

0

)�l+0:6 l(P )

� Dist

0:55

;

Dist

0:55

< 2

0:95L�1:1 l(P

0

)�(l�1)+0:6 l(P )

:

(4.10)

The partition of 	

P

= supp 

P

is obtained in three steps.

i) We split 	

P

into the triangles of level l(P ) + 1.

ii) We introdue the dyadi partition of eah of these triangles into a minimal number

of triangles from f�

Q

0

; Q

0

2 4

�

L

g suh that the distane of these triangles to �

P

0

is

greater or equal to 2

�l(Q

0

)�1

. This is obtained as follows. We start with the level
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l(P ) + 1 triangles of step i) and let the level l run from l = l(P ) + 1 to L. For

eah level l, we have a ertain number of level l triangles. We hek if the distane

of these triangles to �

P

0

is greater or equal to 2

�l�1

. If yes, then we keep these

triangles. If not, then we split these triangles into the four subtriangles of level l+1

and replae the level l triangles by the new level l+1 triangles. The proedure ends,

if no triangle of level l+1 is produed. Obviously, the number of all these triangles

�

Q

0

is less than a onstant times L.

iii) Now we split eah of the triangles �

Q

0

from the previous step ii) uniformly into

higher level triangles. Note that in Set: 4.1 eah l(P ) + 1 level triangle of 	

P

is split into the l(P; P

0

) + l

0

level subtriangles, i.e: the partition is re�ned over

[l(P; P

0

)+ l

0

� (l(P )+1)℄ levels. Analogously, we re�ne the partition of step ii) over

[l(P; P

0

) + l

0

� (l(P )+ 1)℄ levels. In other words, eah triangle �

Q

0

of ii) is split into

the triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

;

~

l := l(Q

0

)+ [l(P; P

0

)+ l

0

� (l(P )+ 1)℄.

We denote the resulting partition of 	

P

by f�

Q

: Q 2 ut

�

P

0

;P

g. Using this partition and

proeeding analogously to Setion 4.1, we arrive at the quadrature approximation de�ned

by

a

w;;q

P

0

;P

:= #

P

0

(a 

P

) +

X

Q2ut

�

P

0

;P

a

w;;q

P

0

;P;Q

; (4.11)

where the terms a

w;;q

P

0

;P;Q

are given by (4.9), where the produt rule (4.7) is replaed by the

analogous produt rule of order q := 4, and where a pieewise polynomial interpolation

�

0

m

of degree m

p

:= q is employed.

4.3 Parametrization and Quadrature for the Seond Part of the

Near Field

4.3.1.0. Throughout the present setion we suppose dist(	

P

;�

P

0

) = 0. First we onsider

the ase l(P ) � l(P

0

). By de�nition, the funtional #

P

0

is a linear ombination of point

evaluation funtionals

#

P

0

(f) :=

�

P

0

X

�=1



�

f(P

�

)

and 	 := supp is the union of level l(P ) + 1 triangles �

Q

�

for � = 1; : : : ; �

P

. Aording

to this splitting, we get

a

w;;q

P

0

;P

:= #

P

0

(a 

P

) +

�

P

0

X

�=1



�

�

P

X

�=1

a

w;;q

P

0

;�;P;�

(4.12)

a

w;;q

P

0

;�;P;�

�

Z

�

Q

�

k(P

�

; R; n

R

) 

P

(R) d

R

�:

In the following we ompute a

w;;q

P

0

;�;P;�

analogously to a

w;;q

P

0

;P

in Set: 4.2.1.
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4.3.1.1. If dist(�

Q

�

; P

�

) > 0, then dist(�

Q

�

; P

�

) > 

�

2

�l(P )

. We introdue l(P; P

0

) =

l(P; �; P

0

; �) just as in (4.1) but with dist(	;�

P

0

) replaed by dist(�

Q

�

; P

�

). The partition

f�

Q

: Q 2 ut

�

Q

�

;P

�

g of �

Q

�

for the quadrature is obtained like that of 	

P

in the far �eld

ase in Set: 4.1 as the union of all �

Q

of level l(Q) ontained in �

Q

�

with

l(Q) := l(P; P

0

) + l

0

+

(

0 if r = �1

h

1

3�r

2

logL

i

if r = 0:

(4.13)

Using the de�nition (4.12) and

a

w;;q

P

0

;�;P;�

:=

X

Q2ut

�

Q

�

;P

�

X

�

k(P

�

; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;;q

P;Q;�

(4.14)

with the quadrature weights b

w;;q

P;Q;�

of a quadrature rule of order q := 3� r (f: (4.7) and

(4.8)) with an approximate pieewise polynomial interpolation �

0

m

of degree m

p

:= q, we

get the orresponding quadrature approximation.

4.3.1.2.1. If dist(�

Q

�

; P

�

) = 0, we introdue l(P; P

0

) just as in (4.1) but with

dist(	;�

P

0

) replaed by 2

�l(P )

. Additionally we assume that P

�

is ontained in the in-

terior of exatly one parametrization path �

m

or that r = �1. The partition of �

Q

�

is

obtained in two steps (ompare the three steps in Set: 4.2.2).

i) We subtrat the triangles �

Q

�

of level mL, de�ned by P

�

2 �

Q

�

� �

Q

�

, from �

Q

�

.

Then we introdue the dyadi partition of �

Q

�

n [�

Q

�

into a minimal number of

triangles �

Q

0

with levels l(Q

0

) between l(Q

�

) + 1 and mL suh that the distane of

these triangles to P

0

is greater or equal to 2

�l(Q

0

)�1

. Obviously, the number of all

these triangles is less than a onstant times L.

ii) Now we split eah of the triangles �

Q

0

from the previous step i) uniformly into higher

level triangles. Eah triangle �

Q

0

of i) is split into the triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

suh that

~

l := l(Q

0

) + [l(P; P

0

) + l

0

� (l(P ) + 1)℄ +

(

0 if r = �1

h

1

3�r

2

logL

i

if r = 0:

(4.15)

We denote the resulting partition of �

Q

�

by f�

Q

: Q 2 ut

�

P

0

;�;P;�

g. Using this partition

and the formulae (4.12) and (4.14) with quadrature order q = 3� r and with a pieewise

polynomial interpolation �

0

m

of degreem

p

:= q, we obtain the quadrature approximation.

