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1. Introdution

The interplay between disorder and many-body interations ontinues to be one of

the main topis of ondensed matter physis. In one-dimensional quantum many-body

systems without disorder, the Bethe ansatz (BA) has proven to be a valuable tool, giving

aess to the energy spetra and eigenstates of ertain so-alled integrable models [1, 2℄.

At �rst glane, it appears that the integrability, namely the existene of in�nitely many

integrals of motion, seems to prelude any appliations of the method to disordered

systems. However, in 1984 it was shown [3, 4℄ how to apply the BA method to the

Kondo problem [5℄ of a single magneti impurity in a bath of ondution eletrons.

Further developments led to the onstrution and solution of integrable spin hains

with embedded spin defets [6, 7℄.

A di�erent approah to integrable impurity models was onsidered in referenes [8℄

where impurity verties are introdued by varying the loal interation parameters while

preserving integrability. These studies have stimulated further investigations [9, 10℄ of

suh impurities in various systems. The resulting models have impurity terms with

ouple to the harge degrees of freedom, and look fairly similar to generi impurity

terms. However, the energy spetrum is independent of the spatial distribution of the

defets, and there is no loalization of the ground-state wave funtion, unlike what is

expeted for generi impurities. This peuliar behaviour an be understood by the fat

that integrability implies a purely forward-sattering mehanism at the impurities [10℄.

There is no reetion and thus no possibility of destrutive quantum interferene whih

ould lead to a loalization.

Bak-sattering an be introdued into integrable models by hoosing suitable

boundary onditions (BC). Sklyanin [11℄ proposed a systemati approah to onstrut

and solve integrable quantum spin systems with open BC. Central to his method are the

so-alled reetion equations (RE) [12℄ whih are the boundary analogues of the Yang-

Baxter equations (YBE) [13℄. Together, the YBE and RE imply the integrability of a

model whih an then be onstruted as usual by the algebrai approah of the quantum

inverse sattering method (QISM) [14℄. The �nite-size orretions of the orresponding

energy spetra and the asymptoti behaviour of orrelation funtions follow preditions

based on boundary onformal �eld theory [15℄. We remark that the BC of Sklyanin [11℄

are alled \open" in order to distinguish them from the more often used periodi and

the free BC. Although the term \open" seems to suggest partiular transmission and

reetion properties, this is not neessarily implied. The ombination of open BC and

integrable impurities has been onsidered in referenes [16, 17, 18, 19℄. Of partiular

interest is the ase where the forward-sattering impurity is diretly oupled to a bak-

sattering open boundary [18, 19℄. This ombination may lead to physially relevant,

yet ompletely integrable models.

In the present artile, we onstrut two kinds of integrable impurities for a fermioni

small-polaron model with general open BC. Due to the fermioni nature of the model,

we employ the graded version of the QISM [20, 21℄. For well-separated impurity verties
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loated within the bulk, the loal interation terms involve the two neighbouring sites as

usual [8℄. Plaing the forward-sattering impurities at the bak-sattering boundaries,

we derive a Hamiltonian with rather general boundary terms whih may be interpreted

as soures and sinks of partiles at the boundaries. Using the graded YBE and the

graded RE, we derive the BA equations, and obtain expressions for the eigenvalues for

speial ases of the Hamiltonian. In addition, we disuss the ground-state properties in

the thermodynami limit.

The paper is organized as follows. In setion 2, we introdue the small-polaron

model with general open BC. In setion 3, a lass of integrable impurities is onstruted

by shifting the spetral parameters of loal Lax operators at arbitrary sites in the bulk.

By embedding the impurity fermion vertex at eah boundary of the model, we onstrut

a lass of integrable impurities with perfet bak-sattering in setion 4. In setion 5, we

study the algebrai BA solutions for those impurity models. The ground-state properties

are disussed in setion 6. Setion 7 is devoted to a disussion and onlusion.

2. The small-polaron model

We onsider the small-polaron model [22℄, whih desribes the motion of an additional

eletron in a polar rystal. The Hamiltonian reads
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where J is proportional to the overlap integral, V denotes the eletron-phonon oupling

and W is the energy of the polaron. The boundary oeÆients p
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. The R-matrix and loal monodromy matrix are expliitly given as [23℄
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respetively. They satisfy the graded Yang-Baxter algebra (YBA)
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where
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is the supertensor produt
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with the parity P (1) = 0, P (2) = 1 suh that the R-matrix orrespond to the null parity

ase P (�) + P (�) + P () + P (Æ) = 0 [20℄. We parametrize the oupling parameters J ,

V and W as

J = 1; (2.9a)
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The entries of the R-matrix (2.3) and the monodromy matrix (2.4) are
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where we introdued the onvenient notation

s
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(u) � sin(u+ n�); 

n

(u) � os(u+ n�): (2.11)

Throughout the paper, we therefore use � and w for the parametrization of the model

parameters J , V , and W .

