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MULTISCALE PRECONDITIONING FOR THE COUPLING OF

FEM-BEM

HELMUT HARBRECHT, FREDDY PAIVA, CRISTIAN P

�

EREZ, AND REINHOLD

SCHNEIDER

Abstrat. We apply multisale methods to the oupling of �nite and boundary element

methods to solve an exterior two dimensional Laplaian. The matries belonging to the

boundary terms of the oupled FEM-BEM system are ompressed using biorthogonal

wavelet bases developed from A. Cohen, I. Daubehies and J.-C. Feauveau [5℄. We de-

sribe di�erent solving and preonditioning tehniques. Through numerial experiments

we provide results whih orroborate the theory of [19℄ and the present paper.

AMS subjet lassi�ation: 65F35, 65M55, 65M60, 65N30, 65N55, 65R20.

Introdution

During the past deade the oupling of �nite element methods (FEM) with boundary

element methods (BEM) has been developed to ombine the advantages of both methods,

mentioning only [4, 6, 12, 19℄. Due to the large omplexity of the boundary element

part, an appliation of modern fast methods for integral equations, like Fast Multipole

Method [14℄, Panel Clustering [17℄ or wavelet approahes [1, 7, 9, 25, 23℄ seems to be

highly attrative. However, a rigorous investigation of these methods in onjuntion with

FEM-BEM oupling was missing. In [19℄ we have studied the orresponding wavelet matrix

ompression for two dimensional boundary value problems. In partiular, the boundary

integral equation an be formulated on an arti�ial interfae �. Even if a irle or a sphere

is not preferable, the geometry of this interfae an be hosen fairly simple. By suh a

hoie the wavelet approahes on � beome muh more eÆient. The questions of solving

the ompressed linear system has been defered to the present paper. Herein, we will fous

mainly pratial issues, like preonditioning and pratial implementation.

The present approah is set up as follows. First, the exterior Dirihlet boundary prob-

lem is redued to an equivalent one in a bounded domain using the so-alled two integral

formulation of the oupling [6, 12, 18℄. A smooth parameterization of the arti�ial bound-

ary � is used to simplify the analysis and numerial solution of the disrete Galerkin

sheme [19, 22℄. More preisely, the normal derivative on the boundary is substituted by

a new unknown on the interval [0; 1℄. The �nite elements on the domain are supposed

Key words and phrases. Finite element, boundary element, multisale methods, biorthogonal

wavelet bases, norm equivalenes, matrix ompression, preonditioning, fast solution.
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to be pieewise linear and ontinuous. Consequently their traes are also pieewise linear

on the interval [0; 1℄ with respet to the same parameterization as above. In the foused

ase it is suÆient to disretize the new unknown on the interval by pieewise onstant

funtions. This suggests the use of pieewise linear and pieewise onstant biorthogonal

wavelet bases with suÆiently many vanishing moments as introdued in [5℄. Then, the

wavelet matrix ompression strategy proposed in [19℄ is performed on the BEM matries.

It is worth remarking that this proedure an be eÆiently implemented, and without

loss of stability and auray [19℄ of the Galerkin sheme. We on�rm this by the given

numerial results. These results also demonstrate, ompared to the traditional boundary

element approah, a dramatial saving of the required memory and omputing time.

Sine in general, the orresponding linear system is diÆult to solve due to its ompli-

ated struture and ill-onditioning, we study several preonditioning tehniques. The

onstruted triangulation is suitable to preondition the matrix arising from the FEM

disretization by the BPX preonditioner [3℄. Moreover, for operators of nonzero order,

a simple diagonal preonditioner for the BEM matries disretized in wavelet bases is

available [10, 25℄. We apply these results ombined with the disrete wavelet transform to

onstrut, similar to [20, 21℄, a global 3-blok-preonditioner avoiding above mentioned ill-

onditioning. We use Krylov subspae methods, namely GMRES [24℄ and MINRES [23℄, as

iterative solvers for the preonditioned nonsymmetri system and its symmetri ounter-

part, respetively. Alternatively, we apply Bramble-Pasiak's CG [2℄, where a new bilinear

form enables the appliation of the CG algorithm. We show that these methods have al-

most optimal omplexity and in ombination with nested iterations we ahieve optimal

omplexity [15℄.

The paper is organized as follows. In setion 1, we introdue the model problem and

transform it via the two integral formulation into an equivalent variational formulation.

Then, the disretization of the variational formulation is desribed. In setion 2 we briey

reall the biorthogonal wavelet approximation for the oupling proposed in [19℄. Here,

aspets of the omputational implementation of our method are desribed: We show that

the hange of bases in eah iteration step for the unknown on the interval is not required,

and that, similar to the lassial approah, we have to ompute only two BEM matries,

now with respet to wavelet bases. In Setion 3, we propose preonditioning tehniques

for the resulting linear equation system. In Setion 4, through numerial experiments,

we explore the biorthogonal wavelet approximation for the oupling of FEM-BEM. We

demonstrate that the auray of the Galerkin sheme has not been deteriorated by the

ompression strategy. The di�erent solving and preonditioning tehniques are disussed

and, moreover, a nested iteration algorithm is performed. Finally, in Setion 5, we state

onluding remarks.
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Figure 1.1. The model problem.

Throughout this paper a

<

�

b expresses that a an be bounded by some onstant multiple

of b uniformly in any parameters on whih a and b may depend. Likewise a � b means

that a

<

�

b and a

>

�

b.

1. The Coupling of FEM-BEM

In this setion we introdue the given exterior boundary value problem and transform it

via the two integral formulation, f. [6, 12, 18℄, into an equivalent variational formulation,

for whih we show uniqueness and existene of the solution. The subsequent disretization

is desribed in the last subsetion yielding a Galerkin sheme without further restritions.

1.1. The model problem. We onsider as model problem an exterior Dirihlet problem

for the Laplaian in the plane. Let 


0

2 R

2

be a bounded and simply onneted domain

with Lipshitz boundary �

0

. Then, for a given ompatly supported funtion f 2 L

2

(R

2

n




0

) we seek u suh that

�4u = f in R

2

n 


0

;

u = 0 on �

0

;(1.1)

u(x) = O(1) as jxj ! 1:

Aording to the hypothesis on f we hoose a smooth bounded seond domain 


1

on-

taining 


0

and suppf . Its boundary � := �


1

divides R

2

n 


0

into an annular region 


(bounded by �

0

and �) and an unbounded exterior domain 


+

:= R

2

n 


1

, as shown in

Figure 1.1.
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With this setup, (1.1) an be split in a oupled interior and exterior boundary value

problem

�4u = f in 
;

u = 0 on �

0

;

4u = 0 in 


+

;

u(x) = O(1) as jxj ! 1;(1.2)

lim

x!x

0

x2


u(x) = lim

x!x

0

x2


+

u(x) for all x

0

2 �;

lim

x!x

0

x2


�u

��

(x) = lim

x!x

0

x2


+

�u

��

(x) for all x

0

2 �:

We introdue the single layer operator V, the double layer operator K, its adjoint K

?

and

the hypersingular operator W de�ned by

(Vu)(x) :=

Z

�

E(x; y)v(y)ds

y

;

(Ku)(x) :=

Z

�

�

��

y

E(x; y)v(y)ds

y

;

(K

?

u)(x) :=

Z

�

�

��

x

E(x; y)v(y)ds

y

;

(Wu)(x) := �

�

��

x

Z

�

�

��

y

E(x; y)v(y)ds

y

;

where the fundamental solution E(x; y) is given by

E(x; y) = �

1

2�

log jx� yj:(1.3)

If we denote by L

2

(�) the funtion spae of all squared integrable funtions on � with

respet to the anonial inner produt

(u; v)

L

2

(�)

=

Z

�

u(x)v(x)ds

x

and by H

s

(�) (s 2 R) the orresponding Sobolev spaes, then, in this ontext, V de�nes

an operator of order �1

V : H

�1=2

(�)! H

1=2

(�);

K, K

?

are zero order operators

K : H

1=2

(�)! H

1=2

(�); K

?

: H

�1=2

(�)! H

�1=2

(�);

and W is an operator of order +1

W : H

1=2

(�)! H

�1=2

(�):

Finally, introduing the variables � :=

�u

��

and  := lim

jxj!1

u the oupled system (1.2)

lead us to the following nonloal boundary value problem:
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Find (u; �; ) suh that

�4u = f in 
;

u = 0 on �

0

;

�

1

2

�K

�

u+ V� �  = 0 on �;(1.4)

�Wu+

�

1

2

�K

�

� = � on �;

Z

�

�(x)ds

x

= 0:

This system is the so-alled two integral formulation, whih is equivalent to our original

model problem (1.1), see for example [6, 12, 18℄.