4.3.1.2.2. If r = 0 and if P

�

is at the boundary of a parametrization path and

thus ontained in at least two parametrization pathes �

m

, then we have to modify the

triangles �

Q

�

in the partition. This is neessary to get the right value of the integral

in aordane with Cauhy's �nite part de�nition (f: [26℄). More preisely, suppose

P

�

= �

m

i

(�

i

); i = 0; : : : ; i

�

and denote the level mL triangles of the parametrization

path �

m

0

ontaining P

�

by �

j

0

:= �

m

0

(T

j

0

), j = 0; : : : ; j

�

. The subtriangles in �

Q

�

whih

we neglet are now the triangles

�

j

i

:= �

m

i

(T

j

i

); T

j

i

:=

n

r

h

[�

m

i

℄

�1

Æ �

m

0

i

(�

0

)

�

T

j

0

�o

\ T;

25



where r[[�

m

i

℄

�1

Æ �

m

0

℄(�

0

) stands for the Fr�ehet derivative of the mapping [�

m

i

℄

�1

Æ �

m

0

taken at the point �

0

. To get the right quadrature formula we have to replae step i) by

the following i').

i') We introdue the dyadi partition of �

Q

�

n [�

j

i

into a minimal number of triangles

�

Q

0

with levels l(Q

0

) between l(Q

�

) + 1 and mL suh that the distane of these

triangles to P

0

is greater or equal to 2

�l(Q

0

)�1

. This is obtained as follows. We start

with the level l(P ) + 1 triangles �

Q

�

and let the level l run from l = l(P ) + 1 to

L. For eah level l, we have a ertain number of level l triangles. We hek if the

distane of these triangles to P

0

is greater or equal to 2

�l�1

. If yes, then we keep

these triangles. If not, then we split these triangles into the four subtriangles of level

l+1 and replae the level l triangles by the new level l+1 triangles. The proedure

ends, if no new triangle is produed. To get a full partition of �

Q

�

n[�

j

i

, we replae

the level mL triangles interseting [�

j

i

by a few number of triangles ontained in

�

Q

�

n[�

j

i

. Obviously, the number of all these triangles is less than a onstant times

L.

4.3.2.0. Next we onsider the ase dist(	

P

;�

P

0

) = 0 and l(P ) < l(P

0

). Again we split

	

P

into the union of the �

Q

�

. Aording to this splitting, we get

a

w;;q

P

0

;P

:= #

P

0

(a 

P

) +

�

P

X

�=1

a

w;;q

P

0

;P;�

(4.16)

a

w;;q

P

0

;P;�

� #

P

0

 

Z

�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

:

Further, we denote the boundary of �

Q

�

onsidered as a topologial subset of � by ��

Q

�

.

4.3.2.1. If dist(��

Q

�

;�

P

0

) > 0, then we even get dist(��

Q

�

;�

P

0

) > 

�

2

�l(P

0

)

. Setting

Dist := dist(��

Q

�

;�

P

0

) and �

e

m

:= �

m

(T

e

) (f: Set: 2.1) and supposing �

Q

�

� �

m

, we get

a

w;;q

P

0

;P;�

� #

P

0

 

Z

�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

= #

P

0

 

Z

�

e

m

k(�; R; n

R

) 

P

(R) d

R

�

!

�#

P

0

 

Z

�

e

m

n�

Q

�

k(�; R; n

R

) 

P

(R) d

R

�

!

� a

w;;q

P

0

;�

e

m

� a

w;;q

P

0

;�

e

m

n�

Q

�

:

We shall de�ne the approximation a

w;;q

P

0

;�

e

m

for the integral over �

e

m

in Set: 4.3.3. The

approximation a

w;;q

P

0

;�

e

m

n�

Q

�

for the integral over �

e

m

n �

Q

�

an be omputed analogously to

the approximation a

w;;q

P

0

;P

in Set: 4.2.2. More preisely, we set Dist := dist(�

P

0

; ��

Q

�

) and

de�ne l(P; P

0

) := l(P; �; P

0

) by (4.10). The partition f�

Q

: Q 2 ut

�

P

0

;P;�

g of �

e

m

n �

Q

�

is

obtained in the two following steps.

i) We introdue the dyadi partition of �

e

m

n �

Q

�

into a minimal number of triangles

from f�

Q

0

; Q

0

2 r

�

l

; l = l(P )+1; : : : ;mLg suh that the distane of these triangles

to �

P

0

is greater or equal to 2

�l(Q

0

)�1

. Obviously, the number of all these triangles

is less than a onstant times L.
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ii) Now we split eah of the triangles from the previous step i) uniformly into the

triangles of level

~

l = l(Q

0

) + [l(P; �; P

0

) + l

0

� (l(P ) + 1)℄.

Using this partition, applying the produt rule of order q = 4 (ompare (4.7)) and em-

ploying a pieewise polynomial interpolation �

0

m

of degree m

p

:= q, we arrive at

a

w;;q

P

0

;�

e

m

n�

Q

�

:= #

P

0

0

B

�

X

Q2ut

�

P

0

;P;�

X

�

k(�; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;;q

P;Q;�

1

C

A

: (4.17)

4.3.2.2. If dist(��

Q

�

;�

P

0

) = 0, then we have to split �

P

0

as we did in Set: 4.3.1.

Instead of the a

w;;q

P

0

;P;�

from Set: 4.3.2.1 we have to determine the a

w;;q

P

0

;�;P;�

. However, these

a

w;;q

P

0

;�;P;�

an be omputed similarly to the ase dist(�

Q

�

; P

�

) = 0 in Set: 4.3.1. More

preisely, we introdue l(P; P

0

) just as in (4.10) but with Dist replaed by 2

�l(P

0

)

. The

partition f�

Q

: Q 2 ut

�

P

0

;�;P;�

g of �

Q

�

is obtained in the following three steps.

i') We proeed from level l = l(P ) + 1 to level l = l(P

0

) and onstrut partitions of

�

Q

�

. For l = l(P ) + 1, we simply take �

Q

�

. If level l is �nished and level l + 1 is

onsidered, then we hek whether the �

Q

0

of the level l partition have a distane

dist(�

Q

0

;�

P

0

) greater than 2

�l(Q

0

)�1

. If yes, then we keep these triangles. If not,

then we replae the �

Q

0

by the four level l + 1 subtriangles ontained in �

Q

0

.

ii') We proeed from level l = l(P

0

) + 1 to at most l = mL and onstrut further

partitions of �

Q

�

. The starting partition is taken from the last step. If level l is

�nished and level l + 1 is onsidered, then we hek whether the �

Q

0

of the level l

partition have a distane dist(�

Q

0

; P

�

) greater than 2

�l(Q

0

)�1

. If yes, then we keep

these triangles in our partition. If not, then we replae �

Q

0

by the four level l + 1

subtriangles ontained in �

Q

0

. If there are level mL triangles in the last partition

ontaining the point P

�

, then, for r = �1, we throw these triangles away and, for

the onstrution of a full partition of �

Q

�

n [�

j

i

in the ase r = 0, we replae the

levelmL triangles with distane to P

0

less than 2

�mL�1

by a few number of triangles

ontained in �

Q

�

n [�

j

i

.

iii') Now we split eah of the triangles �

Q

0

from the previous step ii) uniformly into the

triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

suh that

~

l is de�ned by (4.15) but with

1

3�r

replaed by

1

4

.

