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Abstract

We consider the direct integral formulation of the heat equation in a smooth

domain of R

2

with Neumann and Dirichlet boundary conditions. The unknown

belongs to an anisotropic Sobolev space of positive order for the Neumann problem

and of negative order for the Dirichlet one and is approximated by the Galerkin

method using an appropriate biorthogonal wavelet basis. The use of such a basis

allows to compress the sti�ness matrix from O(N

2

) to O(N), and to obtain a uni-

formly bounded condition number. Finally, we show that the compressed scheme

converges as fast as the Galerkin.

1 Introduction

The boundary element method applied to the heat equation on a smooth domain 


of R

2

leads to the resolution of a two-dimensional problem [8, 16]. Unfortunately, the

sti�ness matrix is full, and in general ill-conditioned. Many authors (see [10, 18, 23])

have introduced new bases made of wavelets to overcome these di�culties, but only, to

our knowledge, for elliptic problems. Therefore our goal is to adapt the strategy to a

parabolic case.

The Dirichlet and Neumann problems will be solved using direct integral formulations

(see [8, 16]). Their kernel involve an exponential function and the �rst step is then to

check that this function satis�es a decay property in the sense of [23] to �t well in our

compression procedure. The second step consists in the characterization of the anisotropic

Sobolev spaces

~

H

r;p

(�

T

) with r 6= p in term of biorthogonal wavelets, since the integral

formulation of the heat equation is given in those spaces. This will be done using tensor

products of one-dimensional wavelets. For the Neumann and Dirichlet problems, the

associated bilinear form may be no more coercive and we overcome this di�culty by using

compact perturbation arguments (see [3, 17]). As in elliptic problems, the use of wavelets

allow to compress the sti�ness matrix from O(N

2

) non-zero entries to O(N). However,

this procedure has to be done with precautions here. In fact, the wavelet coe�cients of

the sti�ness matrix have a decreasing property involving a "pseudo-distance" instead of

the classical euclidian one. Once this is proved, one can, as in elliptic problems, compress

the matrix by replacing some small coe�cients by zero. The order of convergence between

the exact solution and the solution of the compressed Galerkin scheme is not a�ected by

this procedure.

The schedule of the paper is the following one. In section 2 we recall the integral formu-

lation of the problem and de�ne the anisotropic Sobolev spaces which are characterized

by a biorthogonal wavelet basis in section 3. The Galerkin method is presented in section

4. Due to the above characterization, we obtain a well-conditioned system. The next
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part is devoted to the decay of some coe�cients of the sti�ness matrix and a compression

procedure is retailed to sparse it. Therefore in section 6 we give an error estimate between

the exact solution and the solution of the compressed Galerkin scheme. We adapt our

strategy to the study of the �rst kind formulation of the Neumann problem in section 7

and slights modi�cations are needed to treat the Dirichlet problem in the last section.

2 Integral formulation

In this section, we recall the integral formulation of the heat equation described in [8, 16].

We need the de�nition of the anisotropic Sobolev spaces

~

H

r;p

(�

T

). For r; p � 0, we set

H

r;p

(�

T

) = L

2

((0; T );H

r

(�))

\

L

2

(�;H

p

(0; T )); (1)

~

H

r;p

(�

T

) = fu = U

j�

T

: U 2 H

r;p

(�) , U(:; t) = 0; t < 0g; (2)

when � = ��R and H

r

(�) is the classic Sobolev space because the boundary � is smooth.

The Neumann problem is the following one

8

<

:

��� + @

t

� = 0 in Q

T

= 
� (0; T );

@

n

�

j�

T

= g

1

on �

T

= �� (0; T );

�(x; 0) = 0 8x 2 
:

(3)

Let V and W denote the classic single-layer and double-layer heat potentials :

(V �)(x; t) =

Z

t

0

Z

�

�(y; �)E(x� y; t� �)d�

y

d�; (4)

(W�)(x; t) =

Z

t

0

Z

�

�(y; �)@

n

y

E(x� y; t� �)d�

y

d�; (5)

for all (x; t) 2 Q

T

[ Q

c

T

, with Q

c

T

= 


c

� (0; T ), where E is the fundamental solution of

the heat equation :

E(x; t) =

H(t)

4�t

exp

�

�

jxj

2

4t

�

; (6)

H(t) being the Heaviside's function.

We recall the de�nition of the single-layer operator S, the double-layer operator D, the

spatial adjoint of the double-layer operator D

0

and the hypersingular heat operator H :

(S�)(x; t) =

Z

t

0

Z

�

�(y; �)E(x� y; t� �)d�

y

d�;

(D�)(x; t) =

Z

t

0

Z

�

�(y; �)@

n

y

E(x� y; t� �)d�

y

d�;

(D

0

�)(x; t) =

Z

t

0

Z

�

�(y; �)@

n

x

E(x� y; t� �)d�

y

d�;

(H�)(x; t) = �@

n

x

Z

t

0

Z

�

�(y; �)@

n

y

E(x� y; t� �)d�

y

d�;
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for (x; t) 2 �

T

.

The problem (3) admits the direct representation

� = V g

1

�W�; (7)

where � is the solution of the following equation of the second kind :

�

1

2

I +D

�

� = Sg

1

; (8)

or equivalently the equation of the �rst kind :

H� =

�

1

2

I �D

0

�

g

1

: (9)

In both equations (8) and (9), the unknown � is given by

� = �

�

2

~

H

1=2;1=4

(�

T

): (10)

In the next section, we construct explicitly a biorthogonal wavelet basis for the spaces

~

H

r;r=2

(�

T

) with r � �1=2.

3 Adapted wavelet basis

Using the construction of a biorthogonal wavelet basis on the interval satisfying comple-

mentary boundary conditions (see [15]) and some adapted tensor products, the anisotropic

Sobolev spaces

~

H

r;r=2

(�

T

), with r � �1=2, are characterized in this section. In fact, we

use tensor products of one-dimensional wavelets but with two di�erent uniform meshes in

space and time.

At �rst sight, we recall some notations and some results about the biorthogonal bases

(see [12] for instance). Given a Hilbert space H, we suppose that we have a sequence of

nested closed subspaces S

j

of H, whose union is dense in H :

S

0

� S

1

� � � � � H;

clos

H

 

1

[

j=0

S

j

!

= H:

The spaces S

j

have the form

S

j

= S(�

j

) = clos

H

(Span(�

j

)); �

j

= f'

j;k

: k 2 �

j

g;

with �

j

a countable set of indices and �

j

are stable bases.

3



From the identity

S(�

j+1

) = S(�

j

)

M

S(	

j

);

we introduce the set W

j

= S(	

j

), the complement of S(�

j

) in S(�

j+1

). The set 	

j

=

f 

j;k

: k 2 r

j

g is the collection of the successive translates of the wavelet  

j

, at a �xed

level j.

For a function  , on R

n

to �x the ideas, we will note

	 = f 

�

: � 2 rg;

where the indices � = (j; k) 2 r encode the level of resolution, which will be denoted by

j�j = j, the location of the function (k) and sometimes the type of wavelet which is used

(e).  

�

can be written as

 

�

= 2

jn=2

 

e

(2

j

� �k); k 2 r

j

: (11)

Sometimes, as we will see later on, it is useful to use the condensed notation (11) instead

of the original one  

j;k

(x) = 2

jn=2

 (2

j

x� k).

Now suppose that are given two sets of functions :

	 = f 

j;k

: (j; k) 2 rg;

~

	 = f

~

 

j;k

: (j; k) 2 rg;

where r = f(j; k) : k 2 r

j

; j = �1; 0; 1; 2; : : :g such that

h 

j;k

;

~

 

j

0

;k

0

i = �

(j;k);(j

0

;k

0

)

; (j; k); (j

0

; k

0

) 2 r; (12)

where h�; �i is the scalar product in H.

