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Structure-preserving methods for computing eigenpairs of large

sparse skew-Hamiltonian/Hamiltonian pencils

Volker Mehrmann

1

David Watkins

2

Abstract

We study large, sparse generalized eigenvalue problems for matrix pencils, where

one of the matrices is Hamiltonian and the other skew Hamiltonian. Problems of

this form arise in the numerical simulation of elastic deformation of anisotropic

materials, in structural mechanics and in the linear-quadratic control problem for

partial di�erential equations. We develop a structure-preserving skew-Hamiltonian,

isotropic, implicitly-restarted shift-and-invert Arnoldi algorithm (SHIRA). Several

numerical examples demonstrate the superiority of SHIRA over a competing unstruc-

tured method.

Keywords: Skew-Hamiltonian/Hamiltonian pencil, generalized eigenvalue problem,

quadratic eigenvalue problem, implicitly restarted Arnoldi method, Lamé equations, clas-

sical mechanics, linear quadratic control, algebraic Riccati equation

1 Introduction

In this paper we study the numerical computation of a small number of eigenvalues (and

the associated eigenvectors) of large-scale generalized eigenvalue problems having a certain

structure that arises frequently in applications. A 2n� 2n real matrix pencil

�N � �H = �

�

F

1

G

1

H

1

F

T

1

�

� �

�

F

2

G

2

H

2

�F

T

2

�

; (1)

where G

1

= �G

T

1

, H

1

= �H

T

1

, G

2

= G

T

2

, and H

2

= H

T

2

, is called a skew-Hamiltonian/

Hamiltonian pencil or, more brie�y, an SHH pencil. Throughout this paper we will assume

that N and H are large and sparse. Several examples of applications that give rise to large,

sparse generalized eigenvalue problems with SHH pencils are given in Section 2.

The reason for the terminology is simply this: Matrices the form of N and H in (1)

are called skew Hamiltonian and Hamiltonian, respectively. If

J =

�

0 I

n

�I

n

0

�

; (2)

where I

n

is the n � n identity matrix, then skew-Hamiltonian matrices satisfy (NJ)

T

=

�(NJ) and Hamiltonian matrices satisfy (HJ)

T

= HJ .
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An SHH pencil and in particular its spectrum have considerable structure. The eigen-

values occur in quadruplets (�;

�

�;��;�

�

�), or in real or purely imaginary pairs (�;��)

[23, 24, 25]. The objective of this paper is to develop algorithms that preserve and exploit

this structure. The payo�s are more e�cient and more accurate algorithms. In some cases

preservation of the structure is crucial to the stable solution of a problem.

Typical applications require the few eigenvalues that are smallest in magnitude or

closest to the imaginary axis. To achieve this we must apply transformations that have

the e�ect of shifting the desired eigenvalues to the periphery of the spectrum, so that they

can be computed e�ciently by Krylov subspace methods, e.g. Arnoldi or Lanczos, possibly

with implicit restarts. This is a standard procedure in methods for large sparse eigenvalue

problems, [30, 37]. What is special to this paper is that our transformations and our Krylov

subspace methods respect the structure of the problem.

Our approach requires that the skew-Hamiltonian matrix N be presented as a product

in the special form

N = Z

1

Z

2

where Z

T

2

J = �JZ

1

; (3)

with Z

1

and Z

2

sparse. This allows us to transform the pencil �N � �H to a standard

eigenvalue problem �I � �W = �I � �Z

�1

1

HZ

�1

2

, in which the matrix W = Z

�1

1

HZ

�1

2

turns out to be Hamiltonian.

This procedure is analogous to the technique by which a symmetric pencil A � �B,

with B positive de�nite, is transformed to a standard eigenvalue problem using a Cholesky

decomposition B = LL

T

. Because of the symmetry of the decomposition, the matrix

L

�1

AL

�T

inherits the symmetry of A. In the current context, if we introduce the skew-

symmetric �inner product� hx; yi

J

= y

T

Jx, we �nd that a matrix is Hamiltonian if and only

if it is skew symmetric with respect to this J-inner product, i.e. hHx; yi

J

= �hx;Hyi

J

for

all x; y 2 R

2n

. The relationship between Z

1

and Z

2

given in (3) implies that Z

2

is (plus or

minus) the adjoint of Z

1

with respect to the J-inner product, i.e. hZ

1

x; yi

J

= �hx;Z

2

yi

J

for all x; y 2 R

2n

. Thus the decomposition N = Z

1

Z

2

is a symmetric, Cholesky-like

decomposition of N . Consequently W = Z

�1

1

HZ

�1

2

inherits the J-skew symmetry of H;

that is, W is Hamiltonian.

We discuss two approaches that make di�erent transformations of the Hamiltonian

operatorW. The �rst mapsW to a skew-Hamiltonian operator, from which the eigenvalues

can be extracted by an implicitly restarted Arnoldi method that has been modi�ed to

preserve the structure. For this approach we provide numerical results demonstrating

its e�ectiveness. The second approach maps W to a symplectic operator by a generalized

Cayley transform. The desired eigenvalues can then be extracted by an implicitly restarted

symplectic Lanczos method. We only outline this approach and discuss its advantages and

disadvantages.

2 Applications

The need to solve SHH generalized eigenvalue problems arises in many applications. The

best-known example is the linear quadratic optimal control problem for descriptor systems,

2



where the pencil typically has the particular form

�

�

E 0

0 E

T

�

� �

�

A �BB

T

C

T

C �A

T

�

; (4)

with B of size n � m, C of size p � n and m << n; p << n, see [3, 4, 25]. Large sparse

problems of this type arise for example in the control of semidiscretized parabolic partial

di�erential equations [17, 28, 29].

Here the skew-Hamiltonian matrix can be written in factored form as

N = Z

1

Z

2

=

�

E 0

0 I

� �

I 0

0 E

T

�

; (5)

with Z

T

2

J = JZ

1

.

The application that we will discuss in detail in this paper arises from quadratic eigen-

value problems of the form

�

2

Mx + �Gx+Kx = 0; (6)

where M = M

T

is positive de�nite, K = K

T

and G = �G

T

.

Large sparse eigenvalue problems of this form arise for example in �nite element dis-

cretization in structural analysis [33], in acoustic simulation of poro-elastic materials [22,

31, 34], and in the elastic deformation of anisotropic materials [18, 20, 32]. In these ap-

plications M is a mass matrix and �K a sti�ness matrix. Depending on the applications,

di�erent parts of the spectrum are of interest, typically one is interested in the eigenvalues

with smallest real part or the eigenvalues smallest or largest in modulus.

