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Analysis of over- and underdetermined nonlinear

di�erential-algebrai systems with appliation to nonlinear

ontrol problems

�

Abstrat

We study over- and underdetermined systems of nonlinear di�erential-algebrai

equations. Suh equations arise in many appliations in iruit and multibody system

simulation, in partiular when automati model generation is used, or in the analysis

and solution of ontrol problems via a behaviour approah.

We give a general (loal) existene and uniqueness theory and apply the results to

nonlinear ontrol problems. In partiular, we study regularization by state or output

feedbak.

The theoretial analysis also leads immediately to numerial methods for the

simulation as well as the onstrution of regularizing ontrols.

Keywords: nonlinear di�erential-algebrai equations, nonlinear ontrol prob-

lems, solvability, model onsisteny, behaviour approah, strangeness index, regular-

ization, feedbak design

AMS(MOS) subjet lassi�ation: 93C50, 65L05, 34H05, 93B10, 93B11,

93B40

1 Introdution

In this paper, we study nonlinear di�erential-algebrai systems of the form

F (t; x; _x) = 0; (1)

with F 2 C(I� D

x

� D

_x

;R

m

), I� R (ompat) interval, D

x

; D

_x

� R

n

open. Suh systems

inlude in partiular nonlinear ontrol problems

F (t; �; u;

_

�)= 0; (2)

y=G(t; �): (3)

Here � 2 R

n

�

is the state, u 2 R

n

u

the input and y 2 R

n

y

the output of the system.

Control systems of the form (2) an be rewritten in the form (1) via a behaviour approah

that ombines the vetor funtions � and u as

x =

�

�

u

�

2 R

n

;

�

Supported by DFG researh grant Ku964/4-1:

�

Uber- und unterbestimmte nihtlineare DAEs.

1



with n = n

�

+ n

u

, see [27, 29℄. For the ase of ontrol problems that inlude the output

equation (3), we set

x =

2

4

�

u

y

3

5

2 R

n

with n = n

�

+ n

u

+ n

y

. We will disuss both ases.

Example 1 Throughout this paper we will illustrate the various results and problems by

means of the simple nonlinear ontrol system given by

F (t; �; u;

_

�) =

�

_

�

2

log �

2

+ sinu

�

= 0; (4)

with � = (�

1

; �

2

)

T

, n

�

= 2 and n

u

= 1. The orresponding behaviour system reads

F (t; x; _x) =

�

_x

2

log x

2

+ sinx

3

�

= 0; (5)

with n = 3.

General models like (1) as well as the desribed ontrol problems arise in mehanial

multibody systems [14, 18, 19℄, eletrial iruits [17℄ or mixed systems, where di�erent

models are oupled together [15℄. In this general form they allow to model very omplex

dynamial systems with onstraints, models that are automatially generated with redun-

dant equations or ombinations of models of di�erent types, see, e.g., [15, 18℄. Redundant

equations typially our when several submodels (modules) are linked together suh that

they form loops. We also get overdetermined systems when we inlude �rst integrals of the

problem. For example, Hamiltonian systems of ordinary di�erential equations are known

to onserve energy. Standard integration shemes typially annot yield numerial approx-

imations that keep the initial energy. Instead, the sheme produes or onsumes energy

during the integration. If onservation of energy is ruial, one an use so-alled symple-

ti integration shemes (see, e. g., [20℄), but one has to be very autious with the stepsize

seletion. Combining the given system with the equation for the onservation of energy

leads to an overdetermined system of di�erential-algebrai equations. Designing numerial

methods for this type of problems that satisfy all inherent algebrai onstraints is therefore

an important topi.

To analyze general nonlinear di�erential-algebrai systems and also to design ontrols,

we need to develop the mathematial theory as well as numerial methods that an be

used for the analysis, design and simulation.

The theory and numerial solution methods for di�erential-algebrai equations have un-

dergone major hanges in the last 10 years, see [1, 8, 9, 16, 22, 23, 24, 26, 28, 30, 31℄.

The theory and also numerial tehniques have also been partially extended to the study

of linear ontrol problems [6, 11, 12, 27, 32℄. Exept for the restrition to linear prob-

lems, a major drawbak of the previous methods was the missing analysis for over- and
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underdetermined systems. It is the topi of this paper to extend the previous analysis of

[22, 25, 26, 27℄ to the general nonlinear ase.

The paper is organized as follows. After some preliminaries in Setion 2, we give an

analysis of the general problem in Setion 3. We then apply these results to ontrol

problems in Setion 4. In Setion 5, we propose numerial algorithms for the integration

of the arising problems. Finally, we give some onlusions in Setion 6.

2 Preliminaries

Sine the onepts for di�erential-algebrai equations (DAEs) have hanged in reent years,

we need to reall some of the terminology and some of the previous results.

De�nition 1 Consider system (1). A funtion x : I ! R

n

is alled a solution of (1)

if x 2 C

1

(I;R

n

) and x satis�es (1) pointwise. It is alled a solution of the initial value

problem onsisting of (1) and

x(t

0

) = x

0

; (6)

if x is a solution of (1) and satis�es (6). An initial ondition (6) is alled onsistent if the

orresponding initial value problem has at least one solution.

In the ontrol setting, for a given input funtion u the onept of solvability is desribed

by De�nition 1. Using the behaviour approah, it also overs the so-alled model onsis-

teny, i. e., the existene of a solution � for some input funtion u. A more interesting

question in the ontext of ontrol problems is whether it is possible to hoose a ontrol

suh that the resulting problem is regular (in the sense of a DAE, see [26℄). We will disuss

this question at least loally, i. e., for a suÆiently small neighborhood of t

0

2 I.

In order to analyze the properties of the system, like existene and uniqueness of solutions,

in [26℄ for the square nonlinear ase and in [27℄ for the retangular linear ase, hypotheses

have been formulated whih lead to an index onept, the so-alled strangeness-index or

s-index whih generalizes the onept of di�erentiation index. In the following, we will

formulate a generalization of these hypotheses and the strangeness-index for the general

nonlinear nonsquare ase. To do this, we assume for onveniene that all funtions are

suÆiently smooth. As in [26℄, we introdue a nonlinear derivative array, see also [8, 10℄,

of the form

F

`

(t; x; _x; : : : ; x

(`+1)

) = 0; (7)

whih staks the original equation and all its derivatives up to level ` in one large system,

i. e.,

F

`

(t; x; _x; : : : ; x

(`+1)

) =

2

6

6

6

4

F (t; x; _x)

d

dt

F (t; x; _x)

.