Using this partition and the formulae (4.12) and (4.14) based on the quadrature weights

b

w;;q

P;Q;�

of the produt rule of order q = 4 and on a pieewise polynomial interpolation �

0

m

of degree m

p

:= q, we get the orresponding quadrature approximation.

4.3.3.0. We �x the index m and the point P

�

in the support �

P

0

of the test funtional

#

P

0

with �

P

0

� �

m

. We have P

�

:= �

m

(�

�

) and onsider a linear funtion p(�

m

(�)) = ~p(�)

de�ned on �

e

m

whih is either onstant or equal to one of the two omponents of the vetor

funtion �

m

(�) 7! � � �

�

. To get the approximations

a

w;;q

P

0

;�;�

e

m

;p

�

Z

�

e

m

k(P

�

; R; n

R

)p(R) d

R

�

a

w;;q

P

0

;�

e

m

;p

:=

X

�



�

a

w;;q

P

0

;�;�

e

m

;p

� #

P

0

 

Z

�

e

m

k(�; R; n

R

)p(R) d

R

�

!

(4.18)
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and, as a linear ombination of these, the values a

w;;q

P

0

;�

e

m

, we distinguish two ases.

4.3.3.1. If l(P

0

) �

m

m

#

L =

2�r

4�r

L, then we an hoose a

w;;q

P

0

;�

e

m

;p

:= 0. Indeed, the

de�nition (4.18) of a

w;;q

P

0

;�

e

m

;p

involves the funtional #

P

0

withm

#

= 4�r vanishing moments.

In view of this fat a

w;;q

P

0

;�;�

e

m

;p

an be negleted for higher levels l(P

0

) (f: the \seond"

ompression in [40℄).

4.3.3.2. If l(P

0

) <

m

m

#

L, then we ompute a

w;;q

P

0

;�;�

e

m

;p

by the omposite produt quadra-

tures whih we have applied before. The partition f�

Q

: Q 2 ut

�

P

0

;�;�

e

m

;p

g of �

e

m

is obtained

in the following three steps.

i) We proeed from level l = �3 to level l = l(P

0

) and onstrut partitions of �

e

m

. For

l = �3, we simply take �

e

m

. If level l is �nished and level l+1 is onsidered, then we

hek whether the �

Q

0

of the level l partition have a distane dist(�

Q

0

;�

P

0

) greater

than 2

�l(Q

0

)�1

. If yes, then we keep these triangles in our partition. If not, then we

replae �

Q

0

by the four level l + 1 subtriangles ontained in �

Q

0

.

ii) We proeed from level l = l(P

0

) + 1 to at most l = mL and onstrut further

partitions of �

e

m

. The starting partition is taken from the last step. If level l is

�nished and level l + 1 is onsidered, then we hek whether the �

Q

0

of the level l

partition have a distane dist(�

Q

0

; P

�

) greater than 2

�l(Q

0

)�1

. If yes, then we keep

these triangles in our partition. If not, then we replae �

Q

0

by the four level l + 1

subtriangles ontained in �

Q

0

. If there are level mL triangles in the last partition

ontaining the point P

�

, then we throw these triangles away.

iii) Now we split eah of the triangles �

Q

0

from the previous step ii) uniformly into the

triangles �

Q

with �

Q

� �

Q

0

and Q 2 ut

�

~

l

, where

~

l := l(Q

0

) + �L� �

0

l(P

0

) +

(

0 if r = �1

h

1

4�2r

2

logL

i

if r = 0:

(4.19)

and where � := 3=m

#

and �

0

:= 1=m.

Using this partition, applying the produt quadrature of order q = 2m (ompare (4.7)),

and employing a pieewise polynomial interpolation �

0

m

of degree m

p

:= q, we obtain

a

w;;q

P

0

;�;�

e

m

;p

:=

X

Q2ut

�

P

0

;�;�

e

m

X

�

k(P

�

; Q

0

�

; n

0

Q

0

�

)J

0

m

(�

�

)b

w;;q

p;Q;�

; b

w;;q

p;Q;�

:=

Z

T

�

~

�

Q;�

(�)~p(�) d�:

5 Preliminary Results from the Analysis of the Com-

pression

5.1 The Properties of the Three-Point Hierarhial Basis

Retain the notation of the basis from 3.1. From now on C stands for a generi onstant

the value of whih varies from instane to instane. For two expressions E

1

and E

2

, we

write E

1

� E

2

if there is a onstant independent of the parameters involved in E

1

and E

2

suh that E

1

=C � E

2

� C E

1

. We infer the following two lemmata from [38℄.
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Lemma 5.1 i) For �0:5 < s < 1:5, the basis f 

P

: P 2 [

1

L=0

4

�

L

g is a Riesz basis,

i.e., for any L and for any vetor of real numbers (�

P

)

P

, we get















X

P24

�

L

�

P

 

P















H

s

(�)

�

v

u

u

t

X

P24

�

L

2

2l(P )(s�1)

j�

P

j

2

: (5.1)

ii) For the Sobolev spae orders s � t � 2; s < 1:5, the funtions from Lin

�

L

ful�ll the

approximation property (Jakson type theorem)

inf

u

L

2Lin

�

L

ku� u

L

k

H

s

(�)

� C2

�L(t�s)

kuk

H

t

(�)

: (5.2)

iii) For the interpolation projetion R

L

de�ned in Set. 2.5, for u 2 H

t

(�), and for the

Sobolev spae orders 0 � s � t � 2; s < 1:5; t > 1, we get

ku� R

L

uk

H

s

(�)

� C2

�L(t�s)

kuk

�

m

�

m=1

H

t

(�

m

)

: (5.3)

iv) For the L

2

(�) orthogonal projetion P

L

and for the Sobolev spae orders �2 � s �

t � 2; s < 1:5; t > �1:5, we get

ku� P

L

uk

H

s

(�)

� C2

�L(t�s)

kuk

H

t

(�)

: (5.4)

v) For the Sobolev spae orders s � t < 1:5, the funtions u

L

from Lin

�

L

ful�ll the

inverse property (Bernstein inequality)

ku

L

k

H

t

(�)

� C2

L(t�s)

ku

L

k

H

s

(�)

: (5.5)

Lemma 5.2 Suppose the ontinuous funtion u belongs to �

m

�

m=1

H

s

(�

m

) for an s with

�0:5 < s � 2 and suppose

P

P24

�

L

�

P

 

P

is the representation of the orthogonal projetion

P

L

u. Then

v

u

u

t

X

P2r

�

l

2

2l(s�1)

j�

P

j

2

� C kuk

�

m

�

m=1

H

s

(�

m

)

; (5.6)

v

u

u

t

X

P24

�

L

2

2l(P )(s�1)

j�

P

j

2

� C kuk

�

m

�

m=1

H

s

(�

m

)

�

(

1 if � 0:5 < s < 1:5

p

L if 1:5 � s � 2:

