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Abstrat

We investigate various aspets of the integrability of the vertex models assoiated

to the D

2

n

aÆne Lie algebra with open boundaries. We �rst study the solutions of the

orresponding reetion equation ompatible with the minimal symmetry of this system.

We �nd three lasses of general solutions, one diagonal solution and two non-diagonal

families with a free parameter. Next we perform the Bethe ansatz analysis for some of

the assoiated open D

2

2

spin hains and we identify the boundary having quantum group

invariane. We also disuss a new D

2

2

R-matrix.
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1 Introdution

Muh work has been done in integrable lattie statistial mehanis models with open boundary

onditions, sine Sklyanin [1℄ generalized the quantum inverse sattering method to takle the

boundary problem. The bulk Boltzmann weights of an exatly solvable lattie system are

usually the non-null matrix elements of a R-matrix R(�) whih satis�es the Yang-Baxter

equation. The integrability at boundary, for a given bulk theory, is governed by the reetion

equation, whih reads

R

12

(�� �)

1

K

�

(�)R

21

(�+ �)

2

K

�

(�) =

2

K

�

(�)R

12

(� + �)

1

K

�

(�)R

21

(� � �) (1)

where the matrix K

�

(�) desribes the reetion at one of the ends of an open hain. Similar

equation should also hold for the reetion K

+

(�) at the opposite boundary. However, for

several relevant lattie models K

+

(�) an be diretly obtained from K

�

(�). For example, this

is the ase of models whose R(�) matrix satis�es extra properties suh as unitarity, P and T

invarianes and rossing symmetry [1, 2℄.

Therefore, the �rst step toward onstruting integrable models with open boundaries is

to searh for solutions of the reetion equation. To date, solutions of this equation have

been found for a number of lattie models ranging from vertex systems based on Lie algebras

[3, 4, 6, 5℄ to solid-on-solid models and their restrition [7℄. Classi�ation of suh solutions for

partiular systems [8℄ as well as extensions to inlude supersymmetri models [9℄ an also be

found in the literature.

In spite of all these works, there is an interesting vertex model based on the non-exeptional

D

2

n

Lie algebra for whih little is known about the solution of the orresponding reetion

equation. This is probably related to the fat that the D

2

n

R-matrix does not ommute for

di�erent values of the rapidity [10℄, onsequently the trivial diagonal solution K

�

(�) = I does

not hold for this system [3℄. The purpose of this paper is to bridge this gap, by presenting

what we hope to be the minimal solution of the reetion equation for D

2

n

vertex models. This

result o�ers us the possibility to understand a relevant open problem whih is the integrability

of the D

2

n

vertex model with quantum algebra symmetry. In fat, this symmetry has been
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found for all vertex models based on non-exeptional Lie algebras [3℄ exept for the D

2

n

model.

It turns out that, by arring out a Bethe ansatz analysis, we are able to identify this symmetry

for the simplest D

2

2

model and onjeture it for arbitrary values of n.

We have organized this paper as follows. We start next setion by onsidering the reetion

equation for the D

2

2

vertex model. We �nd one diagonal solution without free parameters and

two non-diagonal families whih depend on a free parameter. We also derive the orresponding

integrable one-dimensional open spin hains. In setion 3 we present the Bethe ansatz solutions

of the open D

2

2

spin hain assoiated to the diagonal K-matrix and to a speial manifold of

the �rst non-diagonal family. This allows us to identify the quantum group symmetry for the

D

2

2

model. In setion 4 we generalize the K-matries results of setion 2 for arbitrary values

of n > 2. Setion 5 is reserved for our onlusions as well as a disussion on possible new D

2

n

R-matries. In Appendix A we ollet some useful relations and Appendix B ontains a new

D

2

2

R-matrix as well as its boundary behaviour.

2 The D

2

2

K-matries

The D

2

2

vertex model has four independent degrees of freedom per bond and its Boltzmann

weights preserve only one U(1) symmetry out of two possible ones. Here we are interested in

looking at solutions of the reetion equation that ommute with this symmetry. We �nd that

the most general K-matrix having this property is

K

�

(�) =

0

B

B

B

B

B

B

B

�

Y

1

(�) 0 0 0

0 Y

2

(�) Y

5

(�) 0

0 Y

6

(�) Y

3

(�) 0

0 0 0 Y

4

(�)

1

C

C

C

C

C

C

C

A

(2)

Our next step is to substitute this ansatz in equation (1) and look for relations that on-

straint the unknown elements Y

j

(�); j = 1; : : : ; 6. Although we have many funtional equations,

a few of them are atually independent, and the most suitable ones have been olleted in Ap-

pendix A. The basi idea is to try to solve suh equations algebraially, whih hopefully will
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produe a general ansatz for funtions Y

j

(�) ontaining several arbitrary parameters. The

general strategy we use is to separate these equations in terms of ratio of funtions depending

either on � or on �. From the relations (A.5-A.7) one easly onludes that the simplest possible

solution is to take Y

5

(�) = Y

6

(�) = 0. This is the diagonal solution, and by employing the

\separation variable method" desribed above for the relations (A.5-A.7) we are able to �x the

following ratios

Y

2

(�)

Y

1

(�)

=

e

�

� �

1

e

��

� �

1

;

Y

3

(�)

Y

1

(�)

=

e

�

� �

2

e

��

� �

2

;

Y

4

(�)

Y

3

(�)

=

e

�

� �

3

e

��

� �

3

(3)

where �

j

; j = 1; 2; 3 are arbitrary onstants.

