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Abstract

We compare sparse grid stochastic collocation and Gaussian pro-
cess emulation as surrogates for the parameter-to-observation map
of a groundwater flow problem related to the Waste Isolation Pilot
Plant in Carlsbad, NM. The goal is the computation of the prob-
ability distribution of a contaminant particle travel time resulting
from uncertain knowledge about the transmissivity field. The lat-
ter is modelled as a lognormal random field which is fitted by
restricted maximum likelihood estimation and universal kriging to obser-
vational data as well as geological information including site-specific
trend regression functions obtained from technical documentation. The
resulting random transmissivity field leads to a random groundwater
flow and particle transport problem which is solved realization-wise
using a mixed finite element discretization. Computational surrogates,
once constructed, allow sampling the quantities of interest in the
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2 UQ Surrogates for Groundwater Flow

uncertainty analysis at substantially reduced computational cost. Spe-
cial emphasis is placed on explaining the differences between the
two surrogates in terms of computational realization and interpreta-
tion of the results. Numerical experiments are given for illustration.

Keywords: sparse grid stochastic collocation, Gaussian process emulation,
uncertainty propagation, kriging, Darcy flow, mixed finite elements

MSC Classification: 60G60 , 60H35 , 62P12 , 62M30 , 65C05 , 65D12 , 65C30 ,
65N75 ,

1 Introduction

By their very nature, the earth sciences have had to cope with uncertainty
from early on, and scientists from this field such as Harold Jeffreys and Albert
Tarantola have had foundational and lasting impact on how uncertainty is
modeled and merged with physical models in the interdisciplinary field now
known as uncertainty quantification (UQ). A current account of uncertainty
quantification in subsurface hydrology can be found in Linde et al (2017). Many
UQ studies involve a system governed by a partial differential equation (PDE)
in which one or more input quantities are uncertain. When this uncertainty
is described in probabilistic terms we arrive at a PDE with random data,
or random PDE for short. Such random data may be modeled by one or
more scalar random variables or, in case of distributed quantities, random
functions which in mathematical terms are stochastic processes indexed by
space and/or time and in this context usually referred to as random fields. In
all these cases the solution of the random PDE is also a random field. The
task of determining the probability distribution of the solution of a random
PDE, or of quantities of interest derived from such solutions, is known as
uncertainty propagation or forward UQ (cf. Ernst et al (2022)). Approximation
methods for random fields and their incorporation into computational solution
methods for random PDEs have been actively developed in the engineering
and numerical analysis communities in the past two decades, and excellent
surveys can be found in Ghanem and Spanos (1991); Babuška et al (2010);
Schwab and Gittelson (2011); Gunzburger et al (2014). The distinguishing
feature of these approaches is that they parameterize the approximate random
PDE solution or functionals thereof as functions—typically polynomials—of a
set of independent reference random variables whose number can be large or
even countably infinite. Reflecting the construction principles on which these
approximations are based, the approaches are called stochastic Galerkin or
stochastic collocation methods. At the same time, sampling-based simulation
techniques known as Gaussian process emulators have gained popularity in
the statistics community for solving similar problems, cf. Sacks et al (1989);
Currin et al (1991); Kennedy and O’Hagan (2001); O’Hagan (2006). Here the
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UQ Surrogates for Groundwater Flow 3

random solution is modeled as a Gaussian process conditioned on realizations
of the solutions obtained for certain realizations of the random inputs.

Our objective in this work is the direct comparison of these two approaches
using Monte Carlo sampling as a reference in a case study on the hydroge-
ological transport of radionuclides within the site assessment for a nuclear
waste repository. In doing so, we place particular emphasis on the careful
construction of a stochastic model of the random PDE data—in this case a
lognormal random field modeling the the uncertain hydraulic transmissivity—
using geostatistical techniques based on observational data of transmissivity
and hydraulic head as well as additional geological background information.
Besides the computational efficiency and approximation qualities of the two
approaches, we provide an introduction to both methods highlighting the
assumptions on which they are based and consequences for interpreting the
results obtained with each.

The uncertainty propagation techniques we shall consider are based on gen-
erating realizations (samples) of the uncertain input parameters, solving the
PDE for each realization and then determining the statistical properties of the
quantities of interest in a post-processing step. As each PDE solution typically
requires considerable computational resources, the mapping of random input
parameters to quantities of interest is often substituted by surrogate models,
which are considerably less costly to evaluate, thus speeding up the uncertainty
propagation analysis. The two surrogates we shall compare, sparse polynomial
collocation and Gaussian process emulation are interesting in that they were
developed in different fields (numerical analysis and statistics), display differ-
ent performance characteristics, and also differ in the interpretations of the
surrogates they produce. Our work is closest in spirit to Owen et al (2017),
where Gaussian process emulation is compared with polynomial chaos expan-
sion surrogates for two black-box computer simulators. Although different
in construction, polynomial chaos surrogates yield a multivariate polynomial
approximation of the input-output map realized by the computer simulator as
does stochastic collocation, whereas the latter is considerably easier to inte-
grate into PDE solvers. In place of a small number of discrete parameters in
the models considered in Owen et al (2017), the random input in our ground-
water model is a random field, i.e., its realizations are functions, which can
be considered as parameterized by a countably infinite number of parameters.
The propagation of geometry-induced uncertainties in aerodynamic modeling
using surrogate models based on quasi-Monte-Carlo quadrature as well as krig-
ing and radial basis techniques is compared in Liu et al (2017). An overview
of surrogate models for uncertainty quantification can be found in Sudret et al
(2017).

The remainder of the paper is organized as follows: Section 2 presents the
problem of predicting the travel or exit time of radionuclides transported by
groundwater flow through a horizontal layer above the Waste Isolation Pilot
Plant, an operational underground disposal site for nuclear waste, in a scenario
where a hypothetical future accidental breach leads to the release of radioactive
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4 UQ Surrogates for Groundwater Flow

material. The physical as well as the probabilistic model are presented as well
as how observational data of hydraulic transmissivity is incorporated, leading
to the generation of samples of the exit time quantity of interest. Section 3
describes the computational realization for solving the Darcy flow equations,
the construction of the truncated Karhunen-Loève representation of the ran-
dom transmissivity field as well as the estimation of the cumulative distribution
function of the exit time quantity of interest. Section 4 gives detailed descrip-
tion of the two surrogate types to be compared, Gaussian process emulation
and sparse polynomial collocation, emphasising their differences with respect
to construction, computation and interpretation. In Section 5, we present the
results of numerical computations with both surrogates using original data
from the WIPP site, and present our conclusions in Section 6.

2 Uncertainty Propagation for a Groundwater
Flow Problem

In this section we introduce the application setting, physical model, UQ task
as well as the probabilistic model with which this is addressed.

2.1 The Waste Isolation Pilot Plant (WIPP)

The Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, is a long-term deep
geologic storage facility for transuranic waste operated by the U.S. Department
of Energy since 1999. One of the issues investigated in the course of an extensive
performance assessment for WIPP was the risk of hazardous materials escaping
to the biosphere in the event of a future accidental breach of the enclosure
system. As the most likely pathway for such contaminants is transport through
the subsurface via groundwater, we are led to the objective of predicting the
groundwater flow and transport of contaminants released from the storage site.
The WIPP disposal area lies within in the Salado bedded salt formation. The
Salado itself as well as the overlying formations are essentially impermeable to
groundwater with the exception of a laterally extensive but narrow layer of rock
known as the Culebra Dolomite. Details of the geological site characterization
can be found in the extensive documentation1 in the WIPP certification and
recertification applications (U.S. Department of Energy (DOE), 2004, 2014)
which are produced every five years. Figure 1, taken from (U.S. Department
of Energy (DOE), 2014), shows the location of the WIPP site within the
UTM coordinate system, the location of boreholes where measurements of
transmissivity and hydraulic head were obtained as well as the boundaries of
areas with distinct geological features.

A highly relevant quantity of interest in this context is the travel or exit
time of radionuclides after release from a point within the Culebra layer above
the site to reach the boundary of the repository area, the computation of which
requires simulating the groundwater flow and transport in the Culebra. As the

1These can be found at https://wipp.energy.gov/epa-certification-documents.asp.

https://wipp.energy.gov/epa-certification-documents.asp
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Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014 

DOE/WIPP-14-3503 Appendix TFIELD-2014 TFIELD-10

 1 
Figure TFIELD 2-8. Salado Dissolution Margin and Rustler Mudstone/Halite (M/H) 2 

Margins. WIPP Culebra wells with high or low transmissivity (T) 3 
are indicated. WIPP Culebra model extents indicated with large 4 
black rectangle. Wells mentioned in text are labeled using larger 5 

font. 6 

Fig. 1 Horizontal location of WIPP repository (small black square, land withdrawal bound-
ary LWB), observation boreholes with markers indicating low and high transmissivity values
as well as boundaries of distinct geological features; these are accounted for in the trend
model of the transmissivity field in Section 2.4.1. Source: (U.S. Department of Energy (DOE),
2014).

precise transmissivity properties of the rock are uncertain, the same applies to
the exit time. In the remainder of this section we describe a model for ground-
water flow and contaminant transport in which the uncertain transmissivity
is modeled stochastically, incorporating geological background information,
standard geostatistical assumptions as well as available measurement data.

2.2 Darcy Flow and Particle Transport

We model the flow of groundwater through the Culebra dolomite geological
unit by stationary single-phase Darcy flow. Denoting by p the hydraulic head



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Springer Nature 2021 LATEX template

6 UQ Surrogates for Groundwater Flow

(pressure) and by K the (scalar) hydraulic conductivity, the volumetric flux
(Darcy flux) q is given by

q = −K∇p. (1)

If u denotes the pore velocity of the groundwater, which is related to the Darcy
flux in terms of the porosity ϕ as q = ϕu , conservation of mass in the absence
of sources and sinks leads to the divergence-free condition

∇·u = 0. (2)

Since the aquifer under consideration is essentially horizontal with a much
larger lateral than vertical extent, we model the flow as two-dimensional and
consider the hydraulic transmissivity T = bK in place of conductivity, where
b denotes the aquifer thickness.

