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A Uni�ed De
ating Subspace Approach for Classes of Polynomial

and Rational Matrix Equations

1

Peter Benner Ralph Byers

2

Volker Mehrmann Hongguo Xu

Abstract

A uni�ed de
ating subspace approach is presented for the solution of a large class

of matrix equations, including Lyapunov, Sylvester, Riccati and also some higher

order polynomial matrix equations including matrix m-th roots and matrix sector

functions. A numerical method for the computation of the desired de
ating subspace

is presented that is based on adapted versions of the periodic QZ algorithm.

Keywords. Eigenvalue problem, de
ating subspace, Lyapunov equation, Sylvester equa-

tion, Riccati equation, matrix roots, matrix sector function, periodic QZ algorithm.

AMS subject classi�cation. 65F15, 93B40, 93B36, 93C60.

1 Introduction

The relationship between matrix eigenvalue problems and the solution of polynomial or

rational matrix equations has been an important research topic in numerical linear algebra

due to its many applications, for example in control theory, see e.g., [3, 16, 21, 24, 27, 28,

38, 39, 45, 55]. It is well known that many polynomial or rational matrix equations can

be solved by computing invariant subspaces of matrices and de
ating subspaces of matrix

pencils. Examples include Schur methods for matrix m-th roots, sector functions, algebraic

Riccati equations, Sylvester equations, Lyapunov equations and their generalizations [4, 6,

14, 17, 19, 20, 22, 23, 25, 30, 35, 40, 41, 45, 47, 51].

In this paper we consider the computation of de
ating subspaces of a (generalized)

matrix pencil of the form �A � �BC with complex n � n matrices A, B and C. (There

exist similar methods for real matrices A, B and C that use only real arithmetic. However,

for ease of presentation, we will present the complex case only.) We show that from these

de
ating subspaces the solution of many classes of matrix equations can be obtained.

These include linear and quadratic matrix equations as well as some rational and higher

order polynomial matrix equations like the matrix m-th root and m-th sector function, see

[5, 33, 35, 49].
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2 Preliminaries

By C

n�n

and R

n�n

we denote the sets of complex or real n� n matrices, respectively. By

I

n

and 0

n

the n�n identity matrix and zero matrix, respectively and we set J

n

=

h

0

n

�I

n

I

n

0

n

i

.

We omit the subscript n, if the sizes are clear from the context.

In the paper we will consider eigenvalue problems, i.e., the computation of eigenvalues

and de
ating subspaces for matrix pencils of the form �A� �BC with n� n matrices A,

B and C.

De�nition 2.1 Consider the matrix pencil �A� �BC with A;B; C 2 C

n�n

.

1. If det(�A� �BC) is not identically zero, then the matrix pencil is said to be regular.

2. The generalized eigenvalues of the pencil �A��BC are the pairs (�; �) 2 C

2

nf(0; 0)g

for which det(�A� �BC) = 0. If (�; �) is an eigenvalue with � 6= 0, then it is said

to be �nite eigenvalue and it is often identi�ed with the number � = �=�. If (0; �)

is an eigenvalue, then it is said to be an in�nite eigenvalue.

3. A k{dimensional subspace U is called right de
ating subspace of the regular matrix

pencil �A� �BC if for a full rank matrix U 2 C

n�k

with rangeU = U, there exist

a full rank matrix V 2 C

n�k

and R

A

; R

BC

2 C

k�k

such that AU = V R

A

and

BCU = V R

BC

. (Regularity of �A� �BC implies the regularity of �R

A

� �R

B

R

C

.)

4. A k{dimensional subspace U is called left de
ating subspace if it is a right de
ating

subspace of �A

H

� �C

H

B

H

.

5. A k{dimensional subspace W is called an interior de
ating subspace of the regular

matrix pencil �A � �BC if for a full rank matrix W 2 C

n�k

with rangeW = W,

there exist matrices U; V 2 C

n�k

and R

A

; R

B

; R

C

2 C

k�k

such that AU = V R

A

,

BW = V R

B

and CU = WR

C

.

Note that if C = I, then an interior de
ating subspace is just a classical right de
ating

subspace of �A��B and if B = C = I, then the subspaces are usually called right and left

invariant subspaces of the matrix A.

We denote by �(A) the spectrum of a square matrix A and analogously by �(A;BC)

the set of generalized eigenvalues of the pencil �A� �BC. For such pencils a generalized

periodic Schur form and a periodic QZ algorithm to compute it were introduced in [15, 29].

Proposition 2.2 For a matrix pencil �A� �BC with A;B; C 2 C

n�n

, there exist unitary

matrices U , V and W, such that the matrices V

H

AU , V

H

BW and W

H

CU are all upper

triangular. The generalized eigenvalues of the pencil are displayed by the diagonal entries

of the three triangular matrices and can be obtained in any desired order by an appropriate

choice of U , V and W.

(If A, B and C are real matrices, then there exists a similar generalized periodic Schur form

involving quasi-triangular matrices.)

The relationship between de
ating subspaces and large classes of matrix equations is

described in the following proposition.
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Proposition 2.3 Consider a matrix pencil �A � �BC with matrices A;B; C 2 C

n�n

.

Partition the matrices A, B and C in m compatible blocks A = [A

i;j

], B = [B

i;j

] and

C = [C

i;j

] with blocks A

ii

; B

ii

; C

ii

2 C

n

i

�n

i

, i = 1; : : : ; m. Suppose that there exist matrices

U =

2

6

6

4

U

1

.

.

.

U

m

3

7

7

5

; V =

2

6

6

4

V

1

.

.

.

V

m

3

7

7

5

; W =

2

6

6

4

W

1

.

.

.

W

m

3

7

7

5

;

with n

i

� n

1

blocks U

i

, V

i

and W

i

along with n

1

� n

1

matrices R

A

, R

B

and R

C

such that

AU = V R

A

; BW = V R

B

; CU = WR

C

: (1)

(i) If U

1

, V

1

and W

1

are nonsingular, then the matrices X

i

:= U

i+1

U

�1

1

, Y

i

:= V

i+1

V

�1

1

,

Z

i

:= W

i+1

W

�1

1

, i = 1; : : : ; m� 1 satisfy the matrix equations

A

k;1

+

m�1

X

i=1

A

k;i+1

X

i

= Y

k�1

(A

1;1

+

m�1

X

i=1

A

1;i+1

X

i

); (2)

B

k;1

+

m�1

X

i=1

B

k;i+1

Z

i

= Y

k�1

(B

1;1

+

m�1

X

i=1

B

1;i+1

Z

i

); (3)

C

k;1

+

m�1

X

i=1

C

k;i+1

X

i

= Z

k�1

(C

1;1

+

m�1

X

i=1

C

1;i+1

X

i

); (4)

for k = 2; : : : ; m.

(ii) If the matrices fX

i

g

m�1

i=1

, fY

i

g

m�1

i=1

and fZ

i

g

m�1

i=1

satisfy the matrix equations (2){(4),

then the matrices

U =

2

6

6

6

6

4

I

X

1

.

.

.

X

m�1

3

7

7

7

7

5

; V =

2

6

6

6

6

4

I

Y

1

.

.

.

Y

m�1

3

7

7

7

7

5

; W =

2

6

6

6

6

4

I

Z

1

.

.

.