These relations enable us to write an ansatz for three unknown funtions in terms of a

normalizing fator, say Y

1

(�). Substituting the relations (3) bak to the reetion equation

(1), we onlude that all the parameters �

j

are �xed by

�

1

= ��

2

= �1=�

3

=

I

p

q

(4)

where q is the deformation parameter of the D

2

2

R-matrix [10℄. This leads us to our �rst

solutions with no free parameter,

Y

(1)

1

(�) = 1; Y

(1)

2

(�) =

e

�

�

I

p

q

e

��

�

I

p

q

; Y

(1)

3

(�) =

e

�

+

I

p

q

e

��

+

I

p

q

; Y

(1)

4

(�) =

e

�

+

I

p

q

e

��

+

I

p

q

e

�

� I

p

q

e

��

� I

p

q

(5)

Next we turn our searh for non-diagonal solutions now with both Y

5

(�) and Y

6

(�) non

null. From the equations (A.8-A.11), we notie that it is possible to solve Y

2

(�); Y

3

(�) and

Y

6

(�) in terms of Y

5

(�). At this point we should keep in mind that we are looking for regular

K-matries, i.e. K

�

(0) � identity. After some simpli�ations, we �nd the following general

solutions

�

1

(1 + e

2�

)[Y

5

(�) + Y

6

(�)℄ = �

2

e

�

[Y

5

(�)� Y

6

(�)℄ (6)

(e

2�

� 1)[Y

2

(�) + Y

3

(�)℄ = �

3

e

�

[Y

6

(�) � Y

5

(�)℄ (7)

Y

2

(�) � Y

3

(�) = �

4

[Y

5

(�)� Y

6

(�)℄ (8)
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where �

j

are four arbitrary parameters. These are linear equations whih an be easily solved

for the ratios Y

2

(�)=Y

5

(�); Y

3

(�)=Y

5

(�) and Y

6

(�)=Y

5

(�). Taking this into aount as well as

equations (A.5) and (A.7), we end up with the following ansatz for funtions Y

j

(�)

Y

1

(�) = (�

5

e

2�

+ �

6

e

�

+ �

7

)=e

�

; Y

2

(�) = (1 + e

2�

)

h

�

4

(e

2�

� 1)� �

3

e

�

i

(9)

Y

3

(�) = (1 + e

2�

)

h

��

4

(e

2�

� 1)� �

3

e

�

i

; Y

4

(�) = (�

8

e

2�

+ �

9

e

�

+ �

10

)e

�

(10)

Y

5

(�) = (e

2�

� 1)

h

�

2

e

�

+ �

1

(1 + e

2�

)

i

; Y

6

(�) = (e

2�

� 1)

h

�

2

e

�

� �

1

(1 + e

2�

)

i

(11)

having altogether ten free parameters. Substituting this ansatz bak to the reetion equation

and after involving algebrai manipulations, we �nd that nine parameters are in fat �xed,

leading us to two lasses of non-diagonal solution with a free parameter. The �rst lass is

given by

Y

(2)

1

(�; �

�

) = (e

2�

+ q)(�

2

�

qe

2�

� 1)e

��

; Y

(2)

4

(�; �

�

) = (e

2�

+ q)(�

2

�

q � e

2�

)e

�

(12)

Y

(2)

2

(�; �

�

) =

(1 + e

2�

)

2

h

2(e

2�

� 1)�

�

q � e

�

(1 + q)(1� �

2

�

q)

i

(13)

Y

(2)

3

(�; �

�

) =

(1 + e

2�

)

2

h

�2(e

2�

� 1)�

�

q � e

�

(1 + q)(1� �

2

�

q)

i

(14)

Y

(2)

5

(�; �

�

) = Y

(2)

6

(�; �

�

) =

(e

2�

� 1)

2

(1� q)(�

2

�

q + 1)e

�

(15)

while the seond family is

Y

(3)

1

(�; �

�

) = (e

2�

� q)(�

�

e

2�

� 1)e

��

; Y

(3)

4

(�; �

�

) = (e

2�

� q)(�

�

� e

2�

)e

�

(16)

Y

(3)

2

(�; �

�

) = Y

(3)

3

(�; �

�

) =

(1 + e

2�

)

2

(1� q)(�

�

� 1)e

�

(17)

Y

(3)

5

(�; �

�

) =

(e

2�

� 1)

2

�

2(e

2�

+ 1)

q

�

�

q + (1 + q)(1 + �

�

)e

�

�

(18)

Y

(3)

6

(�; �

�

) =

(e

2�

� 1)

2

�

�2(e

2�

+ 1)

q

�

�

q + (1 + q)(1 + �

�

)e

�

�

(19)

where �

�

is an arbitrary parameter.
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Sine the D

2

2

R-matrix is PT invariant and rossing symmetri, the K

+

(�) matries at the

opposite boundary are easily derived from the above solutions [2, 3℄. More preisely, we have

K

+

(�; �

+

) = K

t

�

(ln[q℄� �; �

+

)M (20)

where M is a matrix related to the rossing matrix V by M = V

t

V [3℄. From the results of

Appendix A, we have that for the D

2

2

model M is given by

M = diag(q; 1; 1; q

�1

) (21)

Having found the K

�

(�) matries, one an onstrut the orresponding ommuting transfer

matrix � (�). Following Sklyanin [1℄, we have

t

(l;m)

(�) = Tr

a

"

a

K

(m)

+

(�)T (�)

a

K

(l)

�

(�)T

�1

(��)