On the boundary ∂D of the bounded computational domain D, we dis-
tinguish impermeable segments ΓN along which the normal flux vanishes and
their complement ΓD = ∂D\ΓN , where we prescribe the value of the hydraulic
head p. Denoting by n the exterior unit normal vector along ΓN and by g the
prescribed head data along ΓD, this leads to the boundary conditions

n · u = 0 on ΓN , p = g on ΓD. (3)

The computational domain D as well as the boundary segments ΓN and ΓD

are displayed in the left panel in Figure 2. The Dirichlet data g is obtained by
evaluating a kriging interpolant (cf. Section 2.4.4) of observational hydraulic
head data taken from (U.S. Department of Energy (DOE), 2014). As the flux
variable u is of primary interest in view of the subsequent transport calcula-
tion we employ the usual mixed formulation of the boundary value problem
presented by (1), (2) and (3). The associated variational formulation consists
in finding the pair (u , p) ∈ V ×W such that(

ϕb

T
u , v

)
− (p,∇· v) = −⟨g,n · v⟩ΓD

∀v ∈ V, (4a)

(∇·u , q) = 0 ∀q ∈ W (4b)

with suitable boundary data g ∈ H1/2(ΓD). Here (·, ·) denotes the L2(D)
inner product, the variational spaces are given by

V = {v ∈ H (div; D),n · v |ΓN
= 0}, W = L2(D)

and ⟨·, ·⟩ΓD
denotes the duality pairing H1/2(ΓD) × H−1/2(ΓD). Given the

flux solution u of (4), the trajectory of a particle from a release point x0 ∈ D
neglecting hydraulic dispersion is found as the solution of the initial value
problem

ẋ (t) = u(x (t)), t ≥ 0, x (0) = x0. (5)
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A discussion of the regularity requirements for the Darcy flow problem (4)
needed to ensure existence and uniqueness of the particle trajectory (5) can
be found in (Graham et al, 2016, Section 5.3). As we shall see below, for the
probabilistic model of transmissivity with finite-dimensional noise, which we
shall employ in our calculations, these requirements are satisfied. As a quantity
of interest derived from the solution of the random Darcy flow equations,
we choose the logarithm of the travel or exit time of a particle released at
a location x0 inside the Culebra layer above the WIPP repository until it
reaches the boundary of the subdomain D0 ⊂ D marking the edge of the
WIPP site projected vertically up to the Culebra layer within the surrounding
computational domain D,

fexit := logmin{t > 0 : x (t) /∈ D0, x0 ∈ D0}.

The location of the release point x0, the perimeter of the WIPP site D0 as well
as a number of particle trajectory realizations from x0 to ∂D0 are displayed
in Figure 2.
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Fig. 2 Left: Computational domain D with Neumann boundary ΓN (blue) and Dirichlet
boundary ΓD (black) as well as the perimeter of the WIPP site D0 (red dashed), location
of particle release point x0 (black circle), and boundary of the Salado dissolution zone D1

(yellow), cf. Section 2.4.1 below, respected by the triangular finite element mesh. Right:
Simulation of several realizations of random particle trajectories from x0 to ∂D0.

2.3 Probabilistic Modeling of Uncertain Transmissivity

The primary source of uncertainty in the modeling of flow and transport in
the Culebra dolomite is the spatial variation of hydraulic conductivity, or,
in our horizontal two-dimensional setting, transmissivity T . The prevailing
mathematical description of uncertainty is probabilistic, i.e., the quantities in
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question are modeled as random variables following a given probability distri-
bution. The randomness thus introduced is an expression of uncertainty due
to lack of knowledge of the precise spatial variation of transmissivity through-
out the domain D in the sense that some realizations of transmissivity across
the domain are more likely than others. Rather than a deterministic value
T = T (x ), transmissivity at a point x ∈ D (scaled by porosity and thickness)
is thus expressed as a random variable T (x , ω) governed by a probability mea-
sure P defined on a probability space (Ω,A,P) with elementary outcome set Ω
carrying a σ-algebra A on which a probability measure P is defined. The col-
lection of all such random variables {T (x , ω) : x ∈ D} is known as a random
field, i.e., a stochastic process for which the index variable x is a spatial coor-
dinate.2 The most well-established probabilistic model for transmissivity in
the hydrology literature assumes that T (x , ·) follows a lognormal distribution,
i.e., that Z(x , ·) := log T (x , ·) is a Gaussian random field (cf. Freeze (1975);
Hoeksema and Kitanidis (1985) and (de Marsily, 1986, Chapter 11)). By con-
sequence, realizations of T = exp(Z) are always positive. Such a Gaussian
random field Z is completely specified by its mean and covariance function

Z(x ) = E [Z(x )] , x ∈ D,

and c(x ,y) = E
[
(Z(x )− Z(x ))(Z(y)− Z(y))

]
, x ,y ∈ D,

respectively, where E [·] denotes mathematical expectation with respect to P.
We assume throughout that the covariance function of Z = log T is

isotropic and that the fluctuation Z−Z is wide-sense stationary such that we
have c(x ,y) = c(|x −y |), i.e., the covariance depends only on the (Euclidean)
separation distance r = |x − y |. Moreover, we assume c(r) to belong to the
Matérn family of covariance models

c(r) =
σ2

2ν−1 Γ(ν)

(
2
√
ν r

ρ

)ν

Kν

(
2
√
ν r

ρ

)
, r = |x − y |, (6)

whereKν denotes the modified Bessel function of order ν > 0. The quantity ν is
called the smoothness parameter, σ2 = c(0) = VarZ(x ) is the (marginal) vari-
ance (constant in x ) and the parameter ρ > 0 is called the correlation length,
a measure of how quickly the covariance decays with separation distance. A
detailed justification for using the Matérn model as well as a discussion of its
properties and scaling variants can be found in (Stein, 1999, pp. 48).

For the particular scaling (6), the Matérn covariance coincides with the
exponential covariance for ν = 1

2 , the Bessel covariance for ν = 1 and the
squared exponential covariance in the limit ν → ∞. The smoothness of the
realizations of Z increases with ν, and the spatial scale of variation is described
by ρ. We determine the values of the hyperparameters (σ, ρ, ν) by statistical
estimation based on data published in the WIPP Compliance Recertification

2We will, following statistical convention, omit the random field argument ω (or dot) denoting
the elementary event for typographical convenience except when we wish to emphasize its random
nature.
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Assessment U.S. Department of Energy (DOE) (2014) documents, which con-
tain measurements of transmissivity in the Culebra dolomite at 62 boreholes
throughout the assessment site (cf. Figure 1). Figure 3 displays realizations of
a Gaussian random field describing Z = log T throughout the computational
domain D representing the Culebra flow domain. It can be seen that larger
values of ν result in realizations that are smoother, and smaller values of ρ
lead to structures which decorrelate faster with separation distance.

(a) ρ = 10 000, ν = 1
2 (b) ρ = 2000, ν = 1

2

(c) ρ = 10 000, ν = 5
2 (d) ρ = 2000, ν = 5

2

Fig. 3 Realizations of mean-zero Gaussian random fields with Matérn covariance function
for different values of ρ and ν. All plots use the same color map and σ2 was set to 1 in each
case.

2.4 Statistical Estimation of Transmissivity Field

As described in Section 2.3, we model the uncertain hydraulic transmissivity
T as a lognormal random field on the bounded simulation domain D ⊂ R2, so
that the random field

Z := log T = Z(x ) + Z̃(x , ω) (7)

is Gaussian with (deterministic) mean Z and (centered) residual field Z̃. Due
to the complexity and irregular features of geological structures, it is crucial
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to merge the stochastic model with available measurement data in a transpar-
ent fashion. Below we summarize the statistical techniques by which available
data is incorporated into the stochastic model of uncertain transmissivity. Its
construction proceeds in three steps:
(1) the assumptions that T follows a lognormal distribution and that the

covariance function of log T belongs to the Matérn class;
(2) the parameters σ, ν and ρ in the Matérn covariance function (6) are

determined by restricted maximum likelihood estimation (RML);
(3) the lognormal field thus obtained is then further conditioned on the

available observations of transmissivity at the WIPP site.
We present some background on these techniques and how they are applied to
our model of WIPP transmissivity in the following subsections.

2.4.1 Regression Model of Mean Transmissivity

The deterministic mean Z of the log-transmissivity field is constructed as a
linear regression model

Z(x ) =
k∑

j=1

βjhj(x ) = h(x )⊤β, h(x ) =

h1(x )
...

hk(x )

 , (8)

in which the k components of h consist of regression functions from which
an approximate trend behavior of Z can be obtained by linear combination.
Known geological features of the area under study can be incorporated by
choosing the regression functions as, e.g., indicator functions of subdomains
possessing distinguishing characteristics, linear or polynomial trends to be fit-
ted as well as the variation of available quantities known or believed to affect
the transmissivity field. Based on the available WIPP technical documents, a
model comparison was made using the five regression functions

h1(x ) ≡ 1 (constant), h4(x ) = d(x ) (overburden),

h2(x ) = x1 (linear in x1), h5(x ) = 1D1
(x ) (zone indicator).

h3(x ) = x2 (linear in x2),

(9)

The first three regression functions allow to fit a basic affine trend. The over-
burden d(x ) denotes the vertical distance between the ground surface and the
top of the Culebra layer above location x . This is an indication of the extent
to which erosion has led to stress relief on the underlying Culebra layer, possi-
bly causing new fracturing or the opening of pre-existing fractures and thereby
enhancing transmissivity. Regression function h5 is the indicator function of
a subdomain D1 ⊂ D to the north, south and west of the WIPP site, where
dissolution of the upper Salado formation has led to strain in the overlying
rock, including the Culebra, leading to larger apertures in existing fractures,
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collapse and brecciation and thus to a generally higher transmissivity (cf. U.S.
Department of Energy (DOE) (2004)).

2.4.2 Restricted Maximum Likelihood Estimation

Under the models for the mean (8) and covariance structure (6), the Gaussian
log-transmissivity field (7) has the covariance function cθ(x ,y), where θ =
(σ2, ρ, ν) denotes the triplet of parameters consisting of variance σ2, correlation
length ρ and smoothness parameter ν. The specification of the probabilistic
model for the random field Z consists in determining the vector β of regression
coefficients and the covariance parameter vector θ. It is desired that estimation
techniques for these based on observations be unbiased, i.e., that the average
estimation error is zero, and that this error be optimal in a least squares sense.
Another desirable property is consistency, whereby the estimates converge to
the true values as more and more observations are added.

The restriction of Z to a finite set of observation points {xj}nj=1 ⊂ D forms
a multivariate Gaussian random vector, which we denote by

Z : Ω → Rn, ω 7→ Z (ω) =

Z(x1, ω)
...

Z(xn, ω)

 . (10)

In view of (7), its expectation is

E [Z ] = Hβ, [H ]i,j = hj(xi), i = 1, . . . , n, j = 1, . . . , k,

and its joint probability density function given for ξ ∈ Rn by

p(ξ; β,θ) =
1√

(2π)n detCθ

exp

(
−1

2
(ξ −Hβ)⊤C−1

θ (ξ −Hβ)

)
, (11)

in which Cθ denotes the covariance matrix

Cθ = E
[
ZZ⊤] = [cθ(xi,xj)]

n
i,j=1 ∈ Rn×n

of the random vector Z .
When the covariance parameters θ are known, an unbiased, consistent and

optimal estimate of β, given a vector of observations ζ ∈ Rn, is obtained by
minimizing the (generalized) least squares functional

∥ζ −Hβ∥2
C−1

θ

:= (ζ −Hβ)⊤C−1
θ (ζ −Hβ),

resulting in the estimate

β̂ = (H⊤C−1
θ H )−1H⊤C−1

θ ζ. (12)
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If, by contrast, the covariance parameters θ are not known, one approach is
to estimate them from the data along with β by maximum likelihood (ML)
estimation, where the joint probability density function (11) is maximized for
the given observation vector ξ = ζ as a function of the parameters β and θ. To
solve this nonlinear optimization problem one usually minimizes the negative
logarithm ℓ(ζ; β,θ) := − log p(ζ; β,θ) of the likelihood given by

ℓ(ζ; β,θ) =
1

2

[
n log(2π) + log detCθ + (ζ −Hβ)⊤C−1

θ (ζ −Hβ)
]
. (13)

As is argued, e.g., in Kitanidis (1987), when random field hydrogeological
parameters are estimated based on data from a finite region where the sep-
aration distance of the measurements is of the same order as the correlation
length, the use of fitted means may introduce a bias in the estimation of the
covariance parameters, resulting typically in an underestimation of both the
variance and correlation length parameters. This bias is the result of strong
correlations in the observations, preventing the estimation error from entering
the asymptotic regime as more observations are added, since the number of
independent measurements does not increase due to these strong correlations.