Z

m�1

3

7

7

7

7

5

; (5)

satisfy (1) with

R

A

= A

1;1

+

m�1

X

i=1

A

1;i+1

X

i

; R

B

= B

1;1

+

m�1

X

i=1

B

1;i+1

Z

i

; R

C

= C

1;1

+

m�1

X

i=1

C

1;i+1

X

i

:

Proof. The proof of the �rst part follows by elementary calculations, comparing the

corresponding blocks on both sides of (1) and using the nonsingularity of the matrices

U

1

; V

1

and W

1

. The second part is immediate.

Remark 2.4 The equations in (2){(4) are matrix equations in the matrix variables fX

i

g

m�1

i=1

,

fY

i

g

m�1

i=1

and fZ

i

g

m�1

i=1

. Speci�c cases that we study below are given by choosing m and

appropriate blocks A

i;j

, B

i;j

and C

i;j

.
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Remark 2.5 Equations (2){(4) may have many solutions. But for each set of solutions,

the matrices U; V;W as in (5) determine a de
ating subspace associated with the matrix

subpencil �R

A

� �R

B

R

C

. As we see from Proposition 2.3, for the converse we need the

nonsingularity of U

1

, V

1

and W

1

. This implies that for a matrix pencil the de
ating

subspaces may exist (they always exist when the pencil is regular), but the solution of the

related matrix equation may not exist.

In the following sections we study in more detail special cases of matrix equations as

in Proposition 2.3.

3 Quadratic matrix equations

We �rst study quadratic matrix equations which arise from the case m = 2 in Proposi-

tion 2.3. In this case

A =

"

A

11

A

12

A

21

A

22

#

; B =

"

B

11

B

12

B

21

B

22

#

; C =

"

C

11

C

12

C

21

C

22

#

; (6)

and

U =

"

U

1

U

2

#

; V =

"

V

1

V

2

#

; W =

"

W

1

W

2

#

: (7)

The matrix equations (2){(4) then take the form

A

21

+ A

22

X = Y (A

11

+ A

12

X); (8)

B

21

+B

22

Z = Y (B

11

+B

12

Z); (9)

C

21

+ C

22

X = Z(C

11

+ C

12

X): (10)

These equations can be viewed as generalized Lur'e equations [32].

As a corollary of Proposition 2.3 we have the following result.

Corollary 3.1 Let A, B and C be as in (6). Let U , V and W be as in (7) and assume

that they satisfy

AU = V R

A

; BW = V R

B

; CU =WR

C

(11)

for some square matrices R

A

, R

B

and R

C

. If U

1

, V

1

and W

1

are invertible, then X =

U

2

U

�1

1

, Y = V

2

V

�1

1

and Z = W

2

W

�1

1

satisfy (8){(10). Conversely, if X, Y and Z satisfy

(8){(10), then U =

h

I

X

i

, V =

h

I

Y

i

and W =

h

I

Z

i

satisfy (11) with

R

A

= A

11

+ A

12

X; R

B

= B

11

+B

12

Y; R

C

= C

11

+ C

12

Z:

Multiply (9) from the right by C

11

+ C

12

X, rearrange the equation and use (10) to

obtain

(B

22

� Y B

12

)(C

21

+ C

22

X) = (Y B

11

�B

21

)(C

11

+ C

12

X): (12)
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If D = BC =

"

D

11

D

12

D

21

D

22

#

, then the system takes the form

Y A

12

X � A

22

X + Y A

11

� A

21

= 0; (13)

Y D

12

X �D

22

X + Y D

11

�D

21

= 0: (14)

For the solution of (13){(14) we do not need the nonsingularity of W

1

. For completeness

we state this special case as a corollary.

Corollary 3.2 Let A, B and C be as in (6) and let D = BC. Let U and V be as in (7)

and satisfy

AU = V R

A

; DU = V R

D

(15)

for some square matrices R

A

and R

D

. If U

1

and V

1

are invertible, then X = U

2

U

�1

1

and

Y = V

2

V

�1

1

satisfy (13){(14).

If X and Y satisfy (13){(14), then U =

h

I

X

i

, V =

h

I

Y

i

satisfy (15) with R

A

= A

11

+

A

12

X, R

D

= D

11

+ A

12

Y .

If we introduce the sets

S

1

= f(X; Y )j X; Y together with some Z satisfy (8){(10) g (16)

S

2

= f(X; Y )j X; Y satisfy (13){(14) g; (17)

then S

1

� S

2

but, as the following example demonstrates, S

1

6= S

2

in general.

Example 3.3 If

A =

"

A

11

A

12

A

21

A

22

#

=

2

6

6

6

4

1 0 �1 0

0 1 0 0

�1 0 �1 0

0 �1 0 �1

3

7

7

7

5

;

B =

"

B

11

B

12

B

21

B

22

#

=

2

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3

7

7

7

5

;

C =

"

C

11

C

12

C

21

C

22

#

=

2

6

6

6

4

1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 0

3

7

7

7

5

;

then S

1

= ;. However,

S

2

=

(

(

"

1�

p

2 0

0 x

22

#

;

"

1�

p

2 0

0 �1� x

22

#

); x

22

2 C

)

:

5



The relationship between S

1

and S

2

is characterized in the following theorem.

Theorem 3.4 There exist solutions X, Y and Z of matrix equations (8){(10) if and only

if there exist solutions X, Y of (13){(14) satisfying

kernel(C

11

+ C

12

X) � kernel(C

21

+ C

22

X);

kernel(B

22

� Y B

12

)

H

� kernel(Y B

11

�B

21

)

H

: (18)

Moreover,

S

1

= f(X; Y )j (X; Y ) 2 S

2

; X; Y satisfy (18)g:

Proof. Let D = BC. If (X; Y ) 2 S

2

, then (12) holds. Consider the singular value

decompositions

B

22

� Y B

12

= U

1

"

�

1

0

0 0

#

V

H

1

; C

11

+ C

12

X = U

2

"

�

2

0

0 0

#

V

H

2

;

where U

1

, U

2

, V

1

, V

2

are unitary and �

1

and �

2

are nonsingular and diagonal [26]. If X; Y

satisfy the conditions in (18), then there exist matrices P

11

, P

21

, Q

11

and Q

12

, such that

C

21

+ C

22

X = V

1

"

P

11

0

P

21

0

#

V

H

2

; Y B

11

� B

21

= U

1

"

Q

11

Q

12

0 0

#

U

H

2

;

with �

1

P

11

= Q

11

�

2

: If we set

Z = V

1

"

�

�1

1

Q

11

�

�1

1

Q

21

P

21

�

�1

2

Z

22

#

U

H

2

;

where Z

22

is arbitrary, then Z satis�es

Z(C

11

+ C

12

X) = C

21

+ C

22

X; (B

22

� Y B

12

)Z = Y B

11

� B

21

; (19)

which are just equations (9){(10). Equations (13) and (8) are the same. Hence, X, Y and

Z satisfy (8){(10).

If X, Y and Z satisfy (8){(10) then (X; Y ) 2 S

2

. Since (9){(10) is the same system as

(19), it follows that X; Y satisfy (18).

The nonsingularity of U

1

, V

1

andW

1

in (7) is implicitly determined by the matrix pencil

�A� �BC, namely the coe�cient matrices of the matrix equations (8){(10) or (13){(14).

In general it is di�cult to �nd conditions on the coe�cient matrices that guarantee the

invertability of U

1

, V

1

and W

1

, but such conditions can be derived in the special cases that

we discuss below.
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3.1 Algebraic Riccati equations

By choosing the blocks in matrices A, B, C in particular ways we obtain important sub-

classes.