#

(22)

where T (�) = R

aL

(�) � � �R

a1

(�) is the monodromy matrix of the assoiated losed hain with L

sites. This means that the three families of K

�

(�) matries we found will produe nine possible

types of open boundary onditions. The orresponding Hamiltonian of the spin hains with

open boundaries are obtained by expanding the transfer matrix t

(l;m)

(�) in powers of �. When

Tr[K

(m)

+

(0)℄ is non-null, the Hamiltonian H

(l;m)

is proportional to the �rst-order expansion [1℄

H

(l;m)

=

L�1

X

k=1

H

k;k+1

+

1

2�

d

a

K

(l)

�

(�)

d�

j

�=0

+

Tr

a

"

a

K

(m)

�

(0)H

La

#

Tr

h

K

(m)

+

(0)

i

(23)

where H

k;k+1

= P

k;k+1

d

d�

R

k;k+1

(�)j

�=0

is the two-body bulk Hamiltonian and � is the normal-

ization R

12

(0) = �P

12

1

For the �rst two solutions we indeed have Tr[K

+

(0)℄ 6= 0 while for the third one Tr[K

+

(0)℄ =

0. In this last ase one has to onsider the seond order expansion in the spetral parameter �

[11℄. We �nd onvenient to write the expression for the Hamiltonians in terms of Pauli matries

�

�

�;i

and �

z

�;i

with omponents � ="; # ating on the site i of a lattie of size L. In terms of

1

The normalization we use for R(�) (see Appendix A) produes � = (q � 1=q)

2

for D

2

2

model.
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these operators and up to irrelevant additive onstants

2

, we have

H

(l;m)

= �

I(q� 1=q)

2

L�1

X

k=1

~

H

k;k+1

+ I

(q � 1=q)

2

2

f

X

�=";#

�

(l)

�

(�

�

)�

z

�;1

+ Æ

(l)

�

z

";1

�

z

#;1

+ J

(l)

"

(�

�

)�

+

";1

�

�

#;1

+ J

(l)

#

(�

�

)�

+

#;1

�

�

";1

�

X

�=";#

�

(m)

�

(�

+

)�

z

�;L

+ Æ

(m)

�

z

";L

�

z

#;L

+ J

(m)

#

(�

+

)�

+

";L

�

�

#;L

+ J

(m)

"

(�

+

)�

+

#;L

�

�

";L

9

=

;

(24)

where the expression of the bulk part

~

H

k;k+1

is

~

H

k;k+1

=

(q � 1=q)

2

h

(�

z

";k

+ �

z

#;k

)(�

+

";k+1

�

�

#;k+1

+ �

�

";k+1

�

+

#;k+1

)� (�

+

";k

�

�

#;k

+ �

�

";k

�

+

#;k

)(�

z

";k+1

+ �

z

#;k+1

)

i

+(

p

q �

1

p

q

)

2

h

�

+

";k

�

�

";k+1

�

�

#;k

�

+

#;k+1

+ �

�

";k

�

+

";k+1

�

+

#;k

�

�

#;k+1

+�

+

";k

�

+

";k+1

�

�

#;k

�

�

#;k+1

+ �

�

";k

�

�

";k+1

�

+

#;k

�

+

#;k+1

i

�2

h

(�

+

";k

�

�

";k+1

+ �

�

";k

�

+

";k+1

)(1 + �

z

#;k

�

z

#;k+1

) + (�

+

#;k

�

�

#;k+1

+ �

�

#;k

�

+

#;k+1

)(1 + �

z

";k

�

z

";k+1

)

i

+(

p

q +

1

p

q

)

h

(�

+

";k

�

�

";k+1

+ �

�

";k

�

+

";k+1

)(1� �

z

#;k

�

z

#;k+1

)

+(�

+

#;k

�

�

#;k+1

+ �

�

#;k

�

+

#;k+1

)(1� �

z

";k

�

z

";k+1

)

i

�(

p

q �

1

p

q

)

h

(�

+

";k

�

�

#;k+1

+ �

�

";k

�

+

#;k+1

)(�

z

#;k

� �

z

";k+1

) + (�

+

#;k

�

�

";k+1

+ �

�

#;k

�

+

";k+1

)(�

z

";k

� �

z

#;k+1

)

i

+[1�

(q + 1=q)

2

℄(�

z

";k

�

z

#;k

+ �

z

";k+1

�

z

#;k+1

)�

(

p

q �

1

p

q

)

2

4

(�

z

";k

�

z

#;k+1

+ �

z

#;k

�

z

";k+1

)

�[

(q + 1=q)

4

+

3

2

℄(�

z

";k

�

z

";k+1

+ �

z

#;k

�

z

#;k+1

) +

(q � 1=q)

2

X

�=";#

(�

z

�;k

� �

z

�;k+1

)� 2(q +

1

q

)I

k;k+1

Turning to the boundary interations we found that the hemial potentials are given by

�

(l)

�

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�

(1)

"

(�) = 1=2 � I

p

q

1+q

; �

(1)

#

(�) = 1=2 + I

p

q

1+q

�

(2)

"

(�) = �

(1+q+2�q)

(1+q)(�

2

q

2

�1)

; �

(2)

#

(�) = �

(1+q�2�q)

(1+q)(�

2

q

2

�1)

�

(3)

"

(�) = �

(3)

#

=

1

1��

(25)

2

We also note that we have normalized the Hamiltonian by the pure imaginary number.
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while the on-site parameters Æ

(l)

and J

(l)

�

(�) are

Æ

(l)

=

8

>

>

>

>

>

<

>

>

>

>

>

:

Æ

(1)

=

(q�1)

2(1+q)

Æ

(2)

=

(q�1)

2(1+q)

