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Abstract

In an anisotropic adaptive �nite element algorithm one usually needs an error

estimator that yields the error size but also the stretching directions and stretching

ratios of the elements of a (quasi) optimal anisotropic mesh. However the last two

ingredients can not be extracted from any of the known anisotropic a posteriori

error estimators. Therefore a heuristic approach is pursued here, namely, the desired

information is provided by the so{called Hessian strategy. This strategy produces

favourable anisotropic meshes which result in a small discretization error.

The focus of this paper is on error estimation on anisotropic meshes. It is known

that such error estimation is reliable and e�cient only if the anisotropic mesh is

aligned with the anisotropic solution.

The main result here is that the Hessian strategy produces anisotropic meshes

that show the required alignment with the anisotropic solution. The corresponding

inequalities are proven, and the underlying heuristic assumptions are given in a strin-

gent yet general form. Hence the analysis provides further inside into a particular

aspect of anisotropic error estimation.
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1 Introduction

Consider some scalar partial di�erential equation (PDE) in a bounded, polyhedral domain


 � R

d

, d = 3 or d = 2. For solving such PDEs, �nite element computations are nowadays

widespread in numerical simulation. The �nite element method (FEM) employs a family

F of triangulations T which consist of elements T . In the setting here, we consider tetra-

hedra in the three dimensional (3D) case, and triangles in the two dimensional (2D) case.

The exact solution of the PDE is denoted by u; the �nite element approximation using

piecewise linear ansatz functions is denoted by u

h

. Other elements (like rectangles) yield

similar results. All considerations (apart from section 5) are valid for the 3D and 2D case.

Therefore, in most of the analysis the 3D formulas are given; the 2D counterparts can then

be derived easily.

In numerical �nite element simulations one commonly wants to apply adaptive algo-

rithms that automatically solve the problem up to a given accuracy. The general structure

of such an adaptive algorithm is:

0. Start with an initial mesh T

0

.

1. Solve the corresponding discrete system.

2. Compute the local a posteriori error estimator for each element T of the mesh.

3. When the estimated global error is small enough then stop.

Otherwise obtain information for a new, better mesh, namely the element size (as a

function over 
).

4. Based on this information, construct a new mesh or perform a mesh re�nement, and

re-iterate.

Each of these points has attracted much attention by numerous scientists. Nevertheless it

may seem surprising that only recently algorithms have have been proposed that can be

proven to converge, see [D�or96] and [MNS99]. This convincingly illustrates the di�culties

when analysing an adaptive algorithm as a whole. These limitations of the present knowl-

edge should be kept in mind when we discuss a certain variant of an adaptive algorithm

below.

The framework of this paper is given by a particular class of problems. Namely we

consider PDEs that give rise to solutions with strong directional features. These so{called

anisotropic solutions show much variation in one space direction but little change in other

directions. Typical examples include boundary and interior layers, or edge singularities in

3D domains (cf. section 6 for both cases).

It is easily conceivable that an anisotropic solution can be advantageously approximated

by a �nite element method that employs a so{called anisotropic mesh. That is, such a mesh

consists of stretched elements; the stretching ratio of the elements (also known as aspect

ratio) can be very large or even unbounded. Implementational and analytical aspects of

anisotropic solutions and meshes are given in more detail e.g. in [BK94, FLR96, KR90,

Noc95, PVMZ87, Rac93, RGK93, Sie96, Sim94, VH96, ZW94] or in Kunert [Kun99a] and

the literature cited therein.
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The main interest here consists in the link between anisotropic solutions/meshes and

an adaptive algorithm. An anisotropic adaptive algorithm is now obviously di�erent to the

isotropic version. In particular the information extraction of step 3 changes to

3. When the estimated global error is small enough then stop.

Otherwise obtain information for a new, better mesh. This includes:

� Detect regions of anisotropic behaviour of the solution.

� Determine a (quasi) optimal stretching direction and stretching ratio of the

�nite elements in those regions.

� Determine the element size.

The remeshing algorithm (step 4) also becomes more di�cult. Furthermore the error esti-

mation part (step 2) requires reinvestigation too although this is not immediately evident.

The reason is that the common error estimators for isotropic meshes fail, or their proofs

are no longer valid since the aspect ratio can be unbounded. We may stress here that

very few a posteriori error estimators for anisotropic meshes are known that are rigorously

analysed and proven [Sie96, Kun99a, Kun99b, KV99, DGP99]. In other papers more or

less convincing heuristic arguments are given.

Considering the whole adaptive algorithm, it is a quite natural desire that the error

estimation (step 2) should provide all necessary information for step 3, in particular the

(quasi) optimal element size, the stretching directions and the stretching ratio. The �rst

information (element sizes) can be easily extracted since it is directly related to the value

of the local error estimators. For the stretching directions and the stretching ratio the

situation is di�erent. Up to now, no error estimator can provide these information.

1

On

the contrary, stretching direction and ratio are usually obtained by heuristic methods and

constructions. The most popular approaches are:

� Hessian strategy: Approximate the Hessian D

2

u and perform a spectral analysis

(also known as principal axes transformation). The eigenvectors tell the stretching

directions; the eigenvalues give the aspect ratio. See [CHM95, PVMZ87, RGK93,

Sim94, ZW94] for a more detailed description.

� Level lines: The level lines (or contour lines) provide a vivid picture of the aniso-

tropy of the function, and thus of the stretching direction. The numerical realization

goes back to Kornhuber and Roitzsch [KR90].

� Gradient jump: The gradient jump of certain values give some indication in which

direction the elements should be stretched, see [BK94, Rac93, Sie96].

1

In Siebert [Sie96] a local condition occurs which serves as a certain kind of `direction indicator' (for

rectangular elements). By a re�ned analysis and a slight modi�cation of the error estimator, the local

condition can be omitted (whilst preserving all other favourite properties, cf. [Kun99a, Remark 3.6]).

Thus, the `direction indication' is purely due to an insu�cient analysis and does not really provide the

information desired.
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In this work we will shed some light onto theHessian strategy. Based on few heuristic

assumptions, this strategy is quite convincing and produces useful anisotropic meshes (or

at least the underlying information). Here, however, we do not investigate the quality of

the mesh construction but show that the meshes produced are suitable for anisotropic error

estimation. For a precise understanding we have to quote this anisotropic error estimation

�rst.

In Kunert [Kun99a] several local error estimators have been derived and analysed.

Three of them �t into the context of this work:

� the residual error estimator �

R;T

for the Poisson equation ��u = f ,

� the local problem error estimator �

D;T

for the Poisson equation ��u = f ,

� the residual error estimator �

";R;T

for a singularly perturbed reaction di�usion model

problem �"�u + u = f , with "� 1.

The error bounds below have been derived and proven in [Kun99a] too.

Lemma 1 The error is bounded locally from below for all T 2 T by

�

T

. jjju� u

h

jjj

!

T

+ �

T

: (1)

The error is bounded globally from above by

jjju� u

h

jjj




. m

1

(u� u

h

;T ) �

"

X

T2T

�

2

T

+

X

T2T

�

2

T

#

1=2

: (2)

The meaning of the terms is as follows:

� The term �

T

is one of the aforementioned local error estimators �

R;T

, �

D;T

or �

";R;T

.