At �rst glance the quadratic eigenvalue problem (6) and the SHH generalized eigenvalue

problem (1) seem not to have much in common. However, it is well known that the

eigenvalues of (6) occur in quadruplets (�;

�

�;��;�

�

�) or real or purely imaginary pairs

(�;��) [19], just as they do for (1). The reason for this similarity is that (6) can be

`linearized' to have the form (1). This can be done in several di�erent ways. For example,

if we make the substitution

y = �Mx (7)

in (6) and rewrite the substitution as �x � M

�1

y = 0, we obtain the SHH generalized

eigenvalue problem

�N z �Hz = �

�

I G

0 I

� �

y

x

�

�

�

0 �K

M

�1

0

� �

y

x

�

= 0: (8)

Since N is invertible, the pencil �N � H is regular, i.e., det(�N � H) does not vanish

identically.

The skew Hamiltonian matrix N can be written in factored form as

N = Z

1

Z

2

=

�

I

1

2

G

0 I

� �

I

1

2

G

0 I

�

; (9)

with Z

T

2

J = JZ

1

. We note that Z

1

= Z

2

is a skew-Hamiltonian square root of N .

3



A second approach is to use the substitution

y = �x (10)

in (6) and rewrite the substitution as �Mx �My = 0. This yields the SHH generalized

eigenvalue problem

�N z �Hz = �

�

M G

0 M

� �

y

x

�

�

�

0 �K

M 0

� �

y

x

�

= 0: (11)

In this case the skew Hamiltonian matrix N can be written in factored form as

N = Z

1

Z

2

=

�

I

1

2

G

0 M

� �

M

1

2

G

0 I

�

; (12)

with Z

T

2

J = JZ

1

.

An approach that is intermediate to the previous two uses the Cholesky factorization

M = LL

T

and the substitution

y = �L

T

x (13)

in (6) to obtain the SHH generalized eigenvalue problem

�N z �Hz = �

�

L G

0 L

T

� �

y

x

�

�

�

0 �K

I 0

� �

y

x

�

= 0: (14)

The skew Hamiltonian matrix N can be written in the factored form

N = Z

1

Z

2

=

�

I

1

2

G

0 L

T

� �

L

1

2

G

0 I

�

; (15)

with Z

T

2

J = JZ

1

.

It turns out that all three of these linearizations give rise to the same Hamiltonian

operator W = Z

�1

1

HZ

�1

2

, so which one we use is just a matter of convenience.

If the matrix K is nonsingular, the substitution (10) together with the equivalent equa-

tion Ky = �Kx leads to the Hamiltonian/skew-Hamiltonian generalized eigenvalue prob-

lem

�

�

0 �M

K 0

� �

x

y

�

�

�

K G

0 K

� �

x

y

�

= 0: (16)

We prefer not to use this linearization. If K is nearly singular, as is typically the case in

practice, then the matrix pencil in equation (16) is close to a singular pencil [11].

Other linearizations that have been used are

�

�

I 0

G M

� �

x

y

�

�

�

0 I

�K 0

� �

x

y

�

= 0: (17)

or equivalently

�

�

I 0

0 M

� �

x

y

�

�

�

0 I

�K �G

� �

x

y

�

= 0; (18)
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which are both obtained with the substitution (10). Neither (17) nor (18) is SHH. Although

in particular (18) seems attractive, since the matrix

�

I 0

0 M

�

is Hermitian positive def-

inite, it is still preferable to use an SHH linearization, which re�ects the structure of the

spectrum. Since we construct methods that respect this structure also in �nite arithmetic,

the computed eigenvalues will be the exact eigenvalues of a perturbed SHH pencil. Thus

the computed eigenvalues will occur in quadruplets, as they should. See the perturba-

tion analysis in [3, 8, 9, 10]. Furthermore, the comparison of the perturbation theory

for quadratic eigenvalue problems and the related linearization, as it has been analyzed in

[39], shows that even numerically backwards stable methods that do not respect the special

structure of the quadratic eigenvalue problem in its linearization may be unstable.

Surveys of numerical methods for the quadratic eigenvalue problem (in various forms)

have been given in [22, 35, 36]. In particular Lanzcos and Arnoldi methods as well as

Jacobi-Davidson iterations are compared. Simultaneous iteration methods for quadratic

eigenvalue problems have been studied in [13, 27, 36].

Some of the methods can be directly applied to the quadratic problem while others

only work for the linearizations. The major di�erence between the direct solution of the

quadratic problem and its linearizations is that in order to solve the projected problems

and to use implicit restarts one needs some kind of generalized Schur form for the problem.

Such a form is not known for quadratic problems, while for matrix pencils this is the

generalized Schur form [16], and for SHH pencils there is a structured generalized form

that was analyzed in [23, 24]. Numerical methods for its computation have been derived

in [3, 4].

3 Rational transformations of Hamiltonian matrices

If the skew-Hamiltonian matrix N in the SHH pencil �N � �H is invertible and given in

the factored form N = Z

1

Z

2

with Z

T

2

J = �JZ

1

, then the pencil is equivalent to the pencil

�I � �W := �I � �Z

�1

1

HZ

�1

2

: (19)

As we explained in the introduction, W is again Hamiltonian. Hence we can consider �rst

transformations of Hamiltonian matrices, then apply these to SHH pencils by rewriting

them in terms of the original data.

Suppose we want to �nd the eigenvalues of W that lie nearest to some target value

�

0

. The standard transformation for this purpose is (W � �

0

I)

�1

, which however fails to

preserve the structure. Each eigenvalue near �

0

is related to eigenvalues near

�

�

0

, ��

0

,

and �

�

�

0

. If we are to hope to preserve the structure, we must extract all four of these

eigenvalues together. Thus we should also bring (W�

�

�

0

I)

�1

, (W+�

0

I)

�1

, and (W+

�

�

0

I)

�1

into play.
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3.1 Transformation to a skew-Hamiltonian operator

For �nding the eigenvalues nearest the quadruplet (�

0

;

�

�

0

;��

0

;�

�

�

0

) the obvious rational

transformation is

R

1

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I)

�1

(W �

�

�

0

I)

�1

(W +

�

�

0

I)

�1

: (20)

If the target �

0

is either real or purely imaginary, one may choose to use the simpler

transformation

R

2

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I)

�1

: (21)

Both R

1

and R

2

turn out to be skew Hamiltonian. In what follows we will focus on the

operator R

1

. In every case we can make similar assertions about R

2

.

The transformation R

1

(�

0

;W) maps all eigenvalues near to �

0

;��

0

;

�

�

0

;�

�

�

0

simulta-

neously to values of large modulus. Hence fast convergence of the eigenvalues near these

points can be expected if we apply any of the standard iterative methods, [30, 37].

