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MULTISCALE PRECONDITIONING FOR THE COUPLING OF
FEM-BEM

HELMUT HARBRECHT, FREDDY PAIVA, CRISTIAN PEREZ, AND REINHOLD
SCHNEIDER

ABSTRACT. We apply multiscale methods to the coupling of finite and boundary element
methods to solve an exterior two dimensional Laplacian. The matrices belonging to the
boundary terms of the coupled FEM-BEM system are compressed using biorthogonal
wavelet bases developed from A. Cohen, I. Daubechies and J.-C. Feauveau [5]. We de-
scribe different solving and preconditioning techniques. Through numerical experiments

we provide results which corroborate the theory of [19] and the present paper.

AMS subject classification: 65F35, 66M55, 65M60, 65N30, 65N55, 65R20.

INTRODUCTION

During the past decade the coupling of finite element methods (FEM) with boundary
element methods (BEM) has been developed to combine the advantages of both methods,
mentioning only [4, 6, 12, 19]. Due to the large complexity of the boundary element
part, an application of modern fast methods for integral equations, like Fast Multipole
Method [14], Panel Clustering [17] or wavelet approaches [1, 7, 9, 25, 23] seems to be
highly attractive. However, a rigorous investigation of these methods in conjunction with
FEM-BEM coupling was missing. In [19] we have studied the corresponding wavelet matrix
compression for two dimensional boundary value problems. In particular, the boundary
integral equation can be formulated on an artificial interface I'. Even if a circle or a sphere
is not preferable, the geometry of this interface can be chosen fairly simple. By such a
choice the wavelet approaches on I' become much more efficient. The questions of solving
the compressed linear system has been defered to the present paper. Herein, we will focus

mainly practical issues, like preconditioning and practical implementation.

The present approach is set up as follows. First, the exterior Dirichlet boundary prob-
lem is reduced to an equivalent one in a bounded domain using the so-called two integral
formulation of the coupling [6, 12, 18]. A smooth parameterization of the artificial bound-
ary I' is used to simplify the analysis and numerical solution of the discrete Galerkin
scheme [19, 22]. More precisely, the normal derivative on the boundary is substituted by
a new unknown on the interval [0,1]. The finite elements on the domain are supposed

Key words and phrases. Finite element, boundary element, multiscale methods, biorthogonal

wavelet bases, norm equivalences, matrix compression, preconditioning, fast solution.
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to be piecewise linear and continuous. Consequently their traces are also piecewise linear
on the interval [0, 1] with respect to the same parameterization as above. In the focused
case it is sufficient to discretize the new unknown on the interval by piecewise constant
functions. This suggests the use of piecewise linear and piecewise constant biorthogonal
wavelet bases with sufficiently many vanishing moments as introduced in [5]. Then, the
wavelet matrix compression strategy proposed in [19] is performed on the BEM matrices.
It is worth remarking that this procedure can be efficiently implemented, and without
loss of stability and accuracy [19] of the Galerkin scheme. We confirm this by the given
numerical results. These results also demonstrate, compared to the traditional boundary

element approach, a dramatical saving of the required memory and computing time.

Since in general, the corresponding linear system is difficult to solve due to its compli-
cated structure and ill-conditioning, we study several preconditioning techniques. The
constructed triangulation is suitable to precondition the matrix arising from the FEM
discretization by the BPX preconditioner [3]. Moreover, for operators of nonzero order,
a simple diagonal preconditioner for the BEM matrices discretized in wavelet bases is
available [10, 25]. We apply these results combined with the discrete wavelet transform to
construct, similar to [20, 21], a global 3-block-preconditioner avoiding above mentioned ill-
conditioning. We use Krylov subspace methods, namely GMRES [24] and MINRES [23], as
iterative solvers for the preconditioned nonsymmetric system and its symmetric counter-
part, respectively. Alternatively, we apply Bramble-Pasciack’s CG [2], where a new bilinear
form enables the application of the CG algorithm. We show that these methods have al-
most optimal complexity and in combination with nested iterations we achieve optimal

complexity [15].

The paper is organized as follows. In section 1, we introduce the model problem and
transform it via the two integral formulation into an equivalent variational formulation.
Then, the discretization of the variational formulation is described. In section 2 we briefly
recall the biorthogonal wavelet approximation for the coupling proposed in [19]. Here,
aspects of the computational implementation of our method are described: We show that
the change of bases in each iteration step for the unknown on the interval is not required,
and that, similar to the classical approach, we have to compute only two BEM matrices,
now with respect to wavelet bases. In Section 3, we propose preconditioning techniques
for the resulting linear equation system. In Section 4, through numerical experiments,
we explore the biorthogonal wavelet approximation for the coupling of FEM-BEM. We
demonstrate that the accuracy of the Galerkin scheme has not been deteriorated by the
compression strategy. The different solving and preconditioning techniques are discussed
and, moreover, a nested iteration algorithm is performed. Finally, in Section 5, we state

concluding remarks.
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FiGuRrE 1.1. The model problem.

Throughout this paper a < b expresses that a can be bounded by some constant multiple
of b uniformly in any parameters on which ¢ and b may depend. Likewise a ~ b means
that a < band a > b.

1. THE CouPLING OF FEM-BEM

In this section we introduce the given exterior boundary value problem and transform it
via the two integral formulation, cf. [6, 12, 18], into an equivalent variational formulation,
for which we show uniqueness and existence of the solution. The subsequent discretization
is described in the last subsection yielding a Galerkin scheme without further restrictions.

1.1. The model problem. We consider as model problem an exterior Dirichlet problem
for the Laplacian in the plane. Let €y € R? be a bounded and simply connected domain
with Lipschitz boundary . Then, for a given compactly supported function f € L2(R? \
Q) we seek u such that

—Au=f in R? \ Q,
(1.1) u = on T,

u(z) = O(1) as |x| — oo.

According to the hypothesis on f we choose a smooth bounded second domain ; con-
taining Qp and supp f. Its boundary T' := 9Q; divides R? \ Qy into an annular region
(bounded by Ty and T') and an unbounded exterior domain Q, := R? \ Qy, as shown in
FIGURE 1.1.
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With this setup, (1.1) can be split in a coupled interior and exterior boundary value

problem
—Au=f in Q,
u=0 on Iy,
Au=0 in Q+,
(1.2) u(z) = O(1) as |z| — oo,
lim u(z) = lim wu(x) for all zp € T,
T—T0 T—T0
reQ reEQ4
ou . ou
Jim E(:c) = xlggo E(:c) for all o € T.
HISY) reEQ4

We introduce the single layer operator V, the double layer operator K, its adjoint £* and
the hypersingular operator VW defined by

/Ea:y y)ds,,

/—E z,y)v(y)dsy,

vy

/81/9; (x,y)v(y)dsy,

Wi)(a) = =g | 5B )ds,

where the fundamental solution E(x,y) is given by
1

(1.3) B(z,y) = —5loglz —yl.
s

If we denote by L?(T) the function space of all squared integrable functions on T' with
respect to the canonical inner product

() z2e) = [ ul@)ola)ds,
and by H*(T") (s € R) the corresponding Sobolev spaces, then, in this context, V defines
an operator of order —1

V:HY2() — HY2(D),
IKC, K* are zero order operators

K:HY>(T) - HV*(), K*:HY>T) - H VD),

and W is an operator of order +1

W : HY2(T) — H-Y2(I).

ou

Finally, introducing the variables o := 5 and ¢ := lim|;|_,o u the coupled system (1.2)
lead us to the following nonlocal boundary value problem:
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Find (u, o, c) such that

—Au=f in Q,

u=20 on Iy,
1
(1.4) <§—IC>U+VO'—C=0 onT,
1
—WU+(§—’C)J:J on I,

/F o () dsy = 0.