With this biorthogonal system, every v 2 H has a unique expansion written in these

bases in the following form :

v =

X

(j;k)2r

hv;

~

 

j;k

i 

j;k

=

X

(j;k)2r

hv;  

j;k

i

~

 

j;k

(13)

such that the systems are stable in the sense that

kvk

2

H

�

X

(j;k)2r

jhv;

~

 

j;k

ij

2

=

X

(j;k)2r

jhv;  

j;k

ij

2

: (14)

Such a dual system is a good candidate for the characterization of the usual Sobolev

spaces on R

n

by means of the wavelet coe�cients if the Bernstein and Jackson estimates

hold. We recall the following general result ([10, 12]).
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Theorem 3.1 Let us assume that the Jackson estimate holds, namely

kv �Q

j

vk

�

. 2

j(��t)

kvk

t

; v 2 H

t

(�); (15)

for �

~

d � 1 < � < ; � � t;�~ < t � d + 1, with a similar inequality for (v �

~

Q

j

v), by

interchanging d and

~

d,  and ~.

Moreover, if we have the following "inverse" property

kv

j

k

t

. 2

j(t��)

kv

j

k

�

; v

j

2 S

j

; (16)

if �1 < � � t < ~ ; and

kv

j

k

t

. 2

j(t��)

kv

j

k

�

; v

j

2

~

S

j

; (17)

for �1 < � � t < , the next eqivalences hold :

kvk

t

�

X

k2�

j

0

jhv; '

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

j

2

2jt

jhv;

~

 

j;k

ij

2

; (18)

kvk

t

�

X

k2�

j

0

jhv; '

j

0

;k

ij

2

+

1

X

j=j

0

X

k2r

j

2

2jt

jhv;  

j;k

ij

2

; (19)

for �~ < t < ;� < t < ~.

Remark 3.2 The choice d =

~

d = 2 (i.e. the use of piecewise linear elements) allows to

characterize H

s

(R

n

) for s 2 [�

1

2

;

3

2

) and in this case,  =

3

2

.

We have now to adapt such a construction in order to give a characterization of

anisotropic Sobolev spaces of the form

~

H

r;r=2

(�

T

) for r � �1=2.

First of all, there exists a smooth parametrisation of �

T

by

� : [0; 1]

2

! �� (0; T )

(�; s) ! (x(�); T s):

This mapping � yields an isomorphism between

~

H

r;r=2

(�

T

) and

~

H

r;r=2

([0; 1]

2

) and we

construct a wavelet basis of this last space.

Therefore, we subdivise [0; 1]

2

with two uniform meshes, dividing [0; 1] by 2

j

subinter-

vals (space-part) and 2

2j

subintervals (time-part) with j � 0.

We take V

j

as the following approximation space

V

j

=

�

f(x; t) 2 C([0; 1]

2

) s.t. f(x; :) and f(:; t) are piecewise linear on [0; 1]

	

: (20)

Remark 3.3 If the characterization of spaces

~

H

r;r=2

([0; 1]

2

) with r � 3=2 is needed, we

have to use quadratic wavelets for the space part, i.e. d = 3.
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Because of the smoothness of �, the space-part basis is constructed by taking the

periodized biorthogonal wavelet basis of [0; 1] and the resulting set will be denoted by

	

X

= f 

X

�

: � 2 r

X

g: (21)

These wavelets are supposed to have

~

d

X

vanishing moments.

For the time-part, we de�ne the space :

~

H

s

([0; 1]) =

�

u = U

j[0;1]

s.t. U 2 H

s

(R) and U(t) = 0; 8t < 0

	

: (22)

We know (see [15]) the existence of a biorthogonal wavelet basis with complementary

boundary conditions which characterizes such a Sobolev space. Typically here, the left

end-point boundary wavelets must satisfy a Dirichlet condition. We recall the general

strategy and the results of [15].

We introduce Z � f0; 1g to specify where the Dirichlet boundary condition is located.

Here Z = f0g for our problem. The main results are the following ones (see Theorem 3.1

and 3.4 of [15]).

Theorem 3.4 For any Z � f0; 1g and any ; ~ > 0, there exist d;

~

d 2 N; d+

~

d 2 2N and

a pair of wavelet bases :

	

Z

= f 

Z

�

: � 2 r

Z

g;

~

	

~

Z

= f

~

 

~

Z

�

: � 2 r

Z

g; (23)

which are biorthogonal, satisfy complementary boundary conditions, are local and exact of

degree d (respectively

~

d).

From the direct and inverse estimates (see Theorem 3.2 of [15]) we obtain the next

equivalence.

Theorem 3.5 For 0 < � < ; 0 < ~� < ~, one has

 

X

�2r

Z

2

2� j�j

jhv;

~

 

~

Z

�

ij

2

!

1=2

�

�

kvk

H

�

Z

for 0 � � < ,

kvk

(H

�

Z

)

�

for �~ � � < 0,

where H

�

Z

is the Sobolev space on [0; 1] whose functions satisfy the boundary conditions

encoded by the set Z and (H

�

Z

)

�

is its dual.

The construction of the wavelet bases on [0; 1] with boundary conditions is made in

three steps. First of all, we recall the results of [11] concerning a multiresolution on the

interval without any boundary conditions. We therefore expose the strategy for symmetric

boundary conditions and �nally, with few adaptations, we treat asymmetric boundary

conditions (see [15]).
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We start to recall the construction of a biorthogonal wavelet basis on [0; 1] without

boundary conditions (see [11]).

As usual, we begin with a dual pair (�;

~

�) of re�nable functions, with respective masks

a

k

; ~a

k

, satisfying h�;

~

�(� � k)i

R

= �

0;k

; 8k 2 Z.

We take as � the usual B-spline of order d�1,

d

�, whose support is given by Supp

d

� =

[l

1

; l

2

] and is centered at

�(d)

2

, with �(d) := d mod 2. One can show that for all d;

~

d 2 N

such that

~

d � d and d +

~

d even there exists a function

d;

~

d

~

� such that (

d

�;

d;

~

d

~

�) is a dual

system. We write similarly

Supp

d;

~

d

~

� =: [

~

l

1

;

~

l

2

] = [l

1

�

~

d+ 1; l

2

+

~

d� 1]:

On the interval [0; 1], we have to construct a pair of generators �

0

j

;

~

�

0

j

of the spaces

S

j

([0; 1]),

~

S

j

([0; 1]), which are exact of orders d;

~

d.

These sets of functions are de�ned in the following way :

�

0

j

= �

L

j

[�

I

j

[ �

R

j

; (24)

~

�

0

j

=

~

�

L

j

[

~

�

I

j

[

~

�

R

j

; (25)

respectively for the left-, interior- and right-parts of the generators.

The sets �

I

j

;

~

�

I

j

are made of the functions �

j;k

;

~

�

j;k

, for k 2 �

I

j

;

~

�

I

j

. If we set

�

n;r

:=

Z

R

x

r

�(x� n)dx; ~�

n;r

:=

Z

R

x

r

~

�(x� n)dx; (26)

one can de�ne the following left-boundary functions :

�

L

j;l�d+r

:=

l�1

X

m=�l

2

+1

~�

m;r

�

j;m

j

[0;1]

; r = 0; : : : ; d� 1; (27)

~

�

L

j;

~

l�

~

d+r

:=

~

l�1

X

m=�

~

l

2

+1

�

m;r

~

�

j;m

j

[0;1]

; r = 0; : : : ;

~

d� 1: (28)

The right-end boundary functions are obtained by the following symmetry properties

�

R

j;2

j

�l+d��(d)�r

(1� x) = �

L

j;l�d+r

(x); r = 0; : : : ; d� 1; (29)

~

�

R

j;2

j

�

~

l+

~

d��(d)�r

(1� x) =

~

�

L

j;

~

l�

~

d+r

(x); r = 0; : : : ;

~

d� 1: (30)

We have to assume that j � j

0

if we do not want the boundary wavelets to interfere.

Therefore, if we pose

S

j

([0; 1]) := S(�

0

j

);

~

S

j

([0; 1]) := S(

~

�

0

j

); (31)

these spaces are nested and are exact of order d;

~

d.
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The last point concerns the biorthogonalization of the system (�

0

j

;

~

�

0

j

) which is allways

possible (see Theorem 4.1 of [15]).