1.2. The variational formulation. The smooth boundary � an be parameterized by

a 1-periodi funtion  : [0; 1℄! � suh that for all t 2 [0; 1℄ there holds

�(t) := j

0

(t)j > 0:(1.5)

In addition to the spaes L

2

(�) and H

s

(�) we introdue the (1-periodi) spaes L

2

(0; 1)

and H

s

(0; 1), respetively. Preisely, let L

2

(0; 1) be the spae of all 1-periodi squared

integrable funtions. Its inner produt is denoted by

hv; wi =

Z

1

0

v(t)w(t)dt:(1.6)

Then, for any real number s the 1-periodi Sobolev spae H

s

(0; 1) is de�ned as the losure

with respet to the norm

kvk

2

H

s

(0;1)

=

X

n2Z

(1 + jnj)

2s

jv̂(n)j

2

of the spae of all 1-periodi C

1

-funtions. Here, v̂(n) indiate the Fourier oeÆients

v̂(n) =

Z

1

0

e

�2�ins

vds; n 2 Z:

Then, learly, sine (1.5) is provided, there holds for v 2 H

s

(�) the norm equivalene

kv Æ k

H

s

(0;1)

� kvk

H

s

(�)

:(1.7)

Next, we introdue produt spaesM := H

1=2

(0; 1)�H

�1=2

(0; 1) and N := H

�1=2

(0; 1)�R

equipped by the produt norms

k(v; w)k

2

M

:= kvk

2

H

1=2

(0;1)

+ kwk

2

H

�1=2

(0;1)

8 (v; w) 2M;

k(v; w)k

2

N

:= kvk

2

H

�1=2

(0;1)

+ jwj

2

8 (v; w) 2 N:
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Further, let a : H

1

(
) � H

1

(
) ! R, B : M �M ! R and b : N � N ! R be bilinear

forms de�ned by

a(u; v) =

Z




rurvdx;

B((�; �); (!; Æ)) = h!;W�i � h(

1

2

�K)!; �i+ h(

1

2

�K)�; Æi + hV �; Æi;(1.8)

b((�; ); (Æ; d)) = hd; �i � h; Æi;

where the integral operators V : H

�1=2

(0; 1) ! H

1=2

(0; 1), K : H

1=2

(0; 1) ! H

1=2

(0; 1)

and W : H

1=2

(0; 1)! H

�1=2

(0; 1) are given by

(V u)(s) :=

Z

1

0

E((s); (t))u(t)dt;

(Ku)(s) :=

Z

1

0

�

��

y

E((s); (t))u(t)�(t)dt;

(Wu)(s) := �

�

��

x

Z

1

0

�

��

y

E((s); (t))u(t)�(s)�(t)dt;

with E(�; �) from (1.3). We set H := H

1

(
) � H

�1=2

(�) � R and de�ne a bilinear form

A : H �H ! R by

A((u; �; ); (v; �; d)) := a(u; v) +B((u Æ ; (� Æ )�); (v Æ ; (� Æ )�))

+ b(((� Æ )�; ); ((� Æ )�; d)):(1.9)

Introduing the linear funtional F : H ! R,

F (v; �; d) =

Z




fvdx;

one readily veri�es that the variational formulation of (1.4) is given by:

Seek (u; �; ) 2 H suh that

A((u; �; ); (v; �; d)) = F (v; �; d)(1.10)

for all (v; �; d) 2 H.

Existene and uniqueness of the solution of this variational formulation is shown by the

following lemma.

Lemma 1.1. Under the assumption that � has a onformal radius < 1, the variational

formulation (1.10) has a unique solution (u; �; ) 2 H for all F 2 H

0

.

Proof. 1. A : H � H ! R is ontinuous: It is well known that the bilinear form a :

H

1

(
)�H

1

(
)! R is ontinuous

a(u; v) =

Z




rurvdx

<

�

kuk

H

1

(
)

kvk

H

1

(
)

:

Moreover, sine the operators V , W and K are ontinuous [16℄, one has

B((�; �); (!; Æ))

<

�

k(�; �)k

M

k(!; Æ)k

M

:
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Next, involving H�older's inequality, for b : N �N ! R there holds

jb((�; ); (Æ; d))j = jhd; �i � h; Æij

� jdj k�k

H

�1=2

(0;1)

+ jj kÆk

H

�1=2

(0;1)

� k(�; )k

N

k(Æ; d)k

N

:

Setting

� := u Æ ; ! := v Æ ; � := (� Æ )�; Æ := (� Æ )�;(1.11)

observing (1.7) and by the trae theorem

k�k

H

1=2

(0;1)

= ku Æ k

H

1=2

(0;1)

<

�

kuk

H

1

(
)

;

k!k

H

1=2

(0;1)

= kv Æ k

H

1=2

(0;1)

<

�

kvk

H

1

(
)

;

one has proved the ontinuity of A : H �H ! R

A((u; �; ); (v; �; d))

<

�

k(u; �; )k

H

k(v; �; d)k

H

:

2. A : H �H ! R is H-oerive: The bilinear form a : H

1

(
)�H

1

(
)! R is ellipti

a(u; u) =

Z




rurudx

>

�

kuk

2

H

1

(
)

:

Moreover, we �nd

B((�; �); (�; �)) = h�;W�i � h(

1

2

�K)�; �i+ h(

1

2

�K)�; �i+ hV �; �i

= h�;W�i+ hV �; �i:

If � has a onformal radius < 1, the single layer potential V : H

�1=2

(0; 1) !

H

1=2

(0; 1) is a symmetri, positive de�nite operator [16℄, hene,

hV �; �i

>

�

k�k

2

H

�1=2

(0;1)

:

Besides, the hypersingular operator W : H

1=2

(0; 1) ! H

�1=2

(0; 1) is symmetri and

positive semide�nite [16℄

khW�;�ik

2

H

�1=2

(0;1)

� 0:

Combining both yields

B((�; �); (�; �))

>

�

k�k

2

H

�1=2

(0;1)

:

For the bilinear form b : N �N ! R we obtain

b((�; ); (�; )) = �h; �i + h; �i = 0:

Summerized one gets with the settings (1.11)

�

�

A((u; �; ); (u; �; )) + kjj

2

�

�

>

�

k(u; �; )k

2

H

; k > 0;

whih signi�es the H-oerivity. Note, for the latter step we again employed the norm

equivalene (1.7).
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3. A : H �H ! R is injetive: Let be (u

1

; �

1

; 

1

); (u

2

; �

2

; 

2

) 2 H arbitrarily but �xed

and assume

A((u

1

� u

2

; �

1

� �

2

; 

1

� 

2

); (v; �; d)) = 0 8 (v; �; d) 2 H:

Sine it holds

A((u

1

� u

2

; �

1

� �

2

; 

1

� 

2

); (u

1

� u

2

; �

1

� �

2

; 

1

� 

2

)

>

�

ku

1

� u

2

k

2

H

1

(
)

+ k�

1

� �

2

k

2

H

�1=2

(�)

;

we �nd u

1

= u

2

and �

1

= �

2

. Next, testing with (1; 1; 1) 2 H yields

A((u

1

� u

2

; �

1

� �

2

; 

1

� 

2

); (1; 1; 1)) = 

1

� 

2

;

i.e., 1 = 2. Therefore, A is injetive.

4. Aording to items 1, 2 and 3 the bilinear form A : H �H ! R is ontinuous, H-

oerive and injetive. Hene, one onludes existene and uniqueness of the solution

by the Riesz-Shauder theory.

1.3. The Galerkin Sheme. In [19℄ a regular triangular mesh with urved triangles

along � was proposed as triangulation of the annular domain 
. Sine we need for the

appliation of the BPX preonditioner a sequene of nested spaes, we employ the ini-

tial triangulation as a parameterization of 
. The re�nement step is then obtained from

subdividing the referene triangle whih leads to a sequene of nested spaes on 
, f. [22℄.

More preisely, let 0 = t

(0)

0

< t

(0)

1

< : : : < t

(0)

N

�

0

= 1, N

�

0

2 N, be a uniform partition

of [0; 1℄ with t

(0)

i

� t

(0)

i�1

= h

0

:= 1=N

�

0

, i = 1; : : : ; N

�

0

. We denote by 


h

0

the polygonal

annular domain whose verties on � are (t

(0)

0

); (t

(0)

1

); : : : ; (t

(0)

N

�

0

�1

). Let �

0

be a regular

triangulation of 


h

0

by triangles of diameter satisfying diamT

i

� h

0

sup

t2[0;1℄

�(t) for all

T

i

2 �

0

. If

b

T = 4

�

(0; 0); (1; 0); (0; 1)

�

denotes the referene triangle there exist j�

0

j aÆne

mappings F

i

with F

i

(

b

T ) = T

i

. Now, eah triangle T

i

2 �

0

with two verties on � is replaed

by the orresponding urved triangle. Without loss of generality we may suppose that the

verties p

0

; p

1

; p

2

of a urved triangle T

i

satisfy p

1

= (t

(0)

i

0

), p

2

= (t

(0)

i

0

+1

), respetively.