If we specify

B =

"

I 0

B

21

B

22

#

; C =

"

C

11

0

C

21

I

#

; (20)

then (8){(10) simpli�es to

A

21

+ A

22

X = Y (A

11

+ A

12

X); (21)

Y = B

21

+B

22

Z; (22)

X = ZC

11

� C

21

: (23)

This leads to a quadratic matrix equation in Z, which is often called continuous-time

algebraic Riccati equation

A

22

ZC

11

� B

22

ZA

11

� (B

22

Z +B

21

)A

12

(ZC

11

� C

21

) +

^

A

21

= 0: (24)

Here we have set

^

A

21

= A

21

� A

22

C

21

� B

21

A

11

.

Corollary 3.5 Let A be as in (6), B; C as in (20) and U , V and W as in (7) and assume

they satisfy (11). If W

1

is invertible, then U

1

and V

1

are invertible and X = U

2

U

�1

1

,

Y = V

2

V

�1

1

and Z = W

2

W

�1

1

satisfy (21){(24).

Proof. Using Corollary 3.1, we only need to show that U

1

, V

1

are invertible. By

comparing the �rst block in BW = V R

B

and considering the block diagonal structure of

B in (20) we obtain W

1

= V

1

R

B

. Hence, if W

1

is nonsingular then V

1

is nonsingular. To

prove the nonsingularity of U

1

, without loss of generality we may assume that W and U

have orthonormal columns i.e., W

H

W = U

H

U = I. We extend W and U to square unitary

matrices

W =

"

W

1

W

3

W

2

W

4

#

; U =

"

U

1

U

3

U

2

U

4

#

:

Equation CU = WR

C

implies that there are matrices S

C

and T

C

such that CU =W

h

R

C

0

S

C

T

C

i

,

or equivalently

W

H

C =

"

R

C

S

C

0 T

C

#

U

H

: (25)

Using the block triangular structure of C in (20) and comparing the (2; 2) blocks on both

sides of (25) we get W

H

4

= T

C

U

H

4

. Since W is unitary, using the CS decomposition [26]

of W, detW

1

6= 0 implies that detW

4

6= 0 and hence detU

4

6= 0. Since U is also unitary,

using again the CS decomposition, we have detU

1

6= 0.

For B and C as in (20), equations (13){(14) take the form

A

21

+ A

22

X = Y (A

11

+ A

12

X); B

22

(X + C

21

) = (Y � B

21

)C

11

: (26)

The existence of the solution was discussed in Corollary 3.2. Combining the results of

Theorem 3.4 and Corollary 3.5 we have the following corollary.
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Corollary 3.6 In the notation of Corollary 3.5 the following are equivalent.

(i) The matrix equation (24) has a solution.

(ii) W

1

is nonsingular.

(iii) There exist matrices X and Y which satisfy (26) and satisfy

kernelC

11

� kernel(C

21

+X); kernelB

H

22

� kernel(Y � B

21

)

H

:

If we consider the special case that B = C = I, then the eigenvalue problem is re-

duced to the ordinary matrix eigenvalue problem for the matrix A and (24) is the classical

formulation of the nonsymmetric algebraic Riccati equation [13]

A

22

Z � ZA

11

� ZA

12

Z + A

21

= 0: (27)

For completeness we list the relationship between de
ating subspaces and solutions of (27).

Corollary 3.7 Let A be as (6) and let U =

h

U

1

U

2

i

with U

1

2 C

n�n

such that AU = UR

A

.

If U

1

is nonsingular then Z = U

2

U

�1

1

satis�es the Riccati equation (27). Conversely, if

Z is a solution of (27) then the columns of U =

h

I

Z

i

span an invariant subspace of A

corresponding to �(A

11

+ A

12

Z).

3.2 Symmetric algebraic Riccati equations

A special case of quadratic matrix equations that arises in optimal control theory of descrip-

tor systems [45] is the symmetric, generalized, continuous-time algebraic Riccati equation

A

H

ZE + E

H

ZA� E

H

(Z + F

H

)D(Z + F )E +

~

G = 0; (28)

where

~

G = G + A

H

F + F

H

A, G = G

H

, D = D

H

and A;D;E; F;G 2 C

n�n

. For this

equation the matrices A, B and C are given by

A =

"

A �D

�G �A

H

#

; B =

"

I 0

F

H

E

H

#

; C =

"

E 0

�F I

#

= J

H

B

H

J: (29)

The matrices A and iBC in (29) are Hamiltonian, i.e., (J

n

A)

H

= J

n

A and (J

n

(iBC))

H

=

J

n

(iBC).

Equation (28) is a special case of (24). However, in practice, one is particularly inter-

ested in Hermitian solutions of (28). Suppose that (28) has an Hermitian solution Z. If

X = ZE + F and Y = E

H

Z + F

H

, then by (21){(23) and Corollary 3.1, the matrices

U =

"

I

X

#

; V =

"

I

Y

#

; W =

"

I

Z

#

(30)

satisfy (11) with A, B and C from (29). Note that Z = Z

H

implies X = Y

H

. This leads

to the following existence result for Hermitian solutions of (28).
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Theorem 3.8 Let A and C be as in (29). If there is a Hermitian solution Z to (28), then

there exist a symplectic matrix W (i.e., W

H

JW = J), a nonsingular matrix U and n� n

matrices R

A

, S

A

, R

C

, S

C

and T

C

such that

J

H

UJAU =

"

R

A

S

A

0 �R

H

A

#

; W

�1

CU =

"

R

C

S

C

0 T

C

#

: (31)

Conversely, suppose that there exist a symplectic matrix W and a nonsingular matrix U

satisfying (31). Let W =

h

W

1

W

2

i

and U =

h

U

1

U

2

i

be the submatrices (with n�n blocks) formed

from the �rst n columns of W and U , respectively. If W

1

is nonsingular then U

1

is also

nonsingular and Z =W

2

W

�1

1

is an Hermitian solution of (28).

Proof. Let Z be an Hermitian solution of (28) and let X = ZE+F , Y = E

H

Z+F

H

=

X

H

. De�ning U , V and W as in (30), by Corollary 3.1, U , V and W satisfy (11) with A,

B and C de�ned in (29) and R

A

= A�DZ, R

B

= I, R

C

= E. Introducing

W =

"

I 0

Z I

#

; U =

"

I 0

X I

#

; V =

"

I 0

Y I

#

;

we have W

H

JW = J (because Z = Z

H

), i.e., W is symplectic. Furthermore, V

�1

=

J

H

U

H

J . From (11) we have (31).

If (31) is satis�ed, then we have

J

H

U

H

JBW =

"

T

H

C

�S

H

C

0 R

H

C

#

and by Corollary 3.5, Z = W

2

W

�1

1

satis�es (28). Since W is symplectic, Z is Hermitian.

If we are not interested in the solution Z but rather in the matrices X or Y [45], then

we may restrict ourselves to the pair of matrix equations

A

H

X + Y A� Y DX +G = 0; E

H

(X � F ) = (Y � F

H

)E: (32)

The related matrix pencil is �A� �D with

A =

"

A �D

�G �A

H

#

; D =

"

E 0

F

H

� F E

H

#

: (33)

Here A and iD are Hamiltonian. For the analysis of such pencils see [42, 43] and for

numerical methods for the computation of de
ating subspaces for such matrices see [9, 10].