In a previous artile [24℄, we proved that the model (2.1) is integrable under the
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Here we would like to emphasize that although we [24℄ onstrut the general boundary

K-matries (2.12) for the small-polaron model (2.1) by the Lax pair formulation, we did

not �gure out the form of the RE orresponding to more general boundary K-matries

(2.12). In the above expressions, we further de�ned
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ontrol the strength of the boundary potential terms, whereas �

�

and �

�

in (2.13a){(2.13h) are the parameters haraterizing the fermion soures and

sinks at the boundaries. The Hamiltonian (2.1) an be obtained as usual as an invariant

of the ommuting family of transfer matries � (u)

� (u) = Str

0

[K

+

(u)T (u)K

�

(u)T

�1

(�u)℄ (2.15)

by taking the derivative at a speial value of the spetral parameter u. Namely,

�s

2

(0)

d

du

� (u)

�

�

�

�

u=0

= 2H� (0) + Str

0

�

d

du

K

+

(u)

�

�

�

�

u=0

�

; (2.16)

with Str

0

denoting the supertrae with respet to the auxiliary spae.

3. Integrable impurities in the bulk

In this setion, we onstrut integrable impurities whih appear in the bulk part for

the fermioni small-polaron model with general open BC. If the quantum R-matrix of a
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Therefore one an onstrut a lass of integrable impurities for the fermion model with

both open and periodi BC by shifting the spetral parameters of loal monodromy

matries at arbitrary sites in the bulk. The assoiated monodromy matrix is given as
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The prime denotes the derivative with respet to the spetral parameter u. The

interations of the open fermion hain with the impurity are shown shematially in

�gure 1.

In order to simplify the algebrai alulation for the onstrution of suh an
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Then we hek that the supermatries (3.7a) and (3.7b) satisfy the graded RE (3.3a)

and (3.3b), respetively. From (3.5), after some algebra, we obtain the Hamiltonian for
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1            2                                          m-2           m                                                     N-1         N

m-1

Figure 1. Graphial representation of the interations in the hain with the impurity

loated at an arbitrary site m together with boundary impurities.
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density interations (see �gure 1). The Hamiltonian in the presene of more than one

impurity an easily be onstruted, if the two nearest impurities are still well separated.

In this ase, the Hamiltonian redues to a sum over the isolated impurities like in the

ase of the Heisenberg periodi hain [8, 9, 10℄.

4. Integrable impurities oupled to the boundaries

Kondo-like impurities of loal impurity spins oupled to 1D strongly orrelated

ondution eletrons have attrated muh interest [17, 19℄ espeially in the ontext

of the BA solution [3℄. To every omplex-valued K-matrix solution of the RE (3.3a)

and (3.3b), one may onstrut a lass of \regular" solutions [27℄, i.e.,

~

K

�

(u) = L(u)K

�

(u)L

�1

(�u);

~

K

+

(u) = K

+

(u) (4.1)
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to the same RE. In order to study Kondo impurities for 1D eletron systems [19, 27℄,

it is better to onstrut \non-regular", i.e. non-trivial operator-valued, solutions, to the

RE. Wang and oworkers [18℄ onstruted a lass of integrable impurities oupled to

eah boundary of the spin-

1

2

Heisenberg XXZ hain by a speial hoie of boundary K

�

-

matries, i.e., K

�

= 1. But in their approah the parameters haraterizing the strength

of the magneti impurities | related to our potential impurities via the ustomary

Jordan-Wigner transformation [1℄ | disappear in the Hamiltonian as well as in the BA

equations. Here we present a di�erent approah to integrable impurities: from \regular"

solutions of the graded RE (3.3a) and (3.3b), we onstrut a lass of integrable impurities

[8, 9, 10℄ oupled to eah of the boundaries of a fermion hain with general open BC.

