
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS

Inverse Problems 21 (2005) 805–820 doi:10.1088/0266-5611/21/3/002

Convergence rates for Tikhonov regularization based
on range inclusions

Bernd Hofmann1 and Masahiro Yamamoto2

1 Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
2 Department of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro,
Tokyo 153, Japan

E-mail: hofmannb@mathematik.tu-chemnitz.de and myama@ms.u-tokyo.ac.jp

Received 21 December 2004, in final form 9 February 2005
Published 4 March 2005
Online at stacks.iop.org/IP/21/805

Abstract
This paper provides some new a priori choice strategy for regularization
parameters in order to obtain convergence rates in Tikhonov regularization for
solving ill-posed problems Af0 = g0, f0 ∈ X, g0 ∈ Y , with a linear operator A

mapping in Hilbert spaces X and Y. Our choice requires only that the range of
the adjoint operator A∗ includes a member of some variable Hilbert scale and
is, in principle, applicable in the case of general f0 without source conditions
imposed otherwise in the existing papers. For testing our strategies, we apply
them to the determination of a wave source, to the Abel integral equation, to
a backward heat equation and to the determination of initial temperature by
boundary observation.

1. Introduction

Let X and Y be infinite-dimensional separable Hilbert spaces over R. We consider a bounded
injective linear operator A from X to Y and we will discuss the operator equation

Af = g, f ∈ X, g ∈ Y. (1.1)

We are mainly concerned with the case of a non-closed range R(A) �= R(A), and so
A−1 : R(A) ⊂ Y → X is not continuous with respect to the norms in X and Y, which
describes a general linear ill-posed problem. Then equation (1.1) is unstable and the stable
approximate solution of the uniquely determined solution f0 ∈ X of (1.1) for the exact right-
hand side g0 ∈ R(A) requires some regularization technique whenever noisy data gδ ∈ Y with
known noise level δ > 0 satisfying the estimate

‖g0 − gδ‖Y � δ, (1.2)

are available instead of g0. We discuss the classical Tikhonov regularization

Minimize‖Af − gδ‖2
Y + α‖f ‖2

X over f ∈ X, (1.3)
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where α > 0 denotes the regularization parameter and

fα,δ = (A∗A + αI)−1A∗gδ (1.4)

is the uniquely determined minimizer of (1.3), which is called a regularized solution. In
particular, we are concerned with an a priori choice strategy of α realizing an optimal (or
quasi-optimal) rate of the convergence limδ→0 fα,δ = f0 in the norm of X. There are many
articles concerning a priori assumptions on the exact solution f0 to be reconstructed, which
guarantee such a convergence rate: as monographs, see for example, Baumeister [3], Colton
and Kress [5], Engl, Hanke and Neubauer [6], Groetsch [9], Hofmann [11], Kirsch [16],
Tikhonov and Arsenin [26], Tikhonov, Goncharsky, Stepanov and Yagola [27], Vasin and
Ageev [28], and moreover we can refer to Hegland [10], Hohage [15], Mair [17], Mathé and
Pereverzev [18, 19], Neubauer [21, 22], Tautenhahn [25] as related papers, for instance.

In the majority of books and papers mentioned above, the authors require so-called source
conditions in a more or less generalized form which assume that f0 either belongs to one
of the ranges of A∗ or a fractional power (A∗A)γ or belongs to the range of an increasing
nonnegative index function ρ applied to the operator A∗A. For practical inverse problems
for partial differential equations, in general, it is very difficult to characterize such range
spaces. Moreover, even though we can characterize R(A∗),R((A∗A)γ ) or R(ρ(A∗A)), if f0

is not in those ranges, then the existing strategies do not give any information on convergence
rates. Although there are works on adaptation of source conditions (e.g., section 6 in [18]),
the existing a priori choice strategies do not work for actual inverse problems such as the
following example.