We de�ne the sets

Z � f0; 1g;

~

Z := f0; 1g n Z: (32)

Z precises where are the Dirichlet boundary conditions on [0; 1]. In our concrete problem,

Z = f0g but we begin to suppose that Z = f0; 1g or Z = ;.

First of all, we want to construct a dual system of generators �

j;Z

;

~

�

j;

~

Z

for a set Z as

in (32) which are biorthogonal :

h�

j;Z

;

~

�

j;

~

Z

i

[0;1]

= I; (33)

and which satisfy, for s � d� 1 (resp. ~s �

~

d� 1) the following boundary conditions

d

r

dx

r

�

j;Z

(z) = 0; r < s; z 2 Z;

d

r

dx

r

~

�

j;

~

Z

(~z) = 0; r < ~s; ~z 2

~

Z: (34)

Let us remark that s = 1 for our concrete problem.

The obtention of such generators is made in two steps. First we construct collections

satisfying the boundary conditions (34). Then we will show how to biorthogonalize the

system.

For the interior generators, we take the usual splines, without any modi�cation :

�

I;Z

j;k

:= 2

j=2

m

�(2

j

� �k); 8k 2 �

I

j;Z

; (35)

~

�

I;

~

Z

j;k

:= 2

j=2

m; ~m

~

�(2

j

� �k); 8k 2

~

�

I

j;

~

Z

: (36)

In order to construct the generators �

L

;�

R

which satisfy the condition (34), we use

both integration and di�erentiation. We especially remark that integrating a function

raises the number of zero boundary conditions. Therefore, we adjust these integrations

on the left by corresponding di�erentiations on the dual system, in order to preserve a

certain stability which is necessary for the next step, that is the biorthogonalization of

the resulting system. The di�erent steps of the construction are summarized hereafter.

The technical proofs are omitted and can be found in [15].

Now we write the basis obtained when there is no boundary constraints. We suppose

that d +

~

d is even and we let a

0

; ~a

0

2 N with a

0

� d � s, ~a

0

�

~

d + s. The dual system is

therefore given by

�

(+0)

:=

n

�

L

j;a

0

�(d�s)+r

(d� s;

~

d+ s; a

0

) : r = 0; : : : ; d� s� 1

o

[

�

d�s

�

[j;a

0

]

; : : : ;

d�s

�

[j;a

0

+b

0

]

	

; (37)

~

�

(�0)

:=

n

~

�

L

j;~a

0

�(

~

d+s)+r

(d� s;

~

d+ s; ~a

0

) : r = 0; : : : ;

~

d+ s� 1

o

[

n

d�s;

~

d+s

~

�

[j;~a

0

]

; : : : ;

d�s;

~

d+s

~

�

[j;~a

0

+

~

b

0

]

o

; (38)
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where

a

0

� d+ s = ~a

0

�

~

d� s;

and we suppose that

a

0

+ b

0

= ~a

0

+

~

b

0

:

This system satis�es

det h�

(+0)

;

~

�

(�0)

i

[0;1]

6= 0: (39)

Integrating the primal system on the left and di�erentiation on the dual one s times

lead to the new system

�

(+s)

:=

n

�

L

j;l�s�d+r

(�jd;

~

d; l � s) : r = s; : : : ; d� 1

o

[

�

d

�

[j;l�s]

; : : : ;

d

�

[j;l�s+b

0

]

	

; (40)

~

�

(�s)

:=

n

~

�

L

j;

~

l�

~

d+r

(�jd;

~

d;

~

l) : r = 0; : : : ;

~

d� 1

o

[

n

d;

~

d

~

�

[j;

~

l]

; : : : ;

d�s+1;

~

d+s�1

~

�

[j;

~

l+

~

b

0

+s]

o

: (41)

The above sets allow to obtain the following Theorem (see Theorem 4.2 of [15] in the

case Z = f0; 1g; f0g). The other cases follow by symmetry arguments.

Theorem 3.6 For every Z � f0; 1g; s; ~s 2 N; s < d; ~s <

~

d and j � j

0

, the pairs

�

0

j;Z

:= �

L

j;Z

[ �

I

j;Z

[ �

R

j;Z

; (42)

~

�

0

j;

~

Z

:=

~

�

L

j;

~

Z

[

~

�

I

j;

~

Z

[

~

�

R

j;

~

Z

; (43)

de�ned hereabove satisfy (34) and can be biorthogonalized.

We know de�ne a multiresolution analysis corresponding to symmetric boundary con-

ditions, namely Z = f0; 1g or Z = ;.

For any integers d

0

;

~

d

0

; q; p; ~p such that d

0

+

~

d

0

is even and d

0

+ p =

~

d

0

+ ~p, we introduce

the notation

�

0

j

(d

0

;

~

d

0

; q; p) =

[

n

�

X

j

(d

0

;

~

d

0

; q; p) : X 2 fL; I; Rg

o

: (44)

Lemma 3.7 If we de�ne the ith integral of a function g on [0; 1] by

�

R

(i)

g

�

(x) :=

R

x

0

�

R

(i�1)

g

�

(t)dt when i 2 N and

�

R

(0)

g

�

(x) := g(x) and if we note @

i

x

S the set of the

ith order derivatives of the elements of S, one has

@

s

x

~

S

(�0)

j

=:

~

S

(�s)

j

= S(

~

�

0

j

(d;

~

d; 0;

~

l)); (45)

and

S(�

0

j

(d;

~

d; s; l � s)) = S

(+s)

j

; (46)

9



with

S

(+s)

j

=

(

w =

Z

(s)

v : v 2 S

(+0)

j

;

 

Z

(i)

v

!

(1) = 0; i = 1; : : : ; s

)

: (47)

Now that the construction of the spaces S(�

j;Z

); S(

~

�

j;

~

Z

) is established, we are able to

de�ne the biorthogonal wavelet bases. Again, we start to study the case of symmetric

boundary conditions.

For the case Z = ;, the biorthogonal basis is well-known and can be expressed by

(	

(+0)

j

)

T

= (�

(+0)

j+1

)

T

M

(+0)

j;1

; (

~

	

(�0)

j

)

T

= (

~

�

(�0)

j+1

)

T

~

M

(�0)

j;1

: (48)

The wavelets 	

(+0)

j

;

~

	

(�0)

j

are compactly supported, biorthogonal and the functions 	

(+0)

j

have

~

d+ s vanishing moments.

As for the generators, we introduce succesively

	

(+i)

j

:= 2

ij

 

Z

(i)

	

(+0)

j

!

� S

(+i)

j+1

; (49)

and

~

	

(�i)

j

= (�1)

i

2

�ij

d

i

dx

i

~

	

(�0)

j

�

~

S

(�i)

j+1

; (50)

where

~

S

(�i)

j

= @

i

x

~

S

(�0)

j

:

Therefore, one obtain the

Proposition 3.8 The collections 	

(+i)

j

;

~

	

(�i)

j

are biorthogonal bases with

S

(+i)

j+1

= S

(+i)

j

M

S(	

(+i)

j

);

~

S

(�i)

j+1

=

~

S

(�i)

j

M

S(

~

	

(�i)

j

); i = 0; : : : ; s: (51)

Concerning symmetric boundary conditions, if the generators are given by

�

j;f0;1g

= �

(+s)

j

;

~

�

j;;

=

~

�

(�s)

j

; (52)

�

j;;

= �

(�~s)

j

;

~

�

j;f0;1g

=

~

�

(+~s)

j

; (53)

we pose:

	

f0;1g

j

:= 	

(+s)

j

;

~

	

;

j

:=

~

	

(�s)

j

	

;

j

:= 	

(�s)

j

;

~

	

f0;1g

j

:=

~

	

(+s)

j

:

(54)

Remark 3.9 The stationary interior wavelets of the sets 	

(+s)

j

and 	

(�~s)

j

coincide.
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Therefore, for our concrete problem, we have Z = f0g and if we pose r

0

j

= fp; p +

1; : : : ; 2

j

� p� 1; 2

j

� pg, the biorthogonal wavelet basis is de�ned by

	

f0g

j;L

:= f 

f0;1g

j;k

: k = 1; : : : ; p� 1g; (55)

	

f0g

j;I

:= f 

;

j;k

: k 2 r

0

j

g; (56)

	

f0g

j;R

:= f 

;

j;k

: k = 2

j

� p+ 1; : : : ; 2

j

g; (57)

which will be briey denoted by f	

Z

j

g, and the dual system is given by

~

	

f1g

j;L

:= f

~

 

;

j;k

: k = 1; : : : ; p� 1g; (58)

~

	

f1g

j;I

:= f

~

 

f0;1g

j;k

: k 2 r

0

j

g; (59)

~

	

f1g

j;R

:= f

~

 

f0;1g

j;k

: k = 2

j

� p+ 1; : : : ; 2

j

g; (60)

denoted by f

~

	

~

Z

j

g.