.

.

d

`

dt

`

F (t; x; _x)

3

7

7

7

5

: (8)
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Partial derivatives of F

`

with respet to seleted variables p from (t; x; _x; : : : ; x

(`+1)

) are

denoted by F

`;p

, e. g.,

F

`;x

=

�

�x

F

`

; F

`; _x;:::;x

(`+1)

= [

�

� _x

F

`

: : :

�

�x

(`+1)

F

`

℄:

A orresponding notation is used for partial derivatives of other funtions.

3 General analysis

In order to analyze existene and uniqueness of solutions we need to study the solution set

of the derivative array F

�

for some integer �. We denote this set as

L

�

= fz

�

2 I� R

n

� R

n

� : : :� R

n

j F

�

(z

�

) = 0g: (9)

The following hypothesis extends Hypotheses 2.1 and 3.2 in [26℄, see also [24℄.

Hypothesis 1 Consider the general system of nonlinear di�erential-algebrai equations

(1). There exist integers �, r, a, d, and v suh that L

�

is not empty, and the following

properties hold:

1. The set L

�

� R

(�+2)n+1

forms a manifold of dimension (�+ 2)n+ 1� r.

2. We have

rankF

�;x; _x;:::;x

(�+1)

= r (10)

on L

�

.

3. We have

orankF

�;x; _x;:::;x

(�+1)

� orankF

��1;x; _x;:::;x

(�)

= v (11)

on L

�

. (The orank is the dimension of the orange and we use the onvention that

orankF

�1;x

= 0.)

4. We have

rankF

�; _x;:::;x

(�+1)

= r � a (12)

on L

�

suh that there are smooth full rank matrix funtions Z

2

and T

2

de�ned on L

�

of size ((�+ 1)m; a) and (n; n� a), respetively, satisfying

Z

T

2

F

�; _x;:::;x

(�+1)

= 0; rankZ

T

2

F

�;x

= a; Z

T

2

F

�;x

T

2

= 0 (13)

on L

�

.

5. We have

rankF

_x

T

2

= d = m� a� v (14)

on L

�

.
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For square systems without redundanies, i. e., m = n and v = 0, Hypothesis 1 redues

to Hypothesis 3.2 in [26℄ and for linear time varying system to Hypothesis 2.7 in [24℄. The

di�erene to the assumptions in [10℄ are that we allow redundanies, underdeterminedness

and that we do not require onstant rank in a neighborhood of the solution in the whole

spae but only on a submanifold. Furthermore we need less smoothness of the funtion F .

The latter observation is desribed in detail in [26℄. As in [24, 26℄, we all the smallest

possible � the strangeness-index of (1). Systems with vanishing strangeness-index are alled

strangeness-free.

To derive the impliations of Hypothesis 1 and to motivate the various assumptions, we

proeed as follows.

Let z

0

�

= (t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

) 2 L

�

. Observe that in this ontext _x

0

; : : : ; x

(�+1)

0

denote

algebrai variables in R

n

. Sine L

�

is a manifold of dimension (�+2)n+1�r, we an loally

parametrize it by (�+2)n+1�r parameters. These an be hosen from (t; x; _x; : : : ; x

(�+1)

)

in suh a way that disarding the assoiated olumns from

F

�;t;x; _x;:::;x

(�+1)

(t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

)

does not lead to a rank drop. Beause of part 2 of Hypothesis 1, F

�;x; _x;:::;x

(�+1)

has already

maximal rank. Hene, we an always hoose t as a parameter.

Beause of part 4 of Hypothesis 1, we an hoose n � a parameters out of x. Without

restrition we an write x as (x

1

; x

2

; x

3

) with x

1

2 R

d

, x

2

2 R

n�a�d

, x

3

2 R

a

, and hoose

(x

1

; x

2

) as further parameters. In partiular, the matrix Z

T

2

F

�;x

3

is then nonsingular. The

remaining parameters p 2 R

(�+1)n+a�r

an be hosen out of ( _x; : : : ; x

(�+1)

).

Hene, Hypothesis 1 implies that there is a di�eomorphism ' de�ned on a neighborhood

U � R

(�+2)n+1�r

of (t

0

; x

10

; x

20

; p

0

) as part of z

0

�

orresponding to the seleted parameters

(t; x

1

; x

2

; p) and a neighborhood V � R

(�+2)n+1

of z

0

�

suh that

L \ V = f'(t; x

1

; x

2

; p) j (t; x

1

; x

2

; p) 2 Ug:

This inludes that loally F

�

(z

�

) = 0 if and only if z

�

= '(t; x

1

; x

2

; p) for some

(t; x

1

; x

2

; p) 2 U. In partiular, there are funtions G (orresponding to x

3

) and H (orre-

sponding to ( _x; : : : ; x

(�+1)

)) suh that

F

�

(t; x

1

; x

2

;G(t; x

1

; x

2

; p);H(t; x

1

; x

2

; p)) � 0 (15)

on U.

De�ning

^

F

2

= Z

T

2

F

�

(16)

on U, where Z

2

is given aording to Hypothesis 1, we have

^

F

2

(t; x

1

; x

2

;G(t; x

1

; x

2

; p);H(t; x

1

; x

2

; p)) � 0 (17)

on U. Di�erentiation with respet to p yields (omitting arguments)

d

dp

^

F

2

= (Z

T

2;x

3

F

�

+ Z

T

2

F

�;x

3

)G

p

+ (Z

T

2; _x;:::;x

(�+1)

F

�

+ Z

T

2

F

�; _x;:::;x

(�+1)

)H

p

= Z

T

2

F

�;x

3

G

p

� 0

5



on U. By onstrution, the parameters x

3

were seleted suh that Z

T

2

F

�;x

3

is nonsingular.