Example 1 (inverse wave source problem). Let � ⊂ R
r be a bounded domain whose boundary

∂� is of C2-class. Let u(f ) = u(f )(x, t) ∈ C
(
[0, T ];H 1

0 (�)∩H 2(�)
)∩C1

(
[0, T ];H 1

0 (�)
)

satisfy 
∂2
t u(x, t) = �u(x, t) + λ(t)f (x), x ∈ �, 0 < t < T,

u(x, t) = 0, x ∈ ∂�, 0 < t < T,

u(x, 0) = ∂tu(x, 0) = 0, x ∈ �,

(1.5)

where λ ∈ C1[0,∞) is a given function and we assume that λ(0) �= 0. Then our inverse
wave source problem is the determination of f ∈ L2(�) from the boundary observation
∂u
∂ν

∣∣
∂�×(0,T )

. This inverse problem is discussed, for example, in Yamamoto [29].

Let X = L2(�) and Y = L2(∂� × (0, T )), and let us define an operator A : X −→ Y by

Af = ∂u

∂ν

∣∣∣∣
∂�×(0,T )

.

Then A is injective whenever T > 1
2 supx,x ′∈� |x − x ′| [29].

Let us discuss the Tikhonov regularization for this inverse problem:

Minimize‖Af − gδ‖2
L2(∂�×(0,T )) + α‖f ‖2

L2(�) over f ∈ L2(�),

where gδ ∈ L2(∂� × (0, T )) is our available data such that∥∥∥∥∂u(f0)

∂ν
− gδ

∥∥∥∥
L2(∂�×(0,T ))

� δ.

We can prove (e.g., [29]) that there exists a unique minimizer fα,δ for a given α > 0 and
that R(A∗) ⊃ H 1

0 (�) which implies that if f0 ∈ H 1
0 (�) and α ∼ δ as δ → 0, then

‖fα,δ − f0‖L2(�) = O(
√

δ) as δ → 0. Here and henceforth α ∼ δ means that α = O(δ) and
δ = O(α).
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In this example, we can incidentally give a sufficiently large subset of R(A∗), namely
H 1

0 (�), but it is extremely difficult to do so for R((A∗A)γ ), because A is not explicitly
described and, for example, the spectral properties of A∗A are quite complicated in order to
characterize R((A∗A)γ ). Furthermore, we have had no information of the convergence rates
in the case of f0 �∈ H 1

0 (�), which must be considered if we have to reconstruct a characteristic
function f0 = χD of a unknown subdomain D ⊂ �. Note that χD �∈ H 1

0 (�).
The purpose of this paper is to give an a priori choice strategy for α under more

applicable a priori information of the exact solution f0 which is preferably described by means
of conventional function spaces, so that we can apply it, for example, to the reconstruction of
f0 = χD .

Remark 1. Let us consider a different regularization where we choose a regularizing term
with stronger norm than in X:

Minimize ‖Af − gδ‖2
X + α‖f ‖2

Z over f ∈ Z,

where the embedding Z ⊂ X is continuous (usually compact). If we have a conditional stability
estimate ‖f ‖X � ω(‖Af ‖Y ) for any f in a bounded subset of Z, where ω = ω(s) > 0 is
a continuous monotone increasing function such that ω(0) = 0, then Cheng and Yamamoto
[4] give an a priori choice strategy for α. As for other a priori strategy based on conditional
stability, see section 3 of chapter 6 in Baumeister [3] for example. In our strategy (1.3), we take
a regularizing term α‖f ‖2

X with the same norm as in X, and we do not require any conditional
stability with rate function ω.

2. Main result

Henceforth, ‖·‖X and (·, ·)X denote the norm and the scalar product in a Hilbert space X, and
D(L) is the domain of an operator L.