Then, a C

1

-mapping

e

F

i

with

e

F

i

(

b

T ) = T

i

is given by

e

F

i

= F

i

+G

i

with

G

i

(bx) =

bx

1

1� bx

2

�

((1� bx

2

)t

(0)

i

0

+ bx

2

t

(0)

i

0

+1

)� (1� bx

2

)(t

(0)

i

0

)� bx

2

(t

(0)

i

0

+1

)

�

;

see [26℄ for further details. We will indiate this initial triangulation with nonurved and

urved triangles by e�

0

. Subdividing in the usual way the referene triangle

b

T in 4; 16; 64; : : :
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triangles yields a sequene of meshes

e�

0

� e�

1

� e�

2

� : : :

with step width diamT

i

� h

j

sup

t2[0;1℄

�(t) for all T

i

2 e�

j

, where h

j

= 2

�j

h

0

, f. Fig-

ure 1.2.

Ω
0

Γ ΓΩ
0

Figure 1.2. The initial triangulation e�

0

and the triangulation e�

3

obtained

after three re�nement steps.

The �nite element spaes on these meshes are onsidered to be pieewise linear and on-

tinuous. The Ansatz and test funtions on the given meshes are assumed to be Lagrange

tent funtions, whih are equal 1 in one knot and equal 0 in all others knots. Supposing

N




j

degrees of freedom on the mesh e�

j

these funtions will be alled by

�




j;k

(x); x 2 
; k = 4




j

:= f0; 1; : : : ; N




j

� 1g:

Denoting the spae on e�

j

by

V




j

= spanf�




j;k

: k 2 4




j

g � H

1

(
):

we obtain

V




0

� V




1

� V




2

� : : : :

The above introdued re�nement strategy leads in the i-th step to an equidistant partition

0 = t

(j)

0

< t

(j)

1

< : : : < t

(j)

N

�

j

= 1 of [0; 1℄ with N

�

j

= 2

j

N

�

0

. Therefore, if we disretize the

spae H

�1=2

(0; 1) by pieewise onstant Ansatz funtions on the given partition

�

�

j;k

(t) = �

[t

(j)

k

;t

(j)

k+1

℄

; t 2 [0; 1℄; k 2 4

�

j

:= f0; 1; : : : ; N

�

j

� 1g:

this again yields a nested sequene

V

�

0

� V

�

1

� V

�

2

� : : :

of subspaes V

�

j

:= spanf�

�

i;k

: k 2 4

�

j

g � H

�1=2

(0; 1).

In order to simplify our Galerkin sheme we do not approximate in (1.10) the unknown

� 2 H

�1=2

(�) but � := (� Æ )� 2 H

�1=2

(0; 1), see [19℄ for details. Then, from the



10 HELMUT HARBRECHT, FREDDY PAIVA, CRISTIAN P

�

EREZ, AND REINHOLD SCHNEIDER

de�nitions of the bilinear forms (1.8), setting

A =

h

Z




r�




j;k

r�




j;k

0

dx

i

k;k

0

24




j

; W =

h

hW (�




j;k

0

Æ ); �




j;k

Æ i

i

k;k

0

24




j

;

B =

h

h�




j;k

0

Æ ; �

�

j;k

i

i

k24

�

j

;k

0

24




j

; K =

h

hK(�




j;k

0

Æ ); �

�

j;k

i

i

k24

�

j

;k

0

24




j

;(1.12)

M =

h

h�

�

j;k

0

; 1i

i

k

0

24

�

j

; V =

h

hV �

�

k

0

;l

; �

�

j;k

i

i

k;k

0

24

�

j

;

we obtain the following linear equation system

2

6

4

A+W K

T

�B

T

0

B�K V �M

T

0 M 0

3

7

5

2

6

4

u

�



3

7

5

=

2

6

4

f

0

0

3

7

5

:(1.13)

2. Wavelet Approximation for the Coupling

By the onstruted triangulation the boundary � is partitioned in the j-th step via an

equidistant partition 0 = t

(j)

0

< t

(j)

1

< : : : < t

(j)

N

�

j

= 1 of the interval [0; 1℄, where the

step width h

j

satis�es h

j

= 2

�j

h

0

. On this partition the unknowns are disretized via

(periodi) pieewise onstant and linear funtions, respetively. Instead of using these

single-sale bases we want to apply wavelets with vanishing moments (more preisely:

biorthogonal wavelet bases) yielding numerially sparse system matries, f. [25, 19℄. For

sake of simpliity in representation, we skip the given numbering and the suÆes � and


, assuming an equidistant partition with t

(j)

k

= 2

�j

k.

The outline is as follows. We �rst introdue biorthogonal wavelet bases on R, obtaining

then the wavelet bases on the interval [0; 1℄ by periodization. Aording to [19℄ we give

in the third subsetion a briey reall to the ompression strategy of the matries arising

from the BEM. The last two subsetions are dediated to the realization of the wavelet

Galerkin sheme for the oupling.

2.1. Biorthogonal Multiresolution on R. On R pieewise polynomial funtions of

degree d � 1 an be de�ned as follows. Denoting by [x

0

; : : : ; x

d

℄f the d-th order divided

di�erene at the points x

0

; : : : ; x

d

2 R (see e.g. [11℄) the (entered) ardinal B-spline of

order d is given by

�

(d)

(x) = d[0; 1; : : : ; d℄

�

� �x�

j

d

2

k�

d�1

+

:

where x

l

+

:= (maxf0; xg)

l

and bx (dxe) is the largest (smallest) integer less (greater) than

or equal to x. This saling funtion �

(d)

is normalized





�

(d)





L

1

(R)

= 1;

ompatly supported

diam(supp�

(d)

) � 1
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and re�nable

�

(d)

(x) =

1

p

2

X

k2Z

a

k

�

(d)

(2x� k)

with mask oeÆients

a

k

=

8

<

:

2

1�d

�

d

k

�

; �b

d

2

 � k � d

d

2

e;

0; elsewhere:

(2.14)

Introduing for j; k 2 Z translates and dilates of the saling funtion �

(d)

j;k

:= 2

�j=2

�

(d)

(2

j

�

�k), the sets �

(d)

j

:= f�

(d)

j;k

: k 2 Zg generate a sequene of spaes V

j

:= los

L

2
(span�

(d)

j

),

whih is nested

: : : � V

j

� V

j+1

� : : :

and dense in L

2

(R)

los

L

2

�

[

j2Z

V

j

�

= L

2

(R);

\

j2Z

V

j

= f0g:

Sine the basis funtions are pieewise polynomials, the spaes V

j

are exat of order d,

i.e., we �nd for a given 0 � r < d some x

k

= x

k

(j; r) 2 R with

x

r

=

X

k2Z

x

k

�

(d)

j;k

:

Furthermore, �

(d)

j

forms a stable basis in V

j





�

(d)

j







L

2

(R)

� kk

l

2

(Z)

8  2 l

2

(Z):

Due to [5℄ it exists for every integer

~

d � d with

~

d+ d even a dual saling funtion

e

�

(d;

~

d)

2

L

2

(R) whih is biorthogonal to the �rst saling funtion

�

�

(d)

;

e

�

(d;

~

d)

(� � k)

�

L

2

(R)

= Æ

0;k

; k 2 Z:

Moreover, similarly to the primal saling funtion, this funtion is normalized, ompatly

supported and re�nable

e

�

(d;

~

d)

(x) =

1

p

2

X

k2Z

~a

k

e

�

(d;

~

d)

(2x� k):(2.15)

The mask oeÆients in (2.15) an be de�ned by the z-notation, i. e., in the undermen-

tioned sequenes ~a(z) =

P

k

~a

k

z

k

the oeÆient ~a

k

of z

k

orresponds to the mask oeÆient

~a

k

. It holds ~a(z) = p(z)q(z) with

p(z) = 2

1�

~

d

~

d

X

k=0

�

~

d

k

�

z

k�b

~

d

2



;

q(z) =

d+

~

d

2

�1

X

k=0

2

�k

�

d+

~

d

2

� 1 + k

k

�

2k

X

l=0

�

2k

l

�

(�z)

l�k

;
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f. [5℄. Exatly like the primal side, the translates and dilates of the dual saling funtion

e

�

(d;

~

d)

j;k

:= 2

�j=2

e

�

(d;

~

d)

(2

j

��k) (j; k 2 Z) generate olletions of stable bases

e

�

(d;

~

d)

j

:= f

e

�

(d;

~

d)

j;k

:

k 2 Zg in spaes

e

V

j

:= los

L

2
(span�

(d;

~

d)

j

) whih are also nested, dense in L

2

(R) and exat

of order

~

d.