The solvability condition for (32) was given in Corollary 3.2. The solution set is just

S

2

de�ned in (17). We also can de�ne a set S

H

1

analogous to S

1

as in (16), but with the

further restriction that Z is Hermitian. Moreover, we introduce a third set as

S

3

= f(X; Y )j(X; Y ) 2 S

2

; X = Y

H

g:

For the solutions in S

3

we have the following theorem.
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Theorem 3.9 Consider the matrix pencil �A��D de�ned via (33). If there exist solutions

X and Y of (32) with X = Y

H

, then there exists a nonsingular matrix U 2 C

2n�2n

and

n� n matrices R

A

, S

A

, R

D

, and S

D

such that

J

H

U

H

JAU =

"

R

A

S

A

0 �R

H

A

#

; J

H

U

H

JDU =

"

R

D

S

D

0 R

H

D

#

: (34)

If such a matrix U exists, let U =

h

U

1

U

2

i

(with n � n blocks) be the submatrix composed of

the �rst n columns of U . If U

1

is invertible, then X = U

2

U

�1

1

and Y = X

H

satisfy (32).

Moreover, if (X; Y ) satisfy (32) and kernelE = kernel(X�F ), then (28) has an Hermitian

solution.

Proof. The proof follows directly from Theorem 3.8 and Corollary 3.6.

Clearly we have S

H

1

� S

3

� S

2

but in general the inclusions are strict as the following

examples demonstrate.

Example 3.10 If

A = G = I

2

; F = 0; E = D =

"

1 0

0 0

#

;

then S

1

= S

H

1

= ;. However,

S

2

=

(

(

"

1�

p

2 0

0 x

22

#

;

"

1�

p

2 0

0 �1� x

22

#

); x

22

2 C

)

;

and

S

3

=

(

(

"

1�

p

2 0

0 �

1

2

+ ia

# "

1�

p

2 0

0 �

1

2

� ia

#

); a 2 R

)

:

Example 3.11 Let G =

h

1

0

0

0

i

and let A, D, E and F be as in Example 3.10. In this case

(28) has Hermitian solutions Z =

h

1�

p

2

0

0

z

i

, z 2 R, and we have the following solution

sets.

S

H

1

= f(X; Y )jX = Y =

"

1�

p

2 0

0 0

#

g;

S

2

= f(

"

1�

p

2 0

0 x

22

#

;

"

1�

p

2 0

0 �x

22

#

); x

22

2 Cg;

S

3

= f(

"

1�

p

2 0

0 ia

# "

1�

p

2 0

0 �ia

#

); a 2 Rg:

We see from Example 3.11 that if there exist Hermitian solutions of (28), then using the

right de
ating subspace of the matrix pencil �A � �D in (33) to compute X may not

yield the desired result. If E is nonsingular, then S

H

1

= S

3

, and if (X; Y ) 2 S

3

then

10



Z = (X � F )E

�1

is an Hermitian solution of (28). But this relation does not hold in

general if E is singular, see also [45].

An even more special case is the classical continuous-time algebraic Riccati equation,

A

H

Z + ZA� ZDZ +G = 0; (35)

which is the case that in (28) we have E = I and F = 0. Here, the pencil is just A� �I

with the Hamiltonian matrix A de�ned in (29). From Theorem 3.8, we have the following

well-known corollary, see, e.g., [38, 45].

Corollary 3.12 Let A be as in (29). Suppose there exists a symplectic matrix W such

that

W

�1

AW =

"

R

A

S

A

0 �R

H

A

#

(36)

with n�n blocks R

A

and S

A

. Let W =

h

W

1

W

2

i

(with n�n blocks) be composed of the �rst n

columns of W. If W

1

is nonsingular, then Z = W

2

W

�1

1

is an Hermitian solution of (35).

The triangular forms (31), (34) and (36) do not always exist. Necessary and su�cient

conditions for the existence of such triangular forms were recently given in [43, 46]. But

as we have seen, even if these triangular forms exist, the existence of Hermitian solutions

of (28) and (35) is not guaranteed. Several conditions which partially characterize the

existence of solutions are known, see [38, 45, 53].

3.3 Matrix sign function, disc function and matrix square roots

Quadratic matrix equations include as special cases matrix square roots. Consider the

matrices

A =

"

0 A

12

A

21

0

#

; B =

"

I 0

0 B

22

#

; C =

"

C

11

0

0 I

#

in (20). The related matrix equation (24) then has the form

B

22

ZA

12

ZC

11

= A

21

: (37)

In the more special case that B = C = I, (37) is just related to the invariant subspace

problem for the matrix A. If, furthermore, A

12

= I and A

21

= A, then (37) is

Z

2

= A:

So in this case any solution Z is just a square root of A. Existence conditions for the

matrix square root are discussed in [31]. In view of the relationship to invariant subspaces

we have the following corollary.

Corollary 3.13 Let A =

h

0

A

I

n

0

i

with A 2 C

n�n

and let R 2 C

n�n

andW =

h

W

1

W

2

i

2 C

2n�n

(with n � n blocks W

1

and W

2

) be such that AW = WR. If W

1

is nonsingular, then

Z =W

2

W

�1

1

= W

1

RW

�1

1

is a square root of A.

11



Another important special case is that A

12

= A

21

= A 2 C

n�n

. In this case, (37)

reduces to

ZAZ = A: (38)

By properly choosing the invariant subspace we obtain the matrix sign function [33, 49]

which is the m = 2 sector case of the matrix sector function.

De�nition 3.14 Given a positive integer m � 2 we may partition the complex plane into

m sectors




k

(m) = fre

�i

j

(2k � 3)�

m

< � <

(2k � 1)�

m

; r > 0g; k = 1; : : : ; m:

1. A matrix Z is called an m-th root of a square matrix A if Z

m

= A, and Z is called

the principal m-th root if Z is an m-th root and if �(Z) � 


1

(m).

2. If A

m

has a principal m-th root Z, then the matrix S := Z

�1

A is called the m-th

sector function of A.

For the matrix sign function we obtain the following corollary.

Corollary 3.15 Suppose that A 2 C

n�n

has no purely imaginary eigenvalues. Let A =

h

0

A

A

0

i

. LetW =

h

W

1

W

2

i

2 C

2n�n

(with n�n blocksW

1

andW

2

) be such that AW =WR with

all eigenvalues of R in the open right half plane. Then W

1

is nonsingular and Z = W

2

W

�1

1

is the sign function of A. Moreover, S = AZ = W

1

RW

�1

1

is the principal square root of

A

2

.

Proof. See [11].

Note that the matrix sign function is only one of the solutions of (38). Di�erent solutions

are related to di�erent invariant subspaces of A corresponding to di�erent R. Note also

that (38) always has the solution I.

The disc function [7, 8, 49] of a matrix A is de�ned through its ordered Jordan form A =

T

h

J

0

0

0

J

1

i

T

�1

, where J

0

2 C

k�k

contains the Jordan blocks corresponding to eigenvalues

inside the unit disc and J

1

2 C

n�k�n�k

corresponds to eigenvalues outside the unit disc.