This system is the so-called two integral formulation, which is equivalent to our original
model problem (1.1), see for example [6, 12, 18].

1.2. The variational formulation. The smooth boundary I' can be parameterized by
a l-periodic function v : [0, 1] — T such that for all ¢ € [0, 1] there holds

(1.5) a(t) :== [y (#)] > 0.

In addition to the spaces L?(I') and H*(T') we introduce the (1-periodic) spaces L?(0,1)
and H*(0,1), respectively. Precisely, let L?(0,1) be the space of all 1-periodic squared
integrable functions. Its inner product is denoted by

1
(1.6) (0, w) = /0 o(Bw(t)dt.

Then, for any real number s the 1-periodic Sobolev space H*(0, 1) is defined as the closure

with respect to the norm

10l1Z0,1) = Y (1 +In))>|o(n)”

neL

of the space of all 1-periodic C°°-functions. Here, ¥(n) indicate the Fourier coefficients
1 .
o(n) =/ e 2™Syds, n € 7.
0
Then, clearly, since (1.5) is provided, there holds for v € H*(T") the norm equivalence

(1.7) v o 7||Hs(0,1) ~ HUHHs(r)
Next, we introduce product spaces M := H'/2(0,1)x H='/2(0,1) and N := H~'/2(0,1) xR
equipped by the product norms

10, W) 137 := lolF20qy + 10l 172001y ¥ (0sw) € M,

N, w) By = o112 o) + w0l v (v,w) € N.
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Further, let a : HY(Q) x HY(Q) = R, B: M x M — Rand b: N x N — R be bilinear
forms defined by

a(u,v) =/Vqudx,
Q

(1.8)  B((:A), (@,0) = {0, W) = ((5 = K)w, ) +{(5 = K)p, 8) + (VA ),
b(o‘vc)v (57 d)) = (dv )‘> - <Ca 5>7

where the integral operators V : H='/2(0,1) — HY?(0,1), K : H'/?(0,1) — H'?(0,1)
and W : H'/2(0,1) — H~1/2(0,1) are given by

1
- / E(y(s),7(t) u(t)dt,

Lo
- / 87E<v(sm<t>>u<t>a(t>dt,
y

(Wu)(s

81/3; 81/y

with E(-,-) from (1.3). We set H := HI(Q) x H-'/2(T') x R and define a bilinear form
A:HxH — R by

A((u, 0,¢), (v, p,d)) == alu,v) + B((u oy, (o0 7)), (vory,(poy)a))
(1.9) +0(((0 ov)a,e), ((p o y)e, d)).

Introducing the linear functional F': H — R,

F(v,p,d) = / fodz,
one readily verifies that the variational formulation of (1.4) is given by:
Seek (u,0,¢) € H such that
(1.10) A((u,0,¢), (v, p,d)) = F(v, p,d)
for all (v,p,d) € H.

Existence and uniqueness of the solution of this variational formulation is shown by the

following lemma.

Lemma 1.1. Under the assumption that I' has a conformal radius < 1, the variational
formulation (1.10) has a unique solution (u,o,c) € H for all F € H'.

Proof. 1. A: H x H — R is continuous: It is well known that the bilinear form a :
H'(Q) x H'(Q) — R is continuous

a(u,v) = /Q VuVodzs < llullzse ol )

Moreover, since the operators V, W and K are continuous [16], one has

B((M? >‘)7 (wv 5)) S H(M? >‘)||M||(w7 5)||M
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Next, involving Holder’s inequality, for b: N X N — R there holds
|b((>‘a C), (57 d))| = |<d7 )‘> - (C, 5>|
< |dl M =120,y + lel 101l zr=172(0,1)
< [[(X, ) In [0, d) || -
Setting
(1.11) pri=uoy, wi=voy, Ai=(oov)a,  d:=(poy)a,
observing (1.7) and by the trace theorem
g2,y = llwe Yl gz S llulla@),
lwll 1720,y = v e Yl m1/2000) S N0l ()
one has proved the continuity of A: H x H - R
A((uv a, C)v (’U, Py d)) S || (ua ag, C)HH ||(1), Py d) HH
2. A: H x H— R is H-coercive: The bilinear form a : H*(Q) x H*(Q2) — R is elliptic

a(u,u) = /QVuVudx > ||u||%11(m.
Moreover, we find
B((11:A), (11, 0) = (s W) = (5 = K A) + (5 = K, A) + (VA A)
= (1, Wp) + (VA A).

If T' has a conformal radius < 1, the single layer potential V : H~'/2(0,1) —
H'Y2(0,1) is a symmetric, positive definite operator [16], hence,

(V)\,)\> Z H>‘“§{fl/2(o,1)'
Besides, the hypersingular operator W : H'/2(0,1) — H~'/2(0,1) is symmetric and
positive semidefinite [16]

W 111120y = O
Combining both yields
BN (1,2)) 2 N2
For the bilinear form b : N x N — R we obtain
b((A,c), (A e)) = —(e,\) + (e, \) = 0.
Summerized one gets with the settings (1.11)
|A((y,0), (u,0,)) + Klel2] 2 (w0, Oy, k>0,

which signifies the H-coercivity. Note, for the latter step we again employed the norm
equivalence (1.7).
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3. A: H x H — R is injective: Let be (u1,01,c1), (u2,092,¢2) € H arbitrarily but fixed

and assume
A((uy —ug,01 — 09,01 — ¢32), (v,p,d)) =0 V (v,p,d) € H.
Since it holds
A((u1 — ue, 01 — 02, ¢1 — €2), (U1 — U, 01 — 09,1 — C32)
2 llur = wallzp ) + llow = o271z,
we find 413 = us and o1 = g9. Next, testing with (1,1,1) € H yields
A((u1 — ug, 01 — 09,1 — ¢2), (1,1,1)) = ¢1 — co,

i.e., cl = 2. Therefore, A is injective.

4. According to items 1, 2 and 3 the bilinear form A : H x H — R is continuous, H-
coercive and injective. Hence, one concludes existence and uniqueness of the solution
by the Riesz-Schauder theory.