Aording to [5℄ a dual pair of wavelets  

(d;

~

d)

(x),

e

 

(d;

~

d)

(x) 2 L

2

(R) satisfying

�

 

(d;

~

d)

;

e

 

(d;

~

d)

(� � k)

�

L

2

(R)

= Æ

0;k

; k 2 Z;

is de�ned by

 

(d;

~

d)

(x) :=

1

p

2

X

k2Z

b

k

�

(d)

(2x� k);

e

 

(d;

~

d)

(x) :=

1

p

2

X

k2Z

~

b

k

e

�

(d;

~

d)

(2x� k);(2.16)

where the masks b,

~

b are given by

b

k

= (�1)

k

~a

1�k

;

~

b

k

= (�1)

k

a

1�k

; k 2 Z(2.17)

with a from (2.14) and ~a from (2.15). As a onsequene of �nite masks and ompat

supports of the saling funtions both wavelets are ompatly supported

diam(supp 

(d;

~

d)

) � diam(supp

e

 

(d;

~

d)

) � 1:

Setting analogously to the saling funtions

 

(d;

~

d)

j;k

:= 2

j=2

 

(d;

~

d)

(2

j

� �k);

e

 

(d;

~

d)

j;k

:= 2

j=2

e

 

(d;

~

d)

(2

j

� �k)

the sets

	

(d;

~

d)

j

:= f 

(d;

~

d)

j;k

: k 2 Zg;

e

	

(d;

~

d)

j

:= f

e

 

(d;

~

d)

j;k

: k 2 Zg;

generate omplement spaes W

j

:= los

L

2
(span	

(d;

~

d)

j

),

f

W

j

= los

L

2
(span

e

	

(d;

~

d)

j

) with

V

j

�W

j

= V

j+1

;

e

V

j

�

f

W

j

=

e

V

j+1

;

where � denotes the diret sum. Thus, reursively one obtains

los

L

2

�

M

j2Z

W

j

�

= los

L

2

�

M

j2Z

f

W

j

�

= L

2

(R):

Sine biorthogonality implies W

j

?

e

V

j

the primal wavelets have vanishing moments of

order

~

d, i. e.,

�

(�)

�

;  

(d;

~

d)

j;k

�

L

2

(R)

= 0; 0 � � <

~

d:

Moreover, the olletions

	

(d;

~

d)

:=

[

j2Z

	

(d;

~

d)

j

;

e

	

(d;

~

d)

:=

[

j2Z

e

	

(d;

~

d)

j

;

form Riesz bases in L

2

(R)

kk

2

l

2

(Z�Z)

�





	

(d;

~

d)







2

L

2

(R)

�



e

	

(d;

~

d)







2

L

2

(R)

8  2 l

2

(Z� Z):(2.18)
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2.2. Periodization. The above setting is learly not suitable for the treatment of equa-

tions whih are de�ned on bounded domains. In the sequel we de�ne a periodi version of a

multisale resolution. It essentially retains all the strutural and omputational advantages

of the stationary and shift-invariant ase onsidered in the previous subsetion.

To this end, the simple trik is to replae the meaning of u

j;k

:= 2

j

2

u(2

j

� �k), k 2 Z, for

ompatly supported u 2 L

2

(R) by its periodized ounterpart

u

j;k

:= 2

j

2

X

n2Z

u(2

j

(�+ n)� k):

In this way, given any dual pair �

(d)

and

e

�

(d;

~

d)

on R of ompatly supported saling

funtions, and setting 4

j

:= Z n 2

j

Z, the orresponding sets

�

(d)

j

:= f�

j;k

: k 2 4

j

g; 	

(d;

~

d)

j

:= f 

(d;

~

d)

j;k

: k 2 4

j

g; j � j

0

;

and likewise

e

�

(d;

~

d)

j

and

e

	

(d;

~

d)

j

, have �nite ardinality 2

j

and onsist of funtions whih

are 1-periodi. Note that these de�nition preserves biorthogonality relations. One easily

heks that the saling funtions are biorthogonal

h�

(d)

j

;

e

�

(d;

~

d)

j

i = I:

Moreover, the wavelet bases

	

(d;

~

d)

:= �

(d)

j

0

[

j�j

0

	

(d;

~

d)

j

;

e

	

(d;

~

d)

:=

e

�

(d;

~

d)

j

0

[

j�j

0

e

	

(d;

~

d)

j

are biorthogonal, i.e.,

h	

(d;

~

d)

;

e

	

(d;

~

d)

i = I;

where h�; �i denotes the inner produt on L

2

(0; 1) de�ned by (1.6). For sake of simpliity

in representation, we will indiate in the sequel the saling funtions on the oarsest level

of the wavelet bases by 	

(d;

~

d)

j

0

�1

:= �

(d)

j

0

and

e

	

(d;

~

d)

j

0

�1

:=

e

�

(d;

~

d)

j

0

, where, learly, the oarsest

level j

0

has to be hosen suÆiently large. The spaes V

j

:= los

L

2
(span�

(d)

j

) and

e

V

j

:=

los

L

2(span

e

�

(d;

~

d)

j

) form two multisale deompositions of L

2

(RnZ) = L

2

(0; 1). One readily

veri�es

�

(d)

j;k

=

X

k

0

24

j+1

�

X

n2Z

a

k

0

�2k+2

j+1

n

�

�

(d)

j+1;k

0

;

e

�

(d;

~

d)

j;k

=

X

k

0

24

j+1

�

X

n2Z

~a

k

0

�2k+2

j+1

n

�

e

�

(d;

~

d)

j+1;k

0

with a;~a from (2.14), (2.15), respetively, and

 

(d;

~

d)

j;k

=

X

k

0

24

j+1

�

X

n2Z

a

k

0

�2k+2

j+1

n

�

 

(d;

~

d)

j+1;k

0

;

e

 

(d;

~

d)

j;k

=

X

k

0

24

j+1

�

X

n2Z

~a

k

0

�2k+2

j+1

n

�

e

 

(d;

~

d)

j+1;k

0

with b;

~

b from (2.17). That is, the mask sequenes are obtained by 2

j+1

-periodization.
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2.3. Matrix ompression. Disretizing the boundary integral operators V , W and K

by biorthogonal wavelet bases one obtains quasi-sparse matries. These an be ompressed

without loss of auray, see [19℄ for details. All matrix entries, for whih the distanes of

the supports (on the given boundary �) of the orresponding Ansatz- and test funtions are

bigger than a level depending ut-o� parameter B

j;j

0

, are set to zero. Hene, one only has

to alulate those values, for whih these distanes are smaller than the ut-o� parameter.

More preisely, abbreviating

�

(d;

~

d)

j;k

:= supp

�

 

(d;

~

d)

j;k

;

the ompressed system matries are given by

[V℄

(j;k);(j

0

;k

0

)

=

8

<

:

0; if dist

�

�

�

(1;

~

d

1

)

j;k

;�

(1;

~

d

1

)

j

0

;k

0

�

> B

V

j;j

0

;

hV  

(1;

~

d

1

)

j

0

;k

0

;  

(1;

~

d

1

)

j;k

i; otherwise;

[W℄

(j;k);(j

0

;k

0

)

=

8

<

:

0; if dist

�

�

�

(2;

~

d

2

)

j;k

;�

(2;

~

d

2

)

j

0

;k

0

�

> B

W

j;j

0

;

hW ( 

(2;

~

d

2

)

j

0

;k

0

Æ );  

(2;

~

d

2

)

j;k

Æ i; otherwise;

[K℄

(j;k);(j

0

;k

0

)

=

8

<

:

0; if dist

�

�

�

(2;

~

d

3

+1)

j;k

;�

(1;

~

d

3

)

j

0

;k

0

�

> B

K

j;j

0

;

hK( 

(2;

~

d

3

+1)

j

0

;k

0

Æ );  

(1;

~

d

3

)

j;k

i; otherwise;

where the ut-o� parameters B

V

j;j

0

; B

W

j;j

0

; B

K

j;j

0

are set as follows

B

V

j;j

0

= a

1

max

n

2

�j

; 2

�j

0

; 2

J(2d

0

1

+1)�(j+j

0

)(d

0

1

+

~

d

1

)

2

~

d

1

�1

o

;

B

W

j;j

0

= a

2

max

n

2

�j

; 2

�j

0

; 2

J(2d

0

2

�1)�(j+j

0

)(d

0

2

+

~

d

2

)

2

~

d

2

+1

o

;(2.19)

B

K

j;j

0

= a

3

max

n

2

�j

; 2

�j

0

; 2

J(2d

0

3

+1)�(j+j

0

)(d

0

3

+

~

d

3

)�2j

0

2

~

d

3

+1

o

;

with

a

1

; a

2

; a

3

> 1; 1 < d

0

1

<

~

d

1

� 1; 2 < d

0

2

<

~

d

2

+ 1; 1 < d

0

3

<

~

d

3

:(2.20)

It has been shown in [19℄ that this ompression strategy redues the number of nonzero

entries to O(N

J

logN

J

). In this expression, N

J

= j4

J

j denotes the number of unknowns.