Thus,

G

p

(t; x

1

; x

2

; p) � 0

on U implying that

x

3

= G(t; x

1

; x

2

; p) = G(t; x

1

; x

2

; p

0

):

Thus, there (loally) exists a funtion R with

R(t; x

1

; x

2

) = G(t; x

1

; x

2

; p

0

):

Di�erentiating (17) in the form

^

F

2

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0

with respet to (x

1

; x

2

), we get (omitting arguments)

d

d(x

1

;x

2

)

^

F

2

= (Z

T

2;x

1

;x

2

F

�

+ Z

T

2

F

�;x

1

;x

2

) + (Z

T

2;x

3

F

�

+ Z

T

2

F

�;x

3

)R

x

1

;x

2

+ (Z

T

2; _x;:::;x

(�+1)

F

�

+ Z

T

2

F

�; _x;:::;x

(�+1)

)H

x

1

;x

2

= Z

T

2

F

�;x

1

;x

2

+ Z

T

2

F

�;x

3

R

x

1

;x

2

= Z

T

2

F

�;x

�

I

R

x

1

;x

2

�

� 0

on U suh that we an hoose T

2

in part 4 of Hypothesis 1 as

T

2

(t; x

1

; x

2

) =

�

I

R

x

1

;x

2

(t; x

1

; x

2

)

�

: (18)

In partiular, this means that part 5 of Hypothesis 1 only inludes the original variables

(t; x; _x). Part 5 also implies that there exists a matrix funtion Z

1

of size (m; d) with full

rank satisfying

rankZ

T

1

F

_x

T

2

= d (19)

on U. Obviously, Z

1

an even be hosen onstant.

Summarizing the onstrution up to now, Hypothesis 1 yields that the original system

implies a redued system (in the original variables) given by

(a)

^

F

1

(t; x

1

; x

2

; x

3

; _x

1

; _x

2

; _x

3

)= 0;

(b) x

3

�R(t; x

1

; x

2

)= 0;

(20)

with

^

F

1

= Z

T

1

F . Eliminating x

3

and _x

3

in (20a) with the help of (20b) and its derivative

then leads to

^

F

1

(t; x

1

; x

2

;R(t; x

1

; x

2

); _x

1

; _x

2

;R

t

(t; x

1

; x

2

) +R

x

1

(t; x

1

; x

2

) _x

1

+R

x

2

(t; x

1

; x

2

) _x

2

) = 0:

By part 5 of Hypothesis 1 we an assume without loss of generality that this system an

(loally) be solved for _x

1

leading to the system

_x

1

= L(t; x

1

; x

2

; _x

2

);

x

3

= R(t; x

1

; x

2

):

(21)
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Obviously, in this system x

2

2 C

1

(I;R

n�a�d

) an be hosen arbitrarily (at least when

staying in the domain of de�nition of R and L) while the resulting system has loally a

unique solution for x

1

and x

3

provided a onsistent initial ondition is given.

In summary, we have proved the following result.

Theorem 2 Let F in (1) be suÆiently smooth and satisfy Hypothesis 1 with �, a, d, v.

Then every solution of (1) also solves the redued problems (20) and (21) onsisting of

d di�erential and a algebrai equations.

So far, we have not used the quantity v. This quantity measures the number of equations

in the original system that gives rise to trivial equations 0 = 0, i. e., it ounts the number

of redundanies in the system. Together with a and d it gives a omplete lassi�ation

of the m equations into d di�erential equations, a algebrai equations and v trivial equa-

tions. Of ourse, trivial equations an be simply removed without altering the solution

set. Omitting part 3 of Hypothesis 1 would mean that a given problem may satisfy the

modi�ed hypothesis for di�erent values of a and d.

Example 2 Setting x

3

= 0 in (5) of Example 1 gives the problem

F (t; x; _x) =

�

_x

2

logx

2

�

= 0; (22)

with m = 2 and n = 2. Note that here x

1

, x

2

denote the omponents of x and not the

splitting of x used in the above theoretial onstrution. To hek Hypothesis 1 for � = 0

we onsider the set

L

0

= f(t; x

1

; x

2

; _x

1

; _x

2

) j x

2

= 1; _x

2

= 0g:

Obviously, L

0

is a manifold parametrized by (t; x

1

; _x

1

). Furthermore, we have

F

0; _x

=

�

0 1

0 0

�

; F

0;x

=

�

0 0

0 x

�1

2

�

=

�

0 0

0 1

�

on L

0

. Thus,

rankF

0;x; _x

= 2; orankF

0;x; _x

= 0; rankF

0; _x

= 1:

With Z

T

2

= [ 0 1 ℄, we then obtain

rankZ

T

2

F

0;x

= rank[ 0 1 ℄ = 1;

and with T

T

2

= [ 1 0 ℄ �nally

rankF

_x

T

2

= 0:

Hene, we get the quantities r = 2, v = 0, a = 1, and d = 0. Hypothesis 1 is not satis�ed,

sine d 6= m � a � v = 1. If we would drop part 3 of Hypothesis 1, there would be no

ondition on v and we ould simply hoose v = 1 to satisfy all remaining requirements. To

hek Hypothesis 1 for � = 1 we must deal with F

1

= 0, whih onsists of the equations

_x

2

= 0; log x

2

= 0; �x

2

= 0;

_x

2

x

2

= 0:

7



The set

L

1

= f(t; x

1

; x

2

; _x

1

; _x

2

; �x

1

; �x

2

) j x

2

= 1; _x

2

= 0; �x

2

= 0g

is a manifold parametrized by (t; x

1

; _x

1

; �x

1

). Furthermore, we have

F

1; _x;�x

=

2

6

6

4

0 1 0 0

0 0 0 0

0 0 0 1

0 x

�1

2

0 0

3

7

7

5

=

2

6

6

4

0 1 0 0

0 0 0 0

0 0 0 1

0 1 0 0

3

7

7

5

and

F

1;x

=

2

6

6

4

0 0

0 x

�1

2

0 0

0 �x

�2

2

_x

2

3

7

7

5

=

2

6

6

4

0 0

0 1

0 0

0 0

3

7

7

5

on L

1

. Thus,

rankF

1;x; _x;�x

= 3; orankF

1;x; _x;�x

= 1; rankF

1; _x;�x

= 2:

Proeeding as above, we ompute

Z

T

2

=

�

0 1 0 0

1 0 0 �1

�

; T

2

=

�

1

0

�

;

and

rankZ

T

2

F

0;x

= rank

�

0 1

0 0

�

= 1; rankF

_x

T

2

= rank

�

0

0

�

= 0:

Hene, Hypothesis 1 is satis�ed with � = 1, r = 2, v = 1, a = 1, and d = 0.