� The norms jjju� u

h

jjj




or jjju� u

h

jjj

!

T

denote the energy norm over the whole domain


 or the domain !

T

, respectively, where !

T

consists of the element (tetrahedron) T

and its (generally) four face neighbours.

� The factor m

1

(u � u

h

;T ) is the so{called matching function; its presence is due

to the anisotropic mesh. Its precise de�nition is given in the next section whereas

explanatory remarks can be found below.

� The term �

T

is related to some data approximation. Generally its inuence is ne-

glectable; hence this term is not investigated here.

� The notation x . y or x � y is a shorthand for x � c � y or c

1

x � y � c

2

x,

respectively (with constants independent of x, y, and T ).

We may stress here that our analysis is quite general: it relates to all those error estimators

and all PDEs that allow an upper error bound (2) containing a factor m

1

(u� u

h

;T ) .

In our work here we are not primarily interested (and do not require) the details and the

methodology of anisotropic error estimation; for that purpose [Kun99a] and the citations

therein are much better sources. Instead, we focus on the matching function m

1

(u�u

h

;T )
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which will be de�ned in the next section. Roughly speaking, the matching function will be

m

1

� 1 for isotropic meshes as well as for anisotropic meshes which are suitably aligned

with the anisotropic solution. For inappropriate anisotropic meshes m

1

can be large or

even unbounded [Kun99a]. Hence the matching function heavily inuences the quality of

the upper bound (2).

Up to now, the matching function has been necessary to describe the anisotropic error

estimators of [Kun99a] properly. Yet this matching function seemed somewhat exotic,

partly because it does not occur in isotropic error estimation

2

. This paper now increases

the understanding of the matching function by showing that there are strong links to the

Hessian strategy.

Let us now consider the relation between the anisotropic solution and the anisotropic

mesh in more detail. Apparently, all anisotropic error estimators require that the aniso-

tropic mesh corresponds in some way with the anisotropic function. Heuristically, one

would stretch an element in that direction where the anisotropic function (or, more pre-

cisely, its derivative) shows little change. Mathematically, Siebert [Sie96] restricts the set

of treatable anisotropic functions, and Kunert [Kun99a, Kun99b] introduces the matching

function m

1

(v;T ) that measures the correspondence between an anisotropic function v

and an anisotropic mesh T . Lastly, in [DGP99] a saturation assumption is necessary that

implies a similar correspondence.

Despite these di�erent descriptions, the known results strongly indicate that an an-

isotropic mesh has to correspond to the anisotropic function in order to obtain reliable

and e�cient error bounds. In the context of the error estimate (2) this means that the

matching function is really necessary there (i.e. it is not due to an insu�cient analysis).

We remark that the matching function m

1

(u � u

h

;T ) involves the unknown error

u� u

h

. Therefore it can not be computed exactly, but it can be approximated su�ciently

well, cf. [Kun99a, Kun99b].

From the de�nition of m

1

in the next section it follows that always m

1

> 1. Lemma 1

on the other hand implies that m

1

(u� u

h

;T ) . 1 is necessary (with a small c) to obtain

tight upper and lower error bounds, and thus reliability and e�ciency of the error estima-

tion. Now we can formulate our main result:

With only few heuristic assumptions we show that a mesh constructed via the

Hessian strategy implies a small matching function, i.e. m

1

(u� u

h

;T ) . 1 .

As a side e�ect we strive to put the heuristic assumptions into a stringent mathematical

formulation to provide the basis for further analysis (even if this is not possible yet).

At this point a brief summary may additionally improve the understanding. Originally,

the Hessian strategy has been developed to produce anisotropic meshes (or, equivalently,

the underlying information). Here, however, we show that the Hessian strategy also implies

that the matching function m

1

(u � u

h

;T ) is bounded, thus providing tight upper and

2

More precisely, m

1

� 1 there, and it merges with other constants.
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lower error bounds. Simultaneously, the matching function is a useful tool to assess the

(anisotropic) mesh quality.

The remainder of the paper is organized as follows. In section 2 some notation is

introduced. The Hessian strategy is presented in section 3. In section 4 it is shown that

the Hessian strategy implies a bounded m

1

(u�u

h

;T ) . The opposite way we go in section 5:

it is shown (in the 2D case) that the Hessian strategy is also a consequence of a bounded

matching function m

1

. The di�erences of both results are depicted in the table below:

Section 4: 2D and 3D case.

Few heuristic assumptions.

Hessian strategy ) m

1

(u� u

h

;T ) . 1

Section 5: 2D case only.

More heuristic assumptions.

m

1

(u� u

h

;T ) . 1 ) Hessian strategy

This slightly confusing situation is caused by the fact that originally one wants to obtain

the result of section 5. This, however, can only be achieved under rather severe heuristic

assumptions. With less assumptions and in a mathematically rigerous manner the result

of section 4 is derived. This result is not as far{reaching as that of section 5 but still an

important improvement.

Finally, some numerical experiments and the summary �nish o� this paper in sections 6

and 7.

2 Notation

In the following, let P

k

(!) be the space of polynomials of order k or less over some domain

! � R

d

. The L

2

norm of a function over a domain ! is denoted by k � k

!

, and for ! = 


the subscript is omitted. Let jT j be understood as meas

d

(T ). With H

k

(!) we denote

the standard Sobolev space of functions whose k{th derivative is in L

2

(!). This space is

equipped with the usual norm.

Let us start with the description of the 3D case. For an arbitrary tetrahedron T 2 T ,

its four vertices are denoted by P

0

; P

1

; P

2

; P

3

such that P

0

P

1

is the longest edge of T ,

meas

2

(4P

0

P

1

P

2

) � meas

2

(4P

0

P

1

P

3

), and meas

1

(P

1

P

2

) � meas

1

(P

0

P

2

). To describe the

tetrahedron appropriately we de�ne characteristic directions and lengths.

� The directions are indicated by three pairwise orthonormal vectors p

i;T

, cf. �gure 1.

Since we are only interested in the directions, the vectors p

i;T

shall be scaled such

that jp

i;T

j = 1. When unambiguous, the subscript T is omitted.

� The lengths are the dimensions of T along the directions p

i;T

, i.e.

h

1;T

:= meas

1

(P

0

P

1

)

h

2;T

:= 2meas

2

(4P

0

P

1

P

2

) = meas

1

(P

0

P

1

)

h

3;T

:= 3meas

3

(T ) = meas

2

(4P

0

P

1

P

2

).

Observe h

1;T

> h

2;T

� h

3;T

and set

h

min;T

:= h

3;T

.
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P

0

P

1

P

2

P

3

h

1;T

� p

1

h

2;T

� p

2

h

3;T

� p

3

Figure 1: Notation of tetrahedron T

In the 2D case the notation is almost the same. There the triangle has the vertices

P

0

; P

1

; P

2

; the directions p

1;T

, p

2;T

and lengths h

1;T

> h

2;T

are de�ned in a similar fashion.

Here one sets h

min;T

:= h

2;T

.

In the analysis, derivatives of some functions play an important role. The so{called

Hessian is the matrix of the second{order derivatives, denoted by

D

2

u :=

�

@

x

i

@

x

j

u

�

d

i;j=1

where @

x

i

v is the partial �rst{order derivative.