To satisfy (2.20) we have to hoose wavelets with enough vanishing moments

~

d

1

;

~

d

2

and

~

d

3

. Sine on the other hand the supports of the wavelets inrease proportionally with the

number of vanishing moments (whih redues in our experienes the ompression rates) one

has to apply wavelets with minimal number of vanishing moments, respetively supports.

That is

� 	

(1;3)

for the disretization of the single layer operator V ,

� 	

(2;2)

for the disretization of the hypersingular operatorW ,

� 	

(1;3)

and 	

(2;4)

for the disretization of the double layer operator K.
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An important result is that in this setup there holds

~

d

2

:=

~

d

1

+ 1. Hene, hoosing a

2

:=

a

1

> 1 and d

0

1

2 R suh that 1 < d

0

1

<

~

d

1

�1 we �nd that for d

0

2

:= d

0

1

+1 also the estimate

2 < d

0

2

<

~

d

2

+ 1 is valid, i.e., we are allowed to set B

V

j;j

0

= B

W

j;j

0

. This will be exploited in

the next but one subsetion.

2.4. Changing bases. In the single-sale basis the whole system is given by

2

6

4

A+W

�

K

T

�

�B

T

�

0

B

�

�K

�

V

�

�M

T

�

0 M

�

0

3

7

5

2

6

4

u

�

�



3

7

5

=

2

6

4

f

0

0

3

7

5

;(2.21)

where the suÆx � indiates the single-sale matries. Sine we want to ompute the BEM

matries with respet to wavelet bases, we have to rewrite the system. For this let T

d;

~

d

denote the fast wavelet transform, i.e., the matrix whih gives the hange of bases

X

k24

J

a

k

�

(d)

k;J

=

X

j

0

�1�j<J

X

k24

j

b

j;k

 

(d;

~

d)

j;k

where

[b

j;k

℄

T

j

0

�1�j<J;k24

j

= [a

k

℄

T

k24

J

T

d;

~

d

:

Then, the system matrix in (2.21) with respet to the multisale bases is given by

2

6

4

A+T

2;2

W

 

T

T

2;2

T

2;4

K

T

 

T

T

1;3

�B

T

�

0

B

�

�T

1;3

K

 

T

T

2;4

T

1;3

V

 

T

T

1;3

�M

T

�

0 M

�

0

3

7

5

whih is equivalent to

2

6

4

I 0 0

0 T

1;3

0

0 0 1

3

7

5

2

6

4

A+T

2;2

W

 

T

T

2;2

T

2;4

K

T

 

�B

T

�

T

�T

1;3

0

T

�1

1;3

B

�

�K

 

T

T

2;4

V

 

�M

T

 

0 M

 

0

3

7

5

2

6

4

I 0 0

0 T

T

1;3

0

0 0 1

3

7

5

:

Hene, to apply the wavelet preonditioner for V

 

, the linear system (2.21) is transformed

to

2

6

4

A+T

2;2

W

 

T

T

2;2

T

2;4

K

T

 

�B

T

�

T

�T

1;3

0

T

�1

1;3

B

�

�K

 

T

T

2;4

V

 

�M

T

 

0 M

 

0

3

7

5

2

6

4

u

�

 



3

7

5

=

2

6

4

f

0

0

3

7

5

where the unknown � is now given in the multisale bases.

2.5. The hypersingular operator. We want to disuss the properties of the matrixW

orresponding to the hypersingular operator. For sake of simpliity, we skip the suÆes �

and 
 and assume orresponding index sets 4

j

for pieewise onstant and linear funtions

on the interval [0; 1℄.

Sine for pieewise linear funtions there holds (see [19℄)

hW�

(2)

J;k

; �

(2)

J;k

0

i = hV

�

�

(2)

J;k

�

0

;

�

�

(2)

J;k

0

�

0

i; 8 k; k

0

2 4

J

;
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we obtain in the single-sale basis the identity

W

�

=

1

h

2

J

H

J

V

�

H

T

J

;(2.22)

where H

j

, j

0

� j � J , is the matrix given by

H

j

:=

2

6

6

6

6

6

6

6

4

�1 1

1 �1

1

.

.

.

.

.

.

�1

1 �1

3

7

7

7

7

7

7

7

5

2 R

N

j

�N

j

:

Sine the appliation of H

J

on a vetor x 2 R

N

J

requires only O(2

J

) operations, we

are not omputing W

�

but using the right hand side of (2.22) in the iterative solver.

Consequently, in the single-sale sheme we only have to ompute two BEM matries,

namely V

�

and K

�

.

For the ompressed wavelet matries we annot use relation (2.22) without further exam-

inations on the ompression errors. Hene, while using ompression it seems that we have

to ompute the disretization of three integral operators instead of two. But, as we will

see, this is not neessary sine for the multisale basis there exists another approah.

We assume pieewise onstant wavelets 	

(1;

~

d)

for the disretization of single layer operator

V and pieewise linear wavelets 	

(2;

~

d�1)

for the disretization of hypersingular operator

W . Of ourse,

~

d has to be � 3. As remarked in subsetion 2.3 under this assumption

one an hoose idential ut-o� parameters for the ompression yielding idential sets of

nonzero entries in the orresponding matries. We make use of (f. [5℄)

�

 

(d;

~

d)

�

0

=  

(d�1;

~

d+1)

:

Consequently we obtain

W

 

=

"

H

j

0

0

0 I

#

DV

 

D

"

H

T

j

0

0

0 I

#

;(2.23)

where D is a diagonal matrix given by

[D℄

(j;k);(j

0

;k

0

)

=

Æ

j;j

0

Æ

k;k

0

h

j+1

; j

0

� 1 � j; j

0

< J; k 2 4

j

; k

0

2 4

j

0

:

Hene, employing (2.23) in the iterative solver, we also have to ompute only the BEM

matries V

 

and K

 

.

3. Preonditioning

Sine the system matrix of the Galerkin sheme (1.13) inludes matries belonging to

operators of positive and negative order, preonditioning tehniques are very important

for an eÆient iterative solution of the linear system. Based on the BPX preonditioner [3℄
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and the wavelet preonditioner [7, 8, 10, 25℄ we disuss several preondition methods. Note,

the disretization level J is assumed to be suÆiently large J � J

0

and, moreover, all given

estimates have to be understood uniformly in J .

3.1. The BPX preonditioner. We have onstruted on 
 a sequene of regular and

quasi uniform triangulations e�

j

and pieewise linear and ontinuous spaes V




j

, suh that

V




0

� V




1

� : : : ; los

H

1

�

[

j�0

V




j

�

= H

1

(
);

\

j�0

V




j

= V




0

:

The basis �




j

= f�




j;k

: k 2 4




j

g of V




j

was hosen as the set of Lagrange tent funtions,

whih we may onsider to be L

2

-normed. This implies





�




j

u





L

2

(
)

� kuk

l

2

(4




J

)

8 u 2 l

2

(4




J

):(3.24)

For the L

2

-normed Lagrange tent funtions the (simpli�ed) BPX preonditioner C

J

an

be de�ned by

C

J

u =

J

X

j=0

2

�2j

X

k24




j

(u; �




j;k

)�




j;k

; u 2 H

1

(
);(3.25)

see [7℄. C

J

de�nes a symmetri and positive de�nite operator, hene the square root C

1=2

J

is

well de�ned. The appliation of C

1=2

J

to a given funtion u 2 V




J

yields a norm equivalene

kC

1=2

J

uk

H

s

(
)

� kuk

H

s�1

(
)

; s 2 (�

1

2

;

3

2

):(3.26)

We denote by A : H

1

(
)! H

�1

(
) the operator orresponding to the FEM bilinear form

a(�; �) from (1.8)

(Au; v) = a(u; v) 8 u; v 2 H

1

(
):

Based on the bijetivity of A, the norm equivalene (3.26) implies for all u 2 V




J

kuk

L

2

(
)

�





C

1=2

J

u





H

1

(
)

�





AP

J

C

1=2

J

u





H

�1

(
)

�





C

1=2

J

P

J

AP

J

C

1=2

J

u





L

2

(
)

;(3.27)

where P

J

denotes the orthogonal projetion onto V




J

.