(5.7)

5.2 The Properties of the Wavelet Basis in the Test Spae

The properties of the basis of test wavelets introdued in Set. 3.2 an be desribed using

the predual basis. If the number of vanishing momentsm

#

is equal to two, then we simply

de�ne the lassial hierarhial basis by �

P

:= '

l+1

P

for P 2 r

�

l

and observe

h#

P

; �

P

0

i := #

P

(�

P

0

) = Æ

P;P

0

(5.8)
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as well as spanf�

P

: P 2 4

�

L

g = Lin

�

L

. The interpolation projetion an be represented

as

R

L

u =

X

P24

�

L

u(P )'

L

P

=

X

P24

�

L

h#

P

; ui�

P

: (5.9)

If m

#

� 2, then we introdue the spae X

�

L

of pieewise polynomials as the set of all f 2

C(�) suh that f j

�

Q

Æ�

m

is a polynomial of degree less than m

#

for any triangle �

Q

� �

m

of level L, i.e: for any �

Q

with Q 2 ut

�

l

\ �

m

. Retaining the de�nition of l

#

from Set:

3.2, we an de�ne the spaes X

�

l

of pieewise polynomials of level l � l

#

� 1 in the same

manner. We get the hierarhy X

�

l

#

�1

� X

�

l

#

� : : : � X

�

L

and we an de�ne the hierarhial

basis f�

P

g as follows. If P 2 r

�

l

; l � l

#

�1 and R;P 2 �

Q

with Q 2 ut

�

l+1

and P = �

m

(�

i

)

(f: Set: 3.2), then we set �

P

(R) := l

Q;i

(R). For P 2 r

�

l

; l < l

#

� 1, we set �

P

:= '

l

#

�1

P

.

With the so de�ned basis, we onlude (5.8) as well as spanf�

P

: P 2 4

�

L

g = X

�

L

. Again,

the interpolation projetion R

L

an be represented by (5.9). If m

#

= 2, then X

�

L

= Lin

�

L

and the funtions �

P

oinide with '

l(P )+1

P

. The following properties are straightforward

generalizations of well-known results for the lassial hierarhial basis.

Lemma 5.3 i) For 1 < s < 1:5, the basis f�

P

: P 2 [

1

L=0

4

�

L

g is a Riesz basis, i.e.,

for any L and for any vetor of real numbers (�

P

)

P

, we get















X

P24

�

L

�

P

�

P















H

s

(�)

�

v

u

u

t

X

P24

�

L

2

2l(P )(s�1)

j�

P

j

2

: (5.10)

ii) The approximation and inverse properties for the spae predual to the test funtionals

are the same as those formulated in Lemma 5.1 ii)-v). The upper bound 2 and the

lower bound �2, however, an be replaed by m

#

and �m

#

, respetively.

iii) The �nite element basis '

L

P

; P 2 4

�

L

satis�es the disrete norm equivalene















X

~

P24

�

L

�

~

P

'

L

~

P















L

2

(�)

�

1

2

L

v

u

u

t

X

~

P24

�

L

j�

~

P

j

2

:

In partiular, we get















X

P24

�

L

�

P

�

P















L

2

(�)

�

1

2

L

v

u

u

t

X

~

P24

�

L

j

X

P24

�

L

�

P

�

P

(

~

P )j

2

: (5.11)

5.3 General Error Estimates for the Numerial Solution and

Preonditioning

In this subsetion we reall well-known error estimates for stable numerial methods. We

formulate results on the stability and derive neessary onditions whih ensure that the
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numerial methods, perturbed by ompression and by boundary and quadrature approx-

imation, admit the same asymptoti orders of onvergene as the unperturbed methods.

Moreover, we give neessary onditions whih ensure the existene of diagonal preondi-

tioners for the matrix A

w;;q

of the ompressed and approximated olloation method.

The olloation method for the equation Au = v de�nes an approximate solution

u

L

2 Lin

�

L

by R

L

Au

L

= R

L

v (f: Set. 2.5). This method is alled stable in the spae

H

s

(�) if the approximate operators R

L

A : Lin

�

L

�! Lin

�

L

are invertible for suÆiently

large L and if their inverses are bounded, i:e:,
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:

We suppose that the olloation method is stable for s = 0. Additionally, if r = �1 or if

the algorithm (3.9) is applied to an operator A of order r = 0, then we suppose stability

also for s = 1:1 (or for an arbitrary s with 1 < s < 1:5 instead of 1:1). Note that stability

is well known for seond kind integral operators inluding ompat integral operators.

In partiular this is true for double layer operators over smooth boundaries (f: e.g: [2℄).

For �rst kind operators and operators involving strongly singular integral operators, the

question of stability is not solved yet. A �rst step toward the solution is done in [31,

32, 8, 11℄. Note that, sine our trial spae Lin

�

L

is generated by two saling funtions,

the stability is needed for a multiwavelet spae (f: the univariate multiwavelet paper

[33℄). Though a rigorous proof of stability is missing engineers frequently use olloation

methods without observing instabilities.

To simplify the notation, let us denote the operator R

L

Aj

Lin

�

L

by A

L

, i.e., by the

same symbol as for its matrix with respet to the basis f'

L

P

: P 2 4

�

L

g (f: Set. 2.5).

Similarly, we denote by A



L

and A
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L

the operators in Lin

�

L

the matrix of whih with respet

to f'

L

P

: P 2 4

�

L
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L

and A

;q

L

, respetively (f: (3.8)). Using the L

2

orthogonal pro-

jetion P

L

, we represent the error u� u

L

of the fully disretized and ompressed method
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:

We apply the boundedness assumption on A (f: Set. 2.2), assume the stability of A

;q

L

for Sobolev index s = 0, and use Lemma5.1 to get
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:

In other words, to ensure the optimal onvergene order m = 2� r, we need the estimate

k [A

L
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L
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(5.12)
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for s = 2 and the stability of A

;q

L

. Sine A

L

is stable by assumption and sine A
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L

=

A

L

fI + A
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L
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The last ondition is a onsequene of (5.12) with s = 0 if we an show that C

u

� Ckuk

L

2

for a onstant C whih an be made smaller than any presribed positive threshold.

Moreover, due to the inverse property, it suÆes to show (5.12) with s = 1:1 and a small

onstant C

u

� Ckuk

H

1:1

. The usual ompression estimates prove the error estimate in

(5.12) but with the di�erene A

L

� A

;q

L

replaed by A

L

� A



L

. We refer the reader to

[12, 29, 40, 35℄ for the details. In the present paper it will be our task to prove the

estimates (5.12) for s = 2 and for s = 1:1 with A

L

� A

;q

L

replaed by A



L

� A

;q

L

.