Theorem 2 states that every (suÆiently smooth) solution x of the original system (1)

also solves the redued systems (20) and (21). To show that the redued systems reet (at

least loally) the properties of the original system onerning solvability and struture of

the solution set, we need the onverse diretion of this statement. The following theorem

gives suÆient onditions.

Theorem 3 Let F in (1) be suÆiently smooth and satisfy Hypothesis 1 with �, a, d, v

and with �+1 (replaing �), a, d, v. Let z

0

�+1

2 L

�+1

be given and let the parametrization p

in (15) for F

�+1

inlude _x

2

. Then, for every funtion x

2

2 C

1

(I;R

n�a�d

) with x

2

(t

0

) = x

20

,

_x

2

(t

0

) = _x

20

the redued problem (21) has unique solutions x

1

and x

3

satisfying x

1

(t

0

) = x

10

.

Moreover, these together loally solve the original problem.

Proof. By assumption, there exists (loally with respet to z

0

�+1

2 L

�+1

) a parametrization

(t; x

1

; x

2

; p), where p is hosen out of ( _x; : : : ; x

(�+2)

), with

F

�+1

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0:

8



This inludes the equation

F

�

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0 (23)

with trivial dependene on x

(�+2)

as well as

d

dt

F

�

(t; x

1

; x

2

;R(t; x

1

; x

2

);H(t; x

1

; x

2

; p)) � 0: (24)

Equation (23) implies that (omitting arguments)

F

�;t

+ F

�;x

3

R

t

+ F

�; _x;:::;x

(�+2)

H

t

� 0;

F

�;x

1

;x

2

+ F

�;x

3

R

x

1

;x

2

+ F

�; _x;:::;x

(�+2)

H

x

1

;x

2

� 0;

F

�; _x;:::;x

(�+2)

H

p

� 0:

(25)

The relation

d

dt

F

�

= 0 has the form

F

�;t

+ F

�;x

1

_x

1

+ F

�;x

2

_x

2

+ F

�;x

3

_x

3

+ F

�; _x;:::;x

(�+1)

2

6

4

�x

.

.

.

x

(�+2)

3

7

5

= 0:

Inserting the parametrization yields that (24) an be written as

F

�;t

+ F

�;x

1

H

1

+ F

�;x

2

H

2

+ F

�;x

3

H

3

+ F

�; _x;:::;x

(�+1)

H

4

� 0;

where H

i

, i = 1; : : : ; 4, are the parts of H orresponding to _x

1

, _x

2

, _x

3

, and the remaining

variables, respetively. Multipliation with Z

T

2

(orresponding to Hypothesis 1 with �, a,

d, v) gives

Z

T

2

F

�;t

+ Z

T

2

F

�;x

1

H

1

+ Z

T

2

F

�;x

2

H

2

+ Z

T

2

F

�;x

3

H

3

� 0:

Inserting the relations (25) and observing that Z

T

2

F

�;x

3

is nonsingular, we �nd

Z

T

2

F

�;x

3

(H

3

�R

t

�R

x

1

H

1

�R

x

2

H

2

) � 0;

or

H

3

= R

t

+R

x

1

H

1

+R

x

2

H

2

;

that is

_x

3

= R

t

+R

x

1

_x

1

+R

x

2

_x

2

:

In summary, the derivative array F

�+1

= 0 implies that

(a) Z

T

1

F (t; x

1

; x

2

; x

3

; _x

1

; _x

2

; _x

3

) = 0;

(b) x

3

= R(t; x

1

; x

2

);

() _x

3

= R

t

(t; x

1

; x

2

) +R

x

1

_x

1

(t; x

1

; x

2

) +R

x

2

(t; x

1

; x

2

) _x

2

:

(26)

Elimination of x

3

and _x

3

from (26a) gives

_x

1

= L(t; x

1

; x

2

; _x

2

):

9



In partiular, _x

1

and _x

3

are not part of the parametrization.

Sine _x

2

is part of p, the following onstrution is possible. Let x

2

= x

2

(t) and _x

2

= _x

2

(t).

Let p = p(t) be arbitrary but onsistent to the hoie of _x

2

and to the initial value z

0

�+1

.

Finally, let x

1

= x

1

(t) and x

3

= x

3

(t) be the solution of the initial value problem

Z

T

1

F (t; x

1

; x

2

(t); x

3

; _x

1

; _x

2

(t); _x

3

) = 0; x

1

(t

0

) = x

10

x

3

= R(t; x

1

; x

2

(t)):

Although _x

1

and _x

3

are not part of the parametrization, we automatially get _x

1

= _x

1

(t)

and _x

3

= _x

3

(t). Thus, we have

F

�+1

(t; x

1

(t); x

2

(t); x

3

(t); _x

1

(t); _x

2

(t); _x

3

(t);H

4

(t; x

1

(t); x

2

(t); p(t)) � 0;

for all t in a neighborhood of t

0

, or

F (t; x

1

(t); x

2

(t); x

3

(t); _x

1

(t); _x

2

(t); _x

3

(t)) � 0

for the �rst blok.