When analysing the anisotropic error estimates, certain directional derivatives can be

favourably employed, cf. [Kun99a]. For arbitrary directions (vectors) l

1

; l

2

we thus de�ne

the �rst{order directional derivative by

@

l

1

u := jl

1

j

�1

� l

>

1

ru � jl

1

j

�1

� (ru; l

1

) � @u=@l

1

;

and the second{order directional derivative by

@

2

l

1

l

2

u := jl

1

j

�1

jl

2

j

�1

� l

>

1

D

2

u l

2

� jl

1

j

�1

jl

2

j

�1

� (D

2

u l

1

; l

2

) � @

2

u=@l

1

@l

2

;

where jl

i

j denotes the length of the vector and (�; �) is the usual Euclidean scalar product.

In the Hessian strategy which is described in the next section the Hessian D

2

u naturally

is of great importance. However in real applications D

2

u is not known since it involves the

exact solution u. Hence a so{called approximate Hessian

D

2;h

u

h

� D

2

u

has to be computed from the known approximate solution u

h

. This can be achieved via a

recovered gradient, for example. Here we do not discuss this question but assume instead

that a symmetric and su�ciently good approximation D

2;h

u

h

is provided. In sections 4.2

and 4.4 we explain what `su�ciently good' means.

For the approximate Hessian we want to utilize the equivalent of the directional deriva-

tives and therefore de�ne

@

2;h

l

1

l

2

u

h

:= jl

1

j

�1

jl

2

j

�1

� l

>

1

D

2;h

u

h

l

2

� jl

1

j

�1

jl

2

j

�1

� (D

2;h

u

h

l

1

; l

2

) :
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With the help of the directional derivatives we can now present the matching function:

m

1

(v;T ) :=

2

6

6

6

6

6

4

X

T2T

3

X

i=1

h

2

i;T

h

2

min;T

� k@

p

i

vk

2

T

X

T2T

3

X

i=1

k@

p

i

vk

2

T

3

7

7

7

7

7

5

1=2

(3)

(recall that p

i

� p

i;T

are the directions of the element T ). The lower bound m

1

> 1 is

obvious.

3 The Hessian strategy

The Hessian strategy has been known for quite a long time, see e.g. [CHM95, PVMZ87,

RGK93, Sim94, ZW94]. For a given anisotropic function it provides the description of a

suitable anisotropic mesh for that function (in terms of stretching direction and ratio of

the elements). A simple, heuristically convincing and straight{forward motivation is as

follows.

Motivation (2D case): Consider a single triangle T and an arbitrary quadratic

function v. Minimize the interpolation error in the H

1

seminorm kr(v � I

L

v)k

T

over all

(right{angled) triangles T with prescribed area jT j. Here I

L

v 2 P

1

(T ) shall be the usual

nodal Lagrange interpolate. Compute the (constant) Hessian D

2

v, its two real eigenvalues

�

1

; �

2

such that j�

1

j � j�

2

j, and the corresponding eigenvectors p

1

and p

2

. Then the quasi

minimal interpolation error (up to some constant factor) is achieved for those triangles

that are stretched along p

1

, and whose stretching ratio is

p

j�

2

j :

p

j�

1

j � 1.

To describe the general Hessian strategy properly, we formally split it into step 3 of

the adaptive algorithm (information extraction) and step 4 (remeshing). This separation

allows us to address the assumptions appropriately but also the drawbacks. Our main

interest is the information extraction (step 3). Furthermore several remeshing algorithms

(step 4) are presented but not discussed in detail. To include all the diverse remeshing

methods in our analysis, we will pose one condition that a newly constructed mesh has to

satisfy.

Next the Hessian strategy is presented.

Step 3: Information extraction

Although the �nite element error kr(u� u

h

)k should be minimized, one considers instead

the simpler interpolation error kr(u� I

L

u)k which leads to the Hessian D

2

u. Since D

2

u is

not known one has to utilize a symmetric approximation D

2;h

u

h

to D

2

u. We assume that

such an approximation is provided.

The information desired are the stretching directions and the aspect ratio. Generally

speaking, they are functions on 
, and they are given by the eigenvalues and eigenvectors of
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D

2;h

u

h

. This procedure is known as spectral decomposition or principal axes transformation

of the matrix D

2;h

u

h

:

Eigenvectors of D

2;h

u

h

: q

i

(x) i = 1; 2; 3 (4)

Assume jq

i

(x)j = 1.

Eigenvalues of D

2;h

u

h

: �

i

(x) := �

i

(D

2;h

u

h

(x)) i = 1; 2; 3 (5)

� (D

2;h

u

h

(x) � q

i

(x);q

i

(x))

= @

2;h

q

i

q

i

u

h

(x)

Assume j�

1

(x)j � j�

2

(x)j � j�

3

(x)j.

Stretching length: H

i

(x) := �

T

� j�

i

(x)j

�1=2

i = 1; 2; 3 (6)

For each x 2 
 the stretching directions are q

i

(x), and the stretching lengths are

H

i

(x); i = 1; 2; 3.

The global parameter �

T

is the same for all elements T . For the ease of our exposition,

we assume that all �

i

(x) are distinct, i.e. j�

1

(x)j < j�

2

(x)j < j�

3

(x)j. This is, of course,

not realistic in real world applications. Then the algorithmic implementation is more

sophisticated, and the description has to be changed (for example, by using a set of three

vectors fH

i

(x) � q

i

(x)g

3

i=1

without any ordering).

Step 4: Remeshing

Once the functions of the stretching directions and stretching lengths are known, the new

mesh T

new

is to be constructed. We will mention several approaches for the remeshing. In

order to treat all of them in our context here, we formulate a rather general condition that

has be be satis�ed. We note that this condition comprises most of the heuristic assumptions

(or, in some sense, the essence of the Hessian strategy), cf. the discussion below.

When a new triangle T

new

2 T

new

is to be constructed

3

, its directions p

i;T

new

and lengths

h

i;T

new

should be close to the computed information q

i

(x);H

i

(x):

p

i;T

new

� q

i

(x) 8x 2 T

new

h

i;T

new

� H

i

(x) 8x 2 T

new

:

The `closeness' could be measured, for example, in some integral sense. It also displays

an immediate di�culty: T

new

should be constructed according to q

i

(x);H

i

(x), but these

data should be considered for all points x 2 T

new

of the triangle to be constructed. This

dependence (depicted by �) can be illustrated as follows:

T

new

 � p

i;T

new

; h

i;T

new

 � q

i

(x)

�

�

�

T

new

;H

i

(x)

�

�

�

T

new

 � T

new

This self{dependent (reexive) description can be dealt with in several ways.

Firstly, one may iteratively construct the new element: Start with an initial guess

T

new;1

, determine q

i

(x)j

T

new;1

;H

i

(x)j

T

new;1

, recompute p

i;T

new;2

; h

i;T

new;2

, and construct an

improved guess T

new;2

until a su�cient correspondence is achieved.

3

For easier recollection we denote the mesh to be constructed by T

new

.
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A second approach consists of constructing a global transformation such that the trans-

formed domain can be meshed uniformly and isotropically, cf. [Sim94]. However such a

transformation does not necessarily exist. Even if it exists, its construction requires solving

a system of ordinary di�erential equations.