Æ

(3)

=

(1+q)

2(q�1)

(26)

and

J

(l)

�

(�) =

8

>

>

>

>

>

<

>

>

>

>

>

:

J

(1)

"

(�) = J

(1)

#

= 0

J

(2)

"

(�) = J

(2)

#

(�) =

(q�1)(1+�

2

q)

(1+q)(�

2

q�1)

J

(3)

"

(�) =

(1+q)(1+�)+4

p

q�

(q�1)(��1)

; J

(3)

#

(�) =

(1+q)(1+�)�4

p

q�

(q�1)(��1)

(27)

A natural question to be asked is whih (if any) of these solutions would lead us to an

integrable D

2

2

model with quantum algebra symmetry. One way to investigate that is by

applying the Bethe ansatz method to diagonalize the above open spin hains. This allows

us to extrat information about the eigenspetrum, whih in the ase of quantum algebra

invariane, should be highly degenerated (see e.g. [12℄). In next setion we will disuss this

problem in details.

3 Bethe ansatz analysis

The purpose of this setion is to study the spetrum of some of the open spin hains presented

in setion 2 by the oordinate Bethe ansatz formalism. One of our motivations is to identify

the boundary that leads us to the quantum group symmetry. We begin by notiing that the

total number of spins

^

N

s

=

P

L

i=1

P

�=";#

�

z

�;i

is a onserved quantity and its eigenvalues ns

labels the many possible disjoint setors of the Hilbert spae. Therefore, the wave funtion

solving the eigenvalue problem H j	

ns

i = E

(l;m)

(L) j	

ns

i an be written as follows

j	

ns

i =

X

�

j

X

x

Q

j

f

(�

1

;���;�

n

)

(x

Q

1

; � � � ; x

Q

ns

)�

+

�

1

;x

Q

1

� � � �

+

�

ns

;x

Q

ns

j0i (28)

where j0i denotes the ferromagneti state (all spins up) and 1 � x

Q

1

� x

Q

2

� � � � � x

Q

ns

� L

indiate the positions of the spins.
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We will start our study by �rst onsidering the open spin hain H

(1;1)

orresponding to

the diagonal K-matrix solution. As it is ustomary we begin our disussion of the eigenvalue

problem in the setor of one down spin, ns = 1. In this setor, we �nd that for 1 < x < L

I

2(1=q � q)

E

(1;1)

(L)f

(�)

(x) = (L�2)�f

(�)

(x)+f

(�)

(x+1)+f

(�)

(x�1)+

(1 � q)

2

4q

f

(�)

(x); � ="; #

(29)

where we have de�ned � = q + 1=q. The mathing ondition at the left and right boundaries

gives us the following onstraints

0

B

�

f

(")

(0)

f

(#)

(0)

1

C

A

=

0

B

�

�� p

1"

d

1"

d

1#

�� p

1#

1

C

A

0

B

�

f

(")

(1)

f

(#)

(1)

1

C

A

(30)

and

0

B

�

f

(")

(L + 1)

f

(#)

(L + 1)

1

C

A
=

0

B

�

�� p

L"

d

L"

d

L#

�� p

L#

1

C

A

0

B

�

f

(")

(L)

f

(#)

(L)

1

C

A
(31)

where the matries parameters are given by

p

1"

=

3I +

p

q + q

2

(I + 3

p

q)

4q(I +

p

q)

; p

1#

=

�3I +

p

q + q

2

(�I + 3

p

q)

4q(�I +

p

q)

(32)

p

L"

=

3 � 2q + 3q

2

� 2I

p

q + 2Iq

p

q

4q

; p

L#

=

3 � 2q + 3q

2

+ 2I

p

q � 2Iq

p

q

4q

(33)

d

1"

= d

1#

= �d

L"

= �d

L#

=

q � 1=q

4

(34)

In order to go ahead it is ruial to notie that both boundary onstraints (30) and (31) an

be diagonalized by the same unitary transformation U . After performing this transformation

the new omponents

~

f

�

(x) = Uf

�

(x) satisfy

0

B

�

~

f

(")

(0)

~

f

(#)

(0)

1

C

A

=

0

B

�

1 0

0

�

2

1

C

A

0

B

�

~

f

(")

(1)

~

f

(#)

(1)

1

C

A

(35)

and

0

B

�

~

f

(")

(L+ 1)

~

f

(#)

(L+ 1)

1

C

A

=

0

B

�

�

2

0

0 1

1

C

A

0

B

�

~

f

(")

(L)

~

f

(#)

(L)

1

C

A

(36)
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Clearly, equation (29) for 1 < x < L remains the same but now for the transformed

amplitudes

~

f

(�)

(x). Now we reahed a point in whih one an try the usual Bethe ansatz (e.g.

see ref. [13, 14℄), namely

~

f

(�)

(x) = A

�

(k)e

ikx

�A

�

(�k)e

�ikx

(37)

and by substituting this ansatz in (29) we obtain the following eigenvalue

I

2(1=q � q)

E

(1;1)

(L) = (L � 2)� + 2 os(k) +

(1� q)

2

4q

(38)

The fat that this ansatz should be also valid for the ends x = 1 and x = L provides us

onstraints for the amplitudes A(k) and A(�k), whih reads

A(�k) = �e

ik

A(k) and A(�k) =

(1 �

�

2

e

�ik

)

(1�

�

2

e

ik

)

e

2i(L+1)k

A(k) (39)

whose ompatibility gives a restrition on the momentum k, namely

e

2ikL

(e

ik

�

�

2

)

(

�

2

e

ik

� 1)

= 1 (40)

The next task is to generalize these results for arbitrary numbers of down spins. For a

general multipartile state, we assume the Bethe ansatz wave funtion

~

f

(�

1

;���;�

n

)

(x

Q

1

; � � � ; x

Q

ns

) =

X

P

sgn(P )

ns

Y

j=1

e

[ik

p

j

x

Q

j

℄

A(k

PQ

1

; � � � ; k

PQ

N

e

)

�

Q

1

; � � � ; �

Q

ns

(41)

where P is the sum over all the permutations of the momenta, inluding the negations k

j

!