A remedy known as restricted maximum likelihood estimation (RML) (cf.
Harville, 1977; Stein, 1999, p. 170) is to apply a transformation to the data
which filters out the mean. In the case of the linear model (8) for the mean,
we consider the random vector Z ′ obtained by projecting Z orthogonally onto
the orthogonal complement of the range of H , hence removing any effect of
the estimated regression coefficients β on the estimation of the covariance
parameters. Indeed, if the columns of Q ∈ Rn×(n−k) form an orthonormal
basis of range(H ), then Q⊤H = O and therefore the random vector

Z ′ := QQ⊤Z

has expectation

E [Z ′] = E
[
QQ⊤(H β + Z̃ )

]
= E

[
Z̃
]
= 0

regardless of the value of β. Here Z̃ denotes the random vector obtained by
restricting the residual random field Z̃ to the observation points. RML now
maximizes the likelihood of the transformed random vector Z ′, which has
an (n − k)-dimensional multivariate normal distribution with zero mean and
covariance matrix Q⊤CθQ ∈ R(n−k)×(n−k). The minimizing θ can then be
inserted into (12) to obtain β.

2.4.3 Hyperparameter Estimation and Model Selection

For all combinations of the regression functions (9), a restricted maximum
likelihood (RML) estimation procedure detailed in Section 2.4.2 was used to
determine the hyperparameters σ2, ρ and ν of the Matérn covariance model
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(6) based on the 62 transmissivity observations published in U.S. Depart-
ment of Energy (DOE) (2014). Based on this calibrated covariance structure,
a model comparison was carried out following a procedure proposed in Kitani-
dis (1997b), in which a significance test is used to determine whether adding
further regression functions to a model better explains the data. The test com-
putes the sums of the decorrelated squared errors of both regression models at
the observation locations and compares their normalized relative difference. If
the the ratio exceeds a chosen quantile of a suitable F distribution, the smaller
regression model is not considered sufficient, i.e., it is a classical variance ratio
test.

In this way, we arrived at a trend model (8) consisting of the regression
functions {h1, h2, h5} from (9). In the following we refer to this parametriza-
tion of the mean as the best model and to that containing only the constant
trend function h1 as the constant model. The resulting estimates of the hyper-
parameters σ, ρ and ν for both models are given in Table 1. Note that we have
fixed ν = 0.5 in both cases since the estimates for ν were sufficiently close
to this value3, which also allows a more efficient evaluation of the associated
covariance function. The regression model estimated by the (generalized) least
squares method for the mean is then

Z(x ) = 143.98− 2.55 · 10−4x1 + 3.311D1(x ).

Note that the values for x1 (UTM Easting coordinates) are of order 6 · 105 for
the WIPP computational domain D.

Trend model Sill σ2 Range ρ Smoothness ν
h1 17.12 6509.8 0.5
h1, h2, h5 6.15 1948.0 0.5

Table 1 Restricted maximum likelihood estimation of hyperparameters σ2 (variance or
sill) and ρ (correlation length or range)for two trend models based on the 64 observations
of transmissivity. The smoothness parameter was fixed at ν = 1/2, which corresponds to
the exponential covariance kernel.

2.4.4 Conditioning on Transmissivity Data

Once the mean and covariance functions of the Gaussian random field Z =
log T have been determined, the log transmissivity measurements {z(xj)}Nj=1

may be used to further calibrate the stochastic model to fit the observations
in a statistical sense using the technique known as kriging (cf. Cressie (1991);
Kitanidis (1997a); Stein (1999)). Kriging refers to best linear unbiased predic-
tion (BLUP) in which the value of the random field Z at an arbitrary location

3If we do not fix ν = 0.5 but estimate it as well the RML results are σ̂2 = 6.14, ρ̂ = 2005.2,
and ν̂ = 0.48.
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x ∈ D is estimated as an affine combination

Ẑ = Ẑ(x , ω) = λ0(x ) + λ(x )⊤Z (ω) (14)

of the (random) realizations Z = (Z(x1), . . . , Z(xN ))⊤, with spatially varying
coefficients λ0 : D → R and λ = (λ1(x ), . . . , λN (x )) : D → RN chosen to
make the estimator unbiased and mean square optimal, which requires that,
for all x ∈ D, we have

E
[
Ẑ(x )

]
= E [Z(x )] and E

[
|Z(x )− Ẑ(x )|2

]
→ min

λ0,λ
!.

For a known mean function Z the solution is given by the (simple) kriging
prediction or interpolation

Ẑ(x ) = Ẑ(x , ω) = Z(x ) + c(x )⊤C−1
(
Z (ω)− Z

)
,

where Z := [Z(x1), . . . , Z(xN )]⊤, c(x ) := (c(x ,x1), . . . , c(x ,xN ))⊤ and C :=
(c(xi,xj))i,j=1,...,N ∈ RN×N , with mean square error given via the kriging
(error) covariance

E

[∣∣∣Z(x )− Ẑ(x )
∣∣∣2] = ĉ(x ,x ), ĉ(x ,y) := c(x ,y)− c(x )⊤C−1c(y).

Note that for a Gaussian random field Z the kriging prediction Ẑ is again
Gaussian and coincides with the conditioned random field Z(x )|Z = z ,
where z = (z1, . . . , zN )⊤ with zi = z(xi) for i = 1, . . . , N , so that Ẑ(x ) ∼
N
(
Z(x ) + c(x )⊤C−1

(
z − Z

)
, ĉ(x , ·)

)
. It is easily verified that at the obser-

vation sites {xj}Nj=1 we have Ẑ(xj) = z(xj) and ĉ(xj ,xj) = 0, hence the kriging

estimate Ẑ of the random field Z interpolates the measurements.
In the variant called universal kriging, the mean Z is not assumed known

and instead modelled as in (8). Forming the least squares estimate β̂ of β and

proceeding as above with Z(x ) = h(x )⊤β̂ would fail to account for uncer-
tainty in this estimate. Instead, we require that unbiasedness of the kriging
estimate (14) hold for all β ∈ Rk, resp. for all possible mean functions. Apply-
ing unbiasedness as a constraint in the pointwise minimization over λ0,λ via
Lagrange multipliers yields the universal kriging prediction or interpolation

Ẑ(x ) =

[
c(x )
h(x )

]⊤ [
C H
H⊤ 0

]−1 [
Z
0

]
, (15)

where

H =

h1(x1) . . . hk(x1)
...

...
h1(xN ) . . . hk(xN )

 ∈ RN×k,
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or, equivalently,

Ẑ(x ) = h(x )⊤β̂ + c(x )⊤C−1
(
Z −H β̂

)
, (16)

where β̂ =
(
H⊤C−1H

)−1
H⊤C−1Z , with mean square error

E
[
|Z(x )− Ẑ(x )|2

]
= ĉ(x ,x ) given in this case by the universal kriging

(error) covariance

ĉ(x ,y) := c(x ,y)− c(x )⊤C−1c(y) + γ(x )⊤V γ(y), (17)

where γ = h(x ) −H⊤C−1c(x ) and V = (H TC−1H )−1. Thus, the univer-
sal kriging prediction (16) consists in obtaining the mean as the least squares

estimate h(x )⊤β̂ and proceeding as in simple kriging. However, the universal
kriging mean square error contains the additional term γ(x )⊤V γ(x ) ≥ 0 com-
pared to that of simple kriging, which accounts for the additional uncertainty
present in the estimated mean and β. Note further that, even for Gaussian
Z, the universal kriging mean and (co)variance do not, in general, possess an
interpretation as those of a conditioned Gaussian random field as is the case
with simple kriging.

We now use the universal kriged Gaussian random field Ẑ obtained from
the available log transmissivity measurements z = {z(xj)}Nj=1 as our final
stochastic model for the uncertain transmissivity field, i.e.,

Ẑ(x ) ∼ N (ẑ(x ), ĉ(x , ·))

with ĉ given in (17) and ẑ resulting by inserting the realization Z = z in (15).
The resulting kriged mean ẑ and pointwise variance ĉ are displayed in Figure 4.

(a) Kriging mean (b) Kriging variance

Fig. 4 Universal kriging prediction of Z = log T based on 62 available transmissivity obser-
vations. Left: kriged mean field ẑ(x ). Right: pointwise kriging variance ĉ(x , x ). The circular
markers indicate the locations (and values) of the observational log transmissivity data. The
interpolation property of ẑ(x ) is apparent.
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2.5 Uncertainty Propagation for the Quantity of Interest

For a random transmissivity field T (ω) = T (·, ω), ω ∈ Ω, we consider individual
realizations of the associated random boundary value problem in its mixed
formulation (4), i.e.,(

ϕb

T (ω)
u(ω), v

)
− (p(ω),∇· v) = −⟨g,n · v⟩ΓD

∀v ∈ V, (18a)

(∇·u(ω), q) = 0 ∀q ∈ W, (18b)

with random solution pair (u(ω), p(ω)) ∈ V × W. The equations (18) are
now understood as holding P-almost surely. Under suitable assumptions
(cf. Babuška et al (2007)) we have (u , p) ∈ L2

P(V ×W), i.e., the norm of the
solution is square integrable against the probability measure P.

For the quantity of interest under consideration, the exit time for particle
trajectories, each realization of the random flux yields a realization of the
associated random initial value problem

ẋ (t, ω) = u(x (t, ω), ω), t ≥ 0, x (0, ω) = x0. (19)

P-almost surely, and hence, the quantity of interest becomes a random variable

fexit(ω) := logmin{t > 0 : x (t, ω) /∈ D0, x0 ∈ D0}. (20)

A complete characterization of the uncertainty in fexit is given by its
cumulative distribution function (CDF)

F (s) := P(fexit ≤ s), F : R → [0, 1].

Due to the complexity of the problem, F cannot be given in analytic form and
has to be approximated. We comment on the computational aspects in the
next section.