A third group of approaches heavily relies on the use of a Riemannian metric tensor;

they try to construct equilateral triangles with respect to that metric. For more details or

di�erent methods see e.g. [BH96] or [Kun99a] and the citations therein.

Here we will not present and analyse these remeshing algorithms in detail. Yet we want

our analysis to include all these constructions, and probably even completely di�erent

approaches (e.g. the contour lines approach, cf. section 1). For that reason we pose one

rather general assumption: We allow any construction of T

new

as long as the condition

below is satis�ed for all tetrahedra T

new

2 T

new

:

h

2

i;T

new

� k@

2

p

i

p

i

uk

T

new

� �

2

T

� jT

new

j

1=2

i = 1; 2; 3: (7)

This condition contains much of the essence of the remeshing part of the Hessian strategy

and its heuristic assumptions. The condition and its plausibility are investigated in more

detail in section 4.2.

Remark 1 The choice of the parameter �

T

is less restrictive as it may seem at �rst. For

example �

T

can also be a function �

T

(x) as long as it does not change rapidly across

adjacent tetrahedra. �

4 On the boundedness of the matching function

In this section we will show that a mesh construction based on the Hessian strategy results

in a bounded matching function, i.e. m

1

(u � u

h

;T ) � 1. Of course, the Hessian strategy

(implicitly) includes certain heuristic assumptions. In order to obtain a rigorous proof, we

try to specify, analyse and discuss these assumptions as precise as possible.

In section 4.1 we present local anisotropic a priori interpolation error estimates which

are central to our analysis. Section 4.2 lists the heuristic assumptions, both as a verbal

description and as formulas. The actual proof of a bounded matching function is given in

section 4.3, and the heuristic assumptions are discussed in more detail in section 4.4.

4.1 Local interpolation estimates

Local a priori interpolation estimates on anisotropic elements are widely developed in the

literature. Here we want to use an interpolation operator that

� is suitable for 2D and 3D elements,

� involves preferably only the element T under consideration,

� allows an estimation of �rst{order partial derivatives against second{order deriva-

tives.
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Here we have chosen the Crouzeix{Raviart interpolant I

CR

, cf. [ANS99]. The less suitable

Lagrange interpolant I

L

is presented afterwards.

Crouzeix{Raviart interpolant: This interpolant I

CR

: W

1;p

(T ) 7! P

1

(T ) is de�ned for

all functions v 2 W

1;p

; p 2 [1;1], and it is uniquely de�ned by the condition

Z

F

v � I

CR

v = 0 8 faces F � @T :

Here W

1;p

denotes the usual Sobolev space. From now on only the case p = 2 is required;

then W

1;p

becomes the Hilbert space H

1

.

Apel/Nicaise/Sch�oberl [ANS99, Lemma 3.3] have proven the following lemma.

Lemma 2 Let u 2 H

2

(T ). Then

k@

p

i

(u� I

CR

u)k

T

.

3

X

j=1

h

j;T

� k@

2

p

i

p

j

uk

T

i = 1; 2; 3: (8)

Note that the additional assumptions of [ANS99, Lemma 3.3] are automatically satis�ed

here since we utilize the directional derivatives, and the case p = 2. Furthermore no

maximum angle condition is required.

For completeness we also present a similar result for the Lagrange (i.e. nodal) inter-

polant I

L

. This interpolant can be de�ned for the 2D and the 3D case. The corresponding

interpolation error estimates, however, are valid only in 2D.

Lagrange interpolant: Let v 2 H

2

(T ) ,! C

0

(

�

T ) for T � R

d

. Then I

L

: H

2

(T ) 7! P

1

(T )

is uniquely de�ned by the condition

(I

L

v)(x) = v(x) 8 vertices x 2

�

T :

For the 2D case Apel and Dobrowolski [AD92] have shown that

k@

p

1

(u� I

L

u)k

T

. h

1;T

� k@

2

p

1

p

1

uk

T

+ h

2;T

� k@

2

p

1

p

2

uk

T

+

h

2

2;T

h

1;T

� k@

2

p

2

p

2

uk

T

(9)

k@

p

2

(u� I

L

u)k

T

. h

1;T

� k@

2

p

1

p

1

uk

T

+ h

1;T

� k@

2

p

1

p

2

uk

T

+ h

2;T

� k@

2

p

2

p

2

uk

T

: (10)

Note that (10) requires a maximum angle condition.
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4.2 The heuristic assumptions

All adaptive algorithms with the Hessian strategy contain certain heuristic assumptions

(probably in some disguise) which can be classi�ed roughly as follows.

� the Hessian strategy is feasible,

� su�ciently good approximation of the Hessian: D

2;h

u

h

� D

2

u,

� the Hessian does not change rapidly across adjacent elements,

� the interpolation estimates are sharp enough,

� u

h

� I

CR

u in the sense of the matching function m

1

.

These conditions are now reformulated in a strict mathematical form. A detailed discussion

also of the shortcomings of these assumptions is given in section 4.4 below.

1. The Hessian strategy is feasible

This implies that the Hessian can be computed, i.e.

u 2 H

2

(
) : (A.1)

Furthermore the stretching lengths are de�ned via H

i

(x) := �

T

� j�

i

(x)j

�1=2

, cf. (6).

Strictly speaking, this requires �

i

(x) 6= 0. Here, however, we formally allow �

i

(x) = 0

implying H

i

(x) = 1. Then the remeshing part of the Hessian strategy has to deal

with this `exception'. The other assumptions below have to hold as well, even if the

heuristic reasoning may be less convincing (cf. assumption (A.3) for example).

2. D

2;h

u

h

� D

2

u and D

2

u does not change too much

Assume for the moment that the Hessian D

2

u is constant (i.e. u is quadratic), and

that the directions p

i;T

new

of the new element are chosen to be the eigenvectors of D

2

u

(instead of its approximation D

2;h

u

h

). The principle of the spectral decomposition

of the Hessian D

2

u readily implies

@

2

p

i

p

j

u = 0 8 i 6= j :

In reality, however, D

2

u is rarely constant, and the directions p

i;T

new

are computed

from D

2;h

u

h

. Yet if D

2

u does not change too much and if D

2;h

u

h

� D

2

u then @

2

p

i

p

j

u

should almost vanish. This is expressed by the condition

h

j;T

� k@

2

p

i

p

j

uk

T

. h

i;T

� k@

2

p

i

p

i

uk

T

8 i 6= j : (A.2)

The next assumption has already been mentioned in section 3 when introducing the

Hessian strategy:

h

2

i;T

new

� k@

2

p

i

p

i

uk

T

new

� �

2

T

� jT

new

j

1=2

i = 1; 2; 3; 8T

new

2 T

new

; (A.3)

with some global parameter �

T

. This assumption is almost the essence of the remesh-

ing part of the Hessian strategy; it relates the information extracted from the given

mesh T

old

(i.e. q

i

(x);H

i

(x)) to the newly constructed mesh T

new

.

The plausibility of the assumption is shown in section 4.4.
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3. The interpolation estimates are sharp

Lemma 2 states that

k@

p

i

(u� I

CR

u)k

T

.