We set

I = {ρ : [0,∞) −→ R; ρ is continuous and increasing and ρ(0) = 0}
and make use of variable Hilbert scales {Xρ(G)}ρ∈I as introduced by Hegland [10] (see also
[18]) which are generated by an injective compact positive self-adjoint linear operator G in X
with an orthonormal basis {ϕj }j∈N of its eigenvectors and ordered positive eigenvalues

σ1 � σ2 � σ3 � · · · −→ 0

satisfying Gϕj = σjϕj , j ∈ N. We consider ρ ∈ I as an index function. Then the Hilbert
space Xρ(G), ρ ∈ I, is the completion of

N∑
j=1

cjϕj ;N ∈ N, c1, . . . , cN ∈ R


with respect to the norm∥∥∥∥∥∥

N∑
j=1

cjϕj

∥∥∥∥∥∥
Xρ(G)

=
 N∑

j=1

c2
j

ρ(σj )2


1
2

.

Note that we can also write Xρ(G) = R(ρ(G)). Namely, the Hilbert space Xρ(G) contains
just those elements of X which belong to the range of the operator ρ(G) defined by

ρ(G)x =
∞∑

j=1

ρ(σj )(x, ϕj )Xϕj , x ∈ D(ρ(G)).
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Standing assumption. Throughout this paper we assume there exist ρ1, ρ2 ∈ I such that

Xρ1(G) ⊂ R(A∗) = R
(
(A∗A)

1
2
)
, (2.1)

f0 ∈ Xρ2(G), (2.2)

and 

there exists t1 ∈ (0, σ1] such that
ρ2(t)

ρ1(t)
is strictly monotone decreasing in 0 < t � t1,

limt→0
ρ2(t)

ρ1(t)
= ∞, and there exists a constant C1 � 1 such that

maxt1�t�σ1

(
ρ2

ρ1

)
(t) � C1

(
ρ2

ρ1

)
(t1).

(2.3)

In the context of (2.3) we denote by
(

ρ2

ρ1

)−1
the inverse function to ρ2

ρ1
, where(

ρ2

ρ1

)
(t) = η for 0 < t � t1 if and only if t =

(
ρ2

ρ1

)−1

(η).

Moreover, we set

[R1,∞) =
{(

ρ2

ρ1

)
(t); 0 < t � t1

}
.

Let us remark that the Hilbert spaces Xρ1(G) and Xρ2(G) generated by G can be taken
rather independently of the forward operator A of equation (1.1) or its spectral properties.
In the case where A is compact, for the singular system of A and the eigensystem of G, we
require a loose relation (2.1) which is merely an algebraic inclusion. The verification of (2.1)
should be done according to a concrete ill-posed problem under consideration. Now we are
ready to state.

Theorem 1. Let us hold standing assumptions (2.1) through (2.3) and denote by fα,δ the
Tikhonov-regularized solution (1.4). For δ > 0, α > 0 and R � R1, we set

�(R, α; δ) = ρ2

((
ρ2

ρ1

)−1

(R)

)
+

√
αR +

δ√
α

, R � R1 (2.4)

and we assume that, for a given δ > 0, at R = R(δ) and α = α(δ), a function � in R and α

gains the minimum:

�0(δ) ≡ �(R(δ), α(δ); δ).

Moreover, we assume that α(δ) > 0, and

lim
δ→0

α(δ) = 0, lim
δ→0

R(δ) = ∞. (2.5)

Then, setting α = α(δ), we have

‖fα,δ − f0‖X = O(�0(δ)) as δ −→ 0.

If our choice guarantees limδ→0 �0(δ) = 0, then the conclusion gives a convergence
rate of fα,δ to f0 as δ −→ 0.