O

1.3. The Galerkin Scheme. In [19] a regular triangular mesh with curved triangles
along I" was proposed as triangulation of the annular domain €. Since we need for the
application of the BPX preconditioner a sequence of nested spaces, we employ the ini-
tial triangulation as a parameterization of (2. The refinement step is then obtained from
subdividing the reference triangle which leads to a sequence of nested spaces on €, cf. [22].

More precisely, let 0 = t(()o) < tgo) < ... < tg\%
0

of [0,1] with tgo) - tgg)l = ho := 1/N§,i=1,...,N}. We denote by Q, the polygonal
annular domain whose vertices on I are ’y(tgo)),’y(tgo)), e ,*y(tgg)r_l). Let 79 be a regular
triangulation of Q, by triangles of diameter satisfying diam 7; 0§ ho supye(o 1 a(t) for all
Ticr. I T = A((0,0), (1,0),(0,1)) denotes the reference triangle there exist || affine

mappings F; with F; (f) = T;. Now, each triangle T; € 1y with two vertices on I is replaced

= 1, N} € N, be a uniform partition

by the corresponding curved triangle. Without loss of generality we may suppose that the
vertices po, p1,p2 of a curved triangle T; satisfy p; = ’y(tEP )), p2 = ’y(tl(-?_?_l), respectively.

Then, a C*°-mapping F; with E(f) = T; is given by
F; = F, + G,
with
T

Gil®) = 7= (=2t + 3at) = (1= P21 = By (1)),

see [26] for further details. We will indicate this initial triangulation with noncurved and
curved triangles by 7y. Subdividing in the usual way the reference triangle Tin 4,16,64,...
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triangles yields a sequence of meshes
?OC?lcf%QC...

with step width diamT; < hjsupscq(t) for all T; € 7j, where h; = 277 hy, cf. FIG-
URE 1.2.

FIGURE 1.2. The initial triangulation 7y and the triangulation 75 obtained
after three refinement steps.

The finite element spaces on these meshes are considered to be piecewise linear and con-
tinuous. The Ansatz and test functions on the given meshes are assumed to be Lagrange
tent functions, which are equal 1 in one knot and equal 0 in all others knots. Supposing
N ]Q degrees of freedom on the mesh 7; these functions will be called by

Fplo), weQ k=AF={01,. NP1},
Denoting the space on 7; by
VE = span{¢%, : k € A} C HY(Q).
we obtain

VilcvVelcivtc....

The above introduced refinement strategy leads in the i-th step to an equidistant partition
0= t(()]) < tgj) <...< t%} =1 of [0,1] with N]r = 2/ NEI. Therefore, if we discretize the

space H'/2(0,1) by piecewise constant Ansatz functions on the given partition

r _ o r._ r_
¢j,k(t) = X[tl(cj)’tl(c]—g-l]j (S [0, 1], k€ Aj = {0, 1,... ,Nj 1}.
this again yields a nested sequence
Vo cVicv) ...
of subspaces er = span{gb{,c ke Ag} c H-'2(0,1).

In order to simplify our Galerkin scheme we do not approximate in (1.10) the unknown
o € HY2() but A := (00 y)a € H™/2(0,1), see [19] for details. Then, from the
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definitions of the bilinear forms (1.8), setting
A=| /Q VoV ¢ d]

(112)  B=[@hondin] o . K= (K@ o).

W= [<W(¢§?kf ° ), df © V>]

LTINS LTINS

r Q’
keAL K ens

M = [(¢],.1 V= [(Voh b))

>}k'eA]P’ k,k'eA]P’

we obtain the following linear equation system

A+wW KI'-BT o u f
(1.13) B-K A% -MT| || =0
0 M 0 c 0

2. WAVELET APPROXIMATION FOR THE COUPLING

By the constructed triangulation the boundary I' is partitioned in the j-th step via an

equidistant partition 0 = tgj) < tgj) << t%iﬂ = 1 of the interval [0,1], where the

step width h; satisfies h; = 27Jhy. On this part]ition the unknowns are discretized via
(periodic) piecewise constant and linear functions, respectively. Instead of using these
single-scale bases we want to apply wavelets with vanishing moments (more precisely:
biorthogonal wavelet bases) yielding numerically sparse system matrices, cf. [25, 19]. For
sake of simplicity in representation, we skip the given numbering and the suffices I' and
Q, assuming an equidistant partition with tg ) — 9.

The outline is as follows. We first introduce biorthogonal wavelet bases on R, obtaining
then the wavelet bases on the interval [0,1] by periodization. According to [19] we give
in the third subsection a briefly recall to the compression strategy of the matrices arising
from the BEM. The last two subsections are dedicated to the realization of the wavelet
Galerkin scheme for the coupling.

2.1. Biorthogonal Multiresolution on R. On R piecewise polynomial functions of
degree d — 1 can be defined as follows. Denoting by [z, ... ,x4]f the d-th order divided
difference at the points zg,... ,z4 € R (see e.g. [11]) the (centered) cardinal B-spline of
order d is given by
d i\ d—1
D (z) = d[0,1,... ,d](-—:c— H) .
217 +
where 2!, := (max{0,z})" and |2| ([z]) is the largest (smallest) integer less (greater) than

d)

or equal to z. This scaling function ¢¥ is normalized

H¢(d)HL1(R) =1,
compactly supported
diam(supp ¢¥) ~ 1
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and refinable

gb( (7) \/_Zakqﬁ (2z — k)

keZ

with mask coefficients

ol-d(?) 4] <k < [4],

(2.14) aj, =

0, elsewhere.
Introducing for j, keZ translates and dilates of the scaling function QS(. = 279/2¢(d) (27 .
—k), the sets <I> = {QS : k € 7} generate a sequence of spaces V; := closyz(span @gd))

which is nested

. C V} C V}'Jrl C...
and dense in L?(R)

dos2 (|J V) = L*®). () V; = {0}
JET. JET.
Since the basis functions are piecewise polynomials, the spaces V; are exact of order d,
i.e., we find for a given 0 < r < d some zj, = z(j,r) € R with
d
o =3 andn
kEZ

Furthermore, @;d) forms a stable basis in V;

‘|¢.§'d)c‘|L2(R) ~ ||c||12(Z) Vee lQ(Z).

Due to [5] it exists for every integer d > d with d + d even a dual scaling function g(d,d) €
L?(R) which is biorthogonal to the first scaling function

(Qg(d)?gg(d,ci)(. — k))L2(R) = 6ok, kEZ.