In order to apply an iterative method such as subspace iteration or the Arnoldi process,

we need to be able multiply the matrix R

1

by an arbitrary vector at reasonable cost, since

this operation is performed repeatedly by these algorithms. Thus we need to be able to

apply operators of the form (W��I)

�1

inexpensively. We can either work withW directly

or we can refer back to the original data H and N . Substituting Z

�1

1

HZ

�1

2

for W in (20)

and simplifying, we �nd that

R

1

= R

1

(�

0

;H;N ;Z

1

;Z

2

) (22)

= Z

2

(H� �

0

N )

�1

N (H + �

0

N )

�1

N (H�

�

�

0

N )

�1

N (H+

�

�

0

N )

�1

Z

1

:

Since Z

1

, Z

2

, and N are sparse matrices, they can be applied easily. The only question,

then, is how to apply operators of the form (H� �N )

�1

inexpensively. This question will

be discussed in connection with speci�c applications in Section 4.

We now consider the structural properties of R

1

(�

0

;W) and R

2

(�

0

;W), beginning with

a well known lemma.

Lemma 1

(i) If W is Hamiltonian, then W

2

is skew Hamiltonian.

(ii) If W is skew Hamiltonian, then W

2

is skew Hamiltonian.

(iii) If W is skew Hamiltonian and invertible, then W

�1

is skew Hamiltonian.

We omit the proof, which is straightforward, see e.g. [1].

Proposition 2 If W is a real Hamiltonian matrix, then R

1

(�

0

;W) in (20) is real skew

Hamiltonian. If, in addition, �

0

is either real or purely imaginary, then R

2

(�

0

;W) in (21)

is also real and skew Hamiltonian.

Proof. Direct calculation shows that

R

1

(�

0

;W) = (j�

0

j

4

I + [2j�

0

j

2

� 4(<(�

0

))

2

]W

2

+W

4

)

�1

:
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Hence R

1

(�

0

;W) is a real matrix, and by Lemma 1 it is skew Hamiltonian, since the skew

Hamiltonian matrices form a real vector space that contains the identity matrix.

A similar but simpler argument shows that R

2

(�

0

;W) is skew Hamiltonian.

Notice that the eigenvalues � and �� ofW both get mapped to � = (�

4

+c

2

�

2

+c

0

)

�1

of

R

1

and to � = (�

2

��

2

0

)

�1

of R

2

. Thus all eigenvalues of R

1

and R

2

have even multiplicity.

This fact, which is true of skew Hamiltonian matrices in general, must be taken into account

by our numerical methods.

Recall that the Krylov subspace K

j

(A; v) is de�ned by

K

j

(A; v) = spanfv; Av; A

2

v; : : : ; A

j�1

vg:

The Arnoldi method and other Krylov subspace methods generate Krylov subspaces, where

v is the starting vector and A is the operator being applied, e.g. R

1

in our case, see [30].

Recall, furthermore, that a subspace S of R

2n

is called isotropic i� y

T

Jx = 0 for all x,

y 2 S. In other words, S is isotropic i� JS is orthogonal to S with respect to the standard

inner product onR

2n

, see [2]. The beauty of skew-Hamiltonian operators is that the Krylov

subspaces that they generate are isotropic.

Proposition 3 Let A 2 R

2n�2n

be a skew-Hamiltonian matrix, let v 2 R

2n

, and let j be

a positive integer. Then the Krylov subspace K

j

(A; v) is isotropic.

Proof. Since A is real skew Hamiltonian, one easily shows that all of its powers A

i

,

i = 0; 1; 2; 3; : : :, are also skew Hamiltonian. This means that JA

i

is skew symmetric. To

establish isotropy of K

j

(A; v), it su�ces, by linearity, to prove that (A

i

v)

T

JA

k

v = 0 for all

i � 0 and k � 0. Since A

T

J = JA, we have (A

i

v)

T

JA

k

v = v

T

JA

i+k

v, which equals zero

because JA

i+k

is skew symmetric.

We now introduce an isotropic Arnoldi process, which will form the basis for our nu-

merical method. At �rst we allow A to be an arbitrary 2n � 2n real matrix. Recall that

the Arnoldi process starts with an arbitrary unit vector q

1

and produces orthonormal vec-

tors as follows. Given orthonormal vectors q

1

; : : : ; q

j

, the next vector q

j+1

is generated by

forming Aq

j

and then orthogonalizing it against q

1

; : : : ; q

j

. Thus

q

j+1

h

j+1;j

= Aq

j

�

j

X

i=1

q

i

h

ij

;

where h

ij

= q

T

i

Aq

j

, i = 1; : : : ; j, and h

j+1;j

is a positive constant chosen so that jjq

j+1

jj

2

= 1.

If we wish to build isotropic subspaces, we should orthogonalize against Jq

1

; : : : ; Jq

j

as

well. Thus the j-th step of the isotropic Arnoldi process is

q

j+1

h

j+1;j

= Aq

j

�

j

X

i=1

q

i

h

ij

�

j

X

i=1

Jq

i

t

ij

; (23)

where

h

ij

= q

T

i

Aq

j

and t

ij

= (Jq

i

)

T

Aq

j

; (24)

7



and h

j+1;j

is a positive constant chosen so that jjq

j+1

jj

2

= 1. This generates orthonormal

vectors that span isotropic subspaces.

If A is real skew Hamiltonian, then the coe�cients t

ij

in (23,24) will all be zero, by

Proposition 3. Thus the isotropic Arnoldi process reduces to the ordinary Arnoldi process

in this case, at least in theory.

If the quantity on the right-hand side of (23) is zero, then the process breaks down.

It can be continued by setting h

j+1;j

= 0 and taking q

j+1

to be any unit vector that is

orthogonal to q

1

; : : : ; q

j

and Jq

1

; : : : ; Jq

j

. Equation (23) holds in this case, too. In exact

arithmetic, the process terminates after n�1 steps, as q

1

; : : : ; q

n

together with Jq

1

; : : : ; Jq

n

form an orthonormal basis of R

2n

.

Let Q 2 R

2n�n

be the matrix whose columns are q

1

, . . . , q

n

. Then (23) can be rewritten

as

AQ =

�

Q JQ

�

�

H

T

�

; (25)

where H is an upper Hessenberg matrix built from the coe�cients h

ij

, and T is an upper

triangular matrix built from the coe�cients t

ij

.

Recall that a matrix S 2 R

2n�2n

is symplectic if S

T

JS = J . The next lemma recalls a

few simple properties that we need, see [2].

Lemma 4

(i) If the columns of Q 2 R

2n�n

are orthonormal and span an isotropic subspace, then

the matrix

�

Q JQ

�

is both orthogonal and symplectic.

(ii) If N is skew Hamiltonian and S is symplectic, then S

�1

NS is skew Hamiltonian.