Corollary 4 Let F in (1) be suÆiently smooth and satisfy Hypothesis 1 with �, a, d, v

and with � + 1 (replaing �), a, d, v and assume that a + d = n. For every z

0

�+1

2 L

�+1

the redued problem (21) has a unique solution satisfying the initial value given by z

0

�+1

.

Moreover, this solution loally solves the original problem.

Proof. Sine a+ d = n, there is no part x

2

of x in the above onstrution.

The above orollary espeially applies to the ase of regular problems as treated in [26℄,

where we have m = n and v = 0. Together with the observation that every (suÆiently

smooth) solution also solves the redued problem, we have now found suÆient ondi-

tions that guarantee that original problem and redued problem (loally) show the same

behaviour onerning solvability and the struture of the solution set.

Remark 1 Let the assumptions of Theorem 3 hold and let x

20

and _x

20

be the part of

z

0

�+1

2 L

�+1

belonging to x

2

and _x

2

. If ~x

20

and

_

~x

20

are suÆiently lose to x

20

and _x

20

,

they are part of a ~z

0

�+1

2 L

�+1

lose to z

0

�+1

and we an apply Theorem 3 with z

0

�+1

replaed

by ~z

0

�+1

.

Remark 2 Note that in Theorem 3 we an drop the assumption that _x

2

is part of the

parameters if we know from the struture of the problem that L in (21) does not depend

on _x

2

. In partiular, this is the ase if we an hoose the splitting (x

1

; x

2

; x

3

) in suh a way

that the original problem does not depend on _x

2

and on omponents of _x

3

that depend

on _x

2

. An important onsequene of this speial ase is that we need not to require the

initial ondition _x

2

(t

0

) = _x

20

. This also applies to Remark 1.

10



Remark 3 Although we must deal with F

�+1

in order to show that the solutions of the

redued problem also solve the original problem, it is suÆient to onsider F

�

only in order

to obtain the redued problem and to solve it. This ould already be observed in the linear

ase, see [25℄. Compare also with the numerial proedures in Setion 5.

Remark 4 The redued problems (20) and (21) may already follow from F

`

= 0 with

` < �, although � is hosen as small as possible. This ours in ases where further

di�erentiations only lead to trivial equations 0 = 0 (when onsisteny is guaranteed). To

hek the onsisteny of the model, however, it is still neessary to onsider F

�

= 0.

Example 3 Consider the problem of Example 2. The redued problem simply onsists

of log x

2

= 0 and is already implied by F

0

= 0. The same holds for the slightly modi�ed

problem

_x

2

= 1; log x

2

= 0:

Observe that the orresponding set L

0

is nonempty. Di�erentiating one gives

�x

2

= 0; x

�1

2

_x

2

= 0

implying the ontradition _x

2

= 0. Thus, L

1

is empty and the modi�ed problem is not

solvable.

4 Appliation to ontrol problems

In this setion we apply the results from the previous setion to ontrol problems of the form

(2). In the linear ase this has been the topi of numerous publiations [3, 4, 5, 6, 32, 33, 27℄.

In partiular in [5, 6, 32, 33, 27℄ the general ase of nonsquare ontrol problems has been

disussed onerning solvability, regularizability, model onsisteny and onditions have

been derived that guarantee that the system an be regularized by state or output feedbak

or how it an be reinterpreted as a square strangeness-free system. To do this, redundanies

are removed, free variables are reinterpreted as ontrols and �xed ontrols are reinterpreted

as state variables. In the nonlinear ase we have already shown under whih irumstanes

redundanies an be removed, but we will assume in the following that a reinterpretation

of variables is not neessary, i.e., ontrols are variables that an be freely hosen and state

variables are variables that are determined from the system, one a ontrol has been hosen.

In the behaviour approah suh an assumption is not really neessary but it simpli�es the

notation whih is already quite involved.

Consider the ontrol problem without the output equation, i. e., F (t; �; u;

_

�) = 0 with

� 2 R

n

�

, u 2 R

n

u

and n = n

�

+ n

u

. In a behaviour framework, we set

x =

�

�

u

�

11



and apply the theory of the previous setion. This gives loally a redued problem of the

form

^

F

1

(t; �; u;

_

�) = 0;

^

F

2

(t; �; u) = 0

(27)

orresponding to (20). To perform the next steps of the onstrution would require to

split x into (x

1

; x

2

; x

3

) where eah part may onsist of omponents of both � and u. To

avoid suh a splitting we proeed as follows. Starting from (20) in the form

^

F

1

(t; x; _x) = 0;

^

F

2

(t; x) = 0;

Hypothesis 1 yields (without arguments)

^

F

2;x

T

2

= 0; rankT

2

= n� a; rank

^

F

1; _x

= d:

Choosing T

0

2

suh that [ T

0

2

T

2

℄ is nonsingular, we �nd

rank

�

^

F

1; _x

^

F

2;x

�

= rank

�

^

F

1; _x

T

0

2

^

F

1; _x

T

2

^

F

2;x

T

0

2

0

�

= rank

^

F

1; _x

T

2

+

^

F

2; _x

T

0

2

= d+ a:

Thus, the given matrix has full row rank. In the present ontext, this means that the

(d+ a; n)-matrix

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

(28)

has full row rank. Observe that in general �xing a ontrol u does not give a regular

strangeness-free redued problem (in the sense of [26℄), sine

"

^

F

1;

_

�

^

F

2;�

#

may be singular. An immediate question is whether it is possible to hoose a ontrol suh

that the resulting redued problem is regular and strangeness-free. Neessarily, we must

have d + a = n

�

. As in the linear ase (see [27℄) we onsider state feedbaks and output

feedbaks. In the nonlinear ase a state feedbak may have the form

u = K(t; �) (29)

leading to a losed loop redued problem

^

F

1

(t; �;K(t; �);

_

�) = 0;

^

F

2

(t; �;K(t; �)) = 0:

(30)

The ondition for this system to be regular and strangeness-free reads

"

^

F

1;

_

�

^

F

2;�

+

^

F

2;u

K

�

#

nonsingular.