Moreover, similarly to the primal scaling function, this function is normalized, compactly
supported and refinable

(2.15) a(d"i (x) Za;@ 2z — k).
V2
The mask coefficients in (2.15) can be defined by the z-notation, i.e., in the undermen-

tioned sequences (z) = Y, ax2 the coefficient dy, of z* corresponds to the mask coefficient
ar. It holds a(z) = p(z)q(z) with

: ,i<:f>

d+d -

k=

o
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cf. [5]. Exactly like the primal side, the translates and dilates of the dual scaling function
55.?,;‘1) = 2*7'/25(‘1"1)(2]' -—k) (j, k € Z) generate collections of stable bases @ {QS
keZ} in~spaces YN/J := closz2(span '1)5' ))
of order d.

which are also nested, dense in LQ(]R) and exact

According to [5] a dual pair of wavelets ¢(d’d~) (x), {pv(d"i) (z) € L*(R) satisfying
(Zp(d,d)7 {pv(d,d)(. _ k))L2(R) = o ks ke,
is defined by
(2.16) (@D me 2z —k), D medd (22 — k),
kEZ kGZ
where the masks b, b are given by

(2.17) bp= (DY@,  bp=(-1fa1, k€eZ

with a from (2.14) and & from (2.15). As a consequence of finite masks and compact
supports of the scaling functions both wavelets are compactly supported

diam(supp w(d"z)) ~ diam(supp @Z(d"i)) ~ 1.
Setting analogously to the scaling functions

%(fikd) 2]/2¢ (d,d) (2] k), %(fikd) 29/2¢ (d,d) ( k)

the sets

Wekwezmy, WY =(li? kez),

generate complement spaces W, := closy2(span ‘Ifg-d’d)), Wj = clos;2(span \ffg-d’d)) with
Vi@ W; =V, VieW; =V,
where & denotes the direct sum. Thus, recursively one obtains

closy2 (%WO = clos;e (%WO =

Since biorthogonality implies W; L Y~/J the primal wavelets have vanishing moments of
order d, i. e.,

o d,cz -
(95 oy =0, 0<a<d.
Moreover, the collections

Y e Y E

JEZL JEZL

form Riesz bases in L?(R)

R18) el ~ [Vl ~ [F0elfuy Ve @)
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2.2. Periodization. The above setting is clearly not suitable for the treatment of equa-
tions which are defined on bounded domains. In the sequel we define a periodic version of a
multiscale resolution. It essentially retains all the structural and computational advantages
of the stationary and shift-invariant case considered in the previous subsection.

To this end, the simple trick is to replace the meaning of u;; := 2%u(2j - —k), k € Z, for
compactly supported u € L?(R) by its periodized counterpart

i =253 (2 (- +n) — k).
nez

In this way, given any dual pair ¢(? and a(d’cz) on R of compactly supported scaling
functions, and setting A; := 7\ 2J7., the corresponding sets

=t ke sy W =0 ke ay i >0

and likewise @( D and Efg-d’d), have finite cardinality 2/ and consist of functions which
are 1-periodic. Note that these definition preserves biorthogonality relations. One easily
checks that the scaling functions are biorthogonal

<,1)(_d) (’Iv)(d,ti)> -1
Moreover, the wavelet bases

) (d.d) Jldd) . Gldd) | | ldd)
U™, =00 | ) v
J>jo J>jo
are biorthogonal, i.e.,

(qj(d,d)7 {IV,(d,J)> —1,

where (-,-) denotes the inner product on L?(0,1) defined by (1.6). For sake of simplicity

in representation, we will indicate in the sequel the scaling functions on the coarsest level
of the wavelet bases by \Ifggﬂ = @%) and {Ivfggﬂ = &)gfj’d) w
level jo has to be chosen sufficiently large. The spaces V; := closy2(span @gd)) and V; :=

, where, clearly, the coarsest

closyz2(span <I>( )) form two multiscale decompositions of L2(R\Z) = L?(0,1). One readily

verifies

ngt,ik - Z (Zak’ 2k+42it1n )¢§'?17kla ¢§dkd = Z (Zak/ 2k4-2i+1p, )Qs(i(f)k,

k' GAJ+1 neL k' EA]+1 ne”Z

with a, a from (2.14), (2.15), respectively, and

i = X (Cavawen) Wi 000 = 3 (D) i

k’EA]'+1 neEZ k' EA]+1 nez

with b, b from (2.17). That is, the mask sequences are obtained by 2/*!-periodization.
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2.3. Matrix compression. Discretizing the boundary integral operators V, W and K
by biorthogonal wavelet bases one obtains quasi-sparse matrices. These can be compressed
without loss of accuracy, see [19] for details. All matrix entries, for which the distances of
the supports (on the given boundary T') of the corresponding Ansatz- and test functions are
bigger than a level depending cut-off parameter B; j/, are set to zero. Hence, one only has
to calculate those values, for which these distances are smaller than the cut-off parameter.
More precisely, abbreviating

dd dd
@g',k )= suppr ¢§,k )7
the compressed system matrices are given by

0, if distr 0\, 04 0) > BY.,,

(V1w .grwy = - B
(k)G (Vzp](-,l’,‘f}),@b](.l,;dl)>, otherwise,

0, if distr (0/3™,0%1)) > B,

(W] (.57 ) = .
(4.k), (5" ') (W(@bg?”gf) o), ¢§?};d2) 07), otherwise,

e 1 (2,d3+1) ~(1,d3)
0, if distp (G)j,k N 7®j’,k’3 ) > BJI-’(]-,,

K004 = ~
(J:k), (5" k") (K(w§g,g,3+1) 07)7w§1éd3)>, otherwise,

where the cut-off parameters BY ., BV, BEX, are set as follows

VIR N I N

J(2d} +1)— (G +5")(d) +dy)

B]‘{j, = aq max {277',27]",2 2d; -1 },
S, Jd )G
(2.19) BY, = a; max {2—3, 9=7' 9 2y 41 }
; ) , JCdi+D -G+ (d5+d3) -2
B]{‘j, = a3 max {2_3, 27,2 2d3+1 }7
with
(2.20) ap,az,a3 > 1, 1<dy <d —1, 2<dy<dy+1, 1<dj<ds.

It has been shown in [19] that this compression strategy reduces the number of nonzero
entries to O(Nylog Ny). In this expression, Ny = |A ;| denotes the number of unknowns.

To satisfy (2.20) we have to choose wavelets with enough vanishing moments dy,dy and
ds. Since on the other hand the supports of the wavelets increase proportionally with the
number of vanishing moments (which reduces in our experiences the compression rates) one
has to apply wavelets with minimal number of vanishing moments, respectively supports.
That is

o U(1L3) for the discretization of the single layer operator V,
o U(22) for the discretization of the hypersingular operatorW,
o U13) and U for the discretization of the double layer operator K.
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An important result is that in this setup there holds dy :=dy +1. Hence, choosing as :=
a; > 1 and d} € R such that 1 < d} < d; —1 we find that for d} := d) +1 also the estimate

2<dy < do+11is valid, i.e., we are allowed to set B]‘{j, = BW

I This will be exploited in

the next but one subsection.