Equation (25) implies that

A

�

Q JQ

�

=

�

Q JQ

�

�

H N

T P

�

(26)

for some N and P . The matrix U =

�

Q JQ

�

is orthogonal and symplectic by Lemma 4,

and we have

U

�1

AU =

�

H N

T P

�

:

If A is skew Hamiltonian, then, since the skew Hamiltonian property is preserved under

symplectic similarity by Lemma 4, we must have P = H

T

, T

T

= �T , and N

T

= �N .

Since T is upper triangular, the additional equation T

T

= �T implies T = 0, which we

had already noted. This gives the following result, which is not new [40].

Proposition 5 Let N be a real skew Hamiltonian matrix. Then for every unit vector

q

1

2 R

2n

there exists an orthogonal symplectic matrix U that has q

1

as its �rst column such

that

U

T

NU =

�

H N

0 H

T

�

; (27)

and H is in Hessenberg form.

8



The multiplicity of the eigenvalues of N is re�ected in the structure of the matrix in

(27). For each double eigenvalue of N , one copy resides in H, and the other copy is in H

T

.

When we apply the Arnoldi process to a large, sparse matrix in practice, we have neither

the time nor the storage space to carry the process to completion. Instead we stop after k

steps with k � n. The coe�cients h

ij

computed to this point, form a k�k submatrix of H

whose eigenvalues (Ritz values) we can compute and use as estimates of eigenvalues of H,

hence of N . Since the eigenvalues do not appear in duplicate in H, we get each eigenvalue

once, not twice. This is important to the success of the numerical method. If we make the

e�ort to compute, say, six eigenvalues, we would like to get six distinct eigenvalues, not

three eigenvalues in duplicate.

The developments outlined here are valid only for real matrices. However, it has been

shown in [7] that for complex problems an embedding of the problem into a double sized

real problem can be used to get a real skew Hamiltonian problem from which all the spectral

information can be obtained.

3.2 Transformation to symplectic form

Another natural rational transformation that is sometimes applied to Hamiltonian matrices

is the generalized Cayley transform. See [26] for a detailed analysis. Given a target �

0

, the

generalized Cayley transform of the Hamiltonian matrix W is

S

1

(�

0

;W) = (W � �

0

I)

�1

(W +

�

�

0

I)(W �

�

�

0

I)

�1

(W + �

0

I): (28)

By using four factors we obtain a real matrix, even when the target �

0

is complex. If �

0

is

real, we can use the simpler two-factor Cayley transform

S

2

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I): (29)

Notice that for i = 1; 2, S

�1

i

(�) = S

i

(��). Thus it is no more expensive to apply S

�1

i

than S

i

.

In terms of the original data we have

S

1

= S

1

(�

0

;H;N ;Z

1

;Z

2

)

= Z

2

(H� �

0

N )

�1

(H +

�

�

0

N )(H�

�

�

0

N )

�1

(H + �

0

N )Z

�1

2

: (30)

A similar expression holds for S

2

.

We now discuss the structural properties of S

1

and S

2

. The following proposition is

well known [26].

Proposition 6

(i) If W 2 R

2n�2n

is Hamiltonian, then S

1

(�

0

;W) in (28) is real symplectic.

(ii) If W 2 R

2n�2n

is Hamiltonian, and �

0

is real, then S

2

(�

0

;W) in (29) is real

symplectic.

9



The use of symplectic matrices has several advantages and disadvantages compared

with skew-Hamiltonian matrices. First of all, in contrast to the skew Hamiltonian case,

not every symplectic matrix has a symplectic Schur form [21]. What is worse in the

symplectic case is that a symplectic Hessenberg like form only exists for very special �rst

columns of the transformation matrix [2]. Thus Arnoldi methods, with or without restarts,

cannot be used with symplectic matrices, which is de�nitely a disadvantage of this rational

transformation.

The transformation S

1

maps all eigenvalues near �

0

;

�

�

0

simultaneously to values of

large modulus. At the same time the eigenvalues near ��

0

;�

�

�

0

are mapped close to 0.

These correspond to large eigenvalues of the inverse transformation S

�1

1

. The coexistence

of extremely large and small eigenvalues is an inevitable consequence of the fact that

eigenvalues of a symplectic matrix occur in quadruplets �; ��; �

�1

; ��

�1

. Any method that

preserves the symplectic structure must extract quadruplets intact. This can be achieved

by structure-preserving Lanczos-like methods that employ both S and S

�1

in a symmetric

manner. See [5, 6, 15] for structure-preserving implicitly-restarted Lanczos-like methods

applicable to symplectic problems. These are the sorts of methods we must apply to S

1

and S

2

.

Another disadvantage of the Cayley transform is that it is e�ective only if the target �

0

is not too close to the imaginary axis. Notice that if �

0

is purely imaginary, then S

1

= I,

which is not useful for extracting spectral information about W.

An advantage of the Cayley transform approach is that, unlike the skew-Hamiltonian

approach, it can be extended to complex matrices and matrix pencils in a straightforward

way.

4 Applying the operators

In our two applications the matrices N , H, Z

1

, and Z

2

have further structure that can be

used to simplify the formulas.

4.1 Quadratic eigenproblems

Let us �rst study the quadratic eigenvalue problem in the linearization (11) with N in

factored form (12). First of all

H� �N = �

�

�M �G+K

�M �M

�

=

�

I ��I

0 I

� �

0 �Q(�)

M 0

� �

I ��I

0 I

�

; (31)

where

Q(�) := �

2

M + �G +K: (32)

Thus

(W � �I)

�1

= Z

2

(H� �N )

�1

Z

1

=

10



�

M

1

2

G

0 I

� �

I �I

0 I

� �

0 M

�1

�Q(�)

�1

0

� �

I �I

0 I

� �

I

1

2

G

0 M

�

: (33)

We can obtain an expression that does not involve M

�1

by using one or the other of the

factorizations

�

0 M

�1

�Q(�)

�1

0

�

=

�

0 I

�Q(�)

�1

0

� �

I 0

0 M

�1

�

(34)

and

�

0 M

�1

�Q(�)

�1

0

�

=

�

M

�1

0

0 I

� �

0 I

�Q(�)

�1

0

�

(35)

Substituting (34) into (33) and combining the last three matrices, we obtain

(W � �I)

�1

=

�

M

1

2

G

0 I

� �

I �I

0 I

� �

0 I

�Q(�)

�1

0

� �

I

1

2

G+ �M

0 I

�

: (36)

If we use (35) instead of (34), we obtain instead

(W � �I)

�1

=

�

I

1

2

G+ �M

0 I

� �

0 I

�Q(�)

�1

0

� �

I �I

0 I

� �

I

1

2

G

0 M

�

: (37)

Both of these expressions are useful.