�k

j

, and the symbol sgn aounts for the sign of the permutations and negations. It turns

out that for on�gurations suh that jx

Q

i

� x

Q

j

j � 2 the open spin hain H

(1;1)

behaves as a

free theory and the orresponding eigenvalues are

I

2(1=q � q)

E

(1;1)

(L) = (L� 1)� +

ns

X

j=1

[2 os(k

j

)��℄ +

(1� q)

2

4q

(42)

The new ingredient for ns � 2 is that the nearest neighbor spin on�gurations enfore

onstraints on the amplitude of the wave funtion. This ondition enhanes a relation between

the exhange of two states suh as f(k

i

; �

i

); (k

j

; �

j

)g and f(k

j

; �

j

); (k

i

; �

i

)g whih ultimately

is represented by the two-body sattering

A

����

j

; �

i

���

(� � � ; k

j

; k

i

; � � �) = S

i;j

(k

i

; k

j

)A

����

i

; �

j

���

(� � � ; k

i

; k

j

; � � �) (43)
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while the reetion at the left and right ends generalizes equation (29), whih now reads

A

�

i

;���

(�k

j

; � � �) = �e

ik

j

A

�

i

;���

(k

j

; � � �) (44)

A

���;�

i

(� � � ;�k

j

) =

(1�

�

2

e

�ik

j

)

(1 �

�

2

e

ik

j

)

e

2i(L+1)k

j

A

����

i

;

(� � � ; k

j

) (45)

Fortunately, the bulk two-body sattering amplitude S

i;j

(k

i

; k

j

) has been reently identi�ed

in ref.[15℄ for the periodi hain. This result is of enormous help here sine it allows us to hoose

the suitable parametrization for the momenta k

j

in terms of the S-matrix rapidities �

j

, whih

is

e

ik

j

=

sinh(�

j

� i=2)

sinh(�

j

+ i=2)

(46)

where we have onveniently de�ned q = e

i

. For expliit expression of the non-null S-matrix

elements see ref.[15℄.

In this general ase, the ompatibility between the bulk and boundary sattering onstraints

(43-45) leads us to the Bethe ansatz equation for the momenta k

j

e

2ik

j

L

(e

ik

j

�

�

2

)

(

�

2

e

ik

j

� 1)

= �

j

(k

1

; � � � ; k

ns

) (47)

where �

j

(k

1

; � � � ; k

ns

) are the eigenvalues of the auxiliary inhomogeneous transfer matrix t

j

=

S

jns

(k

j

; k

ns

) � � �S

j1

(k

j

; k

1

)S

1j

(k1;�k

j

) � � �S

nsj

(k

ns

;�k

j

). The integrability of this latter inho-

mogenous problem follows from the fat that the 2 � 2 identity K-matrix is a solution of the

reetion equation assoiated to the two-body sattering S

ij

. As was shown in ref. [15℄ there is

no need of a seond Bethe ansatz to solve this auxiliary eigenvalue problem. By adapting the

results of ref.[15℄ to our ase and by relating the momenta k

j

and the rapidities �

j

by equation

(46) we �nd that the Bethe ansatz equations are given by

"

sinh(�

j

� i=2)

sinh(�

j

+ i=2)

#

2L

osh(�

j

+ i=2)

osh(�

j

� i=2)

=

ns

Y

k=1

sinh(�

j

=2 � �

k

=2 � i=2)

sinh(�

j

=2 � �

k

=2 + i=2)

sinh(�

j

=2 + �

k

=2 � i=2)

sinh(�

j

=2 + �

k

=2 + i=2)

j = 1; � � � ; ns (48)

and the eigenvalues (42) in terms of the rapidities �

j

are

E

(1;1)

(L) = �8 sin

3

()

ns

X

j=1

1

os()� osh(2�

j

)

� 4(L � 1) sin(2) + 4 sin() sin

2

(=2) (49)
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Clearly, the Bethe ansatz equations for the open spin hainH

(1;1)

are not just the \doubling"

of the orresponding results of the losed hain with periodi boundary onditions [16, 15℄ due

to an additional boundary left hand fator. We reall here that the \doubling" property has

been argued [17℄ to be one of the main features of a quantum algebra invariant open spin hain

at least for standard forms of omultipliation. Looking at the spetrum of H

(1;1)

, however,

we notie a ertain pattern of degeneraies whih suggests an underlying hidden symmetry. It

ould be that the diagonal boundary solution orresponds to an asymmetri form of oprodut

sine this, in priniple, is allowed too [18℄.