2.4. Changing bases. In the single-scale basis the whole system is given by

A+W, KI-Bl 0 u f
(2.21) B,-K, V, -MT| [Xs]| = |0],
0 M¢ 0 C 0

where the suffix ¢ indicates the single-scale matrices. Since we want to compute the BEM
matrices with respect to wavelet bases, we have to rewrite the system. For this let T ;
denote the fast wavelet transform, i.e., the matrix which gives the change of bases

d d,d
Soadiy = D D bty
keny Jo—1<j< T kEN;
where

T T
[bj,k]j071§j<J,keA]— = [ak]kEAJ Td,d~'

Then, the system matrix in (2.21) with respect to the multiscale bases is given by
A+ TQQW,/}T%I—;Q T2’4K1€T{3 ; BZ; 0 .
B, - T 3K, T, T13VyTig M,
0 My 0
which is equivalent to

I 0 O [A+T,WyT, TyuK)-BIT;7 0 I 0 O

0 Ty3 0| |Ti3By—K,TI, Vy -MI| |0 TT; o0
0 0 1 0 M, 0 0 0 1
Hence, to apply the wavelet preconditioner for V, the linear system (2.21) is transformed
to
A+ Ty oW, T, TouKI -BIT T 0 u f
-1 T T _
0 M, 0 c 0

where the unknown ) is now given in the multiscale bases.

2.5. The hypersingular operator. We want to discuss the properties of the matrix W
corresponding to the hypersingular operator. For sake of simplicity, we skip the suffices I'
and (2 and assume corresponding index sets A; for piecewise constant and linear functions
on the interval [0, 1].

Since for piecewise linear functions there holds (see [19])

WS, o) = V(650 (650)"), Y kK €A,
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we obtain in the single-scale basis the identity
1
= 72
h3

where H;, jo < j < .J, is the matrix given by

(2.22) A" H;V,HT,

Hj = 1 GRNjXNj.

1 -1

Since the application of Hy on a vector x € R/ requires only O(27) operations, we
are not computing Wy but using the right hand side of (2.22) in the iterative solver.
Consequently, in the single-scale scheme we only have to compute two BEM matrices,
namely V, and K.

For the compressed wavelet matrices we cannot use relation (2.22) without further exam-
inations on the compression errors. Hence, while using compression it seems that we have
to compute the discretization of three integral operators instead of two. But, as we will
see, this is not necessary since for the multiscale basis there exists another approach.

We assume piecewise constant wavelets U(14) for the discretization of single layer operator

2,d-1) for the discretization of hypersingular operator

V and piecewise linear wavelets W
W. Of course, d has to be > 3. As remarked in subsection 2.3 under this assumption
one can choose identical cut-off parameters for the compression yielding identical sets of

nonzero entries in the corresponding matrices. We make use of (cf. [5])

(¢(d,d))l _ ¢(d71,d~+1)_

Consequently we obtain

H, 0 HT o
2.23 W, =" DV,D | /o ,
(2.23) v [ 0 1] v [ 0 1]
where D is a diagonal matrix given by
8 1Ok . .
DIk, k) = ],;? Jo—1<4.j <J, kel kel

Hence, employing (2.23) in the iterative solver, we also have to compute only the BEM

matrices Vy, and Ky.

3. PRECONDITIONING

Since the system matrix of the Galerkin scheme (1.13) includes matrices belonging to
operators of positive and negative order, preconditioning techniques are very important
for an efficient iterative solution of the linear system. Based on the BPX preconditioner [3]
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and the wavelet preconditioner [7, 8, 10, 25] we discuss several precondition methods. Note,
the discretization level J is assumed to be sufficiently large J > Jy and, moreover, all given
estimates have to be understood uniformly in .J.

3.1. The BPX preconditioner. We have constructed on {2 a sequence of regular and

quasi uniform triangulations 7; and piecewise linear and continuous spaces VjQ, such that
0 Q 0 1 0 0
Voo CcVifC..., closHl(LJVj):H(Q)7 ﬂvj =V
>0 >0

The basis '1)? = {gb?,k ke A?} of VJQ was chosen as the set of Lagrange tent functions,
which we may consider to be L?-normed. This implies

(3.24) H@?uHL%Q)~JHum%A9) Vuei?(a9).

For the L?-normed Lagrange tent functions the (simplified) BPX preconditioner C can
be defined by

J
(3.25) Cru=>Y 273" (u,¢})¢h,  ue€H(Q),
=0 AN

see [7]. Cy defines a symmetric and positive definite operator, hence the square root C’}/ % is

well defined. The application of C}/ o a given function u € VJQ yields a norm equivalence

).

We denote by A : H*(Q) — H () the operator corresponding to the FEM bilinear form
a(-,-) from (1.8)

N

)

[N

(3.26) 1O > ul o0y ~ llull gy, s € (=

(Au,v) = a(u,v) Y u,v € HY(Q).

Based on the bijectivity of A, the norm equivalence (3.26) implies for all u € VJQ

1/2 1/2 1/2 1/2
(3:27)  llullz2) ~ HCJ “HHl(Q) ~ HAPJCJ “HH—l(Q) ~ HCJ PrAP;C; “HL2(Q)7
where P; denotes the orthogonal projection onto V}Z.
Next, we consider the discrete system. We denote by Ig 41 the restriction from level j + 1
Ij+1
J

onto level 7 and by the prolongation from level j onto level j + 1. Restriction and

prolongation are described by the well known stencils

11 11
EUE Y I
j-1 _ i
ERER A R e A
0 5 3 03 3
The product If., = Ig +11§ié e Iﬁ‘l signifies the restriction from level .J onto level 5 and

I}’ = 15711§:§ e Ig“ the prolongation from level j onto level .J. Then, the discrete BPX



18 HELMUT HARBRECHT, FREDDY PAIVA, CRISTIAN PEREZ, AND REINHOLD SCHNEIDER

preconditioner (cf. [3]) is given by
J . .
(3.28) C=> 27%1/r,
j=0

We denote by A = a(®$, ®%}) the Galerkin matrix corresponding to A. Of course, there
holds for all u = ®%u € Vi

dAu = Py AP;yu,

hence, (3.27) can be rewritten as

Hq)?uHL%Q) ~ H(I)ngcl/zuqu(n) ~ Hq)gJZACl/zuHH—l(Q) ~ H‘I)SZCWACU%HH(Q)'
By (3.24) this implies
lulsag) ~ [ CY2AC 2ul|y o
or, in other words, the well conditioning of the matrix C/2ACY/2
condp2 (CY2ACY?) ~ 1.

3.2. Wavelet preconditioning. Let us define two numbers s and S which signify the

regularity of the primal and dual wavelet basis, respectively,
s=sup{s€eR: zp(d’(z) € H*(0,1)}, s=sup{s € R: IZ(d’J) € H*(0,1)}.
According, for example, to [7, 8, 10, 25] there holds uniformly the norm equivalence
(329) HAHHS'H(O,I) ~ HDLSfAHHt(O,]_)a AE V}—‘v s+itte (_§7§)7
where D¥ denotes the operator given by
J-1 N "
iy Add)\ (did
(3:50) Pid= 303 2
j=jo—1 keal
Let QS be the projection onto V} defined by
J—1 } .
~(d,d)\ ,(dyd
Q=30 3 g
J=jo—LlkeA}
Then, as one easily checks, the adjoint Q% is given by

J—1 . .
A=Y S g Dele?.