We stress that these impurities are not Kondo-like. If we embed two fermioni impurity

verties at the boundaries,

T (u) = L

r

(u+ �

r

)L

N

(u) � � �L

m

(u) � � �L

1

(u)L

`

(u+ �

`

); (4.2a)

T

�1

(�u) = L

�1

`

(�u+ �

`

)L

�1

1

(�u) � � �L

�1

m

(�u) � � �L

�1

N

(�u)L

�1

r

(�u + �

r

); (4.2b)

one an show that

U

�

(u) = T (u)K

�

(u)T

�1

(�u) (4.3)

also satis�es (3.3a) and so does the solution L

`

(u + �

`

)K

�

(u)L

�1

`

(�u + �

`

). It follows

that there exists a family of transfer matries

� (u) = Str

0

[K

+

(u)U

�

(u)℄ (4.4)

and its members ommute with eah other for di�erent spetral parameters. Similarly to

(2.16), we an formulate the expliit expression of the Hamiltonian for an open fermion

hain with boundary impurities,

H =

N

X

j=2

H

j;j�1

+

1

Str

0

[K

+

(0)℄

�

Str

0

[K

+

(0)L

0

r

(�

r

)L

�1

r

(�

r

)℄

+Str

0

[K

+

(0)L

r

(�

r

)L

0

N

(0)L

�1

N

(0)L

�1

r

(�

r

)℄

	

+

1

2

L

1

(0)L

`

(�

`

)K

0

�

(0)L

�1

`

(�

`

)L

�1

1

(0) + L

1

(0)L

0

`

(�

`

)L

�1

`

(�

`

)L

�1

1

(0): (4.5)

Substituting (3.7a) and (3.7b) into (4.5), the orresponding Hamiltonian is given as

H =

N

X

j=2

H

j;j�1

+

s

2

(0)

�(�

r

)s

0

( 

+

)

h

H

(b)

N

+H

(b)

r

+H

(i)

N;r

i

+

s

2

(0)

�(�

`

)s

0

( 

�

)

h

H

(b)

1

+H

(b)

`

+H

(i)

1;`

i

(4.6)

where

H

(b)

N

= s

0

(�

r

)

h

s

0

( 

+

� �

r

)n

N

+ is

2

(�

r

)�

+

a

y

N

+ is

�2

(�

r

)�

+

a

N

i

� 

2

(�

r

)s

�2

(�

r

)s

0

( 

+

)n

N

; (4.7a)

H

(b)

r

= s

2

(0)

�

s

2

( 

+

)n

r

� is

2

(�

r

)�

+

a

y

r

+ is

�2

(�

r

)�

+

a

r

�

; (4.7b)

H

(i)

N;r

= � s

2

(0)

2

(0)

�

s

0

( 

+

)n

r

� 2is

0

(�

r

)(�

+

a

y

r

� �

+

a

r

)

�

n

N
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l               1          2                                                                                       N-1       N              r

Figure 2. Impurities oupled to eah of the boundaries.

1           2                                            m-2      m-1         m                                           N-1         N

Figure 3. Integrable impurities situated at the boundaries.

� 

2

(0)

h

s

2

(0)s

0

( 

+

)n

N

+ 2is

2

0

(�

r

)(�

+

a

y

N

+ �

+

a

N

)

i

n

r

;

� s

2

(0)

h

s

0

(�

r

+  

+

)a

y

N

a

r

� s

0

(�

r

�  

+

)a

y

r

a

N

i

; (4.7)

H

(b)

1

=H

(b)

N

(N ! 1; r! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7d)

H

(b)

`

=H

(b)

r

(N ! 1; r! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7e)

H

(i)

1;`

=H

(i)

N;r

(N ! 1; r ! `;  

+

!  

�

; �

+

! �

�

; �

+

! �

�

; �

r

! ��

`

); (4.7f)

where H

(b)

an be interpreted as fermion soures and sinks with partile injetion

and ejetion at the boundaries and at the impurity sites. However, unlike the previous

Hamiltonian (3.8), the boundary parameters and impurity parameters are both involved.

H

(i)

desribes the interation between impurities and boundaries (see �gure 2).

On the other hand, if we move the impurity in the bulk to eah boundary of the

hain as shown in �gure 3 with the monodromy matrix

T (u) = L

N

(u+ �

N

) � � �L

m

(u) � � �L

1

(u+ �

1

); (4.8a)

T

�1

(�u) = L

�1

1

(�u+ �

1

) � � �L

�1

m

(�u) � � �L

�1

N

(�u+ �

N

); (4.8b)

one �nds that the Hamiltonian is same as (4.6) apart from the numbering

r ! N;N ! N � 1; `! 1; 1! 2:

Although the eigenvalues of the open hain do not depend on the position of the

impurities in the bulk due to the absene of bak-sattering, the open boundary is

a perfet bak-satterer with vanishing transmission at eah end of the open hain for

�

�

= �

�

= 0. Moreover, it is easy to obtain a model with the impurities oupled to

eah boundary together with f well separated impurities (see �gure 4) at positions m

i

for i = 1; : : : ; f , i.e.