12



Sine (28) has full rank, the existene of a suitable

~

K = K

�

follows from the theory for

linear problems with onstant oeÆients. Thus a possible state feedbak is given by

u(t) =

~

K�(t) + w(t); (31)

where the funtion w an be used to satisfy initial onditions of the form

u

(`)

(t

0

) =

~

K�

(`)

0

+ w

(`)

(t

0

) = u

(`)

0

: (32)

Hene, we have proved the following theorem.

Theorem 5 Suppose that the ontrol problem (2) in behaviour form satis�es Hypothesis 1

with �, a, d, v and assume that d + a = n

�

. Then there (loally) exists a state feedbak

u = K(t; �) satisfying u

0

= K(t

0

; �

0

) and _u

0

= K

t

(t

0

; �

0

) +K

�

(t

0

; �

0

)

_

�

0

suh that the losed

loop redued problem is regular and strangeness-free.

Corollary 6 Suppose that the ontrol problem (2) in behaviour form satis�es Hypothe-

sis 1 with �, a, d, v and with � + 1 (replaing �), a, d, v and assume that d + a = n

�

.

Furthermore, let u be a ontrol in the sense that u and _u an be hosen as part of the

parametrization of L

�+1

at z

0

�+1

2 L

�+1

. Let u = K(t; �) be a state feedbak whih satis�es

the initial onditions u

0

= K(t

0

; �

0

) and _u

0

= K

t

(t

0

; �

0

) +K

�

(t

0

; �

0

)

_

�

0

and yields a regular

and strangeness-free losed loop redued system. Then, the losed loop redued problem has

a unique solution satisfying the initial values given by z

0

�+1

. Moreover, this solution loally

solves the losed loop problem

F (t; �;K(t; �);

_

�) = 0:

Proof. The proof follows the lines of that of Theorem 3.

Example 4 Consider the ontrol problem (4) of Example 1 and the orresponding be-

haviour system (5). To hek Hypothesis 1 for � = 0 we use

x =

2

4

�

1

�

2

u

3

5

:

The set

L

0

= f(t; �

1

; �

2

; u;

_

�

1

;

_

�

2

; _u) j �

2

= exp(� sin u);

_

�

2

= 0g:

is a manifold parametrized by (t; �

1

; u;

_

�

1

; _u). Furthermore, we have

F

0; _x

=

�

0 1 0

0 0 0

�

; F

0;x

=

�

0 0 0

0 �

�1

2

os u

�

=

�

0 0 0

0 exp(sinu) os u

�

on L

0

. Thus,

rankF

0;x; _x

= 2; orankF

0;x; _x

= 0; rankF

0; _x

= 1:
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With Z

T

2

= [ 0 1 ℄, we then obtain

rankZ

T

2

F

0;x

= rank[ 0 exp(sin u) os u ℄ = 1; T

2

=

2

4

1 0

0 � os u

0 exp(sinu)

3

5

;

and �nally

rankF

_x

T

2

= rank

�

0 � os u

0 0

�

= 1;

when we restrit u to a neighborhood of zero. Hene, Hypothesis 1 is satis�ed with � = 0,

r = 2, v = 0, a = 1, and d = 1. For z

0

0

= (0; 0; 1; 0; 0; 1; 0) we an hoose Z

T

1

= [ 1 0 ℄ to

obtain the redued problem

_

�

2

= 0; log �

2

+ sinu = 0:

Note that the redued problem here oinides with the original problem due to its speial

form (we have � = 0 and do not need to apply any transformations to separate the algebrai

equations) and due to the speial hoie for Z

T

1

. Fixing the ontrol u aording to u = 0

gives a losed loop system that is not regular and strangeness-free. Indeed, it satis�es

Hypothesis 1 only for � = 1 and it even inludes a trivial equation due to a redundany,

p. Example 2. To get a regular and strangeness-free losed-loop redued problem, we look

for a regularizing state feedbak. Sine

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

=

�

0 1 0

0 �

�1

2

os u

�

=

�

0 1 0

0 1 1

�

at z

0

0

, we an hoose

~

K = [ 1 0 ℄ or u = �

1

observing the initial values given by z

0

0

. The

orresponding losed loop redued problem is given by

_

�

2

= 0; log �

2

+ sin �

1

= 0:

By onstrution, it is regular and strangeness-free near the initial value given by z

0

0

. For

�

1

(0) = 0, we partiularly get the unique solution �

1

(t) = 0, �

2

(t) = 1.

We turn now to ontrol problems that inlude the output equation (3), i. e., F (t; �; u;

_

�) =

0 together with y = G(t; �), where � 2 R

n

�

, u 2 R

n

u

, y 2 R

n

y

and n = n

�

+ n

u

+ n

y

. In a

behaviour framework, we set

x =

2

4

�

u

y

3

5

and again apply the theory of the previous setion. Due to the expliit form of the output

equation, it is obvious that it beomes part of the algebrai onstraints and does not a�et
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the other onstraints, p. the linear ase in [27℄. Therefore, the redued problem has the

form

^

F

1

(t; �; u;

_

�) = 0;

^

F

2

(t; �; u) = 0;

y = G(t; �):

(33)

If we onsider output feedbaks

u = K(t; y); (34)

the losed loop redued problem has the form

^

F

1

(t; �;K(t; G(t; �));

_

�) = 0;

^

F

2

(t; �;K(t; g(t; �))) = 0:

(35)

The ondition for this system to be regular and strangeness-free reads

"

^

F

1;

_

�

^

F

2;�

+

^

F

2;u

K

y

G

�

#

=

"

^

F

1;

_

�

0

^

F

2;�

^

F

2;u

#

�

I

K

y

G

�

�

nonsingular. (36)

Note that we get bak the state feedbak ase if y = �. To guarantee that ondition (36)

holds for some hoie of K

y

, we need an extra ondition whih we an hek loally via

the following proedure, see Algorithm 1 in [27℄. As there, this algorithm diretly allows

the onstrution of a suitable linear output feedbak that satis�es the above regularity

ondition.

Algorithm 1 Let the Jaobians E

1

=

^

F

1;

_

�

, A

2

=

^

F

2;�

, B

2

=

^

F

2;u

and C = G

�

of the

redued system orresponding to z

0

�

2 L

�

be given.