Coming back to our problem, for each j � 0 and Z = f0g we pose

f	

T

j

g = f	

Z

2j

g

[

f	

Z

2j�1

g: (61)

We de�ne a sequence of spaces W

j

by V

j+1

= V

j

6?

L

W

j

, where

W

j

= Span

�

	

X

j;k

1

(x)	

T

j;k

2

(t)

	

k

1

2r

X

j

k

2

2r

T

j

(62)

not

=

Spanf�

j;K

(x; t)g

K2r

XT

; (63)

for j � j

0

in order to avoid the overlapping of the left and right end-point wavelets and

to ensure the presence of interior wavelets in [0; 1].

Now we can proove the following result :

Theorem 3.10 Let fN

k

g

k

be a basis of V

j

0

. If

u(x; t) =

k

0

X

k=0

c

k

N

k

(x; t) +

X

j�j

0

X

K2r

XT

c

j;K

�

j;K

(x; t)

belongs to

~

H

r;r=2

([0; 1]

2

) for r 2 [0; 5=2) (with d

X

� 2 if r < 3=2; d

X

� 3 if r 2 [3=2; 5=2)

and d

Z

� 2), then we have

kuk

2

~

H

r;r=2

([0;1]

2

)

�

k

0

X

k=0

jc

k

j

2

+

X

j;K

2

2rj

jc

j;K

j

2

: (64)

Proof : We recall that

~

H

r;r=2

([0; 1]

2

) = L

2

([0; 1];H

r

([0; 1])) \ L

2

([0; 1];

~

H

r=2

([0; 1])) := H

1

\H

2

:
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For r; p � 0 given, we introduce the following bases, respectively for the space part and

for the time part.

B

X

= f

d

X

'

j

0

;k

1

(x)g

k

1

[

8

>

>

<

>

>

:

[

j�j

0

;

k

1

2r

X

j

f	

X

j;k

1

(x)g

9

>

>

=

>

>

;

j;k

1

; (65)

B

T

= f

d

T

'

j

0

;k

2

(t)g

k

2

[

8

>

>

<

>

>

:

[

j�j

0

;

k

2

2r

T

j

f	

T

j;k

2

(t)g

9

>

>

=

>

>

;

j;k

2

; (66)

where the sets f	

X

g and f	

T

g are de�ned previously and characterize respectively

H

r

([0; 1]) and H

p

([0; 1]).

We omit in the following the indices d

X

; d

T

. A wavelet basis on

~

H

r;p

([0; 1]

2

) is de�ned

by tensor products, namely B = B

X


 B

T

:

B = f'

j

0

;k

1

(x):'

j

0

;k

2

(t)g

K

S

f'

j

0

;k

1

(x):	

T

j;k

2

(t)g

j;K

S

f	

X

j;k

1

(x):'

j

0

;k

2

(t)g

j;K

S

f	

X

j;k

1

(x):	

T

j;k

2

(t)g

j;K

;

with K = (k

1

; k

2

) for short.

Clearly, B is a Riesz basis of L

2

([0; 1]

2

). Moreover, we can show that it characterizes

~

H

r;p

([0; 1]

2

). A function u 2 L

2

([0; 1]

2

) can be written in this basis in the following form

: for j

0

> 0 �xed, if we note k

0

= 2

j

0

� 1, we write :

u(x; t) =

k

0

X

k

1

;k

2

=0

d

j

0

;k

1

;k

2

:'

j

0

;k

1

(x):'

j

0

;k

2

(t)

+

X

j�j

0

;

k

1

=0;:::;k

0

;

k

2

2r

T

j

e

j;k

1

;k

2

:'

j

0

;k

1

(x):	

T

j

0

;k

2

(t)

+

X

j�j

0

;

k

1

2r

X

j

;

k

2

=0;:::;k

0

~e

j;k

1

;k

2

:	

X

j;k

1

(x):'

j

0

;k

2

(t)

+

X

j�j

0

;

k

1

2r

X

j

;

k

2

2r

T

j

c

j;k

1

;k

2

:	

X

j;k

1

(x):	

T

j;k

2

(t);

which is noted shortly as :

u(x; t) =

X

i;j=0;1

u

ij

(x; t): (67)
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We retail the characterization of the space H

1

. We pose :

u(�; t) =

X

u

ij

(�; t); 8t 2 (0; 1):

Writing

u

11

(�; t) =

X

j�j

0

;

k

1

2r

X

j

c

j;k

1

(t):	

X

j;k

1

(�); (68)

with

c

j;k

1

(t) =

X

k

2

2r

T

j

c

j;k

1

;k

2

	

T

j;k

2

(t); for j � j

0

: (69)

Therefore, due to the properties of 	

T

, we get

ku

11

(�; t)k

2

H

r

([0;1])

�

X

j;k

1

2

2rj

jc

j;k

1

(t)j

2

;

and

ku

11

k

H

1

=

Z

1

0

ku

11

(�; t)k

2

H

r

([0;1])

dt

=

X

j;k

1

2

2rj

Z

1

0

jc

j;k

1

(t)j

2

dt

�

X

j;k

1

;k

2

2

2rj

jc

j;k

1

;k

2

j

2

:

By the same way, we show that :

ku

10

(�; t)k

2

H

r

�

X

j;k

1

2

2rj

j~e

j;k

1

(t)j

2

;

with

~e

j;k

1

(t) =

X

k

2

~e

j;k

1

;k

2

'

j

0

;k

2

(t) 2 V

j

0

;

and

k~e

j;k

1

(t)k

2

L

2

�

X

k

2

j~e

j;k

1

;k

2

j

2

:

Consequently

ku

10

k

2

H

1

�

X

j;k

1

;k

2

2

2rj

j~e

j;k

1

;k

2

j

2

:

For the �rst term we have

u

01

(�; t) =

X

j�j

0

;

k

1

=0;:::;k

0

e

j;k

1

(t)'

j

0

;k

1

(x)

=

k

0

X

k

1

=0

"

X

j�j

0

e

j;k

1

(t)

#

'

j

0

;k

1

(x);

13



with

e

j;k

1

(t) =

X

k

2

2r

T

j

e

j;k

1

;k

2

	

T

j;k

2

(t) 2 W

j

:

ku

01

k

2

H

1

�

X

j;k

1

j~e

j;k

1

(t)j

2

�

X

j;k

1

;k

2

j~e

j;k

1

;k

2

j

2

:

We can therefore show the next two equivalences :

kuk

2

H

1

�

X

k

1

;k

2

jd

j

0

;k

1

;k

2

j

2

+

X

j;k

1

;k

2

je

j;k

1

;k

2

j

2

+

X

j;k

1

;k

2

2

2rj

j~e

j;k

1

;k

2

j

2

+

X

j;k

1

;k

2

2

2rj

jc

j;k

1

;k

2

j

2

;

kuk

2

H

2

�

X

k

1

;k

2

jd

j

0

;k

1

;k

2

j

2

+

X

j;k

1

;k

2

2

4pj

je

j;k

1

;k

2

j

2

+

X

j;k

1

;k

2

j~e

j;k

1

;k

2

j

2

+

X

j;k

1

;k

2

2

4pj

jc

j;k

1

;k

2

j

2

:

In the following, we omit the indices of the wavelet coe�cients for the sake of brevity.