The issue of wavelet preonditioners has been addressed by many authors (f: e.g:

[10, 12, 24, 43℄) and we will follow the same ideas. In the ase r = 0 the stability of A

;q

L

implies that the matrix A

;q

L

has a ondition number whih is already uniformly bounded

with respet to L. Thus, for the algorithm (3.10), no preonditioning is needed, and we

an restrit our onsideration to algorithm (3.9). Unfortunately, the wavelet transform

T

�1

T

(f: Set. 3.3) does not have a uniformly bounded ondition number with respet to

Eulidean matrix norm. Therefore, preonditioning is needed even for r = 0, and the

preonditioner is to be derived from the stability for a di�erent Sobolev index. We hoose

e.g: s = 1:1.

Let us onsider an operator A of order r = 0;�1 and suppose the stability of A
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then A

;q

L

is stable in H

1:1

(�), too. From Sets. 3.1 and 5.2, we reall that A

w;;q

L

is the

matrix of the operator A

;q

L

with respet to the bases f 
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: P 2 4
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g and f�
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Under assumption (5.13), the assertions i) of the Lemmata 5.3 and 5.1 imply that the
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have ondition numbers whih are uniformly bounded with respet to L, i.e: the matrix

A

w;;q

L

admits a diagonal preonditioning. The boundedness of the ondition number en-

sures the fast onvergene of the iterative solver in the wavelet algorithm (3.9). In other

words, for the fast iterative solution of the linear systems A

w;;q

L

� =  (f: part iv) of

(3.9)) using preonditioning, we only have to prove (5.13). This is well known for the

di�erene A

L

� A

;q

L

replaed by A

L

� A



L

(f: [12, 29, 40, 35℄). The estimate (5.13) with

A

L

� A

;q

L

replaed by A



L

� A

;q

L

, however, follows from (5.12) with s = 1:1 + r and the

inverse property v) of Lemma 5.1. All together, we have
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Remark 5.1 For almost optimal rates of onvergene, for stability, and for preondition-

ing, we have to prove
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where q > 0 and where l

0

is hosen suh that C2

�ql

0

is suÆiently small.

To derive an estimate like (5.15), we shall use the following well-known Shur lemma.

Lemma 5.4 Denote the entries of the ompressed matrix of quadrature errors [A
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with respet to the wavelet bases f�
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. Suppose x is

a �xed real parameter whih an be arbitrary. Usually x is equal to zero if it is not given

expliitly. Then the left-hand side of (5.15) an be estimated as
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Proof. In view of (5.11), we get, for P
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Clearly, the funtion values �

P

0
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~

P ) are non-negative and less than one. We apply the

Cauhy-Shwarz inequality and some easy alulations to arrive at
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Now we observe that, for a �xed P
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, the number of
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suh that �
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P ) > 0 is less
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. Using this as well as (5.6) and (5.7), we ontinue
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6 The Estimation of the Errors due to the Approxi-

mate Parametrization and due to the Quadrature

6.1 The Far Field Estimate

In this subsetion we suppose that the near �eld integrations are performed exatly and

derive the onvergene estimates for the far �eld ase. The error estimate for the near �eld

will be onsidered in Sets. 6.2 and 6.3, respetively. In view of Remark 5.1, it remains to

prove

Lemma 6.1 Suppose A



L

2 L(Lin

�

L

) is the approximate operator of the ompressed ol-

loation method inluding the sparsity pattern P (f: Set. 3.5). If A
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is the operator of

the ompressed olloation method inluding the approximation of the parameter mappings

and the quadrature of the far �eld, i.e: of Set. 4.1, then we get the estimates (5.15).
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In aordane with the splitting into these two terms, we get two estimates of the form
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(f: the de�nition of the far �eld in Set: 4.1 and the formulae (3.11) and (3.12)). Substi-
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Using the estimate (6.3), we ontinue
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Next we turn to the estimates of �
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2

�m

#

l(P

0

)

2

�mL

dist (�

P

0

;	

P

)

�r�2�m

#

for a

2

P

0

;P

into the de�nition of �

2

2

, we get

�

2

2

� C

L�1

X

l=�1

2

[2�s℄l

sup

P2r

�

l

L�1

X

l

0

=�1

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

2

�2l

2

�m

#

l

0

2

�mL

dist

�r�2�m

#

� C2

�mL

L�1

X

l=�1

2

�sl

sup

P24

�

l

L�1

X

l

0

=�1

2

�m

#

l

0

2

�2l

0

X

P

0

2r

�

l

0

:

M

0

�dist�M

2

dist

�r�2�m

#

� C2

�mL

L�1

X

l=�1

2

�sl

2

4

l

X

l

0

=�1

2

rl

0

+ 2

[r+m

#

℄l

L�1

X

l

0

=l

2

�m

#

l

0

3

5

� C2

�mL

:

ii) Let us prove (6.1). The �rst bound a

1

P;P

0

is the bound for the error of the quadrature

applied to the integral in a

w;

P

0

;P

, where the parametrization is already replaed by the

pieewise polynomial interpolation. Indeed, by standard estimates of q-th order omposite

rules, the quadrature error is less than a onstant times the measure C2

�2l(P )

of the domain

of integration times the q-th power of the step size of quadrature 2

�l(Q)

� 2

�l

0

2

�l(P;P

0

)

times the supremum of the q-th order derivative of the integrand funtion. Due to the

vanishing moments the test funtional #

P

0

ats like a di�erene formula of order m

#

with

improper saling. Therefore, the q-th order derivative of the integrand funtion an be

estimated by the produt of C2

�m

#

l(P

0

)

and the [m

#

+q℄-th order derivative of the kernel

funtion. Thanks to (2.5) the last fator is less than Cdist

�r�2�m

#

�q

. The replaement

of the parametrization does not ause any problem sine the supremum of the derivatives

to the pieewise polynomial interpolations an be estimated by the supremum of the

derivatives to the original parametrization mapping, i.e: it is bounded.
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The seond bound a

2

P

0

;P

in (6.1) is the estimate for the error due to the replaement of

the parametrization by the pieewise interpolation. To estimate the orresponding error it

is suÆient to use the approximation orderm+1 instead of the atual orderm

p

+1 of the

pieewise polynomial interpolation of degree less than m

p

. As mentioned above, the test

funtional #

P

0

an be onsidered to be a saled version of a di�erene formula. Clearly, we

get j�

m

(�)� �

0

m

(�)j � C 2

�(m+1)l(Q)

for � 2 T

�

0

= �

�1

m

(�

Q

0

) with Q

0

2 ut

�

L

, i.e: l(Q

0

) = L.