3 Computational Realization

In this section we describe (i) the spatial discretization used for solving the
Darcy flow equations (4) or (18), respectively, given a realization of the trans-
missivity field T , (ii) a discrete representation of the random model for the
transmissivity field T as well as (iii) a Monte Carlo approach for approximating
the CDF of the quantity of interest.

3.1 Finite Element Solution of Darcy Flow Problem

We solve the Darcy flow equations (4) – or individual realizations of their
random form (18) – using a mixed finite element discretization consisting of the
lowest order Raviart-Thomas space Vh ⊂ V for the flux variable and piecewise
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constant space Wh ⊂ W for the hydraulic head with respect to a triangulation
Th of the domain D, where h > 0 is a measure of mesh resolution. This
discretization is known to be inf-sup-stable (cf. (Boffi et al, 2013, Chapter 7),
(Ern and Guermond, 2021, Chapter 51)).

We choose a fixed triangulation of the two-dimensional computational
domain with mesh width h chosen such that at least 10 elements correspond to
the correlation length of the random transmissivity field, resulting in a mesh
consisting of 28 993 triangles with the associated finite element spaces contain-
ing 72 705 degrees of freedom (43 712 for flux and 28 993 for hydraulic head).
Note that a coarser mesh is depicted in Figure 2 for illustration purposes. The
particle tracking is performed by solving the ordinary differential equation
(19) for the given realization. For the lowest-order Raviart-Thomas discretiza-
tion, the constraint of zero divergence results in an elementwise constant flux,
making this computation trivial and incurring no additional discretization
error.

3.2 Conditioned Karhunen-Loève Expansion

Various methods exist to generate realizations of random fields, among
these the turning bands method, circulant embedding and Karhunen-Loève
expansion, see (cf. Lord et al, 2014). In this work, we generate approxi-
mate realizations of the Gaussian log transmissivity field by truncating its
Karhunen-Loève expansion, an orthogonal expansion of a random field based
on the spectral decomposition of its covariance operator

C : L2(D) → L2(D), u 7→ Cu, (Cu)(x ) =

∫
D

c(x ,y)u(y) dy , (21)

which for continuous covariance functions is compact and selfadjoint, positive
definite and hence possesses a system of orthonormal eigenfunctions (zm)∞m=1

which are complete in L2(D). Denoting by λm ≥ 0 the eigenvalue (ordered
descending) associated with eigenfunction zm, a second-order random field Z
on D with mean Z possesses the expansion

Z(x ) = Z(x ) +
∞∑

m=1

√
λm zm(x ) ξm, x ∈ D, (22)

converging in L2, where (ξm)m∈N is a sequence of pairwise uncorrelated random
variables and (λm)m∈N is square summable. In the present setting, the log
transmissivity field Z is Gaussian, as stated in Section 2.3, therefore we have
ξm ∼ N(0, 1) for all m.

An approximation suited for computation is obtained by truncating the
infinite expansion in (22) after a finite number M of terms, hence the accuracy
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of the resulting approximation

Z(x ) ≈ Z(x ) +
M∑

m=1

√
λmzm(x )ξm (23)

for fixed M will depend on the decay rate of the eigenvalues.
Once a truncation indexM has been fixed, the random field can be regarded

as parameterized by the uncorrelated M -variate normal random vector ξ =
(ξ1, . . . , ξM )⊤ ∼ N(0, I ), which takes values in RM . We may thus consider
all random quantities in (18), i.e., the transmissivity field T and the solution
(u , p) of the Darcy flow equations as well as the particle trajectories (19) and
exit time fexit in (20) as parameterized by realizations of this single random
vector.

Explicit closed-form solutions to the eigenvalue problem (21) are known
only for a small number of special cases, hence we approximate the eigenpairs
numerically. We approximate the covariance operator C, where the covariance
kernel is obtained from the universal kriging covariance ĉ in (17), by Galerkin
projection into a finite-dimensional subspace Wh of L2(D) consisting of piece-
wise constant functions with respect to a triangulation of the domain D, which
we assume to be polygonal for simplicity4. Denoting by {ϕ1, . . . , ϕN} a basis
of Wh, we represent functions in Wh as

u(x ) =
N∑
i=1

uiϕi(x ) (24)

with coefficient vector u = (u1, . . . , uN )⊤. Substituting (24) into (21), multi-
plying it by test functions ϕj and integrating over D we arrive at the discrete
generalized eigenvalue problem

Cu = λMu , (25)

where C is a symmetric positive semi-definite matrix with entries

[C ]i,j = (Cϕi, ϕj)L2(D) =

∫
D

ϕj(x )

∫
D

c(x ,y)ϕi(y) dy dx (26)

and M is the symmetric positive definite Gram matrix of the piecewise
constant basis with entries

[M ]i,j = (ϕj , ϕi)L2(D) =

∫
D

ϕj(x )ϕi(x ) dx . (27)

4We use the same finite element space as for the piecewise constant discretization of the
hydraulic head p for convenience.
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An immediate difficulty with solving (25) is that C is a dense matrix due
to the nonlocal nature of the integral operator C, hence generating and stor-
ing C is computationally expensive already for problems on two-dimensional
domains, and even more so in three dimensions. Note that M is diagonal due
to the disjoint supports of the ϕi. Moreover, even if generating and storing C
were feasible, solving a dense eigenvalue problem by the standard symmetric
QR algorithm results in excessive computation costs. We address this prob-
lem by first using an iterative method for approximating only the dominant
M eigenvalues of C using a variant of the thick-restart-Lanczos method of Wu
and Simon (2000), which requires only matrix vector products with C in the
course of the iteration. Second, we represent C in hierarchical matrix format
(cf. Hackbusch (2015)), which brings the cost of generating, storing and multu-
plying C by a vector from O(N2) to a complexity O(N logN). Further details
on using hierarchical matrices in the context of random field generation with
the Galerkin method can be found in Eiermann et al (2007) and Khoromskij
et al (2009).

Figure 5 shows a few computed eigenfunctions zm for the kriging covariance
function ĉ in (17) displayed in Figure 4.

(a) z1(x ) (b) z3(x ) (c) z9(x ) (c) z27(x )

(e) z30(x ) (f) z40(x ) (g) z50(x ) (h) z100(x )

Fig. 5 Computed eigenfunctions of the kriging covariance function ĉ in (17), cf. Figure 4

.

3.3 Empirical Estimation of the CDF

A common and straightforward way to approximate the CDF F of the random
quantity of interest fexit(ξ) := logmin{t > 0 : x (t, ξ) /∈ D0, x0 ∈ D0} is by
generating n samples f1, . . . , fn of the random fexit by sampling n different
realizations ξ1, . . . , ξn of the random coefficient vector ξ in the KL expansion
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of log T and solving the corresponding n boundary and initial value problems
to obtain fi = fexit(ξi). The empirical CDF (ECDF) of fexit(ξ) is then given
by

Fn(s) =
1

n

n∑
j=1

1(−∞,fj ](s).

The ECDF Fn is a random approximation to the CDF F of the quantity of
interest fexit due to the randomly drawn samples f1, . . . , fn. We denote the
error between the (random) ECDF and the true CDF by

Dn := sup
s∈R

|F (s)− Fn(s)| . (28)

For i.i.d. samples a classical result known as Donsker’s theorem (Athreya and
Lahiri, 2006, Corollary 11.4.13) states

√
nDn

d−−−−→
n→∞

sup
t∈[0,1]

|B(t)|,

where B denotes a standard Brownian bridge on the unit interval [0, 1]. This
theoretical result can be employed to compute the necessary minimal sample
size n for a desired error criterion, which we fix here by requiring

P (Dn > 0.01) ≤ 0.05. (29)

Using the asymptotic result provided by Donsker’s theorem as well as
P
(
∥B∥C[0,1] > 1.36

)
≈ 0.05, see (Williams, 2004, p. 343), we obtain for

n ≈ 20 000 that P (Dn > 0.01) ≈ 0.05. Hence, in the present setting this means
that, for this level of accuracy in approximating the CDF of the quantity of
interest, we need to solve n = 20 000 Darcy flow equations and compute the
associated particle trajectories. Thus, the question arises whether we could
save computational work by employing surrogates for the mapping from the
random parameter vector ξ to the solution of the random PDE or the quantity
of interest fexit itself.

Estimation of CDF based on surrogates

Assuming now that we have an approximation f̂exit : RM → R to the quantity
of interest f seen as mapping from ξ ∈ RM → R, the resulting approximate
ECDF F̂n(s) based on n samples f̂1, . . . , f̂n of f̂exit resulting from n samples

ξi of the random KL parameter ξ, where f̂i = f̂exit(ξi) is given by

F̂N (s) =
1

N

N∑
j=1

1(−∞,f̂j ]
(s).

The question we investigate in this work is whether, for common surrogate
constructions such as stochastic collocation and Gaussian process emulators,
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the approximation error ∥fexit − f̂exit∥ (measured in a suitable norm) can
be made smaller than the sampling error Dn in the empirical estimation of
the CDF. To this end, we evaluate the quality of the surrogate f̂exit by a
two-sample Kolmogorow-Smirnov (KS) test which is a well-known hypothe-

sis test for checking whether sets of two samples—in our case f̂1, . . . , f̂n and
f1, . . . , fn—are likely to have been drawn from the same distribution. Specif-
ically, in our case the KS test is passed at significance level α = 0.05 if the
KS-statistic K satisfies

K := sup
s∈R

∣∣∣F̂n(s)− Fn(s)
∣∣∣ ≤ 1.36

√
2

n
,

cf. Williams (2004).

4 Propagation Surrogates

In the following, we recall sparse grid polynomial collocation and Gaussian
process emulators (GPE) as surrogate techniques for approximating a function
f : Ξ → Y of M (random or parametric) variables ξ ∈ RM taking values either
in Y = R, as for scalar quantities of interest such as the exit time, or a function
space, e.g., Y = V ×W, as for the solution of the mixed formulation (18) of
the Darcy flow equations with random conductivity.

We begin by illustrating the basic principles of polynomial collocation and
Gaussian process emulation for approximating a function of a single variable,
i.e., Ξ ⊆ R, before proceeding to the technical details for the multivariate case
Ξ ⊆ RM , where we assume Ξ to be of product form Ξ = ΞM with Ξ ⊆ R.

4.1 Univariate Collocation and Emulation

As a simple example in the style of the GPE tutorial O’Hagan (2006), consider
the function

y = f(ξ) := ξ + 3 sin
3ξ

4
, ξ ∈ Ξ := [0, 6].

The presence of input uncertainty, i.e., uncertainty with regard to the precise
value of the independent variable ξ, is accounted for by modeling it as a random
variable ξ ∼ U[0, 6]. Suppose further that f is only accessible in the form of
a finite number of point evaluations f(ξ), as is the case for the exit time in
our WIPP case study, where each evaluation of the former requires solving the
Darcy flow problem followed by particle tracking up to the exit boundary. The
task is to construct a computationally inexpensive approximation f̂ : Ξ → R
of f given n evaluations

yj = f(ξj), j = 1, . . . , n.