Then the matrix disc function of A is

disc(A) = T

"

I

k

0

0 0

#

T

�1

:

(If A has an eigenvalue of modulus 1, then the disc function is unde�ned.) It can be shown

[7] that

disc(A) =

1

2

�

I � sign

�

(A� I)

�1

(A+ I)

��

:

The disc function D = disc(A) is related to the de
ating subspace of

�A� �D = �

"

0 A

I �I

#

� �

"

0 I

A �A

#

12



corresponding to the eigenvalues inside the unit disc via

"

0 A

I �I

# "

I

D

#

=

"

0 I

A �A

# "

I

D

#

R; (39)

where the eigenvalues of R are the eigenvalues of �A � �D that lie inside the unit disc

[8]. The eigenvalues of R are the union of the eigenvalues of A inside the unit disc and the

reciprocals of the eigenvalues of A outside the unit disc. In particular, there are exactly

n eigenvalues of �A � �D inside the unit disc along with a corresponding n-dimensional

de
ating subspace spanned by the columns of range

h

I

D

i

. The de
ating subspace spanned

by the columns of

h

I

D

i

and therefore D are uniquely de�ned.

In order to derive a corresponding matrix equation via Proposition 2.2 or Corollary 3.2,

we need a de
ating subspace relation of the form AU = V R

A

and DU = V R

B

, where

U =

h

U

1

U

2

i

, V =

h

V

1

V

2

i

and the columns of U span the de
ating subspace corresponding to

eigenvalues inside the unit disc. From (39) we get that U

1

is nonsingular and D = U

2

U

�1

1

.

However, by Corollary 3.2, V

1

nonsingular would imply that I�D�V

2

V

�1

1

AD = 0. If the

spectrum of A is not contained in the open unit disc, D is singular and the latter equation

leads to a contradiction. This shows that for the matrix disc function the relation between

de
ating subspaces and matrix equations is not as obvious as for the matrix sign function.

If we assume that A is nonsingular, then �A� �D is equivalent to the matrix pencil

�

~

A� �

~

D = �

"

I A

2

� I

0 A

2

#

� �

"

A 0

0 A

#

and the matrix disc function of A satis�es

"

I A

2

� I

0 A

2

# "

I

D

#

=

"

I

D

#

(I + (A

2

� I)D)

"

A 0

0 A

# "

I

D

#

=

"

I

D

#

A:

Hence, if A is nonsingular, then range

h

I

D

i

is the de
ating subspace of �

~

A � �

~

D corre-

sponding to eigenvalues inside the unit disc. The associated matrix equation is

ADA = DA

2

D (40)

and the disc function is the root of (40) for which AD = DA and the nonzero eigenvalues

of AD consist of the eigenvalues of A that lie inside the unit disc.

Equation (40) is satis�ed by D = disc(A) even when A is singular. However, if Ax = 0,

x 6= 0 and D is the disc function, then D + xx

H

is also a root and AD = A(D + xx

H

).

Hence, in this case, the matrix AD does not distinguish D = disc(A) from other roots of

(40). Also, if A is singular, then �

~

A� �

~

D is not regular and the de
ating subspace is no

longer uniquely de�ned.
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4 Rational matrix equations

Analogous to the construction of continuous-time algebraic Riccati equations, the corre-

sponding discrete-time equations also arise as special cases.

4.1 Algebraic Riccati equations

The case m = 2 in Proposition 2.3 also leads to some classical rational matrix equations.

If we set

A =

"

A

11

0

A

21

A

22

#

; B =

"

B

11

B

12

0 B

22

#

; C =

"

C

11

0

0 I

#

; (41)

in (6), then the equations in (7) become

A

21

+ A

22

X = Y A

11

; B

22

Z = Y (B

11

+B

12

Z); X = ZC

11

: (42)

We then obtain a rational matrix equation for Z, the discrete-time algebraic Riccati equa-

tion as

A

22

ZC

11

� B

22

Z(B

11

+B

12

Z)

�1

A

11

+ A

21

= 0;

or equivalently

A

22

ZC

11

� B

22

ZA

11

+B

22

Z(B

11

+B

12

Z)

�1

(B

12

Z +B

11

� I)A

11

+ A

21

= 0: (43)

The existence of solutions for (43) as well as (42) follows from Corollary 3.1 with the

matrices in (41) but with an additional restriction for the nonsingularity of B

11

+ B

12

Z.

Another formulation, using generalized inverses allows to drop this condition [1].

Theorem 4.1 Let A, B, C be as in (41) and let U , V and W be as in (7) satisfying (11).

If W

1

and B

11

W

1

+ B

12

W

2

are invertible, then U

1

and V

1

are invertible and X = U

2

U

�1

1

,

Y = V

2

V

�1

1

and Z = W

2

W

�1

1

satisfy (42) and (43).

Proof. The proof is similar to that of Corollary 3.7.

4.2 Symmetric discrete-time algebraic Riccati equations

Analogous to the continuous-time case we also have the symmetric cases. The symmetric

form of (43) is the generalized, symmetric, discrete-time algebraic Riccati equation

E

H

ZE � A

H

ZA+ A

H

Z(I +DZ)

�1

DZA+G = 0; D = D

H

; G = G

H

; (44)

with the corresponding matrices

A =

"

A 0

G E

H

#

; B =

"

I D

0 A

H

#

; C =

"

E 0

0 I

#

: (45)

Analogous to Theorem 3.8 we have the following existence and uniqueness result.
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Theorem 4.2 Let A, B and C be as in (45). If there exists a symplectic matrix W and

nonsingular matrices U and V such that

VAU =

"

R

A

S

A

0 T

A

#

; VBW =

"

R

B

S

B

0 T

B

#

; W

�1

CU =

"

R

C

S

C

0 T

C

#

; (46)

with n�n blocks R

A

, S

A

, T

A

, R

B

, S

B

, T

B

, R

C

, S

C

and T

C

, then there exists an Hermitian

solution of (44).

Suppose that W, U and V satisfy (46) and that W is symplectic. Let W =

h

W

1

W

2

i

,

U =

h

U

1

U

2

i

, V =

h

V

1

V

2

i

(with n� n blocks W

i

, U

i

and V

i

) be the submatrices formed from the

�rst n columns of W, U and V, respectively. If W

1

and W

1

+DW

2

are nonsingular, then

U

1

and V

1

are also nonsingular and Z =W

2

W

�1

1

is an Hermitian solution of (44).

Proof. The proof is analogous to that of Theorem 3.8.

In practice, see [45], one often needs the solution X = ZE rather than Z. This

solution can be obtained by computing a proper right de
ating subspace of the pencil

�

h

A

G

0

E

H

i

��

h

E

0

D

A

H

i

. However, as in the continuous-time case this subspace is guaranteed

to give the desired solution only if E is nonsingular.

5 Linear matrix equations

The nonlinear part in the matrix equations (8){(10) and (13){(14) is contributed by the

(1; 2) blocks of the matrices A, B, C and D = BC. If all the (1; 2) blocks are zero, then

(8){(10) reduce to

A

22

X � Y A

11

+ A

21

= 0;

B

22

Z � Y B

11

+B

21

= 0; (47)

C

22

X � ZC

11

+ C

21

= 0;

and (13){(14) reduce to

A

22

X � Y A

11

+ A

21

= 0; D

22

X � Y D

11

+D

21

= 0; (48)

respectively. In the nonlinear case, the eigenstructure of �R

A

� �R

B

R

C

or �R

A

� �R

D

,

which corresponds to the de
ating subspaces, may be nonunique. This implies that di�er-

ent solutions related to di�erent eigenstructures may exist. In the linear case, however, the

eigenstructure is essentially �xed. This can be easily observed from (11) and (15), since if

the solutions exist, then �R

A

��R

B

R

C

and �R

A

��R

D

are equivalent (pencil equivalent)

to �A

11

� �B

11

C

11

and �A

11

� �D

11

, respectively.

