TU-Chemnitz, Fakultät für Mathematik

Vorlesung: Prof. Dr. Martin Stoll Übung: Dr. Roman Unger

Homepage zur Übung: https://www.tu-chemnitz.de/mathematik/wire/WS1819/nla.php

3. Numerical Range

1. The "Numerical Range" of the matrix $A \in \mathbb{C}^{n \times n}$ is the set $W(A) \subset \mathbb{C}$, defined as

 $W(A) := \{ < Ax, x > \quad | \quad x \in \mathbb{C}^n, ||x|| = 1 \}.$

Proof the following statements (a) and (b)

- (a) $\sigma(A) \subset W(A)$
- (b) If A is a normal matrix, then $W(A) = \operatorname{conv}(\sigma(A))$.
- (c) For arbitrary A the set W(A) is convex. (Hausdorff-Toeplitz-Theorem)
- 2. We disassemble $A \in \mathbb{C}^{n \times n}$ in the following parts

$$\begin{array}{rcl} A^+ & := & \displaystyle \frac{A + A^*}{2} \\ \\ A^- & := & \displaystyle \frac{A - A^*}{2} \end{array}$$

define therby

- $\lambda_{min}^+ :=$ smallest eigenvalue of A^+
- $\lambda_{max}^+ := \text{largest eigenvalue of } A^+$
- $\lambda_{\min}^- :=$ smallest imaginary part of the eigenvalues of A^-
- $\lambda_{max}^- :=$ largest imaginary part of the eigenvalues of A^-

and consider the rectangle

$$B(A) := [\lambda_{min}^+, \lambda_{max}^+] + i[\lambda_{min}^-, \lambda_{max}^-]$$

in the complex plane.

- (a) Which symmetries of the rectangle B(A) respective to the real and imaginary axe for $A \in \mathbb{R}^{n \times n}$ we can see ?
- (b) Proof: $W(A) \subset B(A)$.
- (c) Draft B(A) and W(A) for the matrix

$$A = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\phi) & \sin(\phi)\\ 0 & -\sin(\phi) & \cos(\phi) \end{bmatrix}$$

für $\phi = \frac{\pi}{2}$. (Hint: Can you use (b) from the last problem ?)

(d) We restrict for $A \in \mathbb{R}^{n \times n}$ our W(A) with

$$W^{\mathbb{R}}(A) := \{ < Ax, x > | x \in \mathbb{R}^n, ||x|| = 1 \}.$$

to $W^{\mathbb{R}}(A)$. Describe this set $W^{\mathbb{R}}(A)$ and add it to the sketch in (c).

3. For $A \in \mathbb{C}^{n \times n}$ and W(A) like above we define with $\rho(A)$ the spectral radius and with

$$r(A) := \max_{z \in W(A)} |z|$$

the "numerical radius" of A.

(a) Proof:

$$\rho(A) \le r(A) \le ||A||_2 \le 2r(A)$$

(b) Let $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{n \times n}$ und r(A), r(B) their numerical radii. It is well known:

 $||AB|| \le ||A|| ||B||.$

Proof or rebut the inequality:

$$r(AB) \le r(A) \ r(B)$$

4. Show for $A \in \mathbb{C}^{n \times n}$ with eigenvalues λ_i

$$\sum_{i=1}^{n} |\lambda_i|^2 \le ||A||_F^2 = \operatorname{tr}(A^*A)$$

and for the case that A is normal

$$\sum_{i=1}^{n} |\lambda_i|^2 = ||A||_F^2.$$