Next we turn our attention to the �rst non-diagonal solution and its orresponding open

spin hain. In this ase, at least for generi values of �

�

, the Bethe ansatz onstrution we

just explained above needs further generalizations. This an be seen even at the level of

one down spin state, sine there is not a unique transformation that diagonalizes both left

and right boundary matrix problems. However, there is a partiular manifold, �

+

= q�

�

, in

whih our previous Bethe ansatz formulation is still valid. Fortunately, as we shall see below,

this speial manifold will be suÆient to single out the boundary leading us to the quantum

algebra symmetry. Sine for �

+

= q�

�

, the Bethe ansatz analysis is very similar to the one

just desribed above, we restrit ourselves to present only the �nal results. We found that the

Bethe ansatz equations for the Hamiltonian H

(2;2)

at �

+

= q�

�

are

"

sinh(�

j

� i=2)

sinh(�

j

+ i=2)

#

2L

=

ns

Y

k=1

sinh(�

j

=2 � �

k

=2 � i=2)

sinh(�

j

=2 � �

k

=2 + i=2)

sinh(�

j

=2 + �

k

=2 � i=2)

sinh(�

j

=2 + �

k

=2 + i=2)

; j = 1; � � � ; ns

(50)

while the orresponding eigenvalues are given by

E

(1;1)

(L) = �8 sin

3

()

ns

X

j=1

1

os()� osh(2�

j

)

�4(L�1) sin(2)�4 sin()

2

4

X

�=";#

(�

(2)

�

(�

�

)� �

(2)

�

(�

+

)) + 2Æ

(2)

3

5

(51)

Now the Bethe ansatz equations do have the \doubling" property at �

+

= q�

�

and this is

an extra motivation to investigate the eigenspetrum of H

(2;2)

. It turns out that at the value

�

�

= 0 and therefore �

+

= 0 we disover that the spetrum of the open hain H

(2;2)

is speially

highly degenerated. In fat, after some algebrai manipulations, we hek that for �

�

= 0

11



the Hamiltonian H

(2;2)

has the appropriate boundary oeÆients to ensure ommutation with

U

q

(D

2

2

). Therefore, we �nally managed to identify the quantum algebra symmetry for the D

2

2

vertex model.

Finally, it seems desirable to solve the open spins hains assoiated to the non-diagonal

solutions for arbitrary values of the parameters �

�

. The oordinate Bethe ansatz method,

however, leads us to umbersome alulations even for the �rst exitation over the referene

state. In suh general ase it seems wise to takle this problem by using a more unifying

tehnique suh as the algebrai Bethe ansatz approah. Sine the basis of this method has

been reently developed for the D

2

n

vertex models [15℄ we hope to return to this problem

elsewhere.

4 The D

2

n

K-matries

Here we shall onsider the generalizations of the K-matries solutions of setion 2 for the

general D

2

n

model. This system has n� 1 distint U(1) onserved harges, and the K-matrix

ansatz ompatible with these symmetries an be represented by the following blok diagonal

matrix

K

�

(�) = diag(Y

1

(�); � � � ; Y

n�1

(�);

^

A(�); Y

n+2

(�); � � � ; Y

2n

(�)) (52)

where

^

A(�) is a 2� 2 matrix

^

A(�) =

0

�

Y

n

(�) Y

2n+1

(�)

Y

2n+2

(�) Y

n+1

(�)

1

A

(53)

where Y

j

(�); j = 1; � � � ; 2n + 2 are funtions we have determined by solving the reetion

equation. Notie that for n = 2 we reover our starting ansatz of setion 2.

Substituting this ansatz into the reetion equation, we realize that the simplest possible

solution is the symmetri one, namely

Y

1

(�) = Y

2

(�) = � � � = Y

n�1

(�) and Y

n+2

(�) = Y

n+1

(�) = � � � = Y

2n

(�) (54)

It turns out that the remaining funtional equations for the funtions Y

1

(�), Y

n

(�), Y

n+1

(�),

Y

2n

(�), Y

2n+1

(�) and Y

2n+2

(�) are very similar to those presented in the appendix A. Therefore,

12



they an be solved by the same proedure desribed in setion 2 and in what follows we only

quote our �nal results. As before we �nd three general families of K-matries, and the diagonal

one is given by

Y

(1)

1

(�) = 1; Y

(1)

n

(�) =

e

�

� Iq

�(n�1)=2

e

��

� Iq

�(n�1)=2

(55)

Y

(1)

n+1

(�) =

e

�

+ Iq

�(n�1)=2

e

��

+ Iq

�(n�1)=2

; Y

(1)

2n

(�) =

e

�

+ Iq

�(n�1)=2

e

��

+ Iq

�(n�1)=2

e

�

� Iq

(n�1)=2

e

��

� Iq

(n�1)=2

(56)

The one-parameter families of non-diagonal K-matries are given by

Y

(2)

1

(�; �

�

) = (e

2�

+ q

n�1

)(�

2

�

q

n�1

e

2�

�1)e

��

; Y

(2)

2n

(�; �

�

) = (e

2�

+ q

n�1

)(�

2

�

q

n�1

� e

2�

)e

�

(57)

Y

(2)

n

(�; �

�

) =

(1 + e

2�

)

2

h

2(e

2�

� 1)�

�

q

n�1

� e

�

(1 + q

n�1

)(1 � �

2

�

q

n�1

)

i

(58)

Y

(2)

n+1

(�; �

�

) =

(1 + e

2�

)

2

h

�2(e

2�

� 1)�

�

q

n�1

� e

�

(1 + q

n�1

)(1� �

2

�

q

n�1

)

i

(59)

Y

(2)

2n+1

(�; �

�

) = Y

(2)

2n+2

(�; �

�

) =

(e

2�

� 1)

2

(1 � q

n�1

)(�

2

�

q

n�1

+ 1)e

�

(60)

and

Y

(3)

1

(�; �

�

) = (e

2�

� q

n�1

)(�

�

e

2�

� 1)e

��

; Y

(3)