3

X

j=1

h

j;T

� k@

2

p

i

p

j

uk

T

i = 1; 2; 3:

For a strict proof, we require the equivalence (i.e. � instead of .), or at least

k@

p

i

(u� I

CR

u)k

T

& h

i;T

� k@

2

p

i

p

i

uk

T

i = 1; 2; 3 : (A.4)

In section 4.4 this condition is further investigated. Note that (A.4) can be further

weakened to

3

X

i=1

k@

p

i

(u� I

CR

u)k

T

& h

3;T

� k@

2

p

3

p

3

uk

T

: (A.4')

4. u

h

� I

CR

u in the sense of the matching function m

1

To transform this into a formula, we simply require

m

1

(u� u

h

;T ) � m

1

(u� I

CR

u;T ) (A.5)

because the right{hand side is much easier to investigate. The numerical experiments

of section 6 show that this is a realistic demand.

4.3 Bounding the matching function

Let us �rst recollect the heuristic assumptions (A.1){(A.5) which have to be satis�ed for

all elements T � T

new

of the newly constructed mesh T .

u 2 H

2

(
) (A.1)

h

j;T

� k@

2

p

i

p

j

uk

T

. h

i;T

� k@

2

p

i

p

i

uk

T

8 i 6= j (A.2)

h

2

i;T

� k@

2

p

i

p

i

uk

T

� �

2

T

� jT j

1=2

i = 1; 2; 3; 8T 2 T (A.3)

k@

p

i

(u� I

CR

u)k

T

& h

i;T

� k@

2

p

i

p

i

uk

T

i = 1; 2; 3 (A.4)

m

1

(u� u

h

;T ) � m

1

(u� I

CR

u;T ) : (A.5)

The main result is as follows.

Theorem 3 (Bounded matching function) Assume that (A.1){(A.5) hold. Then

m

1

(u� u

h

;T ) � 1 : (11)
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Proof: We start with the matching function m

1

(u � I

CR

u;T ) for the interpolation error

which is de�ned by

m

1

(u� I

CR

u;T ) =

 

X

T2T

y

T

.

X

T2T

z

T

!

1=2

; (12)

with y

T

:=

3

X

i=1

h

2

i;T

h

2

min;T

� k@

p

i

(u� I

CR

u)k

2

T

(13)

and z

T

:=

3

X

i=1

k@

p

i

(u� I

CR

u)k

2

T

(14)

being the element{related terms of the numerator and the denominator, respectively, cf. (3).

With the help of the interpolation error estimate (8) and the assumptions (A.2), (A.3)

one derives for the numerator

y

T

= h

�2

min;T

3

X

i=1

h

2

i;T

� k@

p

i

(u� I

CR

u)k

2

T

(8)

. h

�2

min;T

3

X

i=1

h

2

i;T

3

X

j=1

h

2

j;T

� k@

2

p

i

p

j

uk

2

T

(A:2)

. h

�2

min;T

3

X

i=1

h

4

i;T

� k@

2

p

i

p

i

uk

2

T

(A:3)

� h

�2

min;T

� �

4

T

� jT j :

Similarly the denominator is investigated.

z

T

=

3

X

i=1

k@

p

i

(u� I

CR

u)k

2

T

(A:4)

&

3

X

i=1

h

2

i;T

� k@

2

p

i

p

i

uk

2

T

�

3

X

i=1

h

�2

i;T

� h

4

i;T

� k@

2

p

i

p

i

uk

2

T

(A:3)

� �

4

T

� jT j �

3

X

i=1

h

�2

i;T

:

Hence one readily obtains

y

T

. �

4

T

� jT j � h

�2

min;T

� �

4

T

� jT j �

3

X

i=1

h

�2

i;T

. z

T

and

X

T2T

y

T

.

X

T2T

z

T

:
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Together with (A.5) this implies

m

1

(u� u

h

;T )

(A:5)

� m

1

(u� I

CR

u;T ) =

"

X

T2T

y

T

.

X

T2T

z

T

#

1=2

. 1 :

Since 1 � m

1

(u� u

h

;T ) is obvious the desired result is proven.

4.4 The assumption revisited { Di�culties of the Hessian strat-

egy

The Hessian strategy is only a heuristic strategy, and as such, it has naturally its limita-

tions. In this section we try to describe and analyse these limits as rigorously as possible.

For that it is convenient to distinguish between problems that are due to the Hessian strat-

egy, and problems that are due to the analysis of the method. Not surprisingly there are

close connections to the heuristic assumptions (A.1){(A.5) of section 4.2, see also there for

a comparison. So let us recall and discuss these assumptions.

Assumption (A.1): u 2 H

2

(
)

In practical applications the solution is not necessarily as smooth as H

2

(
). Even for

the Poisson equation in a 3D domain with a concave edge or with changing boundary

conditions one generically obtains only u 2 H

1+

(
); 0 <  < 1.

Then the Hessian strategy may run into di�culties as D

2

u and D

2;h

u

h

can be expected

to become very large or even unbounded in certain regions. The aspect ratio may tend to

1 : 1, thus rendering the Hessian strategy infeasible. Furthermore not only the Hessian

strategy itself fails but also its analysis, since the interpolation estimates do not hold

anymore (e.g. @

2

p

i

p

j

u may not be de�ned).

A partial remedy can be seen in the fact that the solution u has regularity H

2

in most

of the domain 
, and that less regularity occurs only in small regions. For example for the

3D Poisson equation with a concave edge, u is singular only along that edge. Therefore

the Hessian strategy will probably work well in most of the domain, and only small regions

require an additional treatment. This treatment could, for example, consist of a bound

that the aspect ratio must not exceed.

Assumption (A.2): h

j;T

� k@

2

p

i

p

j

uk

T

. h

i;T

� k@

2

p

i

p

i

uk

T

8 i 6= j

In the imaginary, `ideal' case of D

2

u = D

2;h

u

h

= const and p

i;T

= q

i

(x) the mixed

derivatives @

2

p

i

p

j

u = @

2

q

i

q

j

u = @

2;h

q

i

q

j

u

h

vanish because of the principle of the spectral de-

composition (cf. sections 3 and 4.2). Conversely, for real applications the approximations

D

2;h

u

h

� D

2

u and p

i;T

� q

i

(x) have to be good enough. Additionally the element T has

to be small enough such that @

2

p

i

p

j

u does not change too much and, in particular, remains

neglectable compared to @

2

p

i

p

i

u.
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Assumption (A.3): h

2

i;T

� k@

2

p

i

p

i

uk

T

� �

2

T

� jT j

1=2

i = 1; 2; 3; 8T 2 T

To show the plausibility of the assumption,

(a) we evaluate k@

2

p

i

p

i

uk

T

new

by some numerical integration rule,

(b) we assume h

i;T

new

� H

i

(x) and p

i;T

new

� q

i

(x) for some/all x 2 T

new

,

(c) we employ D

2;h

u

h

� D

2

u,

(d) and we utilize the de�nition (6) of H

i

(x).