1. Determine an orthogonal matrix Q = [Q

1

Q

2

℄ suh that

E

1

[Q

1

Q

2

℄ = [ E

11

0 ℄;

where E

11

has size (d; d) and is nonsingular.

2. Determine orthogonal matries U = [ U

1

U

2

℄ and V = [ V

1

V

2

℄ suh that

U

T

A

2

Q

2

V =

�

A

22

0

0 0

�

;

where A

22

is of size (â; â) and nonsingular. Set � = a� â and hek if rankU

T

2

B

2

= �.

3. Determine the rank ! of CQ

2

V

2

. In partiular, determine an orthogonal matrix

W = [W

1

W

2

℄ suh that

CQ

2

V

2

W = [ C

3

0 ℄;

where C

3

has full olumn rank !.
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Theorem 7 Suppose that the output ontrol problem, onsisting of (2) and (3) in behaviour

form, satis�es Hypothesis 1 with �, a, d, v and assume that d+a = n

�

as well as � = ! for

the quantities determined by Algorithm 1. Then there (loally) exists an output feedbak

u = K(t; y) satisfying u

0

= K(t

0

; y

0

) and _u

0

= K

t

(t

0

; y

0

)+K

�

(t

0

; y

0

) _y

0

suh that the losed

loop redued problem is regular and strangeness-free.

Proof. Under the given assumptions, the linear theory (involving Algorithm 1) yields a

suitable matrix

~

K = K

y

suh that (36) holds. The laim then follows for the linear output

feedbak

u(t) =

~

Ky(t) + w(t);

where the funtion w is used to satisfy the given initial onditions.

Corollary 8 Suppose that the output ontrol problem, onsisting of (2) and (3) in be-

haviour form, satis�es Hypothesis 1 with �, a, d, v and with � + 1 (replaing �), a, d, v

and assume that d+ a = n

�

as well as � = ! for the quantities determined by Algorithm 1.

Furthermore, let u be a ontrol in the sense that u and _u an be hosen as part of the

parametrization of L

�+1

at z

0

�+1

2 L

�+1

. Let u = K(t; y) be an output feedbak whih

satis�es the initial onditions u

0

= K(t

0

; y

0

) and _u

0

= K

t

(t

0

; y

0

) +K

�

(t

0

; y

0

) _y

0

and yields

a regular and strangeness-free losed loop redued system. Then, the losed loop redued

problem has a unique solution satisfying the initial values given by z

0

�+1

. Moreover, this

solution loally solves the losed loop problem

F (t; �;K(t; G(t; �));

_

�) = 0:

Proof. Again, the proof follows the lines of that of Theorem 3.

Remark 5 As in the ase of the previous setion, it is suÆient to onsider F

�

in order to

ompute the desired regularizing state or output feedbak and the solution of the losed

loop system.

Remark 6 Although all obtained results were of loal nature, they an be globalized as it

an be done in the ase of ordinary di�erential equations (see, e. g., [21, Th. I.7.4℄). Like

there, we an ontinue the proess (under the assumption of suÆient smoothness) until

we reah the boundary of L

�

or L

�+1

, respetively. Note that this may happen in �nite

time.

Remark 7 Suppose that for a given ontrol problem (2) the variable � an be split into

(�

1

; �

2

) in suh a way that the redued problem (27) an be transformed to

_

�

1

= L(t; �

1

; u);

�

2

= R(t; �

1

; u)

16



aording to (21). Then for every u with u(t

0

) suÆiently lose to u

0

the losed loop

redued problem obviously is regular and strangeness-free. Due to the struture of the

problem (p. Remark 2), we do not need to require that _u is part of the parameters in

order to get the results of Corollaries 6 and 8. Aordingly, we do not need to require that

_u(t

0

) = _u

0

.

Example 5 A ontrol problem for a multibody system has the form (see, e. g., [34℄)

_p = q;

M(p) _q = f(t; p; q; u) + g

p

(p)

T

�; p 2 R

n

p

; � 2 R

n

�

g(p) = 0;

sine the ontrol typially ats via external fores. Assuming that g

p

(p) has full row

rank and M(p) is symmetri and positive de�nite, Hypothesis 1 is satis�ed with � = 2,

d = 2(n

p

� n

�

), a = 3n

�

, and v = 0, provided the model is onsistent aording to L

�

6= ;.

The orresponding redued problem has the form

Z

T

11

( _p� q) = 0;

Z

T

12

(M(p) _q � f(t; p; q; u)� g

p

(p)

T

�) = 0;

g(p) = 0;

g

p

(p)q = 0;

g

pp

(q; q) + g

p

(p)M(p)

�1

[f(t; p; q; u) + g

p

(p)

T

�℄ = 0

and an be shown to be regular and strangeness-free for given u near the initial value. Due

to the assumptions, we an split p = (p

1

; p

2

) and q = (q

1

; q

2

) suh that in the notation of

the previous setion

x

1

= (p

1

; q

1

); x

2

= u; x

3

= (p

2

; q

2

; �)

is a possible hoie. The speial struture of the redued problem implies that from _x

3

only

_

� may depend on _u. Thus, Remarks 2 and 7 apply.

5 Numerial methods

The theoretial results of the previous two setions diretly imply numerial methods for

the omputation of the desired solutions. In the general ase of Setion 3 we an use the

following numerial proedures.

To ompute a onsistent initial value at time t

0

, i. e., a value x

0

that satis�es the algebrai

onstraints, we must solve

F

�

(t

0

; x

0

; _x

0

; : : : ; x

(�+1)

0

) = 0 (37)

for (x

0

; _x

0

; : : : ; x

(�+1)

0

). The lassial approah to solve suh systems is the Gau�-Newton

method. For a nonlinear problem F() = 0 it generates a sequene 

k

of approximations

starting with an initial guess 

0

by



k+1

= 

k

�F



(

k

)

�

F(

k

); (38)
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where F



(

k

)

�

denotes a onvenient (outer or left) generalized inverse (see, e. g., [7℄) of

F



(

k

). Due to the required onsisteny of the equations, i. e., L

�

6= ;, we expet (for a

suÆiently good initial guess) superlinear onvergene of the Gau�-Newton method to a

solution of the system. For more details see Remark 8 below.