The points of evaluation ξj are often called design points in the emulator
literature and nodes or knots in the context of collocation. Their choice depends
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on the type of surrogate being constructed. We begin with an elementary
numerical analysis procedure and then contrast this with an approach rooted
in the statistics community.

Polynomial Collocation

In the univariate case polynomial collocation simplifies to Lagrange interpo-
lation by global polynomials, and the surrogate f̂ for f takes the familiar
form

f̂n(ξ) :=

n∑
j=1

f(ξj)ℓj(ξ), ℓj(ξ) =
∏
k ̸=j

ξ − ξk
ξj − ξk

with {ℓj}nj=1 the Lagrange fundamental polynomials associated with the nodes
{ξ1, . . . , ξn}. Although this expression is well-defined for any set of distinct
nodes, good approximation quality is only achieved if the points are chosen
with care. A classical choice for bounded intervals is the family of Clenshaw–
Curtis nodes (also called Chebyshev nodes). Scaled to the interval [0, 6], the
set of n Clenshaw–Curtis nodes is given by

ξj = 3 + 3 cos

(
j − 1

n− 1
π

)
, j = 1, . . . , n.

Other common choices, particularly for UQ applications, are the roots of the n-
th orthogonal polynomial associated with the probability density of ξ on Ξ, e.g.,
Gauss–Legendre nodes for the uniform distribution or Gauss–Hermite nodes
for the normal distribution, cf. Babuška et al (2010). For optimal convergence
of the interpolants for smooth functions f it is well known that the spatial
distribution of the nodes ξj ∈ Ξ should follow the equilibrium distribution
in the sense of logarithmic potential theory, which for the standard interval
Ξ = [−1, 1] is given by dµ(ξ) = 1/π

√
1− ξ2, cf. (Trefethen, 2013, Chapter 12).

In particular, the nodes should cluster near the interval endpoints. Figure 6
shows two polynomial interpolation surrogates for f as well as the CDF of the
output f(ξ).

The approximation quality of polynomial interpolation depends not only
on the choice of interpolation nodes, but also on the smoothness of f . For
example, we have for f ∈ Cr(Ξ), r ∈ N, that

∥f − f̂n∥∞ ≤ cr(f)n
−r (1 + Λξ1,...,ξn)

where ∥f − f̂n∥∞ = supξ∈Ξ|f(ξ) − f̂n(ξ)|, cr(f) is a constant depending only
on r and f , and Λξ1,...,ξn denotes the Lebesgue constant of the nodes ξ1, . . . , ξn.
Thus, we should choose nodes which have a small Lebesgue constant, and one
which grows only slowly with n. This is the case for Chebyshev and Clenshaw–
Curtis nodes, for which

Λξ1,...,ξn ∈ O(log n).
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(a) Polynomial surrogates
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(b) Resulting CDF for output
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Fig. 6 The function f(ξ) = ξ + 3 sin(3ξ/4) on Ξ = [0, 6] and its Lagrange interpolation

f̂n based on n = 3 and n = 5 Clenshaw-Curtis nodes (left) and the resulting CDF for the

output y = f(ξ) and ŷ = f̂n(ξ), resp., if ξ ∼ U(Ξ).

Beside uniform convergence there are also classical results on convergence in
the Lp sense Nevai (1976, 1980, 1984), e.g., for Gauss–Legendre and Gauss–
Hermite nodes

lim
n→∞

∥f − f̂n∥Lp
µ
= 0, ∥f − f̂n∥Lp

µ
=

(∫
Ξ

|f(ξ)− f̂n(ξ)|p µ(dx)
)1/p

,

where µ = U(Ξ) or µ = N(0, 1), respectively. However, if f has low regularity
or is discontinuous, then convergence may fail or it may take a very large
number of nodes to approximate f with sufficient accuracy.

In summary, polynomial collocation constructs a (deterministic) interpolat-
ing polynomial as a surrogate for f based on evaluations of f at n judiciously
chosen nodes, for which the error decays with n at a rate depending on the
smoothness of f .

Gaussian Process Emulation

The GPE approach consists in applying a method originating in geostatistics,
namely the conditioning of Gaussian processes on observations (kriging), to
the input-output map of a computer code. The latter is again represented
by a scalar-valued function f : Ξ → R for now. Again, we assume f is only
accessible via selected point evaluations, i.e., a closed-form expression for f is
not known. Thus, as for the transmissivity of subsurface layers known only
at measurement sites, the function f is unknown but for selected evaluations
f(ξ). This initial uncertainty regarding f in the absence of point evaluations
is modelled by a Gaussian process, i.e., a random function which follows a
Gaussian distribution. Then, given finitely many evaluations f(ξj) at design
points ξj ∈ Ξ, we update our knowledge about f by conditioning the Gaus-
sian process model on the observed data—analogous to the conditioning
of the Gaussian log transmissivity on measurements in Section 2.4.4. The
resulting conditioned mean function or kriging prediction is then employed as
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a (deterministic) surrogate f̂ for f . As an additional feature, the GPE also
provides a probabilistic quantification of the uncertainty in f which remains
after conditioning, i.e., the deviation f̂(ξ)− f(ξ) of the conditioned Gaussian
process mean at points ξ ̸= ξj . This is called code or output uncertainty in
the GPE literature, and is distinct from the input uncertainty modelled by
random ξ: we have

input uncertainty: ξ random and ξ 7→ f(ξ) fixed

output uncertainty: ξ fixed and ξ 7→ f(ξ) random

Of course, both uncertainty types can be superposed, as we shall see later.
Thus, an emulator provides in fact a random surrogate or statistical approx-
imation of a function f which in this context is referred to as the simulator
(cf. O’Hagan (2006)). Before we provide a more detailed discussion of this form
of output uncertainty quantification, we briefly describe how a GPE surrogate
is constructed.

Analogously, to Section 2.3 we first choose a Gaussian process model G ∼
N(m, c) on Ξ with a (parametrized) mean function m : Ξ → R, e.g.,

m(ξ) = m(ξ; β) =

p∑
k=1

βkhk(ξ), β ∈ Rp,

and a (parametrized) covariance function c : Ξ × Ξ → R, e.g., a Matérn
covariance (6) or squared exponential covariance

c(ξ, ξ′) = c(ξ, ξ′; σ2, ρ) = σ2 exp(−(ξ − ξ′)2/ρ), ξ, ξ′ ∈ Ξ. (30)

In a fully Bayesian approach, prior probability distributions are placed on the
hyperparameters β, σ2, ρ of m and c. For now, however, we assume the covari-
ance c to be fixed and m to be given as linear regression model—in analogy to
Section 2.3. Conceptually, the Gaussian process describes our “prior beliefs”
about the unknown f in the form of, e.g., characteristic dependencies reflected
in the regression functions hk in the mean model or smoothness properties
encoded in the choice of c. Given evaluations f(ξj) of f at n design points ξj ,

we condition the Gaussian process G on this data and obtain Ĝn ∼ N(m̂n, ĉn)
with m̂n and ĉn determined by the relations for (simple or universal) krig-

ing, see Section 2.4.4. The resulting surrogate f̂n is the conditional mean (or
kriging prediction) of Ĝn

f̂n(ξ) = m̂n(ξ) =

p∑
k=1

β̂khk(ξ) +

n∑
j=1

γ̂jc(ξ, ξj)

where the coefficients β̂k and γ̂k depend on ξj and linearly on the f(ξj) and are
computed via universal kriging, cf. (16). We illustrate the GPE mean/surrogate
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for f as above and the resulting CDF for the output f̂n(ξ) if ξ ∼ U[0, 6] in
Figure 7. Here we have used, similar to O’Hagan (2006),

m(ξ; β) = β1 + β2ξ, c(ξ, ξ′) = exp

(
−1

4
(ξ − ξ′)2

)
.

(a) GPE surrogates

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b) Resulting CDF for output
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Fig. 7 The function f(ξ) = ξ + 3 sin(3ξ/4) on Ξ = [0, 6] and its GPE surrogates based on
n = 3 and n = 5 design points ξj ∈ {1, 3, 5} and ξj ∈ {0, 1, 3, 5, 6} (left) and the resulting

CDF for the output y = f(ξ) and ŷ = f̂n(ξ), resp., if ξ ∼ U(Ξ).

The choice of design points ξj for GPE follows different considerations
than for polynomial interpolation. It is well known that kriging coincides with
kernel interpolation, see Scheuerer et al (2013). If we assume for simplicity
that m ≡ 0 and c is given, then we can straightforwardly apply established
approximation results from kernel interpolation theory by (Narcowich et al,
2006, Proposition 3.2), (Wendland, 2004, Theorem 11.14), i.e., for f ∈ Hr(Ξ)
with r ≥ 1 and suitable5 covariance functions c such as Matérn kernels (6)

∥f − f̂n∥∞ ≤ Cr(f) Dξ1,...,ξn(Ξ)
r− 1

2

where
Dξ1,...,ξn(Ξ) := max

ξ∈Ξ
min

j=1,...,n
|ξ − ξj |

denotes the fill distance of the node set {ξ1, . . . , ξn}. For the Gaussian covari-
ance function (30) we even obtain exponential convergence if the function f is
analytic, see Wendland (2004),

∥f − f̂n∥∞ ≤ C(f) rDξ1,...,ξn (Ξ), r < 1.

Thus, for good approximation properties, GPE requires a space filling strat-
egy for choosing design points, i.e., one which minimizes fill distance. In the

5“Suitable” means here, that the native or reproducing kernel Hilbert space of c coincides with
Hr(Ξ). For more details we refer to Scheuerer et al (2013); Wendland (2004).
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univariate case this is achieved by equispaced points, in stark contrast to the
optimal equilibrium distribution for interpolation nodes.

As mentioned, a GPE not only provides a surrogate f̂n but also a proba-
bilistic quantification of the remaining pointwise error f− f̂n, which represents
another important difference to (polynomial) collocation. In order to better
understand this probabilistic error, recall that the conditioned Gaussian pro-
cess Ĝn can be seen as our “posterior belief” about the unknown f given
n evaluations f(ξj). Thus, as for the transmissivity field in subsurface flow
(which is deterministic but unknown) we model our uncertainty about the true

output f(ξ) at a fixed input ξ ∈ Ξ by Ĝn(ξ) ∼ N(f̂n(ξ), ĉn(ξ)). We illustrate
the output uncertainty provided by the GPE in Figure 8: the left panel shows
f , f̂n as well as pointwise error estimates for f − f̂n given by two times the
standard deviation of Ĝn(ξ), which can be also understood as the pointwise
95% credibility region for the unknown f(ξ); the right panel shows 10 realiza-
tions of the Gaussian process Ĝn. Each of these could equally well be used as
a surrogate f̂n in place of m̂n, since they are also valid (random) guesses for
f . In this way, Ĝn provides a random surrogate for f .