The linear matrix equations have been studied extensively, [20, 39, 50, 54]. Here we

will brie
y discuss the existence problem for equations (47) and (48). Since they are just

special cases of the nonlinear equations, all results in the previous sections still apply. On
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the other hand because of the linearity, the conditions can be described in a way that is

more directly related to the matrices A, B, C and D.

The condition for the existence and uniqueness of the solutions X and Y of (48) can

be stated as follows.

Corollary 5.1 Consider the matrices A =

h

A

11

A

21

0

A

22

i

, D =

h

D

11

D

21

0

D

22

i

as well as

^

A =

"

A

11

0

0 A

22

#

;

^

D =

"

D

11

0

0 D

22

#

:

The matrix equation (48) has a solution if and only if �A � �D is pencil equivalent to

�

^

A� �

^

D. There is a unique solution if and only if �A� �D is regular and �(A

11

; D

11

) \

�(A

22

; D

22

) = ;:

Proof. See [20] and [54].

For completeness, in the remainder of this subsection we list the linear matrix equations

with a single unknown matrix and the related matrix pencils. The existence and uniqueness

of the solution can be derived by combining the results in the previous subsections with

Corollary 5.1.

Generalized Sylvester equations have the form

A

22

ZC

11

�B

22

ZA

11

+

~

A

21

= 0

where

~

A

21

= A

21

� A

22

C

21

� B

21

A

11

and the related pencil is

A =

"

A

11

0

A

21

A

22

#

; B =

"

I 0

B

21

B

22

#

; C =

"

C

11

0

C

21

I

#

: (49)

The results in Corollary 3.5 can be applied to this equation. Note that the de
ating

subspace must correspond to �A

11

� �C

11

. With D = BC we can combine the results in

Corollary 3.6 and Corollary 5.1 to get necessary and su�cient conditions for the existence

of solutions.

Generalized Lyapunov equations have the form

A

H

ZE + E

H

ZA+

~

G = 0;

where

~

G = G + A

H

F + F

H

A, G = G

H

, D = D

H

and A;E; F;G 2 C

n�n

. The related

matrix pencil is

A =

"

A 0

�G �A

H

#

; B =

"

I 0

F

H

E

H

#

; C =

"

E 0

�F I

#

= J

H

B

H

J:

For such equations we can apply Theorems 3.8, 3.9 and Corollary 5.1.

Generalized Stein equations have the form

E

H

ZE � A

H

ZA+G = 0; G = G

H

;
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with

A =

"

A 0

G E

H

#

; B =

"

I 0

0 A

H

#

; C =

"

E 0

0 I

#

:

This is the linear version of the symmetric discrete-time algebraic Riccati equation.

The classical Sylvester equation is

A

22

Z � ZA

11

+ A

21

= 0; (50)

with

A =

"

A

11

0

A

21

A

22

#

; B = C = I (51)

and the classical Lyapunov equation is

A

H

Z + ZA+G = 0; G = G

H

;

with

A =

"

A 0

�G �A

H

#

; B = C = I:

Finally, the Stein equation is

Z � A

H

ZA+G = 0; G = G

H

;

with

A =

"

A 0

G I

#

; B =

"

I 0

0 A

H

#

; C = I:

Remark 5.2 The discussed relationship between de
ating subspaces and matrix equations

can be extended to more general matrix equations. For instance we may consider the linear

matrix equations [20]

AXB + CYD = E; GXH +KY L = F:

However, the general linear matrix equation

m

X

k=0

A

k

ZB

k

= 0;

[36, 37] does not appear to have a related de
ating subspace.
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6 Numerical methods for m = 2

Since the periodic QZ decomposition can be computed by applying the periodic QZ algo-

rithm [15, 29], in principle all de
ating and/or invariant subspaces discussed in this paper

can be computed in a numerically stable way. We will call a method based on this approach

a subspace method. For matrix pencils with matrices as in (6), we may directly apply the

periodic QZ algorithm. In some special cases, however, the periodic QZ algorithm may

be modi�ed to adapt to the special structure. Much can be gained from exploiting the

structure of the symmetric equations (28), (35) and (44). Theorems 3.8 and 4.2 and Corol-

lary 3.12 show that for these symmetric equations the related matrix pencils have certain

symmetry structures. Special equivalence transformations may be employed to preserve

these structures, see [2, 11, 12, 18, 19, 44, 45]. However, a numerically stable and e�cient

method for computing the structured decompositions (31), (34), (36) and (46) in general

is still an open problem.

For the eigenvalue problem corresponding to (37) there is a simpli�ed QR like method

for computing the generalized Schur form if A

21

and A

12

are square.

The numerical methods for linear matrix equations can be simpli�ed by using the

block triangular forms of the related matrices and the properties of the related eigenvalues.

Taking the generalized Sylvester equation as an example, where the matrices are as in (49),

we obtain a periodic QR-like method as follows.

First we compute the generalized Schur forms of the matrix pencils �A

11

� �C

11

and

�A

22

� �B

22

respectively. Then we apply the eigenvalue reordering method [26], to the

block lower triangular pencil to transform the pencil as

�

"

^

A

11

0

^

A

21

^

A

22

#

� �

"

^

B

11

0

^

B

21

^

B

22

# "

^

C

11

0

^

C

21

^

C

22

#

;

with �

^

A

22

� �

^

B

22

^

C

22

equivalent to �A

11

� �C

11

. By exchanging block rows and columns

simultaneously the matrix pencil is �nally equivalent to

�

"

^

A

22

^

A

21

0

^

A

11

#

� �

"

^

B

22

^

B

21

0

^

B

11

# "

^

C

22

^

C

21

0

^

C

11

#

:

The desired interior de
ating subspace can be read o� from this form.

Many e�cient numerical algorithms have already been designed for computing the

solutions of special linear and nonlinear matrix equations. For the case of linear equations

the basic algorithm was given in [6] and the generalized in [20]. For matrix square roots

there are similar methods in [14, 30]. We call these methods direct methods. The direct

method implicitly computes a basis of the invariant or de
ating subspace as

h

I

Z

i

with a

solution Z. (In practice only Z is computed.) So the di�erence between direct and subspace

methods is that in the latter an orthonormal basis for the subspace is computed.

The above analysis shows that often de
ating subspace and the solution of the related

matrix equation can be computed from each other. This fact is widely used in practice.
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For example the Sylvester equation is used for Jordan canonical form reduction [26], and

the invariant subspace method is used for the solution of Riccati equations [4, 13, 51, 45].

However, in �nite precision arithmetic two mathematically equivalent methods may give

quite di�erent results. In order to point out the di�culties that may arise, we study, as an

example, the Sylvester equation (50) which is related to the invariant subspace problem for

the matrix A given in (51). Assume that �(A

11

) \ �(A

22

) = ;, so that (50) has a unique

solution Z. Let U =

h

U

11

U

21

U

12

U

22

i

be unitary such that

U

H

AU =

"

R

11

R

12

0 R

22

#

= R; �(R

11

) = �(A

11

): (52)

Since U is unitary, we have that

Z = U

21

U

�1

11

= �U

�H

22

U

H

12

: (53)

Denote by �

min

(A) the minimum singular value of the matrix A. Using (53) and the

orthonormality of

h

U

11

U

21

i

we have [34]

jjU

�1

11

jj

2

=

q

1 + jjZjj

2

2

; jjU

11

jj

2

=

s

1

1 + �

min

(Z)

2

: (54)

Let " be a small number of the order of the roundo� unit and let U

s

and R

s

be the

matrices in (52), computed by a backward stable numerical method. Then there exists a

matrix E , with jjEjj

2

� 


1

"jjAjj

2

, such that

U

H

s

(A+ E)U

s

= R

s

:

Let U

s

be partitioned conformally with U as U

s

:= [

^

U

1

;

^

U

2

] :=

"

^

U

11

^

U

12

^

U

21

^

U

22

#

, and set

E

s

=

^

U

H

2

A

^

U

1

= �

^

U

H

2

E

^

U

1

: (55)

Then

jjE

s

jj

2

� 


1

"jjAjj

2

; (56)

which can be viewed as the residual of the problem of computing the invariant subspace

range

^

U

1

.