To perform an integration step from t

0

to t

1

= t

0

+ h we �rst determine a projetion P

that selets a suitable set of omponents from x whih an serve as ontrols (in the notation

of Setion 3 this was x

2

) and a possible Z

1

at z

0

�

aording to Hypothesis 1. For a suitable

ontrol u satisfying

u(t

0

) = Px

0

; _u(t

0

) = P _x

0

;

we ombine the equation F

�

(z

�

) = 0, whih implies that the algebrai onstraints are

ful�lled, with the disretized di�erential equations. Denoting by D

h

x a BDF-disretization

of _x (see, e. g., [1℄), we obtain

F

�

(t

1

; x

1

; _x

1

; : : : ; x

(�+1)

1

) = 0; Px

1

= u(t

1

);

Z

T

1

F (t

1

; x

1

; P _x

1

+ (I � P )D

h

x

1

) = 0; P _x

1

= _u(t

1

);

(39)

whih must be solved for (x

1

; _x

1

; : : : ; x

(�+1)

1

). Again we may apply the Gau�-Newton

method and expet superlinear onvergene. Note that the quality of an initial guess

is here not ruial, sine we an simple redue the stepsize h.

In the ase of a ontrol problem without output equation, we solve

F

�

(t

0

; �

0

; u

0

;

_

�

0

; _u

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

) = 0 (40)

for (�

0

; u

0

;

_

�

0

; _u

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

) to obtain onsistent initial values. Then, we determine

Z

1

as above and a suitable

~

K yielding a regularizing state feedbak as desribed in the

previous setion and set w = u

0

�

~

K�

0

. Finally, we perform an integration step by solving

F

�

(t

1

; �

1

;

~

K�

1

+ w;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

K�

1

+ w;D

h

�

1

) = 0

(41)

for (�

1

;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

). Under the assumptions of Theorem 5, the Gau�-Newton

method will show superlinear onvergene for suÆiently small h.

Inluding the output equation, we aordingly solve

F

�

(t

0

; �

0

; u

0

; y

0

;

_

�

0

; _u

0

; _y; : : : ; �

(�+1)

0

; u

(�+1)

0

; y

(�+1)

0

) = 0 (42)

for (�

0

; u

0

; y

0

;

_

�

0

; _u

0

; _y

0

; : : : ; �

(�+1)

0

; u

(�+1)

0

; y

(�+1)

0

) to obtain onsistent initial values. We

again determine Z

1

and a suitable

~

K yielding a regularizing output feedbak and set

w = u

0

�

~

Ky

0

. Here we must solve

F

�

(t

1

; �

1

;

~

Ky

1

+ w; y

1

;

_

�

1

; _u

1

; _y

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

; y

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

Ky

1

+ w;D

h

�

1

) = 0

(43)
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for (�

1

; y

1

;

_

�

1

; _u

1

; _y

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

; y

(�+1)

1

). Due to the expliit form of the output equa-

tion, we an remove it and all its derivatives from F

�

. Denoting the resulting funtion by

~

F

�

, it is suÆient to solve

~

F

�

(t

1

; �

1

;

~

KG(t

1

; �

1

) + w;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) = 0;

Z

T

1

F (t

1

; �

1

;

~

KG(t

1

; �

1

) + w;D

h

�

1

) = 0

(44)

for (�

1

;

_

�

1

; _u

1

; : : : ; �

(�+1)

1

; u

(�+1)

1

) and we may determine (y

1

; _y

1

; : : : ; y

(�+1)

1

) by the expliit

formulas given by the output equation and its derivatives. Still, we expet superlinear

onvergene due to Theorem 7 for suÆiently small h.

Having performed an integration step, we always end up with a new onsistent value on

L

�

, sine in all ases the equation F

�

(z

�

) = 0 is part of the numerial proedure. Thus, we

an iteratively proeed with the integration giving at least pieewise smooth regularizing

ontrols and assoiated solutions.

Remark 8 In order to perform the Gau�-Newton iteration (38) we must speify how we

hoose the generalized inverse F



()

�

. Sine we know the rank of the Jaobian at the desired

solution (say r as for (37)), we an proeed as follows. We ompute a QR-deomposition

with olumn pivoting of F



(

0

) of the form

Q

T

0

F



(

0

)� =

�

R

0

S

0

0 �

0

�

;

where Q

0

is orthogonal, R

0

is nonsingular with rank r, and � is a permutation matrix.

For  suÆiently lose to 

0

, we an determine a QR-deomposition of F



()� of the form

Q()

T

F



()� =

�

R() S()

0 �()

�

:

This an be done in suh a way that Q, R, S, and � depend smoothly on . Moreover, R()

will still be nonsingular and �() will be small if we are suÆiently lose to the solution

set. We then de�ne

F



()

�

= �

�

R() S()

0 0

�

+

Q()

T

;

where the supersript

+

denotes the Moore-Penrose pseudoinverse, see e. g. [7℄. By

onstrution, F



()

�

is an outer inverse of F



() and depends smoothly on . One an

now show that for this Gau�-Newton proess (and suÆiently good initial guess 

0

), the

assumptions of Theorem 4 in [13℄ are satis�ed giving the laimed superlinear onvergene.

6 Conlusions and outlook

In this paper we have presented the theoretial analysis for general over- and underdeter-

mined nonlinear di�erential-algebrai equations. Suh equations inlude ontrol problems

19



and allow the analysis of systems with redundant equations. We have extended the on-

ept of strangeness index to suh general systems and have shown how one an onstrut a

redued order strangeness-free system, whih forms the basis for numerial methods. We

have shown that the same approah allows to analyse ontrol problems and we have shown

how regularizing state and output feedbaks an be onstruted. We have presented the

framework of numerial methods to perform these tasks.
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