(a) GPE surrogate and credibility region
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(b) 10 random draws/surrogates from GP
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4
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6

Fig. 8 The function f(ξ) = ξ + 3 sin(3ξ/4) on Ξ = [0, 6], its GPE surrogate and the
related 95% credibility region for f (left) as well as 10 paths (or surrogates) drawn from the

conditioned GP Ĝn.

Random draws from Ĝn can then be used to quantify the effect of the
output uncertainty about the value f(ξ) ̸= f̂n(ξ) within an uncertainty analysis
for varying ξ, e.g., for estimating the CDF of f(ξ) when ξ ∼ U(Ξ), see, e.g.
Oakley and O’Hagan (2002). To explain this in more detail: Regarding the
input uncertainty modelled by ξ ∼ U(Ξ) we would like to quantify its effect
on the outcome by the CDF

F (y) = P(f(ξ) < y).

This is a deterministic function for uncertainty analysis for random ξ. However,
if we are not able to use f itself to compute F but rather use a GPE Ĝn for f ,
we can, besides a deterministic approximation of F based on a deterministic
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surrogate f̂n for f
F (y) ≈ Pξ(f̂n(ξ) < y),

also incorporate our remaining output uncertainty about f via the conditioned
Gaussian process Ĝn for f . This then yields a random CDF

F̂n(y) = Pξ(Ĝn(ξ) < y),

due to the random Ĝn where we emphasize that the CDF is only w.r.t. ran-
domness of the ξ. To illustrate this we show in Figure 9 the resulting CDFs
for f̂n(ξ), ξ ∼ U(Ξ) using f̂n = m̂n as well as f̂n set to be each of the 10 draws
from Ĝn (left) as well as the 95% credibility region for the true (but unknown)
CDF values F (y) = P(f(ξ) < y) based on 10,000 draws from Ĝn. The credibil-
ity region thus quantifies our uncertainty about the true CDF resulting from
using a (random) surrogate instead of the true quantity of interest f .

(a) CDF for output resulting from GP
draws
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(b) 95% credibility region for CDF based
on GPE
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Fig. 9 Resulting CDFs for the output ŷ = f̂(ξ), ξ ∼ U(Ξ), based on the mean and 10

random draws from the GPE Ĝn (left), and the resulting 95% credibility region for the CDF
of y = f(ξ) derived from the GPE (right).

Discussion

Polynomial collocation and Gaussian process emulators are well-established
surrogate techniques based on point evaluations of the underlying quantity of
interest f , and both approaches rely on a certain smoothness of f . However,
they also differ in several aspects. These include the type of basis functions
from which each surrogate is constructed (polynomials vs. kernel functions
or radial basis functions) as well as the selection strategies for nodes ξj
(potential-theoretic equilibrium distribution vs. space filling). Moreover, the

GPE surrogate f̂n = m̂n is based on minimizing the average error w.r.t. an
assumed probability distribution over a function space, whereas interpolation
error bounds are obtained from a worst-case error analysis over a function
class. We refer to Ritter (2000) for more details on these two contrasting
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approaches. In particular, for GPE we explicitly assume a probability distri-
bution for the unknown function f , given by the prior Gaussian process model
G, whereas for collocation we simply assume that f is sufficiently smooth. This
prior probability distribution for f is then updated given the data f(ξj) in a
Bayesian fashion. Thus, GPE can be related to Bayesian numerical analysis,
see Diaconis (1988), or probabilistic numerics, see Hennig et al (2022), respec-
tively, and be seen as a Bayesian approach to kernel interpolation. In particular,
the conditioned (posterior) distribution for the unknown f provided by Ĝn

yields an indicator for the remaining (output) uncertainty about f after its
evaluation at n nodes ξj . Of course, the assumption of Gaussianity for this com-
puter output uncertainty is debatable. We refer to Bastos and O’Hagan (2009)
for diagnostics to validate the GP ansatz as well as to Kracker et al (2010) for
a performance study of GPE for “Gaussian” as well as “non-Gaussian” f .

4.2 Polynomial Sparse Grid Collocation

Polynomial collocation in the context of UQ or parametric problems can
roughly be described as computing an M -variate polynomial approximation
to f : Ξ → Y, Ξ ⊆ Rd, based on multivariate Lagrange interpolation. Sparse
grid collocation uses sparse grids as multivariate interpolation node sets in
order to mitigate the curse of dimensionality associated with straightforward
tensor-product interpolation for high-dimensional parameter spaces.

While more sophisticated sparse grid techniques have been developed in
recent years, in this work we consider a basic and simple construction known
as (Smolyak) sparse grid collocation introduced for UQ settings, e.g., in Xiu
and Hesthaven (2005); Nobile et al (2008). To this end, assume f ∈ C(Ξ; Y),
i.e., the mapping f is continuous, and denote by

Pn(Ξ; Y) =
{∑n

k=0 akξ
k : ak ∈ Y

}
the space of all Y-valued univariate polynomials of degree at most n. Then

for a given sequence of univariate node sets Ξk := {ξ(k)1 , . . . , ξ
(k)
nk } ⊆ Ξ, k ≥ 1,

where we assume n1 = 1 and nk < nk+1 throughout, we denote the associated
univariate (Lagrange) interpolation operators by

Ik : C(Ξ; Y) → Pnk
(Ξ; Y), (Ikf)(ξ) :=

nk∑
j=1

f
(
ξ
(k)
j

)
ℓ
(k)
j (ξ), ξ ∈ Ξ,

with ℓ
(k)
j ∈ Pnk

(Ξ; R) the Lagrange fundamental polynomials associated
with Ξk. The most immediate extension of the interpolation operator to the
M -dimensional parameter domain Ξ would be the multivariate interpolation
operator Ik : C(Ξ; Y) → Pnk

(Ξ; Y) obtained by tensorization

(Ikf)(ξ) := (Ik1
⊗ · · · ⊗ IkM

) f(ξ) =
∑
j≤nk

f
(
ξ
(k)
j

)
ℓ
(k)
j (ξ),
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with multi-indices j = (j1, . . . , jM ),nk = (nk1 , . . . , nkM
) ∈ NM , multivari-

ate nodes ξ
(k)
j = (ξ

(k1)
j1

, . . . , ξ
(kM )
jM

) ∈ Ξk := Ξk1
× · · · × ΞkM

, and tensorized

Lagrange fundamental polynomials ℓ
(k)
j (ξ) = ℓ

(k1)
j1

(ξ1) · · · ℓ(kM )
jM

(ξM ) for ξ =
(ξ1, . . . , ξM ) ∈ Ξ. However, this construction suffers heavily from the curse of
dimensionality since the computational work for evaluating f at all points in
the Cartesian product grid Ξk grows exponentially with dimension M .

Sparse grid constructions, which improve this to polynomial complexity in
M , are based on the univariate detail operators

∆i = Ii − Ii−1, i ≥ 1, I0 ≡ 0,

so that Ik =
∑k

i=1 ∆i, yielding the tensor product interpolation operator as

Ikf =
∑
i≤k

∆if, ∆i = ∆i1 ⊗ · · · ⊗∆iM .

By contrast, the (Smolyak) sparse grid collocation operator is defined by

Sℓ,Mf :=
∑

|i−1|1≤ℓ

∆if, |i − 1|1 :=

M∑
j=1

|ij − 1|, ℓ ≥ 0.

By combinatorical arguments, one can obtain the equivalent combination
technique representation

Sℓ,Mf =
∑

ℓ−M+1≤|i−1|≤ℓ

(−1)ℓ+M−|i |
(

M − 1

ℓ+M − |i |

)
Iif,

which expresses the Smolyak operator as a linear combination of selected M -
variate tensor product interpolation operators. For the associated sparse grid

Ξℓ,M :=
⋃

ℓ−M+1≤|i−1|≤ℓ

Ξi

consisting of all multivariate nodes occurring in these representations, the car-
dinality |Ξℓ,M | grows only polynomially w.r.t.M (cf. Novak and Ritter (1999)),
while the overall order of accuracy remains close to that of the full tensor prod-
uct I(ℓ+1,...,ℓ+1). In particular, it can be shown (Bäck et al, 2011, Proposition
1) that Sℓ,M is a projection on

Pℓ,M (Ξ; Y) :=
∑

|i−1|≤ℓ

Pni1
(Ξ; Y)⊗ · · · ⊗ PniM

(Ξ; Y).

Note, however, that in general Sℓ,M is not interpolatory unless the univariate
nodes sets are nested Ξk ⊂ Ξk+1 (Barthelmann et al, 2000, Proposition 6).



1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

Springer Nature 2021 LATEX template

30 UQ Surrogates for Groundwater Flow

The latter is the case for Clenshaw–Curtis nodes with the “doubling sequence”
nk = 2k−1 (k ≥ 1), or (weighted) Leja nodes with linear growth nk = k (Ernst
et al, 2021). In the following, we shall use the non-nested nodal sequence of
Gauss-Hermite nodes, i.e., the roots of Hermite polynomials. This choice is
common for collocation applied to functions of Gaussian random variables, see
Babuška et al (2007); Nobile et al (2008); Ernst and Sprungk (2014).

Convergence and Application

If f is sufficiently smooth then Sℓ,Mf can be shown to converge to f ,
specifically

∥f − Sℓ,Mf∥L2
µ
∈ O

(
|Ξℓ,M |−r

)
,

for an r < 1 using Gauss-Hermite nodes ξ
(k)
i with linear growth nk = k or

doubling growth nk = 2k−1 + 1 (k ≥ 1), see, e.g., Ernst and Sprungk (2014);
Ernst et al (2018). The rate of convergence r w.r.t. the number of collocation
points depends, of course, on the smoothness class of f . In particular, it is
well-known that sparse grid techniques such as Smolyak’s construction above
requires a dominating mixed smoothness of f to work well, see, e.g., Novak
and Ritter (1999); Barthelmann et al (2000); ?); Ernst et al (2018) for more
details.

It was shown in (Ernst and Sprungk, 2014, Section 3) that the solution
(u , p) of the random/parametric mixed variational problem (4) allows for a
holomorphic extension into CM under suitable assumptions, which are satisfied
by truncated KL expansions (23) of a lognormal transmissivity field. Thus,
applying Sℓ,M to approximate the solution map (u , p) : Ξ → V×W is justified.
By contrast, the quantity of interest given by the exit time fexit may, in general,
not even be a continuous function of the parameters ξ, as is immediate from
considering the case of a particle grazing the exit boundary and returning
into the domain for a particular parameter setting. Thus, applying Sℓ,M to
approximate fexit directly may lead to inaccurate surrogate approximation or
even divergence with increasing |Ξℓ,M |.

However, a simple remedy is to use the surrogate

f̂exit,ℓ = Gexit (Sℓ,Mu)

where Gexit : V → R denotes the mapping from a velocity field on D to the log
breakthrough time of a particle following this field released at x0 at time t = 0,
which is inexpensive to evaluate compared to solving the Darcy flow equations.
Then, since L2-convergence implies convergence in distribution, assuming that
the set of points of discontinuity of the mapping Gexit has probability measure
zero, we have by the continuous mapping theorem of probability theory

lim
ℓ→∞

∥F − F̂ℓ∥∞ = 0, F̂ℓ(s) := Pξ∼µ (Gexit (Sℓ,Mu(ξ)) ≤ s) ,
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where F denotes the true CDF of fexit Thus, we are assured convergence of
the CDF based on the surrogate Sℓ,Mu for the true velocity u to the true
CDF for the breakthrough time.