To apply this operator in either form (36) or (37) we will need a sparse LU decomposi-

tion of the sparse, nonsymmetric matrix Q(�). In R

1

(�

0

;W) there are four factors of the

form (W � �I)

�1

, corresponding to � = ��

0

and � = �

�

�

0

. Thus it might appear that

we need four sparse LU factorizations in order to apply R

1

. However, one immediately

observes that

Q(��) = ��

2

M + ��G+K = Q(�);

Q(��) = �

2

M � �G+K = Q(�)

T

;

Q(���) = ��

2

M � ��G+K = Q(�)

T

: (38)

An LU factorization ofQ(�) immediately yields factorizations ofQ(��), Q(��), andQ(���).

Thus one sparse LU factorization is all we need.

To derive the formulas for applying the operator R

1

, we �rst discuss the application of

R

2

. If we combine expressions (36) and (37), replacing � by �

0

in (36) and by ��

0

in (37),

we obtain

R

2

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I)

�1

=

�

M

1

2

G

0 I

� �

I �

0

I

0 I

� �

0 I

�Q(�

0

)

�1

0

� �

I G

0 I

�

(39)

�

�

0 I

�Q(��

0

)

�1

0

� �

I ��

0

I

0 I

� �

I

1

2

G

0 M

�

;

11



which can be readily translated into an algorithm for applying the operator R

2

, i.e. for

multiplying R

2

by a vector. For example, to multiply the factor

�

I

1

2

G

0 M

�

by the vec-

tor

�

x

y

�

, we only need to perform the operations x  x +

1

2

Gy and y  My, which

requires two sparse n � n matrix-vector products and one saxpy operation. To mul-

tiply

�

0 I

�Q(��

0

)

�1

0

�

by

�

x

y

�

, we perform the operations x̂  �x, x  y, and

y  Q(�

0

)

�1

x̂. Given a sparse LU factorization of Q(�

0

), we obtain y  Q(�

0

)

�1

x̂ by two

sparse triangular solves. Applying these observations to (39) we easily determine the total

work for multiplying R

2

(�

0

;W) by a vector.

Table 1 Operation count for applying the operator R

2

, assuming a sparse

LU factorization of Q(�

0

) is available.

4 sparse triangular solves

2 symmetric sparse matrix-vector products Mz

3 skew symmetric sparse matrix-vector products Gz

5 saxpy operations.

The sparse LU factorization of Q(�

0

) needs to be computed only once; then R

2

can

be applied repeatedly. No further LU factorizations are needed unless the target �

0

is

changed. If �

0

is real, then all operations are real.

Since R

1

(�

0

;W) = R

2

(�

0

;W)R

2

(

�

�

0

;W), we can obtain an expression for R

1

(�

0

;W)

by combining two copies of (39), one with �

0

replaced by

�

�

0

. Combining two matrices in

the middle of the product, we eliminate one sparse matrix-vector product and one saxpy

operation. Thus the cost of applying R

1

is just slightly less than twice that of applying

R

2

. We summarize the costs in the following table.

Table 2 Operation count for applying the operator R

1

, assuming a sparse

LU factorization of Q(�

0

) is available.

8 sparse triangular solves

4 symmetric sparse Matrix vector products Mz

5 skew symmetric sparse Matrix vector products Gz

9 saxpy operations.

In general the arithmetic is complex; however, if �

0

is real, then all operations are real.

The symplectic operators S

1

and S

2

can be applied similarly. Inverting (37) and re-

placing � by ��, we obtain

(W + �I) =

�

I

1

2

G

0 M

�

�1

�

I �I

0 I

� �

0 �Q(��)

I 0

� �

I �M �

1

2

G

0 I

�

: (40)

12



Now combining (37) with (40) and replacing � by �

0

, we get the expression

S

2

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I)

=

�

I �

0

M +

1

2

G

0 I

� �

0 I

�Q(�

0

)

�1

0

� �

I 2�

0

I

0 I

�

(41)

�

�

0 �Q(��

0

)

I 0

� �

I �

0

M �

1

2

G

0 I

�

;

which can be readily translated into an algorithm for applying the operator S

2

. The total

work for multiplying S

2

(�

0

;W) by a vector is summarized in the next Table.

Table 3 Operation count for applying the operator S

2

, assuming a sparse LU

factorization of Q(�

0

) is available.

2 sparse triangular solves

3 symmetric sparse Matrix vector products Mz

3 skew symmetric sparse Matrix vector products Gz

1 symmetric sparse Matrix vector product Kz

7 saxpy Operations.

We have counted the operation Q(��

0

)v as three matrix-vector products, one each by M ,

G, and K, and two saxpy operations. The work can be decreased by computing Q(��

0

) in

advance and storing it, if there is su�cient storage space. If �

0

is real, then all operations

are real.

Juxtaposing two copies of (41), we obtain the following expression for S

1

(�

0

;W)

S

1

(�

0

;W) = (W � �

0

I)

�1

(W + �

0

I)(W �

�

�

0

I)

�1

(W +

�

�

0

I)

=

�

I �

0

M +

1

2

G

0 I

� �

0 I

�Q(�

0

)

�1

0

� �

I 2�

0

I

0 I

�

�

�

0 �Q(��

0

)

I 0

� �

I 2<(�

0

)M

0 I

� �

0 I

�Q(

�

�

0

)

�1

0

�

(42)

�

�

I 2

�

�

0

I

0 I

� �

0 �Q(�

�

�

0

)

I 0

� �

I

�

�

0

M �

1

2

G

0 I

�

;

which can be translated into an algorithm for applying the operator S

1

. The total work

for multiplying S

1

(�

0

;W) by a vector is summarized in the next Table.

Table 4 Operation count for applying the operator S

1

, assuming a sparse LU

factorization of Q(�

0

) is available.

4 sparse triangular solves

5 symmetric sparse matrix-vector products Mz

4 skew symmetric sparse matrix-vector products Gz

2 symmetric sparse matrix-vector products Kz

11 saxpy operations.

13



In general the arithmetic is complex; however, if �

0

is real, then all operations are real.

Typically the triangular LU factors are sparse, but not nearly as sparse as the original

matrices. Thus the most expensive operations listed in Tables 1�4 are the sparse triangular

solves. The matrix-vector products are cheaper, but still signi�cant. The saxpy operations

are relatively insigni�cant. Bearing these facts in mind and comparing Tables 2 and 4, we

conclude that the symplectic operator S

1

can be applied signi�cantly less expensively than

R

1

can.