Although the choices of ρ1 and ρ2 are possible only by detailed study of the original
ill-posed problem and such studies are not trivial for concrete ill-posed problems, our main
theorem can give a flexible strategy for given a priori information on f0:

(1) Find an operator G and ρ2 ∈ I such that (2.2) is satisfied.
(2) Next find ρ1 ∈ I such that (2.1) and (2.3) are satisfied.
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In the case where f0 is assumed to be in a Sobolev space (that is, we assume some finite
smoothness a priori information), in the step (1), we can usually take the inverse operator
to −� with a suitable boundary condition and ρ2(t) = t or tµ with µ > 0 (see theorem 2
and examples 3 and 4 in section 5). Then the choice of ρ1 in step (2) is an essential and
difficult part where we need detailed analysis for (1.1). On the other hand, in the existing
papers (e.g., [15, 18]), we should first pose that f0 satisfies a condition called a source
condition, and it is frequently difficult to adapt when f0 is given in an arbitrary a priori
bounded set. From a strategic viewpoint, we need no such adaptation for f0, but the choice of
ρ1 can be done after the choice of ρ2 for any given f0. In contrast, in the existing strategies,
the main issue is to first find the adaptation of a source condition for f0 and after suitable
adaptation, the derivation of a concrete convergence rate is automatic. In sections 4 and 5, we
will explain the choices of ρ1 and ρ2 in four ill-posed problems.

The assertion of theorem 1 is essentially based on lemma 1 which was presented by
Baumeister in [3] as theorem 6.8 on pp 97–98. We set

fα = (A∗A + αI)−1A∗g0,

where we recall that Af0 = g0. In other words, fα is the regularized solution for the exact
data g0. Then, we can formulate the key lemma:

Lemma 1. Set

dR = inf{‖f0 − A∗g‖X; ‖g‖Y � R}.
Then,

‖fα − f0‖X �
(
d2

R + αR2
) 1

2 (2.6)

for all α > 0 and R > 0.

For completeness we will repeat the proof of lemma 1 in the appendix. Some more
discussion concerning the distance function dR is presented in [12].

3. Proof of theorem 1

First step. First we will estimate
(
d2

R + αR2
) 1

2 . For this, we show

Lemma 2. For any R > 0, there exists C2 > 0 such that{
w ∈ Xρ1(G); ‖w‖Xρ1(G)

� C2R
} ⊂ {A∗g; ‖g‖Y � R}. (3.1)

Proof of lemma 2. By assumption (2.1), we have{
w; ‖w‖Xρ1 (G) � 1

} =
∞⋃

n=1

{
A∗g; ‖g‖Y � n

} ∩ {
w; ‖w‖Xρ1 (G) � 1

}
⊂

∞⋃
n=1

{A∗g; ‖g‖Y � n} ∩ {
w; ‖w‖Xρ1 (G) � 1

}Xρ1 (G)

.

In contrast to the closure {·} with respect to the norm in X used in formula (3.1) we denote by

{·}Xρ1 (G)
the closure with respect to the norm in Xρ1(G). Then by means of Baire’s category

theorem (e.g., [30]), there exist w0 ∈ Xρ1(G), ε0 > 0 and n0 ∈ N such that{
w; ‖w − w0‖Xρ1 (G) � ε0

} ⊂ {A∗g; ‖g‖Y � n0} ∩ {
w; ‖w‖Xρ1 (G) � 1

}Xρ1 (G)

⊂ {A∗g; ‖g‖Y � n0}. (3.2)
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Here since limn→∞ σn = 0 and ρ1 is increasing, we note that UXρ1 (G) ⊂ U . Then, we can
prove that {

w; ‖w‖Xρ1 (G) � ε0
} ⊂ {A∗g; ‖g‖Y � 2n0}. (3.3)

In fact, since w0 ∈ {A∗g; ‖g‖Y � n0}, there exist gm,m ∈ N, such that ‖gm‖Y � n0

and limm→∞ ‖A∗gm − w0‖X = 0. Let v ∈ Xρ1(G) be an arbitrary element satisfying
‖v‖Xρ1 (G) � ε0. Therefore by (3.2), we can choose g̃m,m ∈ N, such that ‖g̃m‖Y � n0 and
limm→∞ ‖A∗g̃m − (w0 + v)‖X = 0. Therefore, we have chosen zm = g̃m − gm,m