4.3 Gaussian Process Emulators

Having described basic GPE methodology in Section 4.1, we now turn to
the construction of GPEs for multivariate scalar-valued functions f : Ξ → R.
Again, the approach is similar to multivariate geostatistics. We shall con-
sider the full Bayesian approach to GPE (cf. Kennedy and O’Hagan (2001);
O’Hagan (2006)), which also entails specifying prior distributions for the
hyperparameters contained in the mean and covariance functions which are
also conditioned on the evaluations of f at the design points ξj . As before, we
start with a linear regression model for the mean

m : Ξ → R, m(ξ) = m(ξ; β) =

p∑
k=1

βkhk(ξ), β ∈ Rp,

with known regression functions h = (h1, . . . , hp), hk : Ξ → R (h1 ≡ 1 and
h2(ξ) = ξ are common choices) and unknown coefficients β = (β1, . . . , βp)

⊤.
For the emulator’s covariance function c : Ξ × Ξ → R we fix the squared
exponential kernel

c(ξ, ξ′) = c(ξ, ξ′; σ2, B) = σ2 exp(−(ξ − ξ′)⊤B(ξ − ξ′)), ξ, ξ′ ∈ Ξ, (31)

where σ2 > 0 is the marginal variance and B = diag(b1, . . . , bM ) ∈ RM×M ,
bi > 0 is a matrix of so-called smoothness parameters. For the squared exponen-
tial covariance (31) and choices for h1 and h2 mentioned above, it is known that
the realizations of the Gaussian process are almost surely analytic w.r.t. ξ. For
other covariance functions, such as the family of Matérn kernels, one obtains
Gaussian processes with realizations of different smoothness orders.6

Thus, for fixed given β, σ2, and B, the (prior) Gaussian process model for
the output of f for an arbitrary input ξ ∈ Ξ is

f(ξ) ∼ N(m(ξ; β), c(ξ, ξ; σ2, B)).

Similarly, for fixed β, σ2, and B, the vector f = (f(ξ1), . . . , f(ξn))
⊤
of values

of the Gaussian process at a set of design points {ξ1, . . . , ξn} has the n-variate
Gaussian distribution

f = (f(ξ1), . . . , f(ξn))
⊤ ∼ N(Hβ,Cσ2,B)

6We have also explored other covariance models such as the Matérn kernels for GPE surrogates;
however, the overall conclusions in the numerical experiments were about the same as for the
squared exponential (31).



1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Springer Nature 2021 LATEX template

32 UQ Surrogates for Groundwater Flow

where H = (hk(ξj)) ∈ Rn×p and Cσ2,B = (c(ξi, ξj ; σ2, B)) ∈ Rn×n. We
denote the probability density of this random vector f ∈ Rn by

p(f | β, σ2, B) ∝ exp

(
−1

2
(f −Hβ)⊤C−1

σ2,B(f −Hβ)

)
.

Suitable values for the parameters β, σ2, and B are usually not known a priori
and should be inferred based on the evaluations f . This is typically done in
a Bayesian fashion, i.e., we choose hyperpriors for these parameters which
are then conditioned on the data f = (f(ξ1), . . . , f(ξn))

⊤
. Common choices

for (β, σ2) are a normal-inverse-gamma prior or a Jeffreys prior with density
p(β, σ2) ∝ σ−2 (cf. Oakley and O’Hagan (2002); Stone (2011)) since these
allow for closed-form expressions for the resulting (marginal) posteriors. Given
evaluations f , the resulting posterior for the parameters (β, σ2) is then

p(β, σ2 | f , B) ∝ p(f | β, σ2, B) p(β, σ2).

For the estimation of the smoothness parameters B a “full” Bayesian infer-
ence based on data f would require Markov chain Monte Carlo simulations.
Instead, one often simply computes a point estimate based on maximizing
the marginal likelihood p(f | B) ∝

∫
p(β, σ2 | f , B)p(β, σ2) dβ dσ2 for which

analytic formulas are available (Stone, 2011, Section 2.3.4). This often yields
competitive results to a full Bayesian inference Kracker et al (2010).

Given f , the posterior density for the output f(ξ) at new location ξ is then

p(f(ξ) | f ,β, σ2, B) ∝ p(f | β, σ2, B)p(β, σ2 | f , B).

Marginalization by integrating out β and σ2 can be done analytically for a
normal-inverse-gamma or Jeffreys prior p(β, σ2) and results in a Student-t
process (cf. Shah et al (2014)) for the prediction of the output of f , i.e.,

f(ξ) | f ∼ tn−p

(
m̂n(ξ), σ̂

2ĉn(ξ, ξ)
)
, (32)

where m̂n and ĉn are the mean and covariance obtained by universal krig-
ing applied to f given the observations f (see (16) and (17)) with σ2 = 1,
respectively, and where σ̂2 is given by

σ̂2 =
1

n− p
f ⊤C−1/2

(
I −C−1/2H

(
H⊤C−1H

)−1
H⊤C−1/2

)
C−1/2f .

For the prediction of f at multiple new points we obtain a multivariate Student-
t-distribution with mean vector given by the evaluation of m̂n at those points
and covariance matrix given by evaluating σ̂2ĉn.

Regarding the choice of the design points for multivariate GPE we require
again space filling designs. For compact Ξ ⊂ RM these are, e.g., Sobol’ points
(Owen et al, 2017) or Latin hypercube designs (Viana, 2015). The latter extend
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also to Ξ = RM w.r.t. µ = N(0, I ) as we require for the WIPP problem. As
for the appropriate number n ∈ N of training points Ξn = {ξ1, . . . , ξn} ⊂ Ξ,
a common rule of thumb calls for n = cM (Loeppky et al, 2009) with a factor
c ≥ 10.

Convergence and Application

Since the GPE surrogate f̂n = m̂n and its covariance ĉn are derived by uni-
versal kriging, we can again exploit the relation between kriging and kernel
interpolation (Scheuerer et al, 2013). Again, assume m ≡ 0 for simplicity and
c fixed as in (31). Then for compact Ξ ⊂ RM and analytic f : Ξ → R we have

∥f − f̂n∥∞ ≤ C(f) rDξ1,...,ξn
(Ξ),

for a 0 < r < 1 as well as

ĉn(x, x) ≤ C r2Dξ1,...,ξn
(Ξ).

Thus, besides uniform convergence of the surrogate f̂n → f , we also have
vanishing output uncertainty regarding f(ξ) as n → ∞—which is a consistency
statement for the posterior for f here given by the Gaussian or Student-t
process Ĝn. However, to our knowledge, no L2-convergence statements are
available for the case of unbounded Ξ = RM , as the setting of the WIPP
problem would require.

In the next section we will apply GPE to approximate the quantity of inter-
est fexit directly. Thus, for convergence with n → ∞, we require fexit to be
sufficiently smooth (see above) which may not be the case in general. How-

ever, it may well be that the surrogate f̂n and the related output uncertainty
provided by the GPE for finite n = cM design points is sufficiently accurate
for CDF estimation. We note that also vector-valued GPE are available, see
Álvarez et al (2012); Bilionis et al (2013); Cleary et al (2021); Higdon et al
(2008). Hence, we could apply a GPE to approximate the FE solution of the
random parametric variational problem (which depends analytically on ξ, see
comment above) and proceed as for polynomial collocation to provide approx-
imate samples of fexit(ξ). We do not consider this option in this work, since
the FE space is very high dimensional (of order 104) and thus the GPE would
involve too many parameters to estimate based on not more than 20, 000 design
points.

5 Numerical Results

We now perform a numerical study comparing sparse grid polynomial colloca-
tion and Gaussian process emulators as surrogates for the task of approximat-
ing the CDF of the exit time fexit(ξ) usingM terms and coefficients ξ ∼ N(0, I )
in the truncated KL expansion of the log transmissivity field Z = log T . We
vary M = 10, 20, 30 and apply the following three surrogate approaches:
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• SGC-PDE: We apply Smolyak sparse grid polynomial collocation Sℓ,M

to approximate the solution pair (u , p) of the mixed formulation and then

obtain approximate samples f̂exit(ξi) of the exit time by simulating the
particle transport given the approximate velocity field Sℓ,Mu(ξi), i.e.,

f̂exit(ξi) = Gexit(Sℓ,Mu(ξi)) where ξi ∼ N(0, I ), i = 1, . . . , N iid.
• SGC-QoI: We apply Smolyak sparse grid polynomial collocation Sℓ,M

directly to approximate the exit time fexit(ξi) and in this way obtain

approximate samples via f̂exit(ξi) = Sℓ,Mfexit(ξi) where ξi ∼ N(0, I ),
i = 1, . . . , N iid.

• GPE:We apply Gaussian process emulation to approximate the exit time
fexit(ξi) and obtain approximate samples via f̂exit(ξi) = m̂n(ξi) where
ξi ∼ N(0, I ), i = 1, . . . , N iid and m̂n denotes the GPE mean.

For each surrogate we generate N = 20 000 approximate samples of the
quantity of interest and compare these to N = 20 000 samples of the “true”
fexit evaluated by solving the Darcy flow equations and particle transport
problem each time (denoted MC for Monte Carlo in the following). The num-
ber N = 20 000 of samples is derived from the error criterion outlined in
Section 3.3. For SGC we use different levels ℓ = 1, 2, 3, and for the GPE dif-
ferent numbers of design points n = cM with c = 10, 20, 30, 50, 100. We show
the resulting empirical CDFs for the log exit time in Figure 10. It is apparent
that, for each M = 10, 20, 30, all surrogate methods yield a very good fit to
the reference ECDF obtained by the plain Monte Carlo approach. Slight devi-
ations can be seen for the lowest level ℓ = 1 for SGC-QoI, but, at least for
ℓ ≥ 2, it is difficult to distinguish the four ECDFs. Therefore, we take a closer
look at the performance of the surrogates in Table 2, where we report the

resulting values of the KS statistic K = sups∈R

∣∣∣F̂n(s)− Fn(s)
∣∣∣ of the empir-

ical CDF Fn obtained by Monte Carlo sampling of fexit and the empirical
CDF F̂n obtained by Monte Carlo sampling of the surrogate f̂exit. Moreover,
we indicate by an asterisk that the error K in the ECDFs is negligible, i.e.,
that the Kolmogorov–Smirnov test is passed (at significance level α = 0.05),
and hence there is no indication that the samples were drawn from different
distributions. We make the following observations:

• For M = 10, 20 all three surrogates pass the KS-test at least for level
ℓ ≥ 2 (SGC) or n ≥ 30M design points (GPE). For M = 30 this is
also the case for SGC-PDE with ℓ ≥ 2 and GPE with n = 100M . Thus,
by employing the considered surrogates we can obtain an ECDF for the
exit time which is essentially indistinguishable (for α = 0.05) from the
“true” ECDF but which required just a fraction of the computational
cost of the latter. Indeed, compared to N = 20 000 solutions of the Darcy
flow equations, we require merely between ≈ 200 (M = 10) and ≈ 2000
(M = 30) PDE solves when a surrogate is used.