H =

N

X

j=2

H

j;j�1

+

s

2

(0)

�(�

r

)s

0

( 

+

)

h

H

(b)

N

+H

(b)

r

+H

(i)

N;r

i

+

s

2

(0)

�(�

`

)s

0

( 

�

)

h

H

(b)

1

+H

(b)

`

+H

(i)

1;`

i
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      m-5                               m-1

l             1                               m-6     m-4        m-3        m-2        m                              N            r

Figure 4. Two well-separated bulk impurities at sites m

1

= m and m

2

= m � 4

together with the boundary impurities.

+

f

X

i=1

(H

(h)

m

i

;m

i

�1;m

i

�2

+H

(d)

m

i

;m

i

�1;m

i

�2

+H

()

m

i

;m

i

�1;m

i

�2

): (4.9)

The terms H

(b)

; H

(i)

are the same as in (4.7a)-(4.7f), and the terms H

()

;H

(d)

and

H

(h)

are given in (3.9d){(3.9f). To keep these Hamiltonians (3.8), (4.6) and (4.9)

hermitian, the parameters � and  

�

must be purely imaginary, � is real and �

y

�

= �

�

.

All terms in the Hamiltonians are needed to ensure the integrability of the models.

In the next setion we shall proeed with the algebrai solutions for the small-polaron

model with di�erent kinds of impurities in the most interesting speial ase of perfetly

bak-sattering boundaries without soures and sinks.

5. Bethe ansatz solution for �nite hains

Following the method of [11, 26℄, we shall study the algebrai BA solutions for the open

fermion hain with di�erent kinds of impurities. We �rst note that the general open

BC spoil the pseudo vauum state. Therefore it seems diÆult to solve the models with

general open BC by means of the QISM. We thus restrit ourselves to the simpler

situation �

�

= 0, �

�

= 0 in the following. In this ase, the Hamiltonians (3.8),

(4.6) and (4.9) do not ontain any Grassmannian soure and sink terms and are harge

onserving. They still ontain the potential impurities and are perfet bak-satterers.

Thus these Hamiltonians are ideal for the proposed investigation of the interplay of

forward-sattering bulk impurities with bakward-sattering boundaries.

Let us for simpliity �rst onsider the Hamiltonian (4.6). In the ase �

�

= 0,

�

�

= 0, the Hamiltonian (4.6) omprises

H

(b)

N

=

�

s

2

(0)

2

(0)s

0

( 

+

)� s

2

0

(�

r

)

0

( 

+

)

�

n

N

; (5.1a)

H

(b)

r

=

�

s

2

(0)

2

(0)s

0

( 

+

) + s

2

2

(0)

0

( 

+

)

�

n

r

; (5.1b)

H

(i)

N;r

= � s

2

(0)

h

s

0

(�

r

+  

+

)a

y

N

a

r

� s

0

(�

r

�  

+

)a

y

r

a

N

i

� s

4

(0)s

0

( 

+

)n

r

n

N

(5.1)

and H

(b)

1

, H

(b)

`

, and H

(i)

1;`

follow as in (4.7d){(4.7f). H

(b)

desribes the boundary

impurities. H

(i)

ontains the interation terms with exhange oupling between the

bulk and the impurities (see �gure 2). As mentioned before, this Hamiltonian onserves



Integrable impurities for an open fermion hain 11

the partile number due to the absene of soures and sinks with partile injetion and

ejetion at the boundaries.

Now we proeed to establish the Bethe eigenvetors for the Hamiltonian (4.6) with

(5.1a)-(5.1) by means of the algebrai BA [14℄. Let

T (u) =

�

A B

C D

�

; T

�1

(�u) =

�

�

A

�

B

�

C

�

D

�

; (5.2)

be the monodromy matries ating on the pseudo vauum state de�ned by a

j

j0i =

0; j = 1; � � � ; N . Then we have

Aj0i = s

N

0

(u)s

0

(u+ �

`

)s

0

(u+ �

r

)j0i; (5.3a)

Dj0i = s

N

2

(u)s

2

(u+ �

`

)s

2

(u+ �

r

)j0i; (5.3b)

Bj0i = 0; (5.3)

Cj0i 6= 0; (5.3d)

�

Aj0i =

(�1)

N

s

N

0

(u)s

0

(u� �

`

)s

0

(u� �

r

)