4.2 Optimal control problems

Consider the SHH pencil

�

�

E 0

0 E

T

�

� �

�

A �BB

T

C

T

C �A

T

�

(43)

from the linear quadratic optimal control problems for descriptor systems, and consider

the decomposition of N given by (5). We have

R

1

= R

1

(�

0

;H;N ;Z

1

;Z

2

)

= Z

2

(H� �

0

N )

�1

N (H + �

0

N )

�1

N (H�

�

�

0

N )

�1

N (H +

�

�

0

N )

�1

Z

1

from (22). In this case each of the terms (H� �N )

�1

can be factored as

(H� �N )

�1

=

�

A� �E �BB

T

C

T

C �

�

A

T

+ �E

T

�

�

�1

=

�

F

�1

0

0 I

� �

I BB

T

0 I

� �

F 0

0 D

�1

� �

I 0

�C

T

C I

� �

F

�1

0

0 I

�

; (44)

where F = A � �E and D = �

�

A

T

+ �E

T

�

+ C

T

CF

�1

BB

T

. To apply this operator we

will certainly need an LU factorization of A� �E. We will also need an LU factorization

of A

T

+ �E

T

, which we will use together with the Sherman/Morrison/Woodbury formula

[16] to evaluate D

�1

.

We have to apply (44) with � = �

0

,

�

�

0

, ��

0

, and �

�

�

0

. If we have sparse LU factoriza-

tions associated with one choice of �, then we automatically get the other factorizations.

For example, if we have LU factorizations A� �

0

E = L

1

U

1

and A

T

+ �

0

E

T

= L

2

U

2

, then

we also have

A�

�

�

0

E =

�

L

1

�

U

1

; A

T

+

�

�

0

E

T

=

�

L

2

�

U

2

;

A+ �

0

E = U

T

2

L

T

2

; A

T

� �

0

E

T

= U

T

1

L

T

1

;

A+

�

�

0

E =

�

U

T

2

�

L

T

2

; A

T

+

�

�

0

E

T

=

�

U

T

1

�

L

T

1

:

(45)

To apply D

�1

e�ciently, we exploit the fact that the term C

T

CF

�1

BB

T

has low rank.

Recalling that m and p are the number of columns in B and C

T

, respectively, let us assume

that p � m. (Otherwise exchange the roles of B and C.) Then, with A � �E = T

1

V

1

,

14



�

�

A

T

+ �E

T

�

= T

2

V

2

being any of the factorizations listed above, we can apply the

Sherman/Morrison/Woodbury formula [16] to obtain

D

�1

= (T

2

V

2

+ C

T

CV

�1

1

T

�1

1

BB

T

)

�1

= V

�1

2

(I � T

�1

2

C

T

N

�1

CV

�1

1

T

�1

1

BB

T

V

�1

2

)T

�1

2

; (46)

where N = I+CV

�1

1

T

�1

1

BB

T

V

�1

2

T

�1

2

C

T

is by assumption a very small matrix (p�p) and

typically full. The cost to compute N consists of 4p triangular solves plus 4nmp + 2mp

2

�ops (much less if B is sparse). An additional 2p

3

�ops are needed to invert this small

matrix. This part of the computation must be done four times, once for each choice of �.

With N

�1

available we see from (46) that the cost of multiplying D

�1

by a vector is

essentially that of six sparse triangular solves. The other operations, such as multiplication

of B by a vector, are relatively insigni�cant ifB and C are sparse. Thus the cost of applying

(H��N )

�1

in (44) is 10 sparse triangular solves plus small change, and the cost of applying

R

1

in (22) is 40 sparse triangular solves plus change. Similarly, the cost of applying S

1

(30) is a bit more than 20 sparse triangular solves.

4.3 Skew-Hamiltonian versus symplectic operators

We have already discussed some of the advantages and disadvantages of the two rational

transformations that lead to skew-Hamiltonian and symplectic operators, respectively.

The advantage of the skew-Hamiltonian operator is that we can apply the implicitly

restarted Arnoldi method, while for the symplectic operator we have to use special sym-

plectic Lanczos methods with all their possible stability problems due to breakdowns or

near breakdowns. Due to the possible breakdowns, these latter methods are also more dif-

�cult to implement in practice, see [14]. Furthermore, as we have discussed, the symplectic

operator cannot be used when the target shift is close to or on the imaginary axis, which

is a frequent situation in optimal control problems.

But the symplectic operators also have advantages, since the cost of applying the op-

erator is roughly half of that for the skew Hamiltonian operator, and the method is also

applicable for complex pencils. It should be noted, though, that in the symplectic Lanczos

method we need to apply both the operator and its inverse at each step.

Taking this comparison into account, we have implemented the implicitly restarted

Arnoldi method based on the skew-Hamiltonian operator for its simplicity and numerical

robustness, and since we can also use it with shifts near or on the imaginary axis.

5 Implementation of the skew-Hamiltonian Arnoldi

Method

We implemented a modi�ed version of the implicitly restarted Arnoldi (IRA) method

[37] that applies the skew-Hamiltonian operator R

1

(22). Since our method is a skew-

Hamiltonian, isotropic, implicitly-restarted Arnoldi method, we call it SHIRA.
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Instead of a standard Arnoldi step we use the isotropic Arnoldi step (23), (24) with

A = R

1

. In exact arithmetic the coe�cients t

ij

should all be zero, but in practice roundo�

errors cause them to be nonzero. By subtracting out the tiny components Jq

i

t

ij

, we ensure

that the spaces spanfq

1

; : : : ; q

j

g are isotropic to working precision. For accuracy we use

the modi�ed Gram-Schmidt method [16] to compute the coe�cients h

ij

and t

ij

, rather

than applying the formulas (23) literally. Finally, since we also want the vectors to be

orthonormal to working precision, we apply reorthogonalization [12] in the computation of

the h

ij

. That is, we do two orthogonalization sweeps on q

1

, . . . , q

j

. After j steps of the

isotropic Arnoldi process we have vectors q

1

, . . . , q

j+1

satisfying

AQ

j

= Q

j

H

j

+ JQ

j

T

j

+ q

j+1

h

j+1;j

e

T

j

; (47)

where Q

j

= [q

1

� � � q

j

], and H

j

and T

j

are matrices of coe�cients. Our method ignores T

j

and so depends on the fact that the elements of T

j

are tiny. Our implementation of IRA is

standard [37]; the shifts are chosen to select for the eigenvalues of A of largest magnitude.

Each implicit restart, i.e. each iteration of the IRA method, produces a new con�guration

of the form (47) with a di�erent starting vector q

1

and, typically, a smaller h

j+1;j

. After

several restarts h

j+1;j

becomes negligible, and we have, up to roundo� errors,

AQ

j

= Q

j

H

j

:

The eigenvalues of H

j

are j of the eigenvalues of A = R

1

(�

0

;W), and they are typically

the j largest in magnitude. If we actually want fewer than j eigenvalues, we can monitor

h

k+1;k

for k � j. If we stop when h

k+1;k

is negligible, we get k eigenvalues.