Moreover, we obtain jr

�

�

m

(�)�r

�

�

0

m

(�)j � C 2

�ml(Q)

if r

�

is the gradient with respet

to �. From the smoothness assumptions on �

m

in Set. 2.1 and on the integral kernel in

Set. 2.2, we onlude

jJ

m

(�)� J

0

m

(�)j � C2

�mL

; jJ

m

(�)j � C; jJ

0

m

(�)j � C;

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

� k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

�

�

� � C

2

�(m+1)L

2

�m

#

l(P

0

)

dist

2+r+m

#

+1

;

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

�

�

� � C

2

�mL

2

�m

#

l(P

0

)

dist

2+r+m

#

;

�

�

�k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

�

�

� � C

2

�mL

2

�m

#

l(P

0

)

dist

2+r+m

#

;

(6.5)

where we have used the notation dist := dist(�

P

0

;	

P

) and the estimate dist > 2

�L

(f:

the de�nition of the far �eld in Set: 4.1). Hene, we arrive at

�

�

�k

�

#

P

0

; �

m

(�); n

�

m

(�)

�

J

m

(�)�

�; �

(�)� k

�

#

P

0

; �

0

m

(�); n

0

�

0

m

(�)

�

J

0

m

(�)�

�; �

(�)

�

�

�

� C2

�mL

2

�m

#

l(P

0

)

dist

�2�r�m

#

;

and the integral over T

�

of this di�erene is less than a

2

P

0

;P

in (6.1).

Lemma 6.2 The number of neessary arithmeti operations for setting up the far �eld

part of the sti�ness matrix A

w;;q

L

, inluding the sparsity pattern P, is less than C2

2l

0

L2

2L

.

Proof. Clearly, the number of all arithmeti operations is bounded by a onstant multiple

of the number of all quadrature knots. Thus we ount the number N of quadrature knots.

For a �xed test funtional #

P

0

and for a �xed trial funtion  

P

, the number of knots is

less than [2

�l(P )

=2

�l(Q)

℄

2

� C2

2l

0

2

2[l(P;P

0

)�l(P )℄

. In view of (4.1), the term 2

l(P;P

0

)

an be

majorized by 2

l(P )+1

+ 2

0:9L�l(P

0

)

dist

�1:1

. By �

�

l

we denote the set of P 2 r

�

l

suh that

	

P

is not ontained in the interior of a single path �

m

. Moreover, we set �

�

l

:= r

�

l

n�

�

l

.

Summing up over all  

P

and #

P

0

and using the notation of the last proof, we arrive at

N �

X

P

0

24

�

L

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

M

0

�dist�M

1

C2

2l

0

2

2[l(P;P

0

)�l(P )℄

+

X

P2�

�

l

:

M

0

�dist�M

2

C2

2l

0

2

2[l(P;P

0

)�l(P )℄

9

>

>

>

>

>

=

>

>

>

>

>

;
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� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

sup

P

0

2r

�

l

0

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

M

0

�dist�M

1

2

�2l

"

2

2l

+

2

1:8L�2l

0

dist

2:2

#

+

X

P2�

�

l

:

M

0

�dist�M

2

2

�2l

"

2

2l

+

2

1:8L�2l

0

dist

2:2

#

9

>

>

>

>

>

=

>

>

>

>

>

;

� C2

2l

0

L�1

X

l

0

=�1

2

2l

0

sup

P

0

2r

�

l

0

L�1

X

l=�1

8

>

>

>

>

>

<

>

>

>

>

>

:

X

P2�

�

l

:

dist�M

1

1 +

X

P2�

�

l

:

dist�M

2

1

9

>

>

>

>

>

=

>

>

>

>

>

;

+C2

2l

0

2

1:8L

L�1

X

l

0

=�1

sup

P

0

2r

�

l

0

L�1

X

l=�1

2

�2l

X

P2�

�

l

:

M

0

�dist

dist

�2:2

+C2

2l

0

2

1:8L

L�1

X

l

0

=�1

sup

P

0

2r

�

l

0

L�1

X

l=�1

2

�l

2

�l

X

P2�

�

l

:

M

0

�dist

dist

�2:2

Using the de�nitions of M

0

, M

1

, and M

2

(f: (6.2)) and applying the estimates (ompare

(6.3))

2

�2l

X

P2r

�

l

: dist>M

0

dist

�2:2

� CM

0

�0:2

; (6.6)

2

�l

X

P2�

�

l

: dist>M

0

dist

�2:2

� CM

0

�1:2

;

we ontinue

N � C2

2l

0

L�1

X

l

0

=�1

2

2l

0

L�1

X

l=�1

8

<

:

"

2

�l

+ 2

�l

0

+ d2

0:6L�0:7 l�0:9 l

0

2

�l

#

2

+

"

2

�l

+ 2

�l

0

+ d2

L�0:7 l�1:3 l

0

2

�l

#)

+

C2

2l

0

2

1:8L

L�1

X

l

0

=�1

8

<

:

l

0

X

l=�1

2

0:2 l

+

L�1

X

l=l

0

2

0:2 l

0

9

=

;

+ C2

2l

0

2

2L

L�1

X

l

0

=�1

8

<

:

l

0

X

l=�1

2

0:2 l

+

L�1

X

l=l

0

2

�l

2

1:2 l

0

9

=

;

� C2

2l

0

L2

2L

:
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6.2 The Estimates for the First Part of the Near Field

Now we suppose that the far �eld integration and the integration of the seond part of the

near �eld are performed exatly and derive the onvergene estimates for the �rst part of

the near �eld. In view of Remark 5.1 it remains to prove

Lemma 6.3 Suppose A



L

2 L(Lin

�

L

) is the approximate operator of the ompressed ol-

loation method inluding the sparsity pattern P and that A

;q

L

is the operator of the om-

pressed olloation method inluding the approximation of the parameter mappings and

the quadrature of Set. 4.2, then we get the estimate (5.15).

Proof. i) Like in Set: 4.2 we distinguish the ases l(P ) � l(P

0

) and l(P ) < l(P

0

), and

we start with l(P ) � l(P

0

). Using Lemma 5.4, we have to estimate the sums �

1

and �

2

.

This time the estimate (6.1) holds with

a

1

P

0

;P

:= C2

�ql

0

2

�2l(P )

2

�ql(P;P

0

)

dist (supp #

P

0

;	

P

)

�r�2�q

; (6.7)

a

2

P

0

;P

:= C2

�2l(P )

2

�mL

dist (supp #

P

0

;	

P

)

�r�2

: (6.8)

Note that these estimates follow analogously to part ii) of the proof to Lemma 6.1. The

only di�erene is that the vanishing moments of the test funtional are not taken into

aount.