To be precise, let a numerical integration scheme (on T

new

) be given by some points x

k

2

T

new

together with weights �

k

. Then

4

h

4

i;T

new

� k@

2

p

i

p

i

uk

2

T

new

(a)

� h

4

i;T

new

� jT

new

j �

X

x

k

�

k

� (@

2

p

i

p

i

u(x

k

))

2

(b)

� jT

new

j �

X

x

k

�

k

�H

4

i

(x

k

) � (@

2

q

i

q

i

u(x

k

))

2

(c)

� jT

new

j �

X

x

k

�

k

�H

4

i

(x

k

) � (@

2;h

q

i

q

i

u

h

(x

k

))

2

(6)

= jT

new

j �

X

x

k

�

k

� �

4

T

= jT

new

j � �

4

T

:

If one increases the number of integration points then

� the integration rule is likely to improve in quality,

� but the approximations h

i;T

new

� H

i

(x), p

i;T

new

� q

i

(x) and D

2;h

u

h

� D

2

u have to

be accurate for more points, and are more critical to obtain.

Ultimately one can even use exact integration on the cost that the aforementioned equiv-

alences have to hold for almost all x 2 T

new

:

h

4

i;T

new

� k@

2

p

i

p

i

uk

2

T

new

= h

4

i;T

new

�

Z

T

new

(@

2

p

i

p

i

u(x))

2

(b)

�

Z

T

new

H

4

i

(x) � (@

2

q

i

q

i

u(x))

2

(c)

�

Z

T

new

H

4

i

(x) � (@

2;h

q

i

q

i

u

h

(x))

2

(6)

=

Z

T

new

�

4

T

= jT

new

j � �

4

T

:

Since our demands on the integration rule and the equivalences can not be quanti�ed in

a more convenient way, we have chosen to present them in the form of assumption (A.3).

4

The interesting case of a single point integration rule is of course contained.
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Note, however, that the whole Hessian strategy (i.e. the choice of the stretching directions

and lengths) plays a vital role in this condition, even if this is not immediately visible in

the formula.

Summarizing the previous arguments, (A.3) can be expected to hold if D

2;h

u

h

� D

2

u

and h

i;T

� H

i

(x), p

i;T

� q

i

(x) for some/all x 2 T. If some of these approximations

are violated then the heuristic reasoning from above can not be applied. Nevertheless

assumption (A.3) may still be valid since all three approximations interact in a rather

complex way.

Assumption (A.4): k@

p

i

(u� I

CR

u)k

T

& h

i;T

� k@

2

p

i

p

i

uk

T

This property does not hold for arbitrary functions. Here we present a counterexample

which employs a function that strongly oscillates over the element T .

Consider the triangle with vertices (0; 0), (1; 0), (1; 1) and the function u(x

1

; x

2

) =

sin(2k� � x

1

). Then all edge integrals

R

E

u vanish giving the Crouzeix{Raviart interpolate

I

CR

u � 0. Straight{forward computations then yield

k@

x

1

(u� I

CR

u)k

T

= k � � and k@

x

1

x

1

uk

T

= k

2

� 2�

and thus

k@

x

1

(u� I

CR

u)k

T

6& k@

x

1

x

1

uk

T

for k !1 :

A transformation to the directional derivatives provides the actual counterexample

5

. A 3D

counterexample can be constructed similarly.

Despite the example from above, assumption (A.4) can be expected to hold for su�-

ciently `smooth' functions (e.g. without heavy oscillations). Further hopes are raised by

the fact that eventually we do not require (A.4) itself. Instead the sum

P

3

i=1

over all

three directions, and the sum

P

T2T

over all elements are the terms that matter. Thus

some negative inuence of a single triangle can hopefully be compensated (even if such

cancelation e�ects can not be proven). An example of a weakened assumption is given in

(A.4') on page 12.

Assumption (A.5): m

1

(u� u

h

;T ) � m

1

(u� I

CR

u;T )

This assumption can be expected to hold if u

h

� I

CR

u. Recall that the matching function

m

1

emphasizes di�erent directions to a di�erent extend, i.e. the element{related numerator

is

y

T

=

3

X

i=1

h

2

i;T

h

2

min;T

� k@

p

i

(u� I

CR

u)k

2

T

;

cf. the previous section. Hence the approximation u

h

� I

CR

u should be particularly good

along the `long' directions (represented by h

1;T

and probably h

2;T

).

A slight modi�cation of assumption (A.5) has also been investigated numerically. The

examples of section 6 indicate that both terms of (A.5) di�er by (usually much) less than

10%.

5

The isotropic triangle here is of course a special case of an anisotropic element.
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5 Derivation of the Hessian strategy in 2D

In the previous sections we have applied the Hessian strategy and have shown that then

the matching function m

1

(u�u

h

;T ) is bounded. In this section we consider the problem in

the reverse way: If m

1

is to be bounded, how do we have to choose the stretching direction

and ratio? Since both items can not be chosen independently, the answer will be of the

type: `For a given stretching direction, the aspect ratio can be at most q

max

for m

1

to be

bounded'. It will turn out that this answer reproduces the Hessian strategy. Note that

only the 2D case is considered.

We will start with some heuristic assumptions. Because of the general setting they are

not formulated as stringent as before. First we replace u

h

by the interpolant I

CR

u resulting

in

m

1

(u� u

h

;T ) � m

1

(u� I

CR

u;T ) :

Still the whole term is to di�cult to deal with; hence consider only the element contribu-

tions and demand y

T

. z

T

, i.e.

h

�2

min;T

2

X

i=1

h

2

i;T

� k@

p

i

(u� I

CR

u)k

2

T

.

2

X

i=1

k@

p

i

(u� I

CR

u)k

2

T

;

cf. (12){(14). Recall that h

1;T

� h

2;T

are the lengths of the triangle along the two or-

thogonal directions p

1;T

and p

2;T

. Next the interpolation estimate (8) is applied. We

(heuristically) assume that (8) is sharp, i.e. we assume

k@

p

i

(u� I

CR

u)k

T

�

3

X

j=1

h

j;T

� k@

2

p

i

p

j

uk

T

i = 1; 2; 3:

Hence the following inequality should be satis�ed

h

4

1;T

h

2

2;T

� k@

2

p

1

p

1

uk

2

T

+ h

2

1;T

� k@

2

p

1

p

2

uk

2

T

+ h

2

2;T

� k@

2

p

2

p

2

uk

2

T

.

. h

2

1;T

� k@

2

p

1

p

1

uk

2

T

+ h

2

1;T

� k@

2

p

1

p

2

uk

2

T

+ h

2

2;T

� k@

2

p

2

p

2

uk

2

T

which holds (up to some constant factor) i�

h

4

1;T

h

2

2;T

� k@

2

p

1

p

1

uk

2

T

. h

2

1;T

� k@

2

p

1

p

2

uk

2

T

+ h

2

2;T

� k@

2

p

2

p

2

uk

2

T

or, equivalently,

f :=

q

2

� k@

2

p

1

p

1

uk

2

T

q � k@

2

p

1

p

2

uk

2

T

+ k@

2

p

2

p

2

uk

2

T

. 1 (15)

with q := h

2

1;T

=h

2

2;T

> 1 : (16)
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We want to express @

2

p

i

p

j

u by means ofD

2

u, and thus start with the spectral decomposition

(i.e. principal axes transformation) of D

2

u(x

0

; y

0

) at some point (x

0

; y

0

) of the element

6

.