• For SGC-PDE as well as SGC-QOI we observe a steep increase in
the number of PDE solves n with M but overall a robust and good
performance.
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Fig. 10 Empirical CDFs obtained by Monte Carlo, SGC and GPE surrogates for different
lengths M of the KLE.

• For the SGC-QoI approach we observe a significantly worse performance
for M = 30 which may be due to insufficient (mixed) smoothness of fexit.

• For the GPE approach we observe deteriorating performance for increas-
ing M , i.e., we require a larger factor c for the number of design points
n = cM in order to pass the KS test and have small values of K (c = 20
for M = 10, c = 30 for M = 20 and c = 100 for M = 30). This may be
due to the curse of dimensionality for kernel interpolation methods.

Changing the trend model for log T

Despite the overall positive observations for the employed surrogates made so
far we report how the outcome may change if we simply use a different trend
model for the mean of the log transmissivity field log T . Instead of using the
constant, linear in x1, and zone indicator regression functions h1, h2, and h5,
respectively, see (9), we only use the constant h1. This leads to a different
Matérn covariance function used for log T , see Table 1 and thus also to different
eigenvalues and eigenfunctions in the KL expansion. Moreover, the smooth-
ness properties of the mapping ξ 7→ fexit(ξ) may change as well. In fact, in
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Surrogate M = 10 M = 20 M = 30
n K n K n K

SGC-PDE ℓ = 1 21 0.0128* 41 0.0281 61 0.0495
SGC-PDE ℓ = 2 241 0.0028* 881 0.0045* 1921 0.0118*
SGC-PDE ℓ = 3 2001 0.0019* 13201 0.0023* 41601 0.0052*
SGC-QOI ℓ = 1 21 0.0271 41 0.0293 61 0.0435
SGC-QOI ℓ = 2 241 0.0065* 881 0.0088* 1921 0.0196
SGC-QOI ℓ = 3 2001 0.0048* 13201 0.0089* 41601 0.0138
GPE c = 10 100 0.0136 200 0.0245 300 0.0309
GPE c = 20 200 0.0092* 400 0.0191 600 0.0228
GPE c = 30 300 0.0062* 600 0.0116* 900 0.0171
GPE c = 50 500 0.0041* 1000 0.0070* 1500 0.0141
GPE c = 100 1000 0.0031* 2000 0.0064* 3000 0.0087*

Table 2 Performance of the SGC and GPE surrogates for different lengths M of the KL
expansion measured by the value of the resulting KS statistic K. Here, n refers to the
number of PDEs to be solved for building the surrogate and an asterisk denotes that the
KS-test was passed at significance level α = 0.05.

Surrogate M = 10 M = 20 M = 30
n K n K n K

SGC-PDE ℓ = 1 21 0.0537 41 0.0653 61 0.0621
SGC-PDE ℓ = 2 241 0.0123* 881 0.0130* 1921 0.0146
SGC-PDE ℓ = 3 2001 0.0121* 13201 0.0345 41601 0.0387
SGC-QOI ℓ = 1 21 0.1099 41 0.1340 61 0.1301
SGC-QOI ℓ = 2 241 0.0485 881 0.0798 1921 0.0697
SGC-QOI ℓ = 3 2001 0.0369 13201 0.0577 41601 0.1711
GPE c = 10 100 0.0366 200 0.0546 300 0.0815
GPE c = 20 200 0.0373 400 0.0415 600 0.0591
GPE c = 30 300 0.0153 600 0.0368 900 0.0615
GPE c = 50 500 0.0188 1000 0.0405 1500 0.0415
GPE c = 100 1000 0.0192 2000 0.0258 3000 0.0422

Table 3 Rerun of Table 2 but for constant mean for log T .

Table 3 we observe a much diminished performance of all three surrogate tech-
niques: Now only SGC-PDE passes the KS test and only for the shorter KL
truncation kength M = 10, 20. However, SGC-PDE and GPE provide a visu-
ally acceptable fit to the reference ECDF in Figure 11, whereas we clearly see
a deterioration for the SGC-QoI surrogate. This distinctly worse performance
of SGC-QoI may be due to insufficient smoothness of ξ 7→ fexit(ξ) in this case.

For the GPE surrogate we also evaluate to what extent the accompanying
Gaussian model for this surrogate’s output uncertainty covers the deviation
from the reference CDF. To this end, we focus on the setting where the GPE
surrogate performs worst, i.e., M = 30 using n = 300 design points, and
compute a 95% credibility region for the CDF based on 10 000 random draws
of surrogates from the trained GPE. The results are reported in Figure 12 for
both trend models. We observe that the Gaussian output uncertainty model
appears overconfident in the case of the constant trend model. Thus, this
experiment indicates that a sufficiently good performance of the surrogates for
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CDF estimation of exit times may depend on various aspects of the problem—
such as the choice of the trend model for the log transmissivity field.
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Fig. 11 Rerun of Figure 10 but for constant mean for log T .

Convergence Study

The negative results for the constant trend model raise the question whether we
simply did not use enough design points n or sufficiently high sparse collocation
level ℓ for the GPE and SGC surrogates, respectively, or whether the quantity
of interest is simply too rough to be approximated well by these methods. To
this end, we perform a convergence study for both scenarios: constant trend
model and “best” trend model using h1, h2, and h5 in (9). We report the
associated L2

µ-errors of the SGC surrogates for the flux u and the quantity of
interest in Tables 4 and 5, respectively. We notice significantly larger errors for
the constant trend model. In order to allow for a sufficiently high polynomial
degree for SGC to observe a significant error decay, we restrict ourselves to the
low-dimensional case of M = 2 and M = 5 KL terms. We report the resulting
errors of the velocity and the quantity of interest in Figure 13. There we clearly
observe a decaying error for increasing level ℓ and number of sparse grid nodes
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(a) Trend model h1, h2, h5
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Fig. 12 95% credibility region for CDF of breakthrough time based on GPE with n = 300
for M = 30 KL terms for different trend models

Trend model Surrogate M = 10 M = 20 M = 30
SGC ℓ = 1 5.9897E-3 1.2933E-2 1.6810E-2

h1, h2, h5 SGC ℓ = 2 2.1354E-3 6.3868E-3 9.3400E-3
SGC ℓ = 3 6.1168E-4 2.5686E-3 4.3738E-3
SGC ℓ = 1 4.0723E-2 1.1149E-1 1.7963E-1

h1 SGC ℓ = 2 4.0331E-2 1.1113E-1 1.7329E-1
SGC ℓ = 3 3.9595E-2 1.0598E-1 1.6928E-1

Table 4 L2
µ(Ξ,H (div; D)) error of SGC surrogates for the flux u for the two different

trend models.

Trend model Surrogate M = 10 M = 20 M = 30
SGC ℓ = 1 1.2296E-3 2.7434E-3 6.0602E-3

h1, h2, h5 SGC ℓ = 2 1.2699E-4 4.8917E-4 2.1426E-3
SGC ℓ = 3 2.0075E-5 9.6514E-5 4.4401E-4
SGC ℓ = 1 7.0990E-3 1.5259E-2 2.8396E-2

h1 SGC ℓ = 2 2.9464E-3 7.7314E-3 1.5502E-2
SGC ℓ = 3 1.9730E-3 9.2632E-3 1.8001E-2

Table 5 L2
µ(Ξ,R) error of SGC surrogates for the exit time fexit for the two different

trend models.

|Ξℓ,M |, respectively. Moreover, we observe that the rate of convergence for both
quantities is affected by the larger number of KL terms and the choice of the
trend model. The former was already observed in Ernst and Sprungk (2014).
The latter is also related to an observation made in Ernst and Sprungk (2014):
since the constant trend model yields a larger estimated value for the variance
σ2, this in turn leads to a slower convergence rate of SGC.

Regarding the application of GPE to approximate the quantity of interest,
we perform a similar study as for SGC using M = 2 and M = 5 KL terms. The
results are displayed in Figure 14. We observe that the L2

µ-error (left panel)
does not decay with increasing number of design points, at least not in the
applied regime of up to n = 1000M design points. Despite this, we observe a
decay of the KS test statistic value K, i.e., the L∞-error of the ECDF for the
quantity of interest, except for M = 5 and the constant trend model.



1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

Springer Nature 2021 LATEX template

UQ Surrogates for Groundwater Flow 39

Velocity u

10 0 10 2 10 4 10 6
10 -15

10 -10

10 -5

10 0
Breakthrough time fexit

10 0 10 2 10 4 10 6
10 -20

10 -15

10 -10

10 -5

10 0

Fig. 13 L2
µ-error of SGC surrogates for the velocity u (left) and exit time fexit (right).

For the flux we used the norm in H (div; D) to quantify the difference between u(ξ) and
Sℓ,Mu(ξ).
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Fig. 14 L2
µ-error (left) and K-S test value K (right) of GPE surrogates for exit time fexit.

6 Conclusion

In this work we have presented a complete uncertainty propagation workflow
for groundwater flow and particle transport simulations based on a real-world
application related to the site performance assessment for a nuclear waste
repository. We described in detail the construction of a stochastic model for
an uncertain transmissivity field by geostatistical methods using the available
observational data. Our main focus was the direct comparison of two estab-
lished surrogate approaches for uncertainty propagation analysis: sparse grid
stochastic collocation and Gaussian process emulation. Both methods originate
from different communities, i.e., numerical analysis and computational statis-
tics, respectively. Our purpose was to describe and contrast the fundamental
ideas and principles underlying both methods and compare their performance
for the UQ problem under consideration, specifically for CDF estimation for
scalar quantities of interest, in this case the travel time of groundwater-borne
radionuclides. The overall conclusion is that both methods can achieve sig-
nificant reduction in computational cost over naive Monte Carlo simulation,
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reducing the computational burden by a factor of 10 to even 100 in some cases
considerered. Moreover, we have observed that the GPE surrogate seems to be
more adversely affected by the high dimensionality of the input space compared
with sparse grid collocation, which is not surprising given the unfavorable
scaling of the filling distance with dimension. On the other hand, stochastic
collocation must also be applied with care, since the quantity to be approxi-
mated has to depend sufficiently smoothly on the random inputs—such as the
solution of the random PDE. However, the remarkable performance of both
surrogates seems to be affected by modelling choices for the random log trans-
missivity field such as choice of the trend or regression model for the mean.
Although this effect could be explained mathematically in our case, it does
place limitations on the practical benefits of UQ surrogate methods for CDF
estimation in groundwater flow applications.
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