Let Z

d

be the solution of equation (50) computed with a backward stable numerical

method and let F

d

= A

22

Z

d

� Z

d

A

11

+ A

21

be the corresponding residual, then from [25]

we obtain

jjF

d

jj

2

= jjA

22

Z

d

� Z

d

A

11

+ A

21

jj

2

� 


2

"jjAjj

2

jjZjj

2

: (57)

If our primary goal is to compute Z and if we use the subspace method, then let Z

s

be the

matrix computed as

^

U

21

^

U

�1

11

with corresponding residual F

s

= A

22

Z

s

� Z

s

A

11

+ A

21

. By

using (55), (56), (53) and (54) we have

jjF

s

jj

2

= jjA

22

Z

s

� Z

s

A

11

+ A

21

jj

2

� 


3

"jjAjj

2

(1 + jjZjj

2

2

): (58)
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Inequalities (57) and (58) suggest that the solution computed via the subspace method may

sometimes be less inaccurate than the solution obtained via a direct method. A Riccati

equation example in which this happens in actual computation appears in [48].

On the other hand if the primary goal is to compute an orthonormal basis of the

invariant subspace corresponding to �(A

11

) and we use a direct method, let U

d

be the

computed unitary matrix such that

"

I

Z

d

#

+ E

Z

= U

d

"

T

0

#

; jjE

Z

jj

2

� 


4

"

q

jjZjj

2

2

+ 1

which is a QR decomposition. Denote by E

d

the (2; 1) block of U

H

d

AU

d

. Then by (57) and

the perturbation theory for the QR decomposition [26] we have

jjE

d

jj

2

� 


5

"

jjAjj

2

q

1 + jjZjj

2

2

q

1 + �

min

(Z)

2

: (59)

Inequalities (56) and (59) suggest that the subspace method may sometimes yield better

results than the direct method.

The signi�cance of the orthonormal basis is indicated in the following example. Con-

sider the problem of computing the Jordan canonical form of a square matrix A. Suppose

that we have already determined the Schur form of A+E with E a small perturbation (say,

using the QR algorithm), i.e., we have determined a unitary matrix Q and (for convenience)

a lower triangular matrix R such that

Q

H

(A+ E)Q = R =:

"

R

11

0

R

21

R

22

#

;

where we assume that �(R

11

) \ �(R

22

) = ;. To extract further information about the

Jordan canonical form, further reductions, see [26], are carried out by removing �rst the

block R

21

. To do this a matrix X =

h

I

Z

0

I

i

is determined so that

R

1

:=

"

R

11

0

0 R

22

#

= (QX)

�1

(A+ E)(QX):

Here the matrix Z satis�es the Sylvester equation R

22

Z �ZR

11

+R

21

= 0. Clearly the

�rst n columns of X span an n-dimensional invariant subspace of A + E.

On the other hand let Y = [Y

1

; Y

2

] =

h

G

ZG

0

I

i

, with G = (I+Z

H

Z)

�

1

2

, where F

1

2

denotes

the unique positive de�nite square root of the positive de�nite matrix F . Then Y

1

forms

an orthonormal basis of

h

I

Z

i

and one can easily verify that

(QY )

�1

(A + E)(QY ) =

"

G

�1

R

11

G 0

0 R

22

#

=: R

2

:
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Both (QX)

�1

A(QX) and (QY )

�1

A(QY ) are similar toA. If we set E

1

= (QX)

�1

E(QX)

and E

2

= (QY )

�1

E(QY ), then R

1

has a distance to a matrix which is similar to Ameasured

by jjE

1

jj

2

, and R

2

has a distance measured by jjE

2

jj

2

. Note that

jjXjj

2

= jjX

�1

jj

2

=

1

2

(jjZjj

2

+

q

jjZjj

2

2

+ 4);

jjY jj

2

=

v

u

u

u

t

1 +

jjZjj

2

q

1 + jjZjj

2

2

;

jjY

�1

jj

2

=

r

jjZjj

2

2

+ 1 + jjZjj

2

q

jjZjj

2

2

+ 1

and hence

jjE

1

jj

2

�

1

2

(jjZjj

2

2

+ 2 + jjZjj

2

q

jjZjj

2

2

+ 4)jjEjj

2

; jjE

2

jj

2

� (jjZjj

2

+

q

1 + jjZjj

2

2

)jjEjj

2

:

If jjZjj

2

is large, then jjE

1

jj

2

may be much larger than jjE

2

jj

2

by a factor jjZjj

2

. This

suggests that R

2

may give more precise information about the Jordan structure than R

1

.

7 Polynomial systems

By choosing m > 2 in Proposition 2.3 we can derive higher order polynomial or rational

matrix equations. We will focus here on m-th roots of matrices.

To do this we specify the matrices A, B and C in Proposition 2.3 as

A =

2

6

6

6

6

6

4

0 A

12

.

.

.

.

.

.

.

.

.

A

m�1;m

A

m;1

0

3

7

7

7

7

7

5

; B = C = I; (60)

with m � 3. This leads to an eigenvalue problem for the m � m block matrix A. The

equations in (2){(4) become

A

m;1

= Z

m�1

A

12

Z

1

; (61)

A

k;k+1

Z

k

= Z

k�1

A

12

Z

1

; k = 2; : : : ; m� 1; (62)

Multiplying A

2;3

� � �A

m�1;m

from the left to the last equation, using the other m� 2 equa-

tions, we get

(Z

1

A

12

)

m�1

Z

1

= (

m�1

Y

k=2

A

k;k+1

)A

m;1

=: A: (63)

A solution Z

1

of this equation is called a generalized m-th root of the matrix product A.

The m-th roots of matrices are well studied. For a nonsingular matrix A, m-th roots

always exist and for a singular matrix A the existence of m-th roots depends on the Jordan

structure of A corresponding to the eigenvalue 0, see [31, p. 467].

From Proposition 2.3 we have the following existence result.
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Corollary 7.1 Let A be as in (60) and let U = [U

H

1

; : : : ; U

H

m

]

H

satisfy AU = UR. If U

1

is nonsingular then the matrices Z

k

= U

k+1

U

�1

1

, k = 1; : : : ; m� 1, satisfy (61).

If fZ

k

g

m�1

k=1

satis�es (61), then the columns of U = [I; Z

H

1

; : : : ; Z

H

m�1

]

H

span an invariant

subspace of A corresponding to R = A

12

Z

1

.

Clearly if fZ

k

g

m�1

k=1

satisfy (61) then Z

1

satis�es (63). However, the converse in general does

not hold if some A

k;k+1

is nonsquare or singular. If m � 3, then the invariant subspace of

A may not lead to all solutions of equation (63). This is the major di�erence between the

problems with m = 2 and m � 3.