J=Jjo keA]P
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Since the single layer operator V : H=1/2(0,1) — H'Y2(0,1) is an operator of order —1,
we utilize the norm equivalences (3.29) to find that for s > 1/2 there holds for all A € V}

(3.31)
Moy ~ 105 Murir200) ~ 1V QIDT *Mypisaoqy ~ 1P * @5V QDTN -

J—1 \I,(_1,J)

i1 ¥ the wavelet

Next, we consider the discrete operators. For this, let be ‘115 =U
basis in V}. Moreover, we introduce the Galerkin matrix

V= (VI ;)
and define the diagonal matrix D* by

(3.32) [D?] = 2598, 110k

(3:%),(5" k")
which is obviously the discrete analog of (3.30). Then, since
TEVA=Q5VQ,N  VYA=TLAe VT,

one has similarly to subsection 3.1 the relation

H\IIS)‘HL%OJ) ~ H\IISDl/zAHH—lﬂ(O,l) ~ H\IISVDI/Q)‘HHU?(O,I) ~ H\IISDI/QVDUQ’\HU(OJ)'
By the Riesz property (2.18) there follows
HAHZQ(AS) ~ HDl/zVDl/ZAHp(AE)a

that is the well conditioning of the matrix D'/2VD!/2,

3.3. The preconditionend system. It is shown in subsection 1.3 that the linear system
of the introduced Galerkin scheme for the coupling is given by

u A+W KI'-BT o u f
(3.33) S|IAl=|B-K A% -MT| (X[ =10
c 0 M 0 c 0

The system matrix S is nonsymmetric, but can be (orthogonal) transformed into a sym-
metric, but indefinite, matrix S by multiplying the second line with —1. Clearly, the

obtaind linear system

u A+wW KI'—-BT o u f
(3.34) S|Al=|K-B -v. MT| |A] =0
c 0 M 0 c 0

is equivalent to (3.33). Motivated by the above facts we define
ct/2 0 o
(3.35) T:=| 0 D2 o
0 0 1
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where C'/2 denotes the square root of C from (3.28) and D'/2 is given by (3.32). The
following lemma holds:

Theorem 3.1. The condition numbers of the matrices TST and TgT, respectively, are

uniformly bounded

cond;2 (TST) = cond;2(TST) ~ 1.

Proof. We abbreviate the underlying function spaces by
H:=HY Q) x HY2(0,1) x R,
L:=L*Q) x L*(0,1) x R,
H' := H'(Q) x H'?(0,1) x R,
all equipped by product norms. Moreover, the set of basis functions is called
== [0 Wy 1],

One concludes from the frame properties (2.18) and (3.24) the validity of

I13]] ~ o 1311

On the other hand the proved bijectivity of the underlying operator, cf. lemma 1.1, yields

~

l2

u u
= [,\} ‘ ~ |28 [,\} .
cll|lH cll|lgt
Invoking the norm equivalences
- u - u - u - u
= Bl ~ e 3, e B, ~ e (311
c L c H c H! c L
this implies the assertion. O

3.4. The Bramble-Pasciack-CG. As above we assume that I' has a conformal radius
< 1 to ensure that the single layer operator is positive definite. Then, of course, the discrete
single layer operator V is also positive definite, i.e.,

VvV >0.

We may assume the wavelet preconditioner (3.32) D! scaled such that V. > D!, in
other words,

(3.36) V-D'!l>o0.

To apply the algorithm of Bramble-Pasciack in [2] we reorder the given linear equation
system (3.33) obtaining an equivalent one

A A% B-K -—-MT| X
(3.37) Slul=|B-K)T -A-W 0 u| = |-f
c —-M 0 0 c
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Abbreviating
B-K)" A+W 0
U .= ( ) , Q= + >0,
-M 0 0
the system (3.37) can be rewritten as
A 0
v u”
U -Q u| = |-f
c 0

Following [2] we multiply S from the left hand side by

D o D 00
(3.38) E:= UTD I] =|B-K)™D I 0
—MD 01
obtaining the linear equation system
(3.39) Esm :E[%].

Since E is nonsingular, which is easily confirmed by execution of a block Gauss-Jordan
step with the diagonal matrix D, the linear system (3.39) is equivalent to the given sys-
tem (3.37). Observing (3.36),

_D1!
F o A% 0
0 I
is a symmetric and positive definite matrix. Hence, we may define a new inner product by
o o
o )-8 = e 2]

According to [2] the system matrix ES of (3.39) is symmetric and positive definite with
respect to the inner product (-,-) from (3.40) if

A+ W+B-K)TVIB-K) —-(B-K)TvIMT

R:
~-MV (B - K) MV MmT

] =Q+UDUT > 0.

In this case one may apply the CG algorithm to (3.39) based on the modified inner
product (3.40).

Theorem 3.2. IfI" has a conformal radius < 1 there holds
R > 0.

Moreover, R is spectrally equivalent to X given by

A 0
X = .
[0 MVlMT]

Proof. The proof is done in five steps.
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1. We show first the inequality
M™M

3.41 V>
(3:41) -~ MV IMT

which is equivalent to
MV M)V > MTM.

Since there holds V! > 0 the square root V=2 > 0 is well defined. Therefore, we

1/2 obtaining

may multiply the inequality from both sides by V~
MV'MDI > v-12MTMV 12,
Abbreviating b := V~1/2MT ¢ RN 7 gives
(b”b)I > bb’.

We employ the fact that bb” is a matrix of rank 1, which implies that there is only

one Eigenvalue # 0. From
(bbT)b = (bTb)b
we find that this Eigenpair is given by (b”b, b), and, consequently, there holds
(bbM)a=0 Valb.
Thus, we obtain

=0 fora=b,

a’ ((b”b)I — bb’)a
>0 foralb,

which proves (3.41).

2. Let be
Y(a) = IB-K)V!B-K) —-(B-K) VM
' ~MV (B - K) oMV tMT
and
I MV~ (B-K)
Z(a) := aMV~-1MT
0 1
By (3.41) and the identity
LB -K)IV-l(v- MM \y-1g_K 0
Z(Oé)TY(O[)Z(O[) — a( ) ( Mv—lMT> ( )
0 aMV - 1M7”

application of Sylvester’s law of inertia, cf. for example [13], gives

>0 fora>0,

(3.42) Y ()
<0 fora<0.
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3. Since W : HY/2(0,1) — H~'/2(0,1) is an symmetric, positive definite and continuous
operator [16], we find a constant 5 > 0 such that

(3.43) 0<W < BA.

Note that this estimate is a consequence of the trace theorem as used in the proof
of lemma 1.1. Since V results from an operator of order —1, its invers corresponds
to an operator of order +1. Hence, since B — K corresponds to an operator of order
0, the product (B — K)TV~1(B — K) corresponds to a (continous) operator R :
HY2(0,1) — H~/2(0,1). Consequently, similarly as the latter estimate, there exists
a constant v > 0, such that

(3.44) 0<(B-K)"V!(B-K)<~yA.