If u 2 H

1

\H

2

=

~

H

r;p

([0; 1]

2

), we write

kuk

2

r;p

def

=

kuk

2

H

1

+ kuk

2

H

2

� 2

�

X

jdj

2

�

+

�

X

jej

2

+

X

2

4pj

jej

2

�

+

�

X

2

2rj

j~ej

2

+

X

j~ej

2

�

+

�

X

(2

2rj

+ 2

4pj

)jcj

2

�

:

For the general case r; p 2 R, we obtain :

kuk

2

r;p

�

X

jdj

2

+

X

max

�

1; 2

4pj

�

jej

2

+

X

max

�

1; 2

2rj

�

j~ej

2

+

X

max

�

2

2rj

; 2

4pj

�

jcj

2

: (70)

The next particular case is interesting for our problems.

Suppose now that r = 2p. We get :

kuk

2

r;r=2

�

X

jdj

2

+

X

2

2rj

[jej

2

+ j~ej

2

+ jcj

2

]: (71)

�

4 Galerkin method

We begin to write the variational formulation of the problem : we want to �nd � 2 L

2

(�

T

)

solution of

a(�; v) =

��

1

2

I +D

�

�; v

�

�

T

= hSg

1

; vi

�

T

; 8v 2 L

2

(�

T

); (72)
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if we take the equation of the second kind, or

h(�; v) = hH�; vi

�

T

= h

�

1

2

I �D

0

�

g

1

; vi

�

T

; 8v 2

~

H

1=2;1=4

(�

T

); (73)

for the equation of the �rst kind.

The situation is not the same is these two cases. In (72), the bilinear form a is not

coercive on L

2

(�

T

). But we can overcome this di�culty by using the fact that the operator

�

1

2

I +D

�

is a compact perturbation of the identity and a result of [17]. The second case

(73) is easier to treat because the operator H is strongly coercive. Therefore, we begin to

study the second case.

We recall the properties of the hypersingular operator H (see [8, 16]).

Lemma 4.1 The operator H :

~

H

r;r=2

(�

T

) �!

~

H

r�1;(r�1)=2

(�

T

) is an isomorphism, for

all r �

1

2

.

Furthermore, H is strongly coercive, i.e.

(u;Hu)

�

T

& kuk

2

1

2

;

1

4

; 8u 2

~

H

1=2;1=4

(�

T

): (74)

The Galerkin approximation �

L

2 V

L

of the solution � of (9) is the unique solution of

(H�

L

; v

L

)

�

T

=

��

1

2

I �D

0

�

g

1

; v

L

�

�

T

; 8v

L

2 V

L

: (75)

We will note H

L

the corresponding sti�ness matrix in the basis f�

�

g.

Due to the coercivity on

~

H

1=2;1=4

(�

T

) and to the Theorem 3.10, we modify slightly

the basis (by a diagonal preconditioning) in order to obtain a well-conditioned sti�ness

matrix.

Corollary 4.2 We de�ne the following set

^

�

�

(x; t) = 2

�j�j=2

�

�

(x; t); (76)

as a new basis for

~

H

1=2;1=4

(�

T

) and we note

^

H

L

the sti�ness matrix in this new basis

f

~

�

�

g. We obtain therefore

Cond (

^

H

L

) . 1: (77)

A direct consequence of the C�ea's Lemma and Therorem 3.10 is the obtention of an

error estimate.

Theorem 4.3 Let r

0

2

�

1

2

;

5

2

�

and g

1

2

~

H

r

0

�1;

r

0

�1

2

(�

T

). Then the solution � of (9)

belongs to the space

~

H

r

0

;

r

0

2

(�

T

) and the error between � and its Galerkin approximation

�

L

is estimated by

k�� �

L

k

1

2

;

1

4

. 2

(

1

2

�r

0

)L

k�k

r

0

;

r

0

2

: (78)
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Now we study the equation of the second kind. The non-coercivity is overcomed by

the use of the following Theorem (see [3, 17, 22]).

Theorem 4.4 Let H be a separable Hilbert space with a norm denoted by k:k, let A be a

one-to-one continuous operator on H and let H

n

, n 2 N be a family of �nite-dimensional

subspaces of H. Denote by P

n

the orthogonal projection on H

n

and assume that

k(I � P

n

)wk ! 0; as n!1; 8w 2 H: (79)

If there exists a positive constant � and an integer such that

kP

n

Ax

n

k � �kx

n

k; 8x

n

2 H

n

; 8n > N; (80)

then for all f 2 H, the problem

Ay = f (81)

has a unique solution y 2 H. Moreover, for all n > N , there exists a unique solution

y

n

2 H

n

of the approximate problem

P

n

Ay

n

= P

n

f; (82)

and satisfying

ky � y

n

k � cky � P

n

yk: (83)

Here the assumption (80) is satis�ed thanks to the following result (see [3]) :

Lemma 4.5 If A =

I

2

�D is an isomorphism from H into itself with a compact operator

D, then A satis�es (80).

Proof : In fact, we take advantage of the compactness of D, which is shown in [8]. The

proof is therefore a direct consequence of the Lemma in [17]. �

The previous Theorem proves existence and uniqueness for the approximation problem:

�nd �

L

2 V

L

solution of

a(�

L

; v

L

) =

��

1

2

I +D

�

�

L

; v

L

�

�

T

= hSg

1

; v

L

i

�

T

; 8v

L

2 V

L

: (84)

The sti�ness matrix of this system will be denoted by A

L

. Consequently, the result

hereafter is a direct consequence of the Theorems 3.10 and 4.4 :

Theorem 4.6 Let � 2

~

H

r;r=2

(�

T

) be the solution of (8) with a datum g

1

2

~

H

r�1;

r�1

2

(�

T

),

r 2 [0; 5=2). Then its Galerkin approximation �

L

2 V

L

satis�es

k�� �

L

k

L

2

(�

T

)

. 2

�rL

kuk

r;r=2

: (85)

Moreover, the condition number of the sti�ness matrix of (84) is uniformly bounded.
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5 Compression of the sti�ness matrix

We try in this section to adapt the ideas developped by [13, 23] among others to the

case of the heat equation. One of the essential points is the decay property of the kernel.

To our knowledge, in the above mentioned works, only elliptic problems were considered,

involving logarithmic kernels or a power of distance function. Here the situation is quite

di�erent and the kernel is an exponential function. We give now a way to express correctly

this property.

We introduce the abbreviated notation

~

E(x; t) =

1

t

e

�x

2

4t

; (86)

and using the Leibniz rule, we have an expression of the successive derivatives of

~

E.

Lemma 5.1 For all �;  � 0, there exist some real coe�cients a

��

such that

@



@t



@

�

~

E

@x

�

=

�+2

X

�=0

a

��

x

�

t

�=2+�=2++1

e

�x

2

4t

: (87)

The second step consists of the following lemma.

Lemma 5.2 Let a

1

> 0; a

2

2 R and set b = a

2

�

a

1

2

. Then it holds

(x

2

+ t)

b

x

a

1

t

a

2

e

�x

2

4t

. 1; 8x; t > 0: (88)

Proof : Because t > 0, we have

(x

2

+ t)

b

x

a

1

t

a

2

=

�

x

2

t

+ 1

�

b

�

x

2

t

�

a

1

2

:

Using the fact that

(x+ 1)

�

x

�

e

�x

4

. 1; 8x > 0;

when � > 0, we obtain the result. �

We are now in a position to write the correct decay property of the kernel.

Lemma 5.3 For all �;  � 0, we have

�

�

�

�

�

@



@t



@

�

~

E

@x

�

�

�

�

�

�

.

1

(x

2

+ t)

�=2++1

; 8x; t > 0: (89)
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Proof : The identity (87) allows to write

�

�

�

�

�

@



@t



@

�

~

E

@x

�

�

�

�

�

�

.