Hence D

2

u(x

0

; y

0

) is transformed into a diagonal matrix; that is, there are two orthogonal

directions x̂; ŷ (which are the principal axes) such that the mixed directional derivative

vanishes, @

2

x̂ŷ

u(x

0

; y

0

) � @

x̂

@

ŷ

u(x

0

; y

0

) = 0

Let the triangle T be rotated by an angle ' against the principal directions (x̂; ŷ),

i.e. ' = ^(p

1;T

; x̂). Set c := cos', s := sin', and let

P :=

�

c s

�s c

�

be the usual rotation matrix. Then

2

4

@

2

p

1

p

1

u @

2

p

1

p

2

u

@

2

p

2

p

1

u @

2

p

2

p

2

u

3

5

(x; y) = P

>

�

2

4

@

2

x̂x̂

u @

2

x̂ŷ

u

@

2

ŷx̂

u @

2

ŷŷ

u

3

5

(x; y) � P

=

2

4

c

2

@

2

x̂x̂

u� 2cs@

2

x̂ŷ

u+ s

2

@

2

ŷŷ

u cs@

2

x̂x̂

u+ (c

2

� s

2

)@

2

x̂ŷ

u� cs@

2

ŷŷ

u

cs@

2

x̂x̂

u+ (c

2

� s

2

)@

2

x̂ŷ

u� cs@

2

ŷŷ

u s

2

@

2

x̂x̂

u+ 2cs@

2

x̂ŷ

u+ c

2

@

2

ŷŷ

u

3

5

(x; y) :

Because of the spectral decomposition of D

2

u(x

0

; y

0

) one has @

2

x̂ŷ

u(x

0

; y

0

) = 0. However,

@

2

x̂ŷ

u is required not only at (x

0

; y

0

) but on all points (x; y) 2 T . Hence we demand the

important heuristic assumption that D

2

u should not change too much across the trian-

gle T . Thus @

2

x̂ŷ

u(x; y) should be neglectable compared with @

2

x̂x̂

u(x; y) and @

2

ŷŷ

u(x; y) for

(x; y) 2 T . Furthermore we evaluate the norms k � k

T

with a single point integration rule

at (x

0

; y

0

). To be precise, we assume the equivalences

k@

2

p

1

p

1

uk

2

T

� jT j � (c

2

@

2

x̂x̂

u+ s

2

@

2

ŷŷ

u)

2

(x

0

; y

0

)

k@

2

p

1

p

2

uk

2

T

� jT j � (cs@

2

x̂x̂

u� cs@

2

ŷŷ

u)

2

(x

0

; y

0

)

k@

2

p

2

p

2

uk

2

T

� jT j � (s

2

@

2

x̂x̂

u+ c

2

@

2

ŷŷ

u)

2

(x

0

; y

0

) :

Inserting this into (15) yields

f = f(D

2

u; q; ') =

q

2

� k@

2

p

1

p

1

uk

2

T

q � k@

2

p

1

p

2

uk

2

T

+ k@

2

p

2

p

2

uk

2

T

�

q

2

� (c

2

@

2

x̂x̂

u+ s

2

@

2

ŷŷ

u)

2

(x

0

; y

0

)

q � (cs@

2

x̂x̂

u� cs@

2

ŷŷ

u)

2

(x

0

; y

0

) + (s

2

@

2

x̂x̂

u+ c

2

@

2

ŷŷ

u)

2

(x

0

; y

0

)

=

q

2

� (1 + t

2

� �)

2

q � t

2

(1 � �)

2

+ (t

2

+ �)

2

=: f(q; t; �)

6

For improved readability of this section we denote the coordinate system by (x; y) instead of (x

1

; x

2

).
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with the abbreviations

t

2

:=

s

2

c

2

= tan

2

' � :=

@

2

ŷŷ

u(x

0

; y

0

)

@

2

x̂x̂

u(x

0

; y

0

)

: (17)

According to (15) we aim at f(q; t; �) . 1, i.e.

q

2

� (1 + t

2

�)

2

. q � t

2

(1� �)

2

+ (t

2

+ �)

2

:

As already mentioned before, we want to obtain all q that satisfy this quadratic inequality

for given t and �. This leads to

1 < q .

t

2

(1 � �)

2

2(1 + t

2

�)

2

+

�

t

4

(1 � �)

4

4(1 + t

2

�)

4

+

(t

2

+ �)

2

(1 + t

2

�)

2

�

1=2

and q

max

= q

max

(t; �) � t

2

�

1� �

1 + t

2

�

�

2

+

�

�

�

�

t

2

+ �

1 + t

2

�

�

�

�

�

max

h

1;T

h

2;T

=

p

q

max

� jtj �

�

�

�

�

1 � �

1 + t

2

�

�

�

�

�

+

�

�

�

�

t

2

+ �

1 + t

2

�

�

�

�

�

1=2

:

Keeping the heuristic assumptions and their limitations in mind, this equivalence describes

the maximum aspect ratio such that the matching function m

1

is bounded. The maximum

aspect ratios are given in dependence of

� the angle ' between the directions p

i;T

of the triangle and the principal axes x̂; ŷ,

� the ratio � of the pure second order derivatives along the principal axes.

Let us now discuss the result for some distinctive cases where we prescribe � and t and de-

termine q

max

. Without loss of generality assume that j�j = j@

2

ŷŷ

u(x

0

; y

0

)=@

2

x̂x̂

u(x

0

; y

0

)j � 1;

otherwise we can mutually exchange the principal axes x̂ for ŷ.

No. Description � t = tan' max

h

1;T

h

2;T

=

p

q

max

1 isotropic function j�j � 1 arbitrary

p

q

max

� 1

2 anisotropic function j�j � 1

2a { Hessian strategy mesh t = 0

p

q

max

� j�j

1=2

2b { small deviation from `Hessian mesh' jtj . j�j

�1=2

p

q

max

� j�j

1=2

2c { strong deviation from `Hessian mesh' jtj � 1

p

q

max

� 1

2d { completely wrong mesh jtj � 1 (

p

q

max

� 1)

We conclude that an isotropic function requires an isotropic mesh. For an anisotropic

function, the Hessian strategy (case 2a) is reproduced:

p

q

max

� j�j

1=2

is exactly the square

root of the ratio of the eigenvalues of the Hessian, see (17). The same aspect ratio is possible
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even if the triangle T is not exactly aligned with the principal directions (case 2b). The

deviation (i.e. the angle between the principal directions and T ) can be up to

' � tan' = t � j�j

�1=2

� 1=

p

q

max

� h

2;T

=h

1;T

:

It is probably surprising that the same angle of the deviation occurs in [AD92, Theorem 2]

when investigating interpolation estimates there.

If the elements show a large deviation from the principal axes (case 2c) then only an

isotropic mesh is possible.

The last (rather hypothetic) case 2d considers a completely wrong mesh, i.e. the triangle

T is rotated by about 90

o

against the principal directions (corresponding to t = tan'� 1).

Hence the `long' direction p

1;T

corresponds to the `large' derivative @

2

ŷŷ

u, and the stretching

is thus the opposite way. Then we obtain a contradiction to q > 1; therefore the matching

function m

1

will be unbounded here.