4. Tt is straightforward manipulation to confirm

VazZ + 4z —
0<$<1, x> 0.

Thus, from (3.44), we deduce that it holds for a = 7“1562;“4”‘"7”’6

oA+ B-K)TV1IB-K)>-B-K)JITV1B-K),

R |~

and hence, since W > 0 (3.44) and Y (a) > 0 (3.42), we find the lower bound

aA+ W+ (B-K)IVIB-K) —(B-K)IvIiMmT
~-MV~}B - K) aMV~IMT

>(1-a)X+Y(@)>(1-a)X>0.

R=(1-a)X+

5. On the other hand we find for @ = 1Y +! V;YVH <0

—aA + %(B ~-K)IV1IB-K)>B-K)JIV1B-K),

and hence, since Y (@) < 0 (3.42),

A+B-K)IV1IB-K) —-(B-K)Iv1iMmT

l1-a)X>1-a)X+Y(a) > MV (B -K) MV-IMT

Combined with (3.43) this gives the upper bound

(1-a+ )X >R.
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As a consequence, this theorem combined with [2] proves that there holds in the modified
inner product (-, )

I 0 0
ES~Y:=|0 A 0 ,
0 0 MV-IMT

ie., ESis sprectrally equivalent to Y. Therefore, we have the following proposition.

Proposition 3.3. The system matriz of the preconditioned system

TEST [g] -TE[8], [X]=T [g]
with
I 0 o
T= (0 C/2 0
0 0 1

is well conditioned with respect to the modified inner product

cond< y ~ 1.

.y

Remark 3.4. 1. Since there is no restriction on the used basis functions in the proofs,
the given algorithm is also practicable for the single-scale scheme, if a sprectrally
equivalent preconditioner of V is available.

2. The implementation of the Bramble-Pasciack-CG is possible without the explicit
knowledge of V-1 and D1, cf. [2].

4. NUMERICAL RESULTS

This section is dedicated to numerical experiments on the given theory. For the comparison
of the traditional scheme and the compressed multiscale scheme we construct an example
for which an analytic solution is known. We first investigate the effects of matrix com-
pression on the accuracy of the numercal solution, the computing times and the required
memory. Then we analyse the different solving and preconditioning techniques. In the last
subsection we study a full multigrid scheme based on the multiscale scheme.

4.1. An analytical example. For the numerical results we choose Qg as the two dimen-
sional L-shape [—<, =% \ [0, 15]%. Similar to [19] we construct a problem for which an
analytic solution is known. For sake of simplicity, we choose nonhomogeneous Dirichlet

data on I'y. We split

u(z,y) = ui(e,y) +uz(z,y) € C*(R\ [71>°])
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FIGURE 4.3. The analytic solution u on 2.

with the harmonic function

1
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(z+95) +y
(:1:—1—21—0 2 42

ui(z,y) = € R\ [*])

and the nonharmonic function uy € C?(R) defined by
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The function f
f = —Lus(w,y) € C'(R)

is compactly supported in the ellipse with semiaxis 0.3 and 0.2

5132

2
— 2 . Y
Suppf—{(:c,y)E]R .W—l—ﬁgl}.

Thus, setting
9(z,y) := ulr,(z,y)
we obtain the following exterior boundary value problem
—Au=f in R? \ Q
u=g on I'y
u(z) = O(1) as |x| — oo.

We choose (21 as the ellipse with semiaxis 0.35 and 0.25. The whole configuration is plotted
in FIGURE 1.1. The function u is plotted in FIGURE 4.3



26 HELMUT HARBRECHT, FREDDY PAIVA, CRISTIAN PEREZ, AND REINHOLD SCHNEIDER

4.2. Single-scale versus multiscale scheme. We list in TABLE 4.1 and TABLE 4.2 the
effect of compression on the computing times of the BEM matrices Ky, V4, Ky and V.
One can figure out of TABLE 4.1 that the break even point for the double layer operator K
is due to 1024 unknowns. For the single layer operator V the break even point occurs much
earlier, namely due to 256 unknowns. The reason is, that the wavelets required for the
discretization of K have comparatively large supports, which makes the computation of
an entry more expensive. Anyhow, the economy of required main memory is enormous in
comparison to the classical scheme, as one can see from the compression rates. Moreover,
one has to complete that the compression would be even better by applying a second
compression, see [25]. Combining both compressions asymptotically only O(NT) entries
have to be computed.

| NV [ nnz(Ky) in % | T(Ky) in sec. | T(Ky) in sec. |

32 100.00 0.01 0.01
64 86.426 0.02 0.04
128 59.033 0.06 0.16
256 36.688 0.23 0.45
512 21.698 0.98 1.16
1024 12.534 4.57 2.94
2048 7.0668 18.9 7.54

TABLE 4.1. Number of nonzero elements in % of the BEM matrix K and
computing times of K, / Ky in seconds.

| NV [ nnz(Vy) in % | T(V,) insec. | T(Vy) in sec. |

32 94.531 0.01 0.03
64 68.457 0.04 0.06
128 43.726 0.16 0.20
256 26.685 0.66 0.59
512 15.768 2.75 1.47
1024 8.9458 11.3 3.75
2048 5.0101 47.1 9.31

TABLE 4.2. Number of nonzero elements in % of the BEM matrix V, and
computing times of V4 / Vy, in seconds.

Next, we compare the accuracy of the solutions obtained from the single-scale scheme and
from the compressed multiscale scheme. One can figure out of TABLE 4.3 the L2-errors of
the numerical solutions ug, Ay, respectively, and the absolute error of the constant cy. The
corresponding errors of uy, Ay and ¢, obtained from the compressed multiscale scheme
are given in TABLE 4.4. Comparing both tables one finds that our compression strategy
does not decrease the accuracy of the solution.
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| N [ NF [l —ugllrzg | IA = Nollrzony | le—col ]
188 32 9.3063e-03 5.9979e-02 3.1150e-03
696 64 3.7929e-03 1.6400e-02 4.3119¢-03
2672 128 7.7040e-04 4.6377e-03 7.7151e-04
10464 | 256 1.3317e-04 1.3902e-03 5.6473e-05
41408 | 512 3.9053e-05 4.1934e-04 2.9662e-05
164736 | 1024 8.6537e-06 1.3361e-04 4.7211e-06
657152 | 2048 2.0511e-06 4.4152e-05 6.4501e-07

TABLE 4.3. Accuracy of the traditional scheme.

| N? [ NT =gl [ IX = Mglleeony | le—col |
188 32 9.3063e-03 5.9980e-02 3.1150e-03
696 64 3.7929e-03 1.6402e-02 4.3119¢-03
2672 128 7.7040e-04 4.6409¢e-03 7.7152e-04
10464 | 256 1.3317e-04 1.3907e-03 5.6466e-05
41408 | 512 3.9051e-05 4.2303e-04 2.9680e-05
164736 | 1024 8.6512e-06 1.4341e-04 4.7292e-06
657152 | 2048 2.0487e-06 7.5080e-05 6.5146e-07

27

TABLE 4.4. Accuracy of the compressed scheme.