Example 7.2 Consider

A

12

= 1; A

23

= 0; A

31

= 1:

Then A =

2

6

4

0 1 0

0 0 0

1 0 0

3

7

5

and equation (63) is scalar, since z

3

= 0. So it has only one solution

z = 0. The equation related to (61) is z

2

1

= 0 and z

2

z

1

= 1, which clearly has no solution.

Note that A has only one 1-dimensional invariant subspace given by range [0; 0; 1]

T

, which

is just the eigenspace of A.

If all A

23

; : : : ; A

m�1;m

are nonsingular, then (61) and (63) are equivalent.

Theorem 7.3 If A

2;3

; : : : ; A

m�1;m

are all nonsingular, then (61) has a solution if and only

if (63) has a solution.

Proof. The necessity is obvious. For the proof of su�ciency let Z

1

be a solution of (63).

Then Z

k

can be determined recursively via Z

k

= A

�1

k;k+1

Z

k�1

A

12

Z

1

, for k = 2; : : : ; m � 1,

and the last equation of (61), A

m;1

= Z

m�1

A

12

Z

1

, follows from (63).

If A

k;k+1

= I

n

for k = 1; : : : ; m� 1 and A

m;1

= A 2 C

n�n

, then

A =

2

6

6

6

6

6

4

0 I

.

.

.

.

.

.

.

.

.

I

A 0

3

7

7

7

7

7

5

; (64)

and (63) becomes Z

m

1

= A.

Combining Theorem 7.3 and Corollary 7.1, the matrix m-th root corresponds to an

invariant subspace of A. (Note that the condition of Theorem 7.3 is satis�ed for this

special case.)

Theorem 7.4 Let A be as in (64) and let the columns of U = [U

H

1

; : : : ; U

H

m

]

H

2 C

mn�n

span an invariant subspace of A with AU = UR. If U

1

is nonsingular, then Z

1

= U

2

U

�1

1

=

U

1

RU

�1

1

is an m-th root of A, and Z

k

1

= U

k+1

U

�1

1

, for k = 1; : : : ; m� 1. If Z

1

is an m-th

root of A and U = [I; Z

H

1

; : : : ; (Z

m�1

1

)

H

]

H

, then AU = UZ

1

.
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Note that if Z

1

satis�es (63) then A

12

Z

1

is an m-th root of A

12

A and Z

1

A

12

is an m-th

root of AA

12

.

Remark 7.5 The matrix sector function can be analyzed in a similar way. Existence and

uniqueness of the matrix sector function has been studied in [35].

If

A =

2

6

6

6

6

6

6

6

4

0 A

A 0

A

.

.

.

.

.

.

A 0

3

7

7

7

7

7

7

7

5

; (65)

then the m-th sector function S satis�es the invariant subspace relation

A

2

6

6

6

6

4

I

S

.

.

.

S

m�1

3

7

7

7

7

5

=

2

6

6

6

6

4

I

S

.

.

.

S

m�1

3

7

7

7

7

5

AS

�1

and the polynomial matrix equation

(ZA)

m�1

Z = A

m�1

: (66)

Note that (66) may have many solutions. Solutions exist (even if A is singular), since

Z = I is a solution.

8 Numerical methods for general m

For the matrix A with the block structure in (60) an e�cient algorithm can be derived

which does not work on the whole matrix A. The following algorithm is a modi�cation of

the periodic Schur algorithm of [15, 29, 52].

Algorithm 1.

Input: Matrices A

1;2

; : : : ; A

m�1;m

, A

m;1

Output: The Schur form of A de�ned in (60).

Let A = [A

i;j

]

m�m

, where A

i;j

= 0 for i + 1 6= j except for i = m; j = 1.

Set U = I =: [U

i;j

]

m�m

:

Step 1: Apply the periodic QR algorithm to A

1;2

; : : : ; A

m�1;m

, A

m;1

, i.e., determine uni-

tary matrices Q

k

, k = 1; : : : ; m, such that all matrices A

k;k+1

:= Q

H

k

A

k;k+1

Q

k+1

,

k = 1; : : : ; m� 1 and A

m;1

:= Q

H

m

A

m1

Q

1

are upper triangular.

Set

^

Q = diag(Q

1

; : : : ; Q

m

) and A :=

^

Q

H

A

^

Q, Q := Q

^

Q.
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Step 2: For k = 1; : : : ; n

Let �

k

be the m�m matrix

�

k

=

2

6

6

4

[A

11

]

kk

: : : [A

1;m

]

kk

.

.

.

.

.

.

.

.

.

[A

m;1

]

kk

: : : [A

m;m

]

kk

3

7

7

5

:

Determine a unitary matrix P

k

such that P

H

k

�

k

P

k

is upper triangular.

Let P = [P

i;j

] be the mn � mn identity matrix except that the k-th diagonal

element of block P

i;j

is replaced by [P

k

]

i;j

.

Set A := P

H

AP and Q := QP.

End k

Step 3: For k = 1; : : : ; m� 1

For ` = m; : : : ; k + 1;

% Annihilate the block A

`;k

For i = n� 1; : : : ; 1

For j = i+ 1; : : : ; n

	

i;j

=

"

[A

k;k

]

j;j

0

[A

`;k

]

i;j

[A

`;`

]

ii

#

and determine a unitary matrix W

i;j

such that W

H

i;j

	

i;j

W

i;j

is upper

triangular.

Let W be the identity matrix except for the 2 � 2 submatrix in the

((k� 1)n+ j)-th and ((l� 1)n+ i)-th rows and columns which is set

to W

ij

.

Set A :=W

H

AW and Q := QW.

End j

End i

End `

End k

Remark 8.1

1. If we apply the Algorithm for the computation of the matrixm-th root, then in Step 1,

the periodic Schur decomposition reduces to the classical simple Schur decomposition

of A.

2. After Step 2 is completed, all blocks A

i;j

with i � j are upper triangular and all A

i;j

with i > j are strictly upper triangular.

The �rst n columns of Q span the invariant subspace of A corresponding to the

eigenvalues that appear in the (1; 1) entry of P

H

k

�

k

P

k

. (For the matrix m-th root, it
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is convenient here to put the eigenvalue that lies in the �rst sector, 


1

, in the (1; 1)

position of P

H

k

�

k

P

k

.)

3. In Step 3, the transformations to eliminate the (i; j) element of A

`;k

does not destroy

the triangular form of the blocks. Fill-in is produced only in the (j; i) element of A

k;`

.

If the algorithm is used for computing a matrix m-th root, then one only needs to

annihilate A

`;1

, ` = m; : : : ; 2 and one only needs to update the �rst two block rows

of Q.

4. A similar algorithm could be used to compute the m-th matrix sector function using

the matrix A (65). This is an unattractive procedure, because the Schur decomposi-

tion of A (possibly with some eigenvalue reordering) displays the invariant subspace

information of the sector function.

Finally we should point out other matrix equations have similar properties. For example

the matrix equation

Z

m

+ A

1

Z

m�1

+ � � �+ A

m�1

Z + A

m

= 0

is related to the eigenvalue problem for the block companion matrix

A =

2

6

6

6

6

4

0 I

.

.

.

.

.

.

0 I

A

m

: : : A

2

A

1

3

7

7

7

7

5

:

We are not aware of an e�cient method that is able to exploit this structure for computing

the Schur form.

9 Conclusion

We have discussed the relation between matrix equations and de
ating subspaces of a

matrix pencil. The relation covers many important classes of matrix equations including

continuous- and discrete-time Riccati equations, Lyapunov, Sylvester and Stein equations

as well as matrix m-th roots.
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