�+2

X

�=0

x

�

t

�=2+�=2++1

e

�x

2

4t

:

We apply therefore the Lemma 5.2 with a

1

= � and a

2

= �=2 + �=2 +  + 1, for all

� = 0; : : : ; �+ 2 and get the result. �

We exploit this property to show the decay of the sti�ness matrix coe�cients. We

begin with the formulation of the second kind. We recall that we want to solve

a(�; v) =

��

1

2

I +D

�

�; v

�

�

T

= (Sg

1

; v)

�

T

; 8v 2 L

2

(�

T

):

Because the operator I is diagonal, we are going to compress only the operator D.

This suggests to introduce the following bilinear form

d(�; v) := hD�; vi

�

T

=

Z

��(0;T )

v(x; t)

�

Z

��(0;t)

�(y; �)@n

y

E(x� y; t� �)d�

y

d�

�

d�

x

dt:

We use the notation

D

�;�

0

= D

j;j

0

;k

1

;k

2

;k

0

1

;k

0

2

= d(	

X

j;k

1


 	

T

j;k

2

; 	

X

j

0

;k

0

1


	

T

j

0

;k

0

2

);

for the coe�cients of the matrix and we introduce the quantity

dist

�;�

0

= �

�




X

j;k

1

;


X

j

0

;k

0

1

�

2

+ �

�




T

j;k

2

;


T

j

0

;k

0

2

�

; (90)

where for two continuous functions �;  with a compact support on �, 


j;k

is the interior

of the support of �

j;k

and �(
;


0

) is the euclidian distance between 
 and 


0

.

After these necessary notations, we are able to formulate the decay property of the

coe�cients.

Proposition 5.4 For all the coe�cients of the sti�ness matrix, one has

jD

�;�

0

j � C

2

�b(j+j

0

)

(dist

�;�

0

)

b

; (91)

with b =

~

d

X

+ 2

~

d

T

+

3

2

.
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Proof : By Fubini's theorem, we have

D

�;�

0

=

Z

�

2

��

	

T

j

0

;k

0

2

(t)	

X

j

0

;k

0

1

(x)	

T

j;k

2

(�)	

X

j;k

1

(y)

� @

n

y

E(x� y; t� �)d�

x

d�

y

dtd�;

where � = f(t; �) 2 (0; T )

2

: � < tg.

The wavelets 	

X

and 	

T

have respectively

~

d

X

and

~

d

T

vanishing moments, which allows

to make integration by parts in the previous estimate. Indeed, there exist �

2j;

^

k

2

and �

2j�1;

~

k

2

such that

	

T

j;k

2

=

d

T

�

(

~

d

T

)

2j;

^

k

2

or

	

T

j;k

2

=

d

T

�

(

~

d

T

)

2j�1;

~

k

2

:

Similarly, we have

	

X

j;k

1

=

d

X

�

(

~

d

X

)

j;k

1

:

Furthermore, these functions satisfy

k�

j;k

k . 2

�(

~

d+

1

2

)j

: (92)

Consequently, we obtain

jD

�;�

0

j .

Z

[0;1]

2

��

�

�

�

�

�

@

2(

~

d

X

+

~

d

T

)

k(x; y; t; �)

@x

~

d

X

@y

~

d

X

@t

~

d

T

@�

~

d

T

�

�

�

�

�

�

�

�

�

�

T

2j

0

;

~

k

0

2

(t)�

X

j

0

;k

0

1

(x)�

T

2j;k

2

(�)�

X

j;k

1

(y)

�

�

�

dxdydtd�;

where k is, after a parametrisation, a �rst order partial derivative (by y) of E.

We get the conclusion by using the Lemma 5.3 with � = 2

~

d

X

+ 1 and  = 2

~

d

T

. �

Now for j; j

0

2 fj

0

; : : : ; Lg, we can de�ne the compressed subblocks

~

D

j;j

0

=

�

~

D

�;�

0

�

k

1

2r

X

j

; k

2

2r

T

j

k

0

1

2r

X

j

0

; k

0

2

2r

T

j

0

(93)

where we pose

~

D

�;�

0

=

�

0 if dist

�;�

0

� �

j;j

0

,

D

�;�

0

else.

(94)

We associate with D

L

(resp.

~

D

L

, the global compressed matrix) the operator D

L

(resp.

~

D

L

) from V

L

into its dual.

At this stage, we are in a position to estimate the number of non-zero elementsN (

~

D

j;j

0

)

of the subblock matrix

~

D

j;j

0

.
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Proposition 5.5 If

~

D

j;j

0

is de�ned by (94) with a compression parameter �

j;j

0

> 0, then

N (

~

D

j;j

0

) . 2

3(j+j

0

)

min

n

2

�3j

+ 2

�3j

0

+ 2

�j�2j

0

+ 2

�j

0

�2j

(95)

+ �

1=2

j;j

0

(2

�2j

+ 2

�2j

0

) + �

j;j

0

(2

�j

+ 2

�j

0

) + �

3=2

j;j

0

; 1

o

: (96)

Proof : The proof is adapted from the one-dimensional case (see for instance Lemma

5.2 of [2, 21]). We begin by �xing a wavelet �

�

and we estimate the number of wavelets

�

�

0

satisfying dist

�;�

0

< �

j;j

0

. To do this, we separate the problem into two parts, because

dist

�;�

0

< �

j;j

0

implies that

�(


X

j;k

1

;


X

j

0

;k

0

1

) < �

1=2

j;j

0

and

�(


T

j;k

2

;


T

j

0

;k

0

2

) < �

j;j

0

:

If we denote by Cardfk

0

1

g and Cardfk

0

2

g the respective numbers of wavelets such that

the previous inequalities hold, we obtain (see [2, 21])

Cardfk

0

1

g . 1 +

2

�j

+ �

1=2

j;j

0

2

�j

0

; Cardfk

0

2

g . 1 +

2

�2j

+ �

j;j

0

2

�2j

0

:

Because N (

~

D

j;j

0

) �

P

k

0

1

;k

0

2

Cardfk

0

1

gCardfk

0

2

g, we conclude that

N (

~

D

j;j

0

) . 2

3j

 

1 +

2

�j

+ �

1=2

j;j

0

2

�j

0

!

�

1 +

2

�2j

+ �

j;j

0

2

�2j

0

�

:

�

We now estimate the di�erence D

j;j

0

�

~

D

j;j

0

.

Proposition 5.6 Let

~

D

j;j

0

be de�ned by (94) with �

j;j

0

> 0. Therefore, one has

kD

j;j

0

�

~

D

j;j

0

k

1

. 2

�bj

2

�(b�3)j

0

�

�b

j;j

0

maxf�

3=2

j;j

0

; 2

�3j

; 2

�3j

0

g; (97)

with b =

~

d

X

+ 2

~

d

T

+

3

2

.

Proof : We start to write the de�nition of the in�nite norm thanks to the estimate (91):

kD

j;j

0

�

~

D

j;j

0

k

1

. max

k

1

2r

X

j

k

2

2r

T

j

X

k

0

1

2r

X

j

0

X

k

0

2

2r

T

j

0

:

dist

�;�

0

��

j;j

0

2

�b(j+j

0

)

(dist

�;�

0

)

�b

:

We estimate directly the terms in the sum corresponding to wavelets �

�

0

whose support

is closest to the support of �

�

. Their number is bounded by maxf2

3j

0

(2

�j

+ �

1=2

j;j

0

)(2

�2j

+
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�

j;j

0

); 1g and if we denote by K

far

the remainding terms, we obtain

kD

j;j

0

�

~

D

j;j

0

k

1

. 2

�b(j+j

0

)

�

�b

j;j

0

maxf2

3j

0

(2

�j

+ �

1=2

j;j

0

)(2

�2j

+ �

j;j

0

); 1g

+ 2

�b(j+j

0

)

2

3j

0

max

k

1

2r

X

j

k

2

2r

T

j

X

(k

0

1

;k

0

2

)2K

far

(dist

�;�

0

)

�b

Z




�

0

d�(M)

. 2

�b(j+j

0

)

�

�b

j;j

0

maxf2

3j

0

(2

�j

+ �

1=2

j;j

0

)(2

�2j

+ �

j;j

0

); 1g

+ 2

�b(j+j

0

)

2

3j

0

max

k

1

2r

X

j

k

2

2r

T

j

Z

x

2

+t>�

j;j

0

fx

2

+ tg

�b

dxdt;

and this last integral is lower than

�

3=2�b

j;j

0

Z

x

02

+t

0

>1

fx

02

+ t

0

g

�b

dx

0

dt

0

;

by the change of variables x = �

1=2

j;j

0

x

0

and t = �

j;j

0

t

0

. We remark that this last integral is

convergent because b > 3=2. �

The next result gives an estimate for the consistancy part of the error.