4.3. Comparison of the iterative solvers. In TABLE 4.5 we list the number of itera-
tions required by GMRES [24] and MINRES [23] to solve the nonsymmetric system (3.33)
and the symmetric system (3.34), respectively. We compare the particularly preconditioned
single-scale scheme and the full preconditioned multiscale scheme, more precisely:

e GMRES4 and MINRES,: Single-scale scheme, where only the FEM part Ay, + Wy
is preconditioned by BPX, the BEM part V is not preconditioned.

e GMRES, and MINRES,: Multiscale scheme, the FEM and the BEM part are pre-
conditioned by BPX and a diagonal scaling of V. Note, a diagonal scaling of V,
is easier to implement than the application of D (3.32) and improves the wavelet

preconditioner.

The iteration starts always with the initial vector 0 and stops when the residual norm
is less than le-6. Since the system becomes very large, we limited the required main
memory by restarting the GMRES algorithm after 20 iteration steps. As one can figure
out of TABLE 4.5, the number of iterations of GMRES are not improved by the full
preconditioned multiscale scheme. We want to remark, that this is not really astonishing,
since for nonsymmetric systems a bounded condition number does not prove optimal
convergency of an iterative solver. Nevertheless, in the case of MINRES, preconditioning
the single layer potential improves the number of iterations quite a lot.
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Remark 4.1. In all the above cases we apply the BPX preconditioner described in sec-
tion 3.1. Of course, by a diagonal scaling on each level one would reach somewhat lower

iteration numbers, but the implementation is much more difficult.

| N% | NT | GMRES, | GMRES, | MINRES, | MINRES,,

188 32 48 50 79 72
696 64 56 55 119 95
2672 | 128 58 61 163 109
10464 | 256 62 69 212 117
41408 | 512 69 73 283 124
164736 | 1024 73 7 358 130
657152 | 2048 81 79 457 136

TABLE 4.5. Number of iterations required by GMRES and MINRES to
attain a residual norm less than le-6.

The speed-up by using the different wavelet Galerkin schemes is shown in TABLE 4.6. We
measure the time for building up all matrices and solving the system. Since the differences
in computation time of the BEM matrices (TABLE 4.1 and TABLE 4.2) and in number
of iterations of GMRES and MINRES (TABLE 4.5) is not as big as the speed-up, the
big speed-up of the compressed wavelet Galerkin schemes is obviously based on the much
cheaper matrix-vector-multiplication for the BEM matrices.

| N? | N | T(GMRES,) | T(GMRES,) | T(MINRES,) | T(MINRES}) |

188 32 0.520 0.860 0.590 0.960
696 64 1.110 1.960 1.560 2.700
2672 | 128 3.250 5.520 5.170 7.480
10464 | 256 19.55 19.94 45.83 24.37
41408 | 512 137.1 74.21 422.1 85.14
164736 | 1024 774.1 294.1 2964 316.7
657152 | 2048 3703 1297 15967 1403

TABLE 4.6. Overall CPU time in seconds required to build up all matrices
and to solve the linear system with GMRES and MINRES.

The next table gives the numbers of iterations and the overall computing times required
by Bramble-Pasciack’s CG. Since we do not have a preconditioner for the single layer
operator in the single-scale bases, we only list the results of the multiscale scheme. As one
can figure out of TABLE 4.7 this solver is that one, which requires least iterations steps.
Consequently, it is the fasted one.
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| NP | NT | CGy | T(CGy) |
188 32 37 0.570
696 64 43 1.380
2672 128 46 3.740
10464 | 256 46 10.69
41408 | 512 47 35.12
164736 | 1024 | 48 121.7

657152 | 2048 | 49 484.8
TABLE 4.7. Number of iterations and overall CPU time in seconds of the

Bramble-Pasciack-CG.

4.4. Nested iteration. As we have seen in subsection 1.3 our discretization yields two
sequences of nested subspaces

Vcvlc...cH (Q), VicVic...cH*0,1).

Hence, to reduce the computing time for solving the given linear equation system we may
apply multigrid techniques. The crucial idea of nested iterations is to employ the solution
attained on the level j as initial guess for the solving step on level j + 1. More precisely,
to get the numerical solution (u(”), \(!), ¢(/)) on level .J one follows the algorithm:

1. Solve the linear system on the coarsest level 0 with initial guess (0,0,0) to obtain
the numerical solution (u(®), \(9) ¢(0)). Set j := 0.

2. Increase j := j + 1. Prolongate the solution (uU~1), \0=1 ¢G=1)) of level j — 1 onto
level 7 to get (ﬂ(j ), AU ),6(j)). Solve the linear system on level j with initial guess
(), A, ¢9)) which yields the solution (u(), (), ).

3. If j = J then stop else goto item 2.

According to [15], by this algorithm one obtains combined with a preconditioned iterative
solver an optimal scheme, i.e., for the computation of the solution on level J only (’)(Nf,z)

operations are necessary.

Since the Bramble-Pasciack-CG is the fasted solver, we have implemented the nested
iteration algorithm based on this solver. In TABLE 4.8 we list the results obtained for
the multiscale scheme for N? = 657152 and N}; = 2048. In the fourth column we list
the number of iterations required to solve (with the prolongated solution from the last
level as initial guess) the system until the residual norm is less than an level depending
¢ = (7). This € should behave like the discretization error, i.e., one may solve the system
on coarser levels with less accuracy than on higher levels. Of course, for a fair comparison
we choose £(J) = le—6 like in the above schemes. In the fifth column we give the time for
building up the system on level 5 and solving them while in the last column we sum up
them. Hence, for solving the whole system on level J = 7 the nested iteration takes 336.8
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seconds. Since the Bramble-Pasciack-CG requires 484.8 seconds this means a speed-up of
30%.

j| N® | NT |CGy | T(CGy) | BT(CGy) |
54 16 | 14 | o0.270 0.270
188 | 32 | 13 | 0.240 0.510
696 | 64 | 12 | 0.540 1.050
2672 | 128 | 16 | 1.720 2.770
10464 | 256 | 18 | 5.640 8.410
41408 | 512 | 16 | 17.28 25.69
164736 | 1024 | 18 | 63.81 89.50

657152 | 2048 | 18 247.4 336.8
TABLE 4.8. Nested iteration for J = 7.

N S O W N = O,

5. CONCLUDING REMARKS

In the present paper we explore a biorthogonal wavelet based approximation for the cou-
pling of FEM-BEM to solve two-dimensional exterior Dirichlet boundary problems for
the Laplacian. We also discuss several iterative solvers and preconditioning techniques
based on the norm equivalences of wavelet bases. From all numerical experiments, for
the wavelet compression performed and for the preconditioning, satisfactory results are
obtained. These prove the possibilities of this method.
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