Next, we onsider the disrete system. We denote by I

j

j+1

the restrition from level j + 1

onto level j and by I

j+1

j

the prolongation from level j onto level j + 1. Restrition and

prolongation are desribed by the well known stenils

I

j�1

j

=

1

2

2

6

4

1

2

1

2

0

1

2

1

1

2

0

1

2

1

2

3

7

5

; I

j

j�1

=

1

2

2

6

4

1

2

1

2

0

1

2

1

1

2

0

1

2

1

2

3

7

5

:

The produt I

j

J

:= I

j

j+1

I

j+1

j+2

� � � I

J�1

J

signi�es the restrition from level J onto level j and

I

J

j

= I

J

J�1

I

J�1

J�2

� � � I

j+1

j

the prolongation from level j onto level J . Then, the disrete BPX
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preonditioner (f. [3℄) is given by

C =

J

X

j=0

2

�2j

I

J

j

I

j

J

:(3.28)

We denote by A = a(�




J

;�




J

) the Galerkin matrix orresponding to A. Of ourse, there

holds for all u = �




J

u 2 V




J

�




J

Au = P

J

AP

J

u;

hene, (3.27) an be rewritten as





�




J

u





L

2

(
)

�





�




J

C

1=2

u





H

1

(
)

�





�




J

AC

1=2

u





H

�1

(
)

�





�




J

C

1=2

AC

1=2

u





L

2

(
)

:

By (3.24) this implies

kuk

l

2

(4




J

)

�





C

1=2

AC

1=2

u





l

2

(4




J

)

;

or, in other words, the well onditioning of the matrix C

1=2

AC

1=2

ond

l

2
(C

1=2

AC

1=2

) � 1:

3.2. Wavelet preonditioning. Let us de�ne two numbers s and s whih signify the

regularity of the primal and dual wavelet basis, respetively,

s = supfs 2 R :  

(d;

~

d)

2 H

s

(0; 1)g; s = supfs 2 R :

e

 

(d;

~

d)

2 H

s

(0; 1)g:

Aording, for example, to [7, 8, 10, 25℄ there holds uniformly the norm equivalene

k�k

H

s+t

(0;1)

�





D

s

J

�





H

t

(0;1)

; � 2 V

�

J

; s+ t; t 2 (�s; s);(3.29)

where D

s

J

denotes the operator given by

D

s

J

� =

J�1

X

j=j

0

�1

X

k24

�

j

2

sj

h�;

e

 

(d;

~

d)

j;k

i 

(d;

~

d)

j;k

:(3.30)

Let Q

�

J

be the projetion onto V

�

J

de�ned by

Q

J

� =

J�1

X

j=j

0

�1

X

k24

�

j

h�;

e

 

(d;

~

d)

j;k

i 

(d;

~

d)

j;k

:

Then, as one easily heks, the adjoint Q

?

J

is given by

Q

?

J

� =

J�1

X

j=j

0

X

k24

�

j

h�;  

(d;

~

d)

j;k

i

e

 

(d;

~

d)

j;k

:



MULTISCALE PRECONDITIONING FOR THE COUPLING 19

Sine the single layer operator V : H

�1=2

(0; 1) ! H

1=2

(0; 1) is an operator of order �1,

we utilize the norm equivalenes (3.29) to �nd that for s � 1=2 there holds for all � 2 V

�

J

k�k

L

2

(�)

�





D

1=2

J

�





H

�1=2

(0;1)

�





V Q

J

D

1=2

J

�





H

1=2

(0;1)

�





D

1=2

J

Q

?

J

V Q

J

D

1=2

J

�





L

2

(�)

:

(3.31)

Next, we onsider the disrete operators. For this, let be 	

�

J

=

S

J�1

j=j

0

�1

	

(1;

~

d)

j

the wavelet

basis in V

�

J

. Moreover, we introdue the Galerkin matrix

V = hV	

�

J

;	

�

J

i

and de�ne the diagonal matrix D

s

by

�

D

s

�

(j;k);(j

0

;k

0

)

= 2

sj

Æ

j;j

0

Æ

k;k

0

;(3.32)

whih is obviously the disrete analog of (3.30). Then, sine

	

�

J

V� = Q

?

J

V Q

J

� 8 � = 	

�

J

� 2 V

�

J

;

one has similarly to subsetion 3.1 the relation





	

�

J

�





L

2

(0;1)

�





	

�

J

D

1=2

�





H

�1=2

(0;1)

�





	

�

J

VD

1=2

�





H

1=2

(0;1)

�





	

�

J

D

1=2

VD

1=2

�





L

2

(0;1)

:

By the Riesz property (2.18) there follows

k�k

l

2

(4

�

J

)

�





D

1=2

VD

1=2

�





l

2

(4

�

J

)

;

that is the well onditioning of the matrix D

1=2

VD

1=2

.

3.3. The preonditionend system. It is shown in subsetion 1.3 that the linear system

of the introdued Galerkin sheme for the oupling is given by

S

2

6

4

u

�



3

7

5

�

2

6

4

A+W K

T

�B

T

0

B�K V �M

T

0 M 0

3

7

5

2

6

4

u

�



3

7

5

=

2

6

4

f

0

0

3

7

5

:(3.33)

The system matrix S is nonsymmetri, but an be (orthogonal) transformed into a sym-

metri, but inde�nite, matrix

~

S by multiplying the seond line with �1. Clearly, the

obtaind linear system

~

S

2

6

4

u

�



3

7

5

�

2

6

4

A+W K

T

�B

T

0

K�B �V M

T

0 M 0

3

7

5

2

6

4

u

�



3

7

5

=

2

6

4

f

0

0

3

7

5

:(3.34)

is equivalent to (3.33). Motivated by the above fats we de�ne

T :=

2

6

4

C

1=2

0 0

0 D

1=2

0

0 0 1

3

7

5

;(3.35)
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where C

1=2

denotes the square root of C from (3.28) and D

1=2

is given by (3.32). The

following lemma holds:

Theorem 3.1. The ondition numbers of the matries TST and T

~

ST, respetively, are

uniformly bounded

ond

l

2
(TST) = ond

l

2
(T

~

ST) � 1:

Proof. We abbreviate the underlying funtion spaes by

H := H

1

(
)�H

�1=2

(0; 1) � R;

L := L

2

(
)� L

2

(0; 1) � R;

H

0

:= H

�1

(
)�H

1=2

(0; 1) � R;

all equipped by produt norms. Moreover, the set of basis funtions is alled

�

J

=

h

�




J

	

�

J

1

i

:

One onludes from the frame properties (2.18) and (3.24) the validity of







h

u

�



i







l

2

�







�

J

h

u

�



i







L

:

On the other hand the proved bijetivity of the underlying operator, f. lemma 1.1, yields







�

J

h

u

�



i







H

�







�

J

S

h

u

�



i







H

0

:

Invoking the norm equivalenes







�

J

h

u

�



i







L

�







�

J

T

h

u

�



i







H

;







�

J

h

u

�



i







H

0

�







�

J

T

h

u

�



i







L

;

this implies the assertion.

3.4. The Bramble-Pasiak-CG. As above we assume that � has a onformal radius

< 1 to ensure that the single layer operator is positive de�nite. Then, of ourse, the disrete

single layer operator V is also positive de�nite, i.e.,

V > 0:

We may assume the wavelet preonditioner (3.32) D

�1

saled suh that V > D

�1

, in

other words,

V �D

�1

> 0:(3.36)

To apply the algorithm of Bramble-Pasiak in [2℄ we reorder the given linear equation

system (3.33) obtaining an equivalent one

^

S

2

6

4

�

u



3

7

5

�

2

6

4

V B�K �M

T

(B�K)

T

�A�W 0

�M 0 0

3

7

5

2

6

4

�

u



3

7

5

=

2

6

4

0

�f

0

3

7

5

:(3.37)
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Abbreviating

U :=

"

(B�K)

T

�M

#

; Q :=

"

A+W 0

0 0

#

� 0;

the system (3.37) an be rewritten as

"

V U

T

U �Q

#

2

6

4

�

u



3

7

5

=

2

6

4

0

�f

0

3

7

5

:

Following [2℄ we multiply

^

S from the left hand side by

E :=

"

D 0

U

T

D I

#

=

2

6

4

D 0 0

(B�K)

T

D I 0

�MD 0 1

3

7

5

(3.38)

obtaining the linear equation system

E

^

S

h

�

u



i

= E

h

0

�f

0

i

:(3.39)

Sine E is nonsingular, whih is easily on�rmed by exeution of a blok Gauss-Jordan

step with the diagonal matrix D, the linear system (3.39) is equivalent to the given sys-

tem (3.37). Observing (3.36),

F :=

"

V �D

�1

0

0 I

#

is a symmetri and positive de�nite matrix. Hene, we may de�ne a new inner produt by

h

h

�

u



i

;

h

Æ

v

d

i

i := [

�

T

u

T



℄F

h

Æ

v

d

i

:(3.40)

Aording to [2℄ the system matrix E

^

S of (3.39) is symmetri and positive de�nite with

respet to the inner produt h�; �i from (3.40) if

R :=

"

A+W+ (B�K)

T

V

�1

(B�K) �(B�K)

T

V

�1

M

T

�MV

�1

(B�K) MV

�1

M

T

#

= Q+UDU

T

> 0:

In this ase one may apply the CG algorithm to (3.39) based on the modi�ed inner

produt (3.40).