Æ [T (�u)℄

j0i; (5.3e)

�

Dj0i =

(�1)

N

s

N

2

(u)s

2

(u� �

`

)s

2

(u� �

r

)

Æ [T (�u)℄

j0i; (5.3f)

�

Bj0i = 0; (5.3g)

�

Cj0i 6= 0; (5.3h)

where the quantum determinant [28℄ is Æ [T (�u)℄ = �

N

(u)�(u � �

`

)�(u � �

r

):Let us

de�ne

U

�

(u) =

�

~

A

~

B

~

C

~

D

�

: (5.4)

From (4.3), we then have

~

A =

1

s

0

( 

�

)

[�s

0

(u�  

�

)A

�

A+ s

0

(u+  

�

)B

�

C℄; (5.5a)

~

D =

1

s

0

( 

�

)

[�s

0

(u�  

�

)C

�

B + s

0

(u+  

�

)D

�

D℄: (5.5b)

Noting the following form of the graded YBA

2

T

�1

(�u)R

12

(2u)

1

T

(u) =

1

T

(u)R

12

(2u)

2

T

�1

(�u); (5.6)

it is possible to derive the ommutation relation

B

�

C =

s

2

(0)

s

2

(2u)

(

�

DD � A

�

A): (5.7)

With the help of the graded RE (3.3a) we obtain | after a lengthy alulation | the

ommutation relations

^

A(u)

~

C(v) =

s

2

(u� v)s

4

(u+ v)

s

0

(u� v)s

2

(u+ v)

~

C(v)

^

A(u)�

s

2

(0)s

4

(2u)

s

2

(2u)s

0

(u� v)

~

C(u)

^

A(v)

+

s

2

(0)s

0

(2v)s

4

(2u)

s

2

(2v)s

2

(2u)s

2

(u+ v)

~

C(u)

~

D(v); (5.8a)
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~

D(u)

~

C(v) =

s

0

(u+ v)s

�2

(u� v)

s

0

(u� v)s

2

(u+ v)

~

C(v)

~

D(u) +

s

2

(0)s

0

(2v)

s

0

(u� v)s

2

(2v)

~

C(u)

~

D(v)

�

s

2

(0)

s

2

(u+ v)

~

C(u)

^

A(v); (5.8b)

where we introdued the transformation

^

A(u) =

~

A(u)�

s

2

(0)

s

2

(2u)

~

D(u): (5.9)

From (5.3a)-(5.3h) and (5.4), we an hoose an M -partile exitation as

j�(v

1

� � � v

M

)i =

~

C(v

1

) � � �

~

C(v

M

)j0i: (5.10)

Using the ommutation relations (5.8a) and (5.8b), one obtains the eigenvalue � of the

transfer matrix (4.4)

�(u)j�(v

1

� � � v

M

)i = �(u; v

1

� � � v

M

)j�(v

1

� � � v

M

)i; (5.11)

where

�(u; v

1

� � � v

M

) = �

(�1)

N

s

2

(2u)Æ [T (�u)℄ s

0

( 

�

)

�

(

s

2

(u�  

+

)s

2

(u�  

�

)s

0

(u� �

`

)s

0

(u+ �

`

)s

0

(2u)s

2N

0

(u)

�s

0

(u� �

r

)s

0

(u+ �

r

)

M

Y

j=1

s

4

(u+ v

j

)s

2

(u� v

j

)

s

0

(u� v

j

)s

2

(u+ v

j

)

+s

0

(u+  

+

)s

0

(u+  

�

)s

2

(u+ �

`

)s

2

(u� �

`

)s

4

(2u)s

2N

2

(u)

�s

2

(u+ �

r

)s

2

(u� �

r

)

M

Y

j=1

s

0

(u+ v

j

)s

�2

(u� v

j

)

s

0

(u� v

j

)s

2

(u+ v

j

)

)

; (5.12)

provided that

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2N

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2N

1

(v

j

)

=

Y

m=`;r

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

(5.13)

for all j = 1; : : : ;M . In the above BA equations, we have shifted the parameter

v

j

! v

j

� �. From the relation (2.16), the eigenvalue E of the Hamiltonian (4.6)

for �

�

= �

�

= 0 follows as

E = �s

2

(0)

"

ot 

�

+ ot 

+

+ 2(N + 1) ot 2� � 2 ot(�

r

� 2�)� 2 ot(�

`

� 2�)

�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.14)
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On the right hand side of (5.14) we have dropped a multipliative term 1=2 os(2�) as

is ustomary [11℄. Following the same proedure, the BA equations and the eigenvalues

for the Hamiltonian (3.8) are given as

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2(N�1)