Theorem 5.7 Let r; ~r 2 [0;

5

2

) with f

~

d

X

;

~

d

T

g 2 f2; 3g. Assume that the parameters �

j;j

0

satisfy

�

j;j

0

� a �maxf2

�2j

; 2

�2j

0

; 2

�(L�j)

2

~�(L�j

0

)

2

�2L

g; (98)

for �; ~�; a > 0 such that

� >

r + b + �

b� 3=2

; ~� >

~r + b� 3 + �

b� 3=2

; (99)

for some � > 0.

Then for any �

L

; ~�

L

2 V

L

, we have

�

�

�

D

(D

L

�

~

D

L

)�

L

; ~�

L

E

�

�

�

. a

3=2�b

2

�L(r+~r)

k�

L

k

r;r=2

k~�

L

k

~r;~r=2

; (100)

with b =

~

d

X

+ 2

~

d

T

+

3

2

.

Proof : By Theorem 3.10 and the de�nition of

~

D

L

, we have

�

�

�

D

(D

L

�

~

D

L

)�

L

; ~�

L

E

�

�

�

. 2

�L(r+~r)

kE

L

k

2

k�

L

k

r;r=2

k~�

L

k

~r;~r=2

;

where we de�ne the matrix E

L

by

E

L

= 2

(L�j)r

2

(L�j

0

)~r

�

D

�;�

0

�

~

D

�;�

0

�

�;�

0

:
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We estimate kE

L

k

2

by the Schur lemma (see [18]) with the sequence 

j;k

1

;k

2

= 2

��j

.

X

j

0

;k

0

1

;k

0

2

jE

L;�;�

0

j

j

0

;k

0

1

;k

0

2

. a

3=2�b



j;k

1

;k

2

2

(L�j)[r+(3=2�b)(���

1

)]

�

L�1

X

j

0

=j

0

2

(L�j

0

)[~r+(3=2�b)(~���

0

1

)]

;

for two parameters �

1

; �

0

1

satisfying �

1

+ �

0

1

= 2, �

1

(b � 3=2) = b � � and �

0

1

(b � 3=2) =

b� 3 + � .

Then we have

X

j

0

;k

0

1

;k

0

2

jE

L;�;�

0

j

j

0

;k

0

1

;k

0

2

. a

3=2�b



j;k

1

;k

2

;

if �; ~� satisfy

� >

r + b� �

b� 3=2

; ~� >

~r + b� 3 + �

b� 3=2

:

We similarly show that

X

j;k

1

;k

2

jE

L;�;�

0

j

j;k

1

;k

2

. a

3=2�b



j

0

;k

0

1

;k

0

2

;

for

� >

r + b+ �

b� 3=2

; ~� >

~r + b� 3� �

b� 3=2

:

�

Lemma 5.8 Assume that �; ~� < 2 for all f

~

d

X

;

~

d

T

g 2 f2; 3g. Suppose that the parameters

�

j;j

0

satisfy

�

j;j

0

= a �maxf2

�2j

; 2

�2j

0

; 2

�(L�j)

2

~�(L�j

0

)

2

�2L

g: (101)

Then the number of non-zero elements of

~

D

L

is of order N

L

logN

L

, when N

L

= 2

3L

is the

size of the matrix.

Proof : We distinguish the case �

j;j

0

= a � maxf2

�2j

; 2

�2j

0

g from the case �

j;j

0

=

a2

�(L�j)

2

~�(L�j

0

)

2

�2L

and one obtain the result for �; ~� < 2. �

Remark 5.9 We can also make a "second compression" between wavelets at di�erent

levels j and j

0

, such that if j

0

< j for instance, the support of the wavelet at the �nest

grid j is far from the singular support of the wavelet at the coarse grid j

0

(see [23]). To

this end, we introduce the following notations :

we write




S;X

j;k

:= sing supp 	

X

j;k

; (102)
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as the singular support of the wavelet 	

X

j;k

. By the same way, we de�ne 


S;T

j;k

for the

wavelet 	

T

j;k

. We �nally introduce the "singular pseudo-distance"

dist

S

�;�

0

= �

�




S;X

j;k

1

;


S;X

j

0

;k

0

1

�

2

+ �

�




S;T

j;k

2

;


S;T

j

0

;k

0

2

�

: (103)

Therefore, if j

0

< j and dist

�;�

0

. 2

�j

0

, we have the next estimate

jD

�;�

0

j � C

2

�bj

2

j

0

(dist

S

�;�

0

)

b�2

2

; (104)

with b =

~

d

X

+ 2

~

d

T

+

3

2

.

See [23] for further details.

6 Convergence

The compressed Galerkin scheme is de�ned by

~

A

L

~

~u

L

= b. We recall a result corresponding

to the �rst Strang lemma (see [5]) because here we do not have coercivity.

Theorem 6.1 Under the assumption of the Theorem 4.4, assume that there exists a

sequence of operators A

n

from H

n

to H

n

such that A

n

is injective. Then the error between

the exact solution y 2 H of Ay = f and the approximated one z

n

2 H

n

of

A

n

z

n

= P

n

f;

is estimated as follows :

ky � y

n

k � Cky � P

n

yk+ kP

n

Az

n

� A

n

z

n

k:

It remains to check that the compressed scheme is invertible.

Lemma 6.2 Assume that (98) and (99) are satis�ed, for all fd

X

; d

T

g 2 f2; 3g with

r = ~r = 0. Then there exists a

?

> 0 (independent of L) such that for all a � a

?

, the

operator

~

D

L

is injective.

Proof : By Theorem 5.7 and assumption (80) satis�ed for L large enough, we get the

desired injectivity of

~

D

L

with the help of the Neumann's series. �

Corollary 6.3 Under the assumptions of the previous Lemma, for all a � a

?

,

Cond (

~

D

L

) . 1:

Finally,
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Theorem 6.4 Let the assumptions of the Theorem 4.6 be satis�ed. Assume that (99)

holds, for all fd

X

; d

T

g 2 f2; 3g; i = 1; 2, r 2 [0; 5=2) and ~r = 0. Assume that the

compression parameters satisfy (98). Then there exists a

?

> 0 (independent of L) such

that for all a � a

?

, we may write

k�� ~�

L

k

L

2

(�

T

)

. 2

�rL

k�k

~

H

r;r=2

(�

T

)

: (105)

Proof : By Theorem 6.1, we get

k�� ~�

L

k

L

2

(�

T

)

� C

�

k��Q

L

�k

L

2

(�

T

)

+ kP

L

D

L

~�

L

�

~

D

L

~�

L

k

L

2

(�

T

)

�

:

The �rst term on the right hand side is estimated by Theorem 4.6 while the second

one is estimated by Theorem 5.7. �

7 Results for the �rst kind formulation

The results of the two previous sections can be easily adapted to the �rst kind formulation

of the Neumann problem. The di�erence is coming from the use of the hypersingular

operatorH instead of the double-layer potentialD. It involves one more spatial derivative.

Moreover, the strong-ellipticity of H on

~

H

1=2;1=4

(�

T

) leads to a change of the basis, as

explained in section 4. We sum up hereafter the main results, the sketches of the prooves

are the same as in the two previous sections.

We recall the variational formulation of the �rst kind (73).

Find � 2 L

2

(�

T

) such that

h(�; v) = hH�; vi

�

T

= h

�

1

2

I �D

0

�

g

1

; vi

�

T

; 8v 2

~

H

1=2;1=4

(�

T

);

for the equation of the �rst kind.