Theorem 3.2. If � has a onformal radius < 1 there holds

R > 0:

Moreover, R is spetrally equivalent to X given by

X :=

"

A 0

0 MV

�1

M

T

#

:

Proof. The proof is done in �ve steps.
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1. We show �rst the inequality

V �

M

T

M

MV

�1

M

T

;(3.41)

whih is equivalent to

(MV

�1

M

T

)V �M

T

M:

Sine there holds V

�1

> 0 the square root V

�1=2

> 0 is well de�ned. Therefore, we

may multiply the inequality from both sides by V

�1=2

obtaining

(MV

�1

M

T

)I � V

�1=2

M

T

MV

�1=2

:

Abbreviating b := V

�1=2

M

T

2 R

N

�

J

gives

(b

T

b)I � bb

T

:

We employ the fat that bb

T

is a matrix of rank 1, whih implies that there is only

one Eigenvalue 6= 0. From

(bb

T

)b = (b

T

b)b

we �nd that this Eigenpair is given by (b

T

b;b), and, onsequently, there holds

(bb

T

)a = 0 8 a ? b:

Thus, we obtain

a

T

�

(b

T

b)I� bb

T

�

a

8

<

:

= 0 for a = b;

� 0 for a ? b;

whih proves (3.41).

2. Let be

Y(�) :=

"

1

�

(B�K)

T

V

�1

(B�K) �(B�K)

T

V

�1

M

T

�MV

�1

(B�K) �MV

�1

M

T

#

and

Z(�) :=

"

I

MV

�1

(B�K)

�MV

�1

M

T

0 1

#

:

By (3.41) and the identity

Z(�)

T

Y(�)Z(�) =

"

1

�

(B�K)

T

V

�1

�

V �

M

T

M

MV

�1

M

T

�

V

�1

(B�K) 0

0 �MV

�1

M

T

#

appliation of Sylvester's law of inertia, f. for example [13℄, gives

Y(�)

8

<

:

� 0 for � > 0;

� 0 for � < 0:

(3.42)



MULTISCALE PRECONDITIONING FOR THE COUPLING 23

3. SineW : H

1=2

(0; 1)! H

�1=2

(0; 1) is an symmetri, positive de�nite and ontinuous

operator [16℄, we �nd a onstant � > 0 suh that

0 �W � �A:(3.43)

Note that this estimate is a onsequene of the trae theorem as used in the proof

of lemma 1.1. Sine V results from an operator of order �1, its invers orresponds

to an operator of order +1. Hene, sine B�K orresponds to an operator of order

0, the produt (B � K)

T

V

�1

(B � K) orresponds to a (ontinous) operator R :

H

1=2

(0; 1)! H

�1=2

(0; 1). Consequently, similarly as the latter estimate, there exists

a onstant  > 0, suh that

0 � (B�K)

T

V

�1

(B�K) � A:(3.44)

4. It is straightforward manipulation to on�rm

0 <

p

4x

2

+ 4x� x

2

< 1; x > 0:

Thus, from (3.44), we dedue that it holds for � =

p

4x

2

+4x�x

2

�A+ (B�K)

T

V

�1

(B�K) �

1

�

(B�K)

T

V

�1

(B�K);

and hene, sine W � 0 (3.44) and Y(�) � 0 (3.42), we �nd the lower bound

R = (1� �)X+

"

�A+W + (B�K)

T

V

�1

(B�K) �(B�K)

T

V

�1

M

T

�MV

�1

(B�K) �MV

�1

M

T

#

� (1� �)X+Y(�) � (1� �)X > 0:

5. On the other hand we �nd for � =

1�

p

4+1

2

< 0

��A+

1

�

(B�K)

T

V

�1

(B�K) � (B�K)

T

V

�1

(B�K);

and hene, sine Y(�) � 0 (3.42),

(1� �)X � (1� �)X+Y(�) �

"

A+ (B�K)

T

V

�1

(B�K) �(B�K)

T

V

�1

M

T

�MV

�1

(B�K) MV

�1

M

T

#

:

Combined with (3.43) this gives the upper bound

(1� �+ �)X � R:
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As a onsequene, this theorem ombined with [2℄ proves that there holds in the modi�ed

inner produt h�; �i

E

^

S � Y :=

2

6

4

I 0 0

0 A 0

0 0 MV

�1

M

T

3

7

5

;

i.e., E

^

S is spretrally equivalent to Y. Therefore, we have the following proposition.

Proposition 3.3. The system matrix of the preonditioned system

TE

^

ST

�

b
u

b

�

b

�

= TE

h

f

0

0

i

;

h

u

�



i

= T

�

b
u

b

�

b

�

with

T =

2

6

4

I 0 0

0 C

1=2

0

0 0 1

3

7

5

is well onditioned with respet to the modi�ed inner produt

ond

h�;�i

� 1:

Remark 3.4. 1. Sine there is no restrition on the used basis funtions in the proofs,

the given algorithm is also pratiable for the single-sale sheme, if a spretrally

equivalent preonditioner of V is available.

2. The implementation of the Bramble-Pasiak-CG is possible without the expliit

knowledge of V

�1

and D

�1

, f. [2℄.

4. Numerial results

This setion is dediated to numerial experiments on the given theory. For the omparison

of the traditional sheme and the ompressed multisale sheme we onstrut an example

for whih an analyti solution is known. We �rst investigate the e�ets of matrix om-

pression on the auray of the numeral solution, the omputing times and the required

memory. Then we analyse the di�erent solving and preonditioning tehniques. In the last

subsetion we study a full multigrid sheme based on the multisale sheme.

4.1. An analytial example. For the numerial results we hoose 


0

as the two dimen-

sional L-shape [�

1

10

;

1

10

℄

2

n [0;

1

10

℄

2

. Similar to [19℄ we onstrut a problem for whih an

analyti solution is known. For sake of simpliity, we hoose nonhomogeneous Dirihlet

data on �

0

. We split

u(x; y) = u

1

(x; y) + u

2

(x; y) 2 C

2

(R n

�

�1=20

0

�

)



MULTISCALE PRECONDITIONING FOR THE COUPLING 25

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 4.3. The analyti solution u on 
.

with the harmoni funtion

u

1

(x; y) =

1

100

�

(x+

1

20

) + y

(x+

1

20

)

2

+ y

2

2 C

1

(R n

�

�1=20

0

�

)

and the nonharmoni funtion u

2

2 C

2

(R) de�ned by

u

2

(x; y) = 2 +

8

<

:

�

x

2

0:3

2

+

y

2

0:2

2

� 1

�

3

; if

x

2

0:3

2

+

y

2

0:2

2

� 1;

0; if

x

2

0:3

2

+

y

2

0:2

2

> 1:

The funtion f

f := �4u

2

(x; y) 2 C

1

(R)

is ompatly supported in the ellipse with semiaxis 0:3 and 0:2

supp f =

n

(x; y) 2 R

2

:

x

2

0:3

2

+

y

2

0:2

2

� 1

o

:

Thus, setting

g(x; y) := uj

�

0

(x; y)

we obtain the following exterior boundary value problem

�4u = f in R

2

n 


0

u = g on �

0

u(x) = O(1) as jxj ! 1:

We hoose 


1

as the ellipse with semiaxis 0:35 and 0:25. The whole on�guration is plotted

in Figure 1.1. The funtion u is plotted in Figure 4.3
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4.2. Single-sale versus multisale sheme. We list in Table 4.1 and Table 4.2 the

e�et of ompression on the omputing times of the BEM matries K

�

, V

�

, K

 

and V

 

.

One an �gure out of Table 4.1 that the break even point for the double layer operator K

is due to 1024 unknowns. For the single layer operator V the break even point ours muh

earlier, namely due to 256 unknowns. The reason is, that the wavelets required for the

disretization of K have omparatively large supports, whih makes the omputation of

an entry more expensive. Anyhow, the eonomy of required main memory is enormous in

omparison to the lassial sheme, as one an see from the ompression rates. Moreover,

one has to omplete that the ompression would be even better by applying a seond

ompression, see [25℄. Combining both ompressions asymptotially only O(N

�

J

) entries

have to be omputed.

N

�

J

nnz(K

 

) in % T (K

�

) in se. T (K

 

) in se.

32 100.00 0.01 0.01

64 86.426 0.02 0.04

128 59.033 0.06 0.16

256 36.688 0.23 0.45

512 21.698 0.98 1.16

1024 12.534 4.57 2.94

2048 7.0668 18.9 7.54

Table 4.1. Number of nonzero elements in % of the BEM matrix K

 

and

omputing times of K

�

/ K

 

in seonds.

N

�

J

nnz(V

 

) in % T (V

�

) in se. T (V

 

) in se.

32 94.531 0.01 0.03

64 68.457 0.04 0.06

128 43.726 0.16 0.20

256 26.685 0.66 0.59

512 15.768 2.75 1.47

1024 8.9458 11.3 3.75

2048 5.0101 47.1 9.31

Table 4.2. Number of nonzero elements in % of the BEM matrix V

 

and

omputing times of V

�

/ V

 

in seonds.