5.1 Eigenvalue computation

The Arnoldi process yields eigenvalues of R

1

(�

0

;W), but we actually want eigenvalues of

the Hamiltonian matrixW. Each eigenvalue � of R

1

corresponds to two eigenvalues �� of

W satisfying (�

2

� �

2

0

)(�

2

�

�

�

2

0

) = 1=�. A seemingly straightforward approach is to solve

the quadratic equation

(� � �

2

0

)(� �

�

�

2

0

) = 1=� (48)

for �, then compute �

p

� to get the eigenvalues. Unfortunately (48) has two solutions,

only one of which corresponds to eigenvalues of W. Thus one is faced with deciding which

� is the correct one.

We have adopted a di�erent approach, which dodges this decision and also allows us

to make a �nal test of the backward stability of the result. Once h

k+1;k

is negligible, the

space spanfq

1

; : : : ; q

k

g is, up to roundo� errors, an invariant subspace under R

1

. Normally

it is also invariant under W

2

(but not under W). We calculate the Ritz values of W

2

with respect to the space spanfq

1

; : : : ; q

k

g; that is, we calculate the eigenvalues �

i

of

B = Q

T

k

W

2

Q

k

. Then �

p

�

i

are the eigenvalues of W that we seek.

As a byproduct of the computation of B, we obtain the vectors W

2

Q

k

, which we use

to compute the residual

�

�

�

�

W

2

Q

k

�Q

k

B

�

�

�

�

F

(49)
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and thereby check whether or not spanfq

1

; : : : ; q

k

g really is invariant under W

2

. This test

is necessary because it can happen that a space that is invariant under R

1

fails to be

invariant under W

2

. If �

0

is chosen so unfortunately that two distinct eigenvalues of W

2

are mapped to the same eigenvalue of R

1

, then R

1

will have a four-dimensional eigenspace

spanned by two two-dimensional eigenspaces of W

2

. If the Arnoldi process picks up only

one vector from this space, it will typically not be an eigenvector of W

2

, and the space

spanfq

1

; : : : ; q

k

g will not be invariant under W

2

.

It is interesting to note that the practical need for such a stability test is related to our

insistence upon enforcing isotropy. In principle a Krylov subspace can contain at most a

one-dimensional subspace of a multi-dimensional eigenspace, so the Arnoldi process will

�nd at most one copy of a geometrically-multiple eigenvalue. However, as is well known [38],

roundo� errors will turn multiple eigenvalues into simple ones and hence we will detect

di�erent approximations of the multiple eigenvalues. This is mostly a nuisance for us,

because the eigenvalues ofW

2

are all geometrically multiple, and we would rather not pay

to calculate two copies of each eigenvalue. Therefore we use the isotropic Arnoldi method

which enforces isotropy. It has the e�ect that each eigenvalue is picked up only once in

practice. It has the unfortunate side e�ect that when a four-dimensional invariant subspace

of R

1

consists of two two-dimensional invariant subspaces ofW

2

, only one vector from that

space is found, from which it is impossible to deduce eigenvectors of W

2

. Fortunately the

merging of eigenspaces is a rare event.

Finally we should note that this approach to eigenvalue calculation requires application

of the operator W

2

. In our quadratic eigenvalue applications, linearized as in (8) or (11),

we have

W =

�

I �

1

2

G

0 I

� �

0 �K

M

�1

0

� �

I �

1

2

G

0 I

�

:

To apply M

�1

, we need to compute the Cholesky decomposition of M . Typically the

Cholesky factor is quite sparse, and this step does not add substantially to the overall

computing time. At this point in the computation we no longer need the LU factors of

Q(�

0

) (used for applying R

1

), so we can use that storage space for the Cholesky factor of

M .

5.2 Eigenvector Computation

In the course of the eigenvalue computation we can easily obtain the corresponding Ritz

vectors, which are eigenvectors of W

2

. Each of these is a particular member of a two-

dimensional eigenspace of W

2

but in general not an eigenvector of W. Thus, if we want

eigenvectors to go with our eigenvalues, we need to do more work.

Given eigenvalues, the quickest way to obtain corresponding eigenvectors is to perform

inverse iteration. In the case of the quadratic eigenvalue problem we refer back to the

original form of the problem:

Q(�)v = �

2

Mv + �Gv +Kv = 0:
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For each eigenvalue � we form a sparse LU decomposition of Q(�) and use the decompo-

sition to perform one step of inverse iteration

v = Q(�)

�1

w:

As a starting vector w we use the bottom half of the 2n-dimensional Ritz vector of W

2

as-

sociated with �

2

. The residual jjQ(�)vjj

2

= jjvjj

2

gives another measure of backward stability

of the computation.

To compute the eigenvector associated with �� we exploit the relationship Q(��) =

Q(�)

T

. Thus, as in (38), the LU decomposition of Q(�) can also be used for the compu-

tation v = Q(��)

�1

w.

If the complex eigenvalue � has eigenvector v, then

�

� has eigenvector �v.

In summary, the cost of computing the eigenvectors associated with a pair f�;��g or a

quadruple f�;��;

�

�;�

�

�g is one sparse LU decomposition plus four sparse triangular solves.

If several sets of eigenvectors are wanted, they can be computed in parallel, given available

processors and memory, or they can be computed sequentially, reusing the memory space

for the LU decompositions.

6 Numerical Results

We applied the skew-Hamiltonian Arnoldi method SHIRA to solve numerous quadratic

eigenvalue problems

�

2

Mx + �Gx+Kx = 0: (50)

All computations were done in Matlab Version 5.2 on a Linux machine.

In one class of problems that we considered, we built matrices of order n = m

2

by a

tensor product construction. Let B denote the m�m nilpotent Jordan block

B =

2

6

6

6

4

0 0

1

.

.

.

1 0

3

7

7

7

5

;

and de�ne

~

M =

1

6

(4I

m

+B +B

T

),

~

G = B�B

T

, and

~

K = �(2I

m

�B�B

T

). Then we set

M = c

11

I

m




~

M + c

12

~

M 
 I

m

;

G = c

21

I

m




~

G + c

22

~

G
 I

m

;

K = c

31

I

m




~

K + c

32

~

K 
 I

m

;

(51)

where the coe�cients c

ij

are positive constants. We have M = M

T

> 0, G = �G

T

, and

K = K

T

< 0.

Example 7. If we take m = 10 and

c

11

= 1:00; c

12

= 1:30;

c

21

= 1:35; c

22

= 1:10;

c

31

= 1:00; c

32

= 1:20;

(52)
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Figure 1: Eigenvalues of 100� 100 quadratic pencil

then we obtain a 100� 100 quadratic pencil, whose 200 eigenvalues are shown in Figure 1.

These were computed by applying Matlab's eig command to the 200� 200 matrix pencil

(11), ignoring all structure, at a cost of 885� 10

6

�ops.