Again, in aordane with the splitting (6.1) into two terms, we get two estimates of

the form (5.16) denoted by C

u

�

1

1

�

1

2

and C

u

�

2

1

�

2

2

, respetively. We introdue dist :=

dist(supp#

P

0

;	

P

), and, similarly to part i) of the proof to Lemma 6.1, we onlude

�

1

1

� C sup

P

0

24

�

L

L�1

X

l=l(P

0

)

X

P2r

�

l

:



�

2

�l

�dist�2

�l(P

0

)

2

�sl

2

�ql

0

2

�2l

2

�ql(P;P

0

)

dist

�r�2�q

� C2

�ql

0

2

�0:9qL

sup

P

0

24

�

L

2

ql(P

0

)

L�1

X

l=l(P

0

)

2

�sl

2

�2l

X

P2r

�

l

:



�

2

�l

�dist�2

�l(P

0

)

dist

�r�2+0:1q

:

Although the distane dist is less than 2

�l(P

0

)

, we still have

2

�2l

X

P2r

�

l

: 2

�l(P

0

)

>dist>

�

2

�l

dist

�r�2+0:1q

� C

Z

fP2�: 2

�l(P

0

)

>jP

0

�P j>

�

2

�l

g

d

P

�

jP

0

� P j

r+2+0:1q

� C[2

�l(P

0

)

℄

�r+0:1q

(6.9)

due to the hange from dist = dist(	

P

;�

P

0

) to dist = dist(	

P

; supp #

P

0

) and due to the

fat that the support supp#

P

0

of the olloation test funtional onsist of a small number

of points, only. Using (6.9), we ontinue

�

1

1

� C2

�ql

0

2

�0:9qL

sup

�1�l(P

0

)�L�1

2

l(P

0

)[0:9q+r℄

L

X

l=l(P

0

)

2

�sl

� C2

�ql

0

2

�[s�r℄L

:
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On the other hand, substituting the estimate a

1

P

0

;P

and 2

l(P;P

0

)

� 2

0:9L�l(P

0

)

dist

�1:1

into

the de�nition of �

1

2

, we get

�

1

2

� C

L�1

X

l=�1

2

[2�s℄l

sup

P2r

�

l

l

X

l

0

=�1

2

�2l

0

X

P

0

2r

�

l

0

:



�

2

�l

�dist�2

�l

0

2

�ql

0

2

�2l

2

�ql(P;P

0

)

dist

�r�2�q

� C2

�ql

0

2

�0:9qL

L�1

X

l=�1

2

�sl

sup

P24

�

l

l

X

l

0

=�1

2

ql

0

2

�2l

0

X

P

0

2r

�

l

0

:



�

2

�l

�dist�2

�l

0

dist

�r�2+0:1q

:

Using the estimate (6.9), we ontinue

�

1

2

� C2

�ql

0

2

�0:9qL

L�1

X

l=�1

2

�sl

l

X

l

0

=�1

2

[r+0:9q℄l

0

� C2

�ql

0

2

�[s�r℄L

: (6.10)

Next we turn to the estimates of �

2

1

and �

2

1

. Setting x = 1 in the estimates of Lemma

5.4, proeeding analogously to the treatment of �

1

1

and �

1

1

, and using the estimate (6.9),

we arrive at

�

2

1

� C sup

P

0

24

�

L

2

�l(P

0

)

L�1

X

l=l(P

0

)

X

P2r

�

l

:



�

2

�l

�dist�2

�l(P

0

)

2

[1�s℄l

2

�2l

2

�mL

dist

�r�2

� C2

�mL

sup

P

0

24

�

L

2

�l(P

0

)

L�1

X

l=l(P

0

)

2

[1�s℄l

2

�2l

X

P2r

�

l

:



�

2

�l

�dist�2

�l(P

0

)

dist

�r�2

� C2

�mL

sup

�1�l(P

0

)�L�1

2

[r�1℄l(P

0

)

L�1

X

l=l(P

0

)

2

[1�s℄l

l

Æ

r;0

� C2

�mL

: (6.11)

On the other hand, substituting the estimate 2

�2l(P )

2

�mL

dist (supp#

P

0

;	

P

)

�r�2

for a

2

P

0

;P

into the de�nition of �

2

2

, we get

�

2

2

� C

L�1

X

l=�1

2

[1�s℄l

sup

P2r

�

l

l

X

l

0

=�1

2

�l

0

X

P

0

2r

�

l

0

:



�

2

�l

�dist�2

�l

0

2

�2l

2

�mL

dist

�r�2

� C2

�mL

L�1

X

l=�1

2

�[1+s℄l

sup

P24

�

l

l

X

l

0

=�1

2

�l

0

X

P

0

2r

�

l

0

:



�

2

�l

�dist�2

�l

0

dist

�r�2

� C2

�mL

L�1

X

l=�1

2

�[1+s℄l

l

X

l

0

=�1

2

�l

0

2

[r+2℄l

� C2

�mL

: (6.12)
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ii) Now we onsider the ase l(P ) < l(P

0

). Using Lemma5.4, we have to estimate the

sums �

1

and �

2

. We set Dist := dist(�

P

0

;	

P

). This time the estimate (6.1) holds with

a

1

P

0

;P

:= C2

�ql

0

2

�ql(P;P

0

)

2

ql(P )

2

�m

#

l(P

0

)

Dist

�r�m

#

(6.13)

= C2

�ql

0

2

�0:95qL

2

0:4ql(P )

2

[1:1q�m

#

℄l(P

0

)

Dist

�r�m

#

+0:55q

;

a

2

P

0

;P

:= C2

�mL

2

�m

#

l(P

0

)

Dist

�r�m

#

: (6.14)

Indeed, for the quadrature term a

1

P

0

;P

, we apply the error estimates from part ii) of the

proof to Lemma 6.1 to eah subtriangle �

Q

0

of step ii) in Set: 4.2.2. Note that, for

any level l, there is only a bounded number of triangles �

Q

0

of level l in the partition of

step ii) with the bound independent of l. The distane of suh a �

Q

0

of level l to �

P

an be estimated from below and above by onstant times 2

�l

. Using 2

�l(P;P

0

)

2

l(P )

�

C2

�0:95L+1:1 l(P

0

)+0:4 l(P )

Dist

0:55

(f: (4.10)) and adding up the standard quadrature esti-

mates, we arrive at

a

1

P

0

;P

� C

�

2

log Dist

X

l=l(P )+1

2

�m

#

l(P

0

)

2

�2l

h

2

�l

2

�l

0

2

�l(P;P

0

)

2

l(P )

i

q

h

2

�l

i

�2�r�m

#

�q

� C2

�ql

0

2

�0:95qL

2

0:4ql(P )

2

[1:1q�m

#
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0
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Proeeding similarly for the term due to the approximate parametrization, we onlude
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Again, in aordane with the splitting (6.1) into two terms, we get two estimates of

the form (5.16) denoted by C

u

�

1

1

�

1

2

and C

u

�

2

1

�

2

2

, respetively. We hoose the parameter

x = 0:5 in the estimates of Lemma 5.4 and, similarly to part i) of the proof to Lemma

6.1, we onlude
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On the other hand, substituting a
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Using the estimate
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we ontinue
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Next we turn to the parametrization estimates �

2

1

and �

2

2

. Proeeding analogously to

the treatment of �

1

1

and �

1

1

and using estimates like (6.15), we arrive at
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and at the estimate
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Lemma 6.4 The number of neessary arithmeti operations for setting up that part of

the near �eld of the sti�ness matrix A

w;;q

L

treated in Set: 4.2 is less than CL

2

2

2L

.