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2(N�1)

1

(v

j

)

=

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

(5.15)

for all j = 1; : : : ;M , and

E = �s

2

(0)

"

ot 

�

+ ot 

+

+ 2N ot 2� � 2 ot(�

m

� 2�)�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.16)

For the Hamiltonian (4.9) we �nd

s

1

(v

j

�  

�

)s

1

(v

j

�  

+

)s

2(N�f)

�1

(v

j

)

s

�1

(v

j

+  

�

)s

�1

(v

j

+  

+

)s

2(N�f)

1

(v

j

)

=

f;`;r

Y

m=1

s

1

(v

j

+ �

m

)s

1

(v

j

� �

m

)

s

�1

(v

j

+ �

m

)s

�1

(v

j

� �

m

)

M

Y

k = 1

k 6= j

s

�2

(v

j

+ v

k

)s

�2

(v

j

� v

k

)

s

2

(v

j

+ v

k

)s

2

(v

j

� v

k

)

; (5.17)

where

Q

f;`;r

m=1

denotes the produt over the f isolated impurities in the bulk as well as

the boundary impurities. The energy spetrum is given as

E = �s

2

(0)

"

ot 

�

+ ot 

+

+ 2(N � f + 1) ot 2� � 2

f;`;r

X

m=1

ot(�

m

� 2�)

�

M

X

j=1

2s

2

(0)

s

�1

(v

j

)s

1

(v

j

)

#

: (5.18)

When omparing (5.17), (5.18) to (5.15), (5.16) and (5.13), (5.14), we see that using

(5.17), (5.18) orresponding to the Hamiltonian (4.9), we an reprodue the results for

the other two Hamiltonians (3.8) and (4.6). Namely, with f = 1 and �

r

= �

l

= 0 we get

the result for (3.8) with (5.15), (5.16) and with f = 0 and �

r

; �

l

6= 0 we �nd for (4.6)

the BA equations (5.13) with energy (5.14). Thus the Hamiltonian (4.9) ontains the

other two Hamiltonians as speial ases, although the onstrution by QISM proeeds

independently. We note that are has to be paid to the varying number of sites N when

doing this proedure.

6. Ground-state properties in the thermodynami limit

We note that the bulk terms of the Hamiltonians (3.8), (4.6) and (4.9) are equivalent

to the ounter part of the 1D Heisenberg XXZ model with periodi BC via a Jordan-

Wigner transformation. The �nite-size orretions and thermodynamis for the XXZ
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model with or without boundary magneti �elds have been studied in many papers

[29, 30℄. As mentioned before, the Jordan-Wigner transformation does not preserve the

boundary terms nor the impurity terms due to its nonloality. The BA equations we

obtained provide a more meaningful desription of the ground-state properties due to

the presene of the boundary potential terms and the impurity parameters. In what

follows, we shall study the ground-state properties for the resulting models following

the sheme in [9, 18, 29, 30℄.

For onveniene, let us �rst rede�ne the variable v

j

! iv

j

. Then, taking the

logarithm, we rewrite the BA equations (5.13) for the Hamiltonian (4.6) as follows:

2�I

j

= 2N�(v

j

; �) + �(v

j

;  

+

� �) + �(v

j

;  

�

� �) + �(v

j

+ �

r

; �) + �(v

j

� �

r

; �)

+�(v

j

+ �

`

; �) + �(v

j

� �

`

; �)�

M

X

k = 1

k 6= j

�(v

j

� v

k

; 2�) + �(v

j

+ v

k

; 2�); (6.1)

for all j = 1; � � � ;M , where the two-body phase shift [2, 13, 14℄ is

�(v

j

; �) = i ln

sinh(v

j

+ i�)

sinh(v

j

� i�)

= 2arot (tanh v

j

ot �) : (6.2)

We now de�ne v

�k

as �v

k

and de�ne v

0

= 0. Then the density of the roots fv

j

g an be

de�ned as

�

N

(v) =

dZ

N

(v)

dv

; Z

N

=

I

j

N

(6.3)

and the �nite-size BA equation (6.1) beomes

Z

N

(v) =

1

�

(

�(v; �) +

1

2N

�

�

(i)

(v) + �

(b)

(v)

�

�

1

2N

M

X

k=�M

�(v � v

k

; 2�)

)

; (6.4)

where

�

(i)

(v) = �(v + �

r

; �) + �(v � �

r

; �) + �(v + �

`

; �) + �(v � �

`

; �); (6.5a)