Next, we ompare the auray of the solutions obtained from the single-sale sheme and

from the ompressed multisale sheme. One an �gure out of Table 4.3 the L

2

-errors of

the numerial solutions u

�

, �

�

, respetively, and the absolute error of the onstant 

�

. The

orresponding errors of u

 

, �

 

and 

 

obtained from the ompressed multisale sheme

are given in Table 4.4. Comparing both tables one �nds that our ompression strategy

does not derease the auray of the solution.
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N




J

N

�

J

ku� u

�

k

L

2

(
)

k�� �

�

k

L

2

(0;1)

j� 

�

j

188 32 9.3063e-03 5.9979e-02 3.1150e-03

696 64 3.7929e-03 1.6400e-02 4.3119e-03

2672 128 7.7040e-04 4.6377e-03 7.7151e-04

10464 256 1.3317e-04 1.3902e-03 5.6473e-05

41408 512 3.9053e-05 4.1934e-04 2.9662e-05

164736 1024 8.6537e-06 1.3361e-04 4.7211e-06

657152 2048 2.0511e-06 4.4152e-05 6.4501e-07

Table 4.3. Auray of the traditional sheme.

N




J

N

�

J

ku� u

 

k

L

2

(
)

k�� �

 

k

L

2

(0;1)

j� 

 

j

188 32 9.3063e-03 5.9980e-02 3.1150e-03

696 64 3.7929e-03 1.6402e-02 4.3119e-03

2672 128 7.7040e-04 4.6409e-03 7.7152e-04

10464 256 1.3317e-04 1.3907e-03 5.6466e-05

41408 512 3.9051e-05 4.2303e-04 2.9680e-05

164736 1024 8.6512e-06 1.4341e-04 4.7292e-06

657152 2048 2.0487e-06 7.5080e-05 6.5146e-07

Table 4.4. Auray of the ompressed sheme.

4.3. Comparison of the iterative solvers. In Table 4.5 we list the number of itera-

tions required by GMRES [24℄ and MINRES [23℄ to solve the nonsymmetri system (3.33)

and the symmetri system (3.34), respetively. We ompare the partiularly preonditioned

single-sale sheme and the full preonditioned multisale sheme, more preisely:

� GMRES

�

and MINRES

�

: Single-sale sheme, where only the FEM part A

�

+W

�

is preonditioned by BPX, the BEM part V

�

is not preonditioned.

� GMRES

 

and MINRES

 

: Multisale sheme, the FEM and the BEM part are pre-

onditioned by BPX and a diagonal saling of V

 

. Note, a diagonal saling of V

 

is easier to implement than the appliation of D (3.32) and improves the wavelet

preonditioner.

The iteration starts always with the initial vetor 0 and stops when the residual norm

is less than 1e-6. Sine the system beomes very large, we limited the required main

memory by restarting the GMRES algorithm after 20 iteration steps. As one an �gure

out of Table 4.5, the number of iterations of GMRES are not improved by the full

preonditioned multisale sheme. We want to remark, that this is not really astonishing,

sine for nonsymmetri systems a bounded ondition number does not prove optimal

onvergeny of an iterative solver. Nevertheless, in the ase of MINRES, preonditioning

the single layer potential improves the number of iterations quite a lot.
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Remark 4.1. In all the above ases we apply the BPX preonditioner desribed in se-

tion 3.1. Of ourse, by a diagonal saling on eah level one would reah somewhat lower

iteration numbers, but the implementation is muh more diÆult.

N




J

N

�

J

GMRES

�

GMRES

 

MINRES

�

MINRES

 

188 32 48 50 79 72

696 64 56 55 119 95

2672 128 58 61 163 109

10464 256 62 69 212 117

41408 512 69 73 283 124

164736 1024 73 77 358 130

657152 2048 81 79 457 136

Table 4.5. Number of iterations required by GMRES and MINRES to

attain a residual norm less than 1e-6.

The speed-up by using the di�erent wavelet Galerkin shemes is shown in Table 4.6. We

measure the time for building up all matries and solving the system. Sine the di�erenes

in omputation time of the BEM matries (Table 4.1 and Table 4.2) and in number

of iterations of GMRES and MINRES (Table 4.5) is not as big as the speed-up, the

big speed-up of the ompressed wavelet Galerkin shemes is obviously based on the muh

heaper matrix-vetor-multipliation for the BEM matries.

N




J

N

�

J

T (GMRES

�

) T (GMRES

 

) T (MINRES

�

) T (MINRES

 

)

188 32 0.520 0.860 0.590 0.960

696 64 1.110 1.960 1.560 2.700

2672 128 3.250 5.520 5.170 7.480

10464 256 19.55 19.94 45.83 24.37

41408 512 137.1 74.21 422.1 85.14

164736 1024 774.1 294.1 2964 316.7

657152 2048 3703 1297 15967 1403

Table 4.6. Overall CPU time in seonds required to build up all matries

and to solve the linear system with GMRES and MINRES.

The next table gives the numbers of iterations and the overall omputing times required

by Bramble-Pasiak's CG. Sine we do not have a preonditioner for the single layer

operator in the single-sale bases, we only list the results of the multisale sheme. As one

an �gure out of Table 4.7 this solver is that one, whih requires least iterations steps.

Consequently, it is the fasted one.
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N




J

N

�

J

CG

 

T (CG

 

)

188 32 37 0.570

696 64 43 1.380

2672 128 46 3.740

10464 256 46 10.69

41408 512 47 35.12

164736 1024 48 121.7

657152 2048 49 484.8

Table 4.7. Number of iterations and overall CPU time in seonds of the

Bramble-Pasiak-CG.

4.4. Nested iteration. As we have seen in subsetion 1.3 our disretization yields two

sequenes of nested subspaes

V




0

� V




1

� : : : � H

1

(
); V

�

0

� V

�

1

� : : : � H

�1=2

(0; 1):

Hene, to redue the omputing time for solving the given linear equation system we may

apply multigrid tehniques. The ruial idea of nested iterations is to employ the solution

attained on the level j as initial guess for the solving step on level j + 1. More preisely,

to get the numerial solution (u

(J)

; �

(J)

; 

(J)

) on level J one follows the algorithm:

1. Solve the linear system on the oarsest level 0 with initial guess (0; 0; 0) to obtain

the numerial solution (u

(0)

; �

(0)

; 

(0)

). Set j := 0.

2. Inrease j := j + 1. Prolongate the solution (u

(j�1)

; �

(j�1)

; 

(j�1)

) of level j � 1 onto

level j to get (~u

(j)

;

~

�

(j)

; ~

(j)

). Solve the linear system on level j with initial guess

(~u

(j)

;

~

�

(j)

; ~

(j)

) whih yields the solution (u

(j)

; �

(j)

; 

(j)

).

3. If j = J then stop else goto item 2.

Aording to [15℄, by this algorithm one obtains ombined with a preonditioned iterative

solver an optimal sheme, i.e., for the omputation of the solution on level J only O(N




J

)

operations are neessary.

Sine the Bramble-Pasiak-CG is the fasted solver, we have implemented the nested

iteration algorithm based on this solver. In Table 4.8 we list the results obtained for

the multisale sheme for N




J

= 657152 and N

�

J

= 2048. In the fourth olumn we list

the number of iterations required to solve (with the prolongated solution from the last

level as initial guess) the system until the residual norm is less than an level depending

" = "(j). This " should behave like the disretization error, i.e., one may solve the system

on oarser levels with less auray than on higher levels. Of ourse, for a fair omparison

we hoose "(J) = 1e�6 like in the above shemes. In the �fth olumn we give the time for

building up the system on level j and solving them while in the last olumn we sum up

them. Hene, for solving the whole system on level J = 7 the nested iteration takes 336:8
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seonds. Sine the Bramble-Pasiak-CG requires 484:8 seonds this means a speed-up of

30%.

j N




J

N

�

J

CG

 

T (CG

 

) �T (CG

 

)

0 54 16 14 0.270 0.270

1 188 32 13 0.240 0.510

2 696 64 12 0.540 1.050

3 2672 128 16 1.720 2.770

4 10464 256 18 5.640 8.410

5 41408 512 16 17.28 25.69

6 164736 1024 18 63.81 89.50

7 657152 2048 18 247.4 336.8

Table 4.8. Nested iteration for J = 7.

5. Conluding Remarks

In the present paper we explore a biorthogonal wavelet based approximation for the ou-

pling of FEM-BEM to solve two-dimensional exterior Dirihlet boundary problems for

the Laplaian. We also disuss several iterative solvers and preonditioning tehniques

based on the norm equivalenes of wavelet bases. From all numerial experiments, for

the wavelet ompression performed and for the preonditioning, satisfatory results are

obtained. These prove the possibilities of this method.
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