Proof. Again we only have to ount the number N of quadrature knots (f: the proof

to Lemma 6.2). First we ount those used for the ase 0 < dist(	
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) � 2
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Here we have applied (6.6).

Next we onsider the ase l(P ) < l(P

0

) of Set: 4.2.2. We set Dist := dist(�	
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Here we have applied an estimate like (6.15).

6.3 The Estimates for the Seond Part of the Near Field

Now we suppose that the far �eld integration and the integration of the �rst part of the

near �eld are performed exatly and derive the onvergene estimates for the seond part

of the near �eld. In view of Remark 5.1 it remains to prove

Lemma 6.5 Suppose A



L

2 L(Lin

�

L

) is the approximate operator of the ompressed ol-

loation method inluding the sparsity pattern P and that A

;q

L

is the operator of the om-

pressed olloation method inluding the approximation of the parameter mappings and

the quadrature of Set. 4.3, then we get the estimate (5.15).

Proof. i) First we look at the quadrature in Set: 4.3.1. The ase dist(�

Q

�

; P

�

) > 0

an be treated ompletely analogously to the quadrature of Set: 4.2.1 sine even in Set:

4.2.1 the quadrature is applied over the triangles �

Q

�

separately and sine the vanishing

moments of the test funtionals are not used in the estimates for the quadrature of Set:

4.2.1.

Moreover, the ase dist(�
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; P
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) = 0 an be inluded into the estimation in part i)

of the proof to Lemma 6.3, too. We only have to hek the estimates for a

1
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Hene, in omparison to the estimate a
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Here we have estimated the logarithmi term CL appearing in the ase r = 0 by using the

additional fator 2
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of the interpolation. Hene, the parametrization error terms with
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In other words, the quadrature error terms orresponding to Dist > 0 an be treated like

the terms in Set: 4.2.2 with the distane dist(	
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) of the same size.
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(f: part ii) of the proof to Lemma 6.1 ). Applying this to eah of the subtriangles �
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Hene, the parametrization error terms with dist(��

Q

�

;�

P

0

) > 0 an be treated like the

terms with the distane dist(	

P

;�

P

0

) of the same size as dist(��

Q

�

;�

P

0

) orresponding

to the quadrature of Set: 4.2.2 (f: part ii) of the proof to Lemma 6.3).

If dist(��

Q

�

;�

P

0

) = 0, we split #

P

0

into the linear ombination of point funtionals at

the points P

�

, and, setting Dist := 2

�l(P

0

)

, we derive the estimates (6.13) and (6.14) for

a

1

P

0
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and a

2

P

0
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. The usual bounds C2
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resp. C2
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ture error (f: part ii) of the proof to Lemma 6.1) applied to eah of the subtriangles �

Q

0
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whih is (6.13) with Dist replaed by 2

�l(P

0

)

. On the other hand, for the parametrization

error, we arrive at the usual upper bound C2
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�
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Q

0

in the partition of step ii') in Set:
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Hene, the quadrature and parametrization error terms with dist(��

Q

�

;�

P

0

) = 0 an be

treated like the terms with dist(�

Q

�

;�

P

0

) � 2

�l(P )

orresponding to the quadrature of

Set: 4.2.2 (f: part ii) of the proof to Lemma 6.3).

iii) The \quadrature" error a

1

P

0

;�

e

m

;p

of negleting the approximation a

w;;q

P

0

;�

e

m

;p

for the

orresponding integral in the ase l(P

0

) �

m

m

#

L is less than C2

�m

#

l(P

0

)

sine the integrand

is m

#

times ontinuously di�erentiable by assumption (f: Set: 2.2) and sine #

P

0

has

m

#

vanishing moments. For the other ase l(P

0

) <

m

m+2

L, we really have to estimate

the quadrature error a

1

P

0

;�

e

m

;p

and the parametrization error a

2

P

0
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e

m
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, respetively. Now

applying the usual upper bounds C2
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for the quadrature error to

eah of the subtriangles �

Q

0

in the partition of step ii) in Set: 4.3.3.2, we get the error

estimate
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On the other hand, for the parametrization error over the level l(Q

0

) triangles, we arrive

at the usual upper bound
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Applying this to eah of the subtriangles �

Q

0

in the partition of step ii) in Set: 4.3.3.2,

we onlude
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Now we take into aount that, for the omputation of an a

w;;q

P

0

;P

, the trial funtion  

P

is presented as a linear ombination of the three basi linear polynomials p, where the

onstant p has a bounded oeÆient and where the oeÆients of the linear funtions

p(�

m

(�)) 7! (� � [�

m

℄

�1
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; i = 1; 2 are bounded by 2
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. Consequently, the resulting

error a
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The dots in the last formulae stand for the restrition to pairs of P and P

0

for whih the

quadrature approximation to a
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is treated in Set: 4.3.2.1. Similarly, we onlude
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iv) The last error to be estimated is the error due to the neglet of the singular

integrals over triangles of the level mL. Suh a neglet ours in all the three subsetions

of Set: 4.3. However, if r = �1 or if r = 0 and the kernel k(P;Q) satis�es the Mikhlin-

Gireaud ondition (f: Set: 2.2 and f: e.g: [26℄), then the value of suh an integral is

49



less than 2

�mL

. Sine we ommit suh an error at most one in every entry a

w;q;

P

0

;P

of

the sti�ness matrix, Lemma 5.4 with the hoie x = 1 implies the global error estimate

k[A



L
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℄P

L
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(�)
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for s = 1:1 and s = 2.

Lemma 6.6 The number of neessary arithmeti operations for setting up the part of the

near �eld of the sti�ness matrix A

w;;q

L

treated in Set: 4.3 is less than CL

2

2

2L

if r = �1

and less than CL

3

2

2L

if r = 0.

Proof. We have seen that eah quadrature term of Set: 4.3 omputed over a 	

P

or a

�

Q

�

an be inluded into the estimates of Set: 4.2. In partiular, eah quadrature for an

entry of the seond part of the near �eld requires the same number of quadrature knots

as a orresponding entry of the �rst part of the near �eld. The only exeption is that, due

to the logarithmi term in the levels of the uniform re�nements aording to (4.13) and

(4.15), there arises an additional fator L in the omplexity if r = 0. Consequently, we

get the same omplexity estimate as in Lemma 6.4 for r = �1 and the same omplexity

multiplied by L for r = 0.

It remains to ount the quadrature knots for Set: 4.3.3.2. For a �xed #

P
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, the number

of knots is less than CL[2
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. Hene, the number of all arithmeti operations for

the omputation aording to Set: 4.3.3.2 is less than
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