6 Numerical experiments

In this section we will numerically explore whether assumption (A.5) is a realistic demand.

For implementation reasons we consider the Lagrange interpolate I

L

instead of I

CR

, i.e. we

investigate whether

m

1

(u� u

h

;T ) � m

1

(u� I

L

u;T ) (A.5')

holds. In forthcoming software developments the Crouzeix{Raviart interpolate I

CR

will be

incorporated as well. It is strongly to be expected that the results for I

L

carry over to I

CR

.

Note that we do not apply the Hessian strategy here; instead we utilize meshes that

were constructed on a priori knowledge.

6.1 Example 1

When solving a Poisson problem in three-dimensional domains 
, a typical occurrence of

an anisotropic solution is induced by an edge with an angle ! > �, and/or by a change of

the boundary conditions, cf. also [Kun99a] and the citations therein. Therefore we choose

the following test problem which has already been discussed in [Kun99a, Ape97] (partly in

a slightly di�erent form). Solve the three-dimensional Poisson problem

��u = f in 
 ; u = u

0

on �

D

; @u=@n = g

N

on �

N

:

The domain 
 consists of three quarters of a cylinder, i.e.


 = f(r cos' ; r sin' ; z) 2 R

3

: 0 < r; z < 1 ; 0 < ' < 3�=2g ;

cf. also �gure 2. The Neumann boundary �

N

shall consist of the top and bottom plane of


, and of the plane described by x = 0. Let the Dirichlet boundary be �

D

:= @
 n �

N

.
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The exact solution u (in cylindrical coordinates) is prescribed to be

u(r; '; z) := r

�

� sin(�') � (1 + (z)) with � = 1=3

and (z) :=

�

(2z � 1) � 2z when z 2 [0; 1=2]

(2z � 1) � (3� 4z) when z 2 (1=2; 1]

:

The corresponding right-hand side f = ��u is in L

p

(
) for all p 2 [1;1], but it has a

jump at z = 1=2. The boundary conditions u

0

and g

N

are chosen according to u. The

exact solution u displays an edge singularity of the type r

�

. This implies an anisotropy of

u along the z-axis.

The sequence of meshes is constructed as follows. First, the domain 
 is isotropically

and quasi-uniformly meshed, with h � 2

�k

; k = 0; 1; 2 : : : (note that the curved boundary is

approximated). The �nal, anisotropic mesh is obtained by the subsequent nodal coordinate

transformation (also known as mesh grading)

�

�

�

�

�!

�

x

y

�

:= r̂

1

�

�1

�

�

�

�

�

with r̂ =

p

�

2

+ �

2

: (18)

This ensures the adaption of the mesh to u. The grading parameter � is chosen to be � = 0:3

resulting in an optimal rate of convergence in the energy norm, i.e. jjju� u

h

jjj � N

�1=3

,

with N being the degrees of freedom [Ape97]. The corresponding meshes before and after

the mesh grading are depicted in �gure 2.

Figure 2: Mesh 1d before and after mesh grading

The values of the matching functions m

1

(u�u

h

;T ) and m

1

(u�I

L

u;T ) are given below,

together with some mesh information.
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# Elements Max. aspect ratio m

1

(u� u

h

;T ) m

1

(u� I

L

u;T )

Mesh 1a 12 2.2 1.63 1.63

Mesh 1b 96 9.7 2.26 2.14

Mesh 1c 768 30.6 2.18 2.03

Mesh 1d 6 144 154.0 2.10 2.02

Mesh 1e 49 152 775.8 2.06 2.02

Mesh 1f 393 216 3 910.0 2.06 2.03

Mesh 1g 3 145 728 19 705.1 2.06 2.04

One observes that replacing u

h

by I

L

u in the matching function changes the value only

slightly. Thus assumption (A.5') is valid here, and (A.5) is expected to hold as well.

Furthermore the small values of m

1

(u � u

h

;T ) indicate that the anisotropic meshes

utilized are really suitable for this kind of problem.

6.2 Example 2

The second example is a singularly perturbed reaction di�usion model problem that has

already been analysed in [KV99].

�"�u+ u = 0 in 
 := [0; 1]

3

; u = u

0

on �

D

:= @


with the perturbation parameter " = 10

�4

. The exact solution is prescribed to be

u = e

�x=

p

"

+ e

�y=

p

"

+ e

�z=

p

"

:

It displays typical boundary layers along the planes x = 0, y = 0, and z = 0. The boundary

value u

0

is chosen accordingly.

The domain is discretized by a sequence of meshes, each one being the tensor product of

three one{dimensional Bakhvalov{like meshes [Bak69] with 2

k

intervals in [0,1], k = 1 : : : 6.

To describe the 1D nodal distribution properly, denote the transition point of the boundary

layer by � :=

p

"j ln

p

"j. Then 2

k�1

nodes are exponentially distributed in the boundary

layer interval [0; � ] whereas the remaining interval [�; 1] is divided into 2

k�1

equidistant

intervals, cf. �gure 3. More precisely, the (1D) nodal coordinate of the m-th node is

x

m

:=

8

>

<

>

:

��

p

" ln

h

1�

m

2

k�1

(1 � e

��=�=

p

"

)

i

for m = 0 : : : 2

k�1

; � = 3=2

� + (1� � ) �

�

m

2

k�1

� 1

�

for m = 2

k�1

+ 1 : : : 2

k

:

Note that the only di�erence to the original Bakhvalov mesh consists in the slightly di�erent

choice of the transition point � .

Again the values of the matching functions m

1

(u�u

h

;T ) and m

1

(u�I

L

u;T ), and some

mesh information are given below.
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Figure 3: Mesh 2b { Mesh 2c

# Elements Max. aspect ratio m

1

(u� u

h

;T ) m

1

(u� I

L

u;T )

Mesh 2a 48 29.4 1.55 1.55

Mesh 2b 384 69.5 1.62 1.61

Mesh 2c 3 072 82.6 1.69 1.67

Mesh 2d 24 576 88.6 1.88 1.86

Mesh 2e 196 608 91.5 2.37 2.36

Mesh 2f 1 572 864 92.9 3.04 3.04

The table shows an astonishing coincidence of both matching functions. Therefore here

u

h

can be replaced by I

L

u without changing the values much, and assumption (A.5') is

clearly valid.

7 Summary

In an anisotropic adaptive algorithm it is a common desire to have an error estimator that

provides the error size but also the optimal stretching directions and stretching ratio of the

underlying anisotropic mesh. Since the last two information can not yet be extracted (for

any of the known estimators), we have investigated the so{called Hessian strategy which

provides exactly these information, based on some heuristic assumptions.

Our main result proves that an anisotropic mesh constructed by the Hessian strategy

implies a bounded matching function, i.e. m

1

(u � u

h

;T ) . 1. Consequently reliable and

e�cient error estimation is possible. In the 2D case it is even possible to derive the Hessian

strategy directly from the condition m

1

(u� u

h

;T ) . 1.

Because of the heuristic nature of the Hessian strategy we too require some heuristic

assumptions. Nevertheless they are presented as precise as possible, and in a rather general

form such that other meshing strategies can (hopefully) be analysed as well.

Altogether this work provides further inside into the nature of anisotropic error esti-

mation, and the matching function in particular.
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