The decay property of the coe�cients reads as follow.

Proposition 7.1 For all the coe�cients of the sti�ness matrix, one has

jH

�;�

0

j .

2

�b

H

(j+j

0

)

(dist

�;�

0

)

b

H

; (106)

with b

H

=

~

d

X

+ 2

~

d

T

+ 2.

Proof : By Fubini's theorem, we have

jH

�;�

0

j . 2

�

j+j

0

2

Z

�

�

�

�

�

@

2(

~

d

X

+

~

d

T

)

k(x; y; t; �)

@x

~

d

X

@y

~

d

X

@t

~

d

T

@�

~

d

T

�

�

�

�

�

�

�

�

�

�

T

2j

0

;k

0

2

(t)�

X

j

0

;k

0

1

(x)�

T

2j;k

2

(�)�

X

j;k

1

(y)

�

�

�

dxdydtd�;
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where k is, after a parametrisation, a second order partial derivative of E. The conclusion

follows by using the Lemma 5.3 and the estimate (92). �

Remark 7.2 The di�erence between the second kind and the �rst kind integral formula-

tions is only visible on the barameter b. Here the new parameter b

H

is simply related to

the parameter b by

b

H

=

~

d

X

+ 2

~

d

T

+ 2 = b+

1

2

:

A consequence is that the Propositions 5.5 and 5.6 are still valid, replacing the parameter

b by the new parameter b

H

.

This property allows to de�ne a compress sti�ness matrix

~

H

L

from the initial Galerkin

one H

L

and we have the following estimate.

Theorem 7.3 Let r; ~r 2 [0;

5

2

) and fd

X

; d

T

g 2 f2; 3g: Assume that the truncation param-

eter �

j;j

0

satis�es

�

j;j

0

� a �maxf2

�2j

; 2

�2j

0

; 2

�(L�j)

2

~�(L�j

0

)

2

�2L

g; (107)

for some �; ~�; a > 0 such that

� >

r + b

H

+ �

b

H

� 2

; ~� >

~r + b

H

� 4 + �

b

H

� 2

; (108)

for some � > 0.

Then for any �

L

; ~�

L

2 V

L

, we have

�

�

�

D

(H

L

�

~

H

L

)�

L

; ~�

L

E

�

�

�

. a

3=2�b

H

2

�L(r+~r�1)

k�

L

k

r;r=2

k~�

L

k

~r;~r=2

; (109)

with b

H

=

~

d

X

+ 2

~

d

T

+ 2.

Theorem 7.4 Let the assumptions of the Theorem 4.3 be satis�ed. Assume that (107)

and (108) hold, for all fd

X

; d

T

g 2 f2; 3g and for r 2 (1=2; 5=2) and ~r =

1

2

. Then there

exists a

?

> 0 (independent of L) such that for all a � a

?

, there exists a unique solution

~�

L

2 V

L

of

�

~

H

L

~�

L

; v

L

�

�

T

=

��

1

2

I �D

0

�

g

1

; v

L

�

�

T

; 8v

L

2 V

L

; (110)

and the next error estimate holds :

k�� ~�

L

k

1

2

;

1

4

. 2

�(r

0

�

1

2

)L

k�k

r

0

;

r

0

2

: (111)

Proof : We simply write the �rst Strang Lemma and use Theorems 4.3 and 7.3 with

~r =

1

2

. �
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8 The Dirichlet problem

The Dirichlet problem is the following one

8

<

:

��� + @

t

� = 0 in Q

T

= 
� (0; T );

�

j�

T

= g

0

on �

T

= �� (0; T );

�(x; 0) = 0 8x 2 
:

(112)

The problem (112) admits the direct representation

� = V � �Wg

0

; (113)

where � is the solution of the following equation of the �rst kind :

S� =

�

1

2

I +D

�

g

0

; (114)

or the "adjoint" equation :

�

1

2

I �D

0

�

� = Hg

0

; (115)

with

� = @

n

�

�

2

~

H

�1=2;�1=4

(�

T

): (116)

The single-layer operator S is de�ned by (see [8, 16]) :

(S�)(x; t) =

Z

t

0

Z

�

�(y; �)E(x� y; t� �)d�

y

d�; (117)

for (x; t) 2 �

T

and has the following properties (see [8, 16]) :

Lemma 8.1 The operator S :

~

H

r;r=2

(�

T

) �!

~

H

r+1;(r+1)=2

(�

T

) is an isomorphism, for

all r � �

1

2

.

Furthermore, S is strongly coercive, i.e.

(u; Su)

�

T

& kuk

2

�

1

2

;�

1

4

; 8u 2

~

H

�1=2;�1=4

(�

T

): (118)

The Galerkin method is de�ned by : �nd �

L

2 V

L

solution of

(S�

L

; v

L

)

�

T

=

�

(

1

2

I +D)g

0

; v

L

�

�

T

; 8v

L

2 V

L

: (119)

Again, we make use of the Theorem 3.10 and modify slightly the basis in order to

obtain a good condition number.

Corollary 8.2 Take the functions

^

�

�

(x; t) = 2

j�j=2

�

�

(x; t); (120)

as a new basis for

~

H

�1=2;�1=4

(�

T

).

Then the condition number of the sti�ness matrix is uniformly bounded.
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The strong coercivity of the operator S allows to apply the C�ea's Lemma, combined

with the Theorem of characterization 3.10 to obtain the following error estimate.

Theorem 8.3 Let r

0

2 (�

1

2

;

3

2

] and g

0

2

~

H

r

0

+1;(r

0

+1)=2

(�

T

). Then the solution of (114)

satis�es � 2

~

H

r

0

;

r

0

2

(�

T

) and

k� � �

L

k

�

1

2

;�

1

4

. 2

�(r

0

+

1

2

)L

k�k

r

0

;

r

0

2

:

We briey give the results of the compression procedure.

The weak formulation of the problem is de�ned by

s(�; v) = hS�; vi =

�

(

1

2

I +D)g

0

; v

�

�

T

; 8v 2

~

H

�1=2;�1=4

(�

T

): (121)

Then if we note

S

�;�

0

= s(

^

�

�

;

^

�

�

0

); (122)

one obtains

jS

�;�

0

j .

2

�b

S

(j+j

0

)

(dist

�;�

0

)

b

S

; (123)

with b

S

=

~

d

X

+ 2

~

d

T

+ 1.

We are now able to estimate the di�erence between the initial Galerkin scheme and

the compressed one.

Theorem 8.4 Let r; ~r 2 (�

1

2

;

3

2

]. Assume that the truncation parameter �

j;j

0

satis�es

(107) for some �; ~�; a > 0 such that

� >

r + b

S

+ �

b

S

� 1

; (124)

~� >

~r + b

S

� 2 + �

b

S

� 1

; (125)

for some � > 0. Then for any �

L

; ~�

L

2 V

L

, we have

�

�

�

D

(S

L

�

~

S

L

)�

L

; ~�

L

E

�

�

�

. a

3=2�b

S

2

�L(r+~r+1)

k�

L

k

r;r=2

k~�

L

k

~r;~r=2

; (126)

with b

S

=

~

d

X

+ 2

~

d

T

+ 1.

Moreover, the compressed matrix

~

S

L

has O(N

L

) non-zero elements after the second

compression and its condition number is uniformly bounded.

Finally, we obtain the following error between the exact solution � and the approxi-

mated one of the compressed scheme.

27



Theorem 8.5 Under the same assumptions as in Theorem 8.3, assume that (124), (125)

and (107) are satis�ed for r

0

2 (�

1

2

;

3

2

) and ~r = �

1

2

. Then there exists a

?

> 0 such that

for all a > a

?

, there exists a unique solution ~�

L

2 V

L

of

(

~

S

L

~�

L

; v

L

)

�

T

=

�

(

1

2

I +D)g

0

; v

L

�

�

T

; 8v

L

2 V

L

;

and it holds

k� � ~�

L

k

�

1

2

;�

1

4

. 2

�(r

0

+

1

2

)L

k�k

r

0

;

r

0

2

: (127)
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