�

(b)

(v) = �(v; 2�) + �(2v; 2�) + �(v;  

+

� �) + �(v;  

�

� �): (6.5b)

We note that the �rst two terms in (6.5b) arise due to the non-periodiity of the hain,

whereas the last two terms are due to the boundary potentials at sites 1 and N . Taking

the thermodynami limit and di�erentiating (6.4) with respet to the spetral parameter

v, we have

�

1

(v) =

1

�

�

�

0

(v; �) +

1

2N

h

�

(i)

0

(v) + �

(b)

0

(v)

i

�

�

1

2�

Z

�

��

du�

1

(u)�

0

(v � u; 2�); (6.6)

where the integration boundary � is determined by

Z

�

��

�

1

(v)dv =

2M + 1

N

+O(N

�2

): (6.7)
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The prime denotes the derivative with respet to v. Due to the linearity of (6.6), one

may formally solve the following three linear integral equations:

�

(0)

1

(v) =

1

�

�

0

(v; �)�

1

2�

Z

�

��

du�

(0)

1

(u)�

0

(v � u; 2�); (6.8a)

�

(i)

1

(v) =

1

�

�

(i)

0

(v)�

1

2�

Z

�

��

du�

(i)

1

(u)�

0

(v � u; 2�); (6.8b)

�

(b)

1

(v) =

1

�

�

(b)

0

(v)�

1

2�

Z

�

��

du�

(b)

1

(u)�

0

(v � u; 2�); (6.8)

In this way, the solution of (6.6) an be expressed as

�

1

(v) = �

(0)

1

(v) +

1

2N

[�

(i)

1

(v) + �

(b)

1

(v)℄; (6.9)

where �

(0)

1

(v);

1

2N

�

(i)

1

(v) and

1

2N

�

(b)

1

(v) are the ontributions of the bulk, the impurities

and the boundary e�et to the root density, respetively. The ground-state energy

(5.14) is minimized at the uto� � in the thermodynami limit as disussed in [29, 30℄.

Following the argument in [29, 30℄, we �nd the uto� � = 1 suh that the partile

density is M=N = 1=2.

By using the Fourier transforms, the formal solutions to the equations (6.8a){(6.8)

read

~�

1

(!; �) =

2

~

�(!; �)

2� +

~

�(!; 2�)

; (6.10)

where

~

�(!; �) =

Z

1

�1

�

0

(v; �)e

i!v

dv: (6.11)

From the residue theorem, we obtain

�

(0)

1

(v) =

2

� osh

�

2�

v

; (6.12a)

�

(i)

1

(v) =

X

m=r;`

4 osh

�

2�

v osh

�

2�

�

m

� osh

�

2�

(v + �

m

) osh

�

2�

(v � �

m

)

; (6.12b)

�

(b)

1

(v) =

1

2�

Z

1

�1

�

~�

(be)

1

(!) + ~�

(bp)

1

(!)

�

e

�i!v

d!; (6.12)

where

~�

(be)

1

(!) =

2 sinh(

�

2

� 2�)! + 4 os

�

4

! sinh(

�

4

� �)!

sinh

�

2

! + sinh(

�

2

� 2�)!

; (6.13a)

~�

(bp)

1

(!) =

2 sinh(

�

2

+ � �  

+

)! + 2 sinh(

�

2

+ � �  

�

)!

sinh

�

2

! + sinh(

�

2

� 2�)!

: (6.13b)

Here ~�

(be)

1

(!) and ~�

(bp)

1

(!) are the ontributions to the root density from the boundary

e�et and the boundary potential terms, respetively, due to (6.5b). Then, from (5.14),

we also obtain the ground-state energy in the thermodynami limit as

E

g

= N

Z

1

�1

dv

4 sin

2

2�

osh 2v � osh 2�

�

1

(v) + E

0

; (6.14)
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with

E

0

= �p

+

� p

�

� 2(N + 1) os 2� + 2 sin 2�

X

m=r;`

ot(�

m

� 2�): (6.15)

The boundary energy [30℄ is given by

E

b

=

Z

1

�1

dv

2 sin

2

2�

osh 2v � osh 2�

[�

(i)

1

(v) + �

(b)

1

(v)℄ (6.16)

� p

+

� p

�

� 2 os 2� + 2 sin 2�

X

m=r;`

ot(�

m

� 2�):

We thus note that the boundary potential terms do not only enter the expression for

the ground-state energy expliitly as �p

+

� p

�

, but also impliitly via ~�

(b)

1

of (6.12).

We remark that in [18℄ no boundary magneti �eld terms like (6.13b) ontribute to

the root density due to the lak of free boundary parameters in the boundary K

�

-

matries. The presene of boundary potentials (magneti �elds) and the impurity

parameters hanges the asymptoti behaviour of the BA equations (6.1) resulting in

string solutions di�erent from those disussed in the papers [30℄. Indeed, either the

boundary parameters p

�

(or  

�

) or the impurity strength parameters �

m

, �

`

and �

r

a�et the boundary string solutions to the BA equations. It is obvious that the ground-

state energy of the bulk is same as in the periodi ase [29℄. In general, the boundary

states are assoiated with omplex roots of the BA equations.

Analogously, we obtain the ground-state energy (6.14) for the Hamiltonians (3.8)

and (4.9). The di�erenes to the ground states for these Hamiltonians are only the

ontributions from the impurities expressed in �

(i)

1

(v). Thus we get for the Hamiltonian

(3.8)

�

(i)

1

(v) =

4 osh

�

2�

v osh

�

2�

�

m

� osh

�

2�

(v + �

m

) osh

�

2�

(v � �

m

)

�

4

� osh

�

2�

v

; (6.17)

E

0

= � p

+

� p

�

� 2N os 2� + 2 sin 2� ot(�

m

� 2�): (6.18)

For the most general Hamiltonian (4.9), we have

�

(i)

1

(v) =

f;r;`

X

m

"

4 osh

�

2�

v osh

��

2�

�

m

� osh

�

2�

(v + �

m

) osh

�

2�

(v � �

m

)

#

� f

4

� osh

�

2�

v

: (6.19)

E

0

= � p

+

� p

�

� 2(N + 1� f) os 2�

+ 2 sin 2�

f;r;`

X

m=1

ot(�

m

� 2�): (6.20)

Further thermodynami properties suh as ompressibilities and suseptibilities an be

alulated as demonstrated previously in [8, 10, 15℄. Results will be presented elsewhere.

7. Conlusions and disussion

In the present work, we have onsidered the interplay of integrable impurities and general

open boundary onditions for the example of the small-polaron model. The impurities
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have been onstruted via inhomogeneous shifts in the spetral parameters of the Lax

operators suh that the YBE are satis�ed. The boundary terms are taken to obey

the RE. In both ases, we dealt with the graded version of the equations due to the

fermioni nature of the partiles and the boundary terms. Thus by onstrution, the

model remains integrable. We have shown that this is true even when plaing the

impurities diretly at the boundaries.

The most general boundary terms onsidered in (2.1) inlude fermioni partile

soures and sink terms as well as more standard density terms. However, these

linear terms in reation and annihilation operators ontain oeÆients that are

odd Grassmann variables. Thus a straightforward physial interpretation appears

problemati. Representing these oeÆients �

�

, �

�

as additional fermioni operators

a

�

, a

y

�

, we arrive at a hain with two additional sites but without soures and sinks.

The boundary terms oupling to the partile density an be viewed as potential

impurities | muh like in the Anderson model of loalization [31℄ | situated at the

boundaries. For the speial ase with only these potential impurities and the integrable

impurities present, we solve the BA equations and ompute the ground-state energy in

the thermodynami limit for half-�lling. We �nd that the solution is possible regardless

whether the integrable impurities are loated within the bulk or at the boundaries.

The two types of impurities enter the expressions for the ground-state energy

additively. Thus the simultaneous presene of both purely forward sattering integrable

impurities and purely reeting boundary potential terms does not seem to hange the

physis in a substantial way. We therefore do not expet to see the onset of loalization

as might be expeted from the form of the boundary impurities.

An analogue of the integrable impurities an be found in the ase of light waves.

Consider a long strip of glass, interspersed with piees of bifringent material of the same

index of refration as the glass. Then as irular polarized light enters the strip and

reahes the �rst bifringent slab, its plane of polarization will be rotated by an angle

� / �l

1

where l

1

represents the length of the �rst slab and � is the material spei�

rotation angle per unit length [32℄. There is no reetion at the ontat due to the

idential indies of refration. After the next slab, we have � = �l

1

+ �l

2

and so on.

Thus the net e�et of the bifringent slabs is a rotation of the plane of polarization, i.e.,

a hange in the overall phase of the wave funtion of light just as for the eletroni wave

funtion in Ref. [8, 9, 10℄. In this piture the integrable boundaries satisfying the RE

then simply orrespond to perfet mirrors at both ends of the strip.
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