Suppose we want to use SHIRA to compute the 12 eigenvalues that are closest to the

imaginary axis. Then, supposing that we know nothing about where the eigenvalues lie,

our safest course of action is to choose a target shift �

0

that lies on the imaginary axis.

Table 5 shows the �op counts for computing these eigenvalues using three di�erent choices

of purely imaginary target. Results are given for our structured method SHIRA and a

competing unstructured method, which applies IRA (in complex arithmetic) to the shifted

inverted Hamiltonian operator (W � �

0

I)

�1

, see (37). Because of the shift, this operator

has no structure.

Table 5 Flop count for computing the 12 smallest eigenvalues (and associated

eigenvectors) of the pencil in Example 7 using structured and unstructured

methods.

�ops (10

6

)

�

0

SHIRA unstructured

0:1i 17.3 71.8

1:0i 11.4 26.3

5:0i 44.9 98.2

We see that both methods bene�t from a good choice of shift, but regardless of shift,

SHIRA outperforms the unstructured method by a factor of two or more. SHIRA ap-
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plies IRA (in real arithmetic) to the skew-Hamiltonian operator R

1

(20) and �nds the six

largest eigenvalues (three complex-conjugate pairs), which correspond to three quadruplets

of eigenvalues of (50). We used 10 Arnoldi steps per implicit restart. Using the shift �

0

= i,

for example, the competing method �nds the six eigenvalues (in the upper half plane) that

are closest to the shift, not realizing that they constitute three pairs (�;�

�

�). We then

deduce six other eigenvalues by taking complex conjugates. Again we used 10 Arnoldi

steps per implicit restart. For both methods we used a de�ation tolerance of 10

�10

. In all

cases the errors in the computed eigenvalues and eigenvectors were less than 10

�9

. 2

Example 8. Consider another pencil built from matrices of the form (51), this time with

m = 5. Use the same coe�cients as in (52), except that c

21

= 0:1. This results in a pencil

whose smallest eigenvalues are real. The three smallest positive eigenvalues are

�

1

= 0:6726432397672

�

2

= 0:9866442639296

�

3

= 1:0689101679903:

Using SHIRA with an appropriate tolerance and any reasonable shift (e.g. �

0

= 0, i, or

0.5), we can compute these eigenvalues quickly, with any desired accuracy up to machine

precision. The purpose of this example is to show that an unfortunate choice of shift can

cause our eigenvalue computation scheme to fail. If we take �

0

=

^

�

0

=

p

(�

2

1

+ �

2

2

)=2, then

the two eigenvalues �

2

1

and �

2

2

of W

2

are mapped to the same eigenvalue of R

1

(�

0

;W),

which then has a four-dimensional eigenspace associated with that eigenvalue. With this

choice of �

0

, SHIRA is unable to calculate correct values for �

1

and �

2

. Checking the

residual (49), we �nd that jjW

2

Q

k

�Q

k

Bjj

F

� :37 jjW

2

Q

k

jj

F

, indicating that the space

spanfq

1

; : : : ; q

k

g is not invariant under W

2

. This is a red �ag that tells us that our results

cannot be trusted.

A simple remedy is to change �

0

. Even a tiny change su�ces. For example, if we

run SHIRA with �

0

=

^

�

0

+ 10

�5

(and de�ation tolerance 10

�10

), we get the three small-

est eigenvalues correct to twelve decimal places. The residual (49) is jjW

2

Q

k

�Q

k

Bjj

F

�

(4� 10

�11

) jjW

2

Q

k

jj

F

, indicating that the subspace is invariant under W

2

to within the

desired tolerance. 2

Example 9. Finally we consider a quadratic eigenvalue problem obtained by a �nite

element discretization of equations of elastic deformation of an anisotropic material [18,

20, 32]. The matrices have dimension 2223. Suppose we wish to �nd the twelve eigenvalues

closest to the imaginary axis. It is known a priori that the eigenvalues lie near the real

axis, so it makes sense to use a real target shift. In fact, the six smallest eigenvalues in the
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right half-plane are

�

1

= 0:96269644895

�

2

= 0:98250961158 + 0:00066849814i

�

3

= 0:98250961158� 0:00066849814i

�

4

= 1:35421843051

�

5

= 1:39562564903

�

6

= 1:49830518846:

The �ops needed to compute these eigenvalues by SHIRA and the unstructured method

using various choices of target shift are given in Table 6.

Table 6 Flop count for computing smallest 12 eigenvalues of quadratic pencil

of Example 9 using structured and unstructured methods.

�ops (10

7

)

�

0

SHIRA unstructured

0 32.6 140.1

0:3 32.6 79.6

0:6 28.4 69.8

0:9 28.4 50.7

1:2 19.8 31.5

Again we used a de�ation tolerance of 10

�10

. We see that SHIRA can bene�t from a good

choice of �

0

but also does well if a good shift is not known. In particular it performs well

even for the poor but safe choice �

0

= 0. In each case SHIRA computes the six largest

eigenvalues of R

1

(�

0

;W), which turn out to be one complex pair and four real eigenvalues.

These yield twelve eigenvalues of W, one complex quadruplet and four real f�;��g pairs.

In all of these runs we used nine Arnoldi steps per implicit restart.

In contrast with SHIRA, the unstuctured method is highly dependent on a good choice

of shift. Given a good shift, such as �

0

= 1:2, the unstructured method was nearly

competitive with SHIRA. It computed the six positive eigenvalues closest to �

0

, which

turned out to be the eigenvalues that we wanted. We then deduced the six negative

eigenvalues ��

1

; : : : ;��

6

from the structure. We used nine Arnoldi steps per implicit

restart.

The problem with the unstructured approach is that if we choose a target that is too

large, we might miss the smallest eigenvalues. On the other hand, if we take a shift that

is too close to the origin, we end up computing some of the left half-plane eigenvalues

explicitly. For example, in the case �

0

= 0:3, �

6

is not among the six smallest eigenvalues

of the shifted operator. We had to compute nine eigenvalues in order to �nd �

1

; : : : ; �

6

;

we also got ��

1

, ��

2

, and ��

3

. We took twelve Arnoldi steps per restart.

Using the shift �

0

= 0, the safest choice, we have to choose all twelve eigenvalues ex-

plicitly. We used �fteen Arnoldi steps per restart. As Table 6 shows, many more �ops were

needed in this case than in all other cases. 2
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7 Conclusion

We have discussed structure preserving shift-and-invert Krylov subspace methods for the

computation of a few eigenvalues and eigenvectors of large, sparse skew-Hamiltonian/

Hamiltonian pencils. We have demonstrated that a skew-Hamiltonian shift-and-invert

implicitly-restarted Arnoldi method can speed up the computation of desired eigenvalues

in the interior of the spectrum signi�cantly. Furthermore, by this approach it is guaranteed

that the computed spectrum has the correct symmetry structure.
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