2n

(�; �

�

) = (e

2�

� q

n�1

)(�

�

� e

2�

)e

�

(61)

Y

(3)

n

(�; �

�

) = Y

(3)

n+1

(�; �

�

) =

(1 + e

2�

)

2

(1� q

n�1

)(�

�

� 1)e

�

(62)

Y

(3)

2n+1

(�; �

�

) =

(e

2�

� 1)

2

�

2(e

2�

+ 1)

q

�

�

q

(n�1)=2

+ (1 + q

n�1

)(1 + �

�

)e

�

�

(63)

Y

(3)

2n+2

(�; �

�

) =

(e

2�

� 1)

2

�

�2(e

2�

+ 1)

q

�

�

q

(n�1)=2

+ (1 + q

n�1

)(1 + �

�

)e

�

�

(64)

The next natural step is to searh for asymmetri K-matries for n � 3, i.e. those having

Y

1

(�) 6= Y

2

(�) 6= � � �Y

n�1

(�) and Y

n+2

(�) 6= Y

n+3

(�) 6= � � �Y

2n

(�). In this ase the number of

free parameters grows rapidly with n and the solution of the reetion equation beomes more

involving. To illustrate that, we onsider the D

2

3

model and for sake of simpliity we look �rst

for diagonal solutions. There are six funtions Y

j

(�) to be determined and their ratios are �xed

by hoosing some easy looking relations oming from the reetion relation. More preisely,

we have found the following equations

Y

2

(�)

Y

1

(�)

=

e

2�

� 

1

e

�2�

� 

1

;

Y

3

(�)

Y

1

(�)

=

e

�

� 

2

e

��

� 

2

;

Y

4

(�)

Y

1

(�)

=

e

�

� 

3

e

��

� 

3

(65)
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Y

6

(�)

Y

4

(�)

=

e

�

� 

4

e

��

� 

4

;

Y

5

(�)

Y

6

(�)

=

e

�2�

� 

5

e

2�

� 

5

(66)

where 

j

are one again onstants yet to be determined. Substituting these relations bak to

the reetion equation we �nd only one possible manifold for the parameters 

j

, whih reads



1

= 

5

= �1 and 

2

= 

3

= 

4

= 0 (67)

After an appropriate normalization, this solution leads us to a new diagonal K-matrix for

the D

2

3

model

K

D

2

3

�

(�) = diag(e

�2�

; 1; 1; 1; 1; e

2�

) (68)

It is plausible that this \almost unity" solution and its extensions generalizes for arbitrary

values of n � 4. Next we have looked at the possibility of asymmetri non-diagonal solutions

for the D

2

3

model. It turns out that, within our algebrai approah, we did not found any of

suh solutions. However, this possibility should not be ompletely rule out, at least for general

n, sine we have so many free parameters that the hane to miss a partiular integrable

manifold is high. In general, lassi�ation of the solutions of the reetion equation seems to

be an intriated problem even for simpler models [8℄. We hope, however, that our K-matries

results prompt further investigation onerning this problem for the D

2

n

vertex models.

We would like to onlude this setion with the following remarks. The K

+

(�) matries

an be obtained from K

�

(�) by the isomorphism

K

+

(�) = K

t

�

[(n� 1) ln[q℄� �℄M (69)

where M is a diagonal matrix given by

M = diag(q

(2n�3)

; q

2n�5

; � � � ; 1; 1; � � � ; q

�(2n�5)

; q

�(2n�3)

) (70)

One we are equipped with K

�

(�) matries, the onstrution of the orresponding open

spin hains is possible along the lines of setion 2. Similarly, at least for the diagonal solution,

one an also repeat our Bethe ansatz onstrution without further tehnial diÆulties. In

partiular, we onjeture that the open spin hain assoiated to the �rst non-diagonal solution

at �

�

= 0 is the one having the underlying quantum group symmetry.
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5 Conluding Remarks

In this paper we have made a great deal of progress towards the understanding of the integra-

bility of the D

2

n

vertex model with open boundaries. We have investigated the solutions of the

assoiated reetion equation and found three general families of K-matries whih respet

the minimal U(1) symmetries of this system. We have arried out a Bethe ansatz analysis for

the simplest ase, D

2

2

model, revealing to us that the �rst non-diagonal solution at �

�

= 0

possesses the speial quantum algebra symmetry. In fat, the struture of the K-matries at

this partiular point leads us to onjeture that this will be the ase for arbitrary values of n.

We believe that our results open an enormous avenue for further investigations. One lear

possibility is to use the Bethe ansatz results of setion 3 to ompute the thermodynami

behaviour, the bulk and the surfae ritial exponents. It would be also interesting to generalize

our results of setion 3 for all sort of open boundary onditions and for arbitrary values of n. In

this ase, probably the most suitable tool would be instead the algebrai Bethe ansatz approah.

This method would allow us to show that indeed the Bethe ansatz states are highest weight

states of the underlying quantum algebra in the ase of the �rst non-diagonal family at �

�

= 0.

Other interesting issue is to apply the notion of the quantum group twisting [19℄ to �nd

out slightly di�erent D

2

n

R-matries. As a result, this might lead us to integrable models with

very di�erent behaviour, for an example see ref.[20℄. The pratial implementation of twisting,

however, seems to be quite involving speially for an algebra suhD

2

n

. To shed some light to this

problem we proeed in a muh more phenomenologial way. Motived by the struture of the

non-diagonal solutions, we add extra Boltzmann weights to the Jimbo's R-matrix to aount

for suh boundary terms at the level of the assoiated bulk Hamiltonian. Next step is to try to

solve the Yang-Baxter equation for this novel R-matrix struture. It turns out that we sueed

to �nd a new R-matrix solution for the D

2

2

model. Sine this involves many tehnialities, we

have summarized it in appendix B together with the study of the orresponding solutions of

the reetion equation. We hope that these results will be useful to motivate further progress

in this problem.
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Appendix A : R matrix properties and reetion equations

In this appendix we briey disuss some useful properties of the D

2

n

R-matrix [10℄. We

also present for n = 2 some relevant relations derived from the reetion equation. The D

2

n

R-

matrix satis�es, besides the unitarity and regularity, extra relations denominated PT invariane

and rossing symmetry, PT-Symmetry:

P

12

R

12

(�)P

12

= R

t

1

t

2

12

(�) (A.1)

Crossing-symmetry:

R

12

(�) =

�[�℄

�[(n� 1) ln[q℄� �℄

1

V

R

t

2

12

[(n� 1) ln[q℄� �)

1

V

�1

(A.2)

where �(�) is a normalization funtion and V is the following rossing matrix

V = antidiag

(

q

�(2n�3)=2

; q

�(2n�5)=2

; � � � ;

1

p

q

; 1; 1;

p

q; � � � ; q

(2n�5)=2

; q

(2n�3)=2

)

: (A.3)

Here we �nd onvenient to normalize the original Jimbo's R-matrix by an overall fator

e

2�

q

n

and the funtion �(�) is given by

�(�) = (e

�

� e

��

)(

e

�

q

(n�1)

�

q

(n�1)

e

�

) (A.4)

Next we present the simplest relations derived from the reetion equation we used in

setion 2. For sake of simpliity we shall use the following notation Y

i

(x) � Y

i

; Y

i

(y) �

Y

0

i

; w

j

(x � y) � w

j

; w

j

(x+ y) = w

0

j

. Considering this notation, the relations we have seleted

from the reetion equation are given by

� w

0

2

h

�w

3

Y

0

1

Y

2

+ w

4

Y

1

Y

0

2

� w

5

Y

0

1

Y

5

+ w

6

Y

1

Y

0

6

i

=
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w

2

h

�w

0

4

Y

0

1

Y

1

+ w

0

5

(Y

0

2

Y

5

+ Y

2

Y

6

0

) + w

0

3

(Y

0

2

Y

2

+ Y

5

Y

6

0

)

i

(A.5)
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Y

1

Y

0

3

+ w

6

Y

1

Y

0

5

�w

5

Y

0

1

Y

6

i
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w

2

h

�w

0

4

Y

0

1

Y

1

+ w

0

5

(Y

3

Y

0

5

+ Y

0

3

Y

6

) + w

0

3

(Y

0

3

Y
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0

5
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The funtions w

j

(�) are some of the Boltzmann weights of D

2

2

model and are given by [10℄

w

2

(�) = (e

�

� e

��

)(

e

�

q

�

q

e

�

); w

3

(�) = �

1

2

(q �

1

q

)(

e

�

q

�

q

e

�

)(e

��

+ 1) (A.12)

w
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(�) = �

1

2

(q �

1

q

)(

e

�

q

�
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)(e

�

+ 1); w

5
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1

2
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1

q
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e

�

q

�

q
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�
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q
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�

q

�

q
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�

)(e

�
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Appendix B : A new D

2

2

R-matrix

We begin by presenting the new D

2

2

R-matrix

R(�) = (e

2�

� q

2

)

2

X

�6=2;3

E

��


 E

��

+ q(e

2�

� 1)(e
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� 6= �; �
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� 1)(e
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�
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�
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)
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where E

��

are the elementary 4 � 4 matries and we set �

0

= 5 � �. The Boltzmann weights

are given by

a

11

(�) = a

44

(�) = q

2

(e

2�

� 1)

2

; a

14
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�

4

(q
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� 1)(e

�

� 1)[e

�

(3 + q

2

)� (1 + 3q

2

)℄ + q(e

2�

� 1)(e

2�

� q

2

) (B.6)

This R-matrix has additional Boltzmann weights, the last term in equation (B.1), as om-

pare to the standard D

2

2

R-matrix [10℄. In addition, several other weights have also a di�erent

funtional dependene on the spetral paramater �. For periodi boundary onditions, suh

di�erenes are not important sine we veri�ed, by using the algebrai Bethe ansatz approah

[15℄, that the orresponding Bethe ansatz equations and eigenvalues are the same as those

found for the standard D

2

2

model [16, 15℄. This result is a strong indiation that indeed the

R-matrix (B.1) an be obtained by twisting the usual D

2

2

R-matrix. However, the situation for

open boundary onditions turns out to be a bit di�erent. In fat, we did not �nd any diagonal
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solution of the orresponding reetion equation. The basi K-matries are non-diagonal and

we managed to �nd two lasses of suh solutions. The �rst family depends only on a disrete

parameter " = � and is given by

Y

(1;")

1

(�; �

�

) = Y

(1;")

4

(�; �

�

) = (e

2�

+ " q) (B.7)
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while the seond family has an extra ontinuous parameter �

�

Y
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� 1)("� q)(�
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+ e

�

)(�

�

e

�
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Finally, we remark that sine this new R-matrix is only unitary, the assoiated K

+

(�) ma-

tries an not be diretly obtained by an isomorphism of the type desribed in (20). However,

as shown in ref. [21℄, unitarity is a suÆient ondition to allow one to onstrut ommutative

transfer matries leading to open spin hains. In this ase one has to solve an extra reetion

equation to obtain the K

+

(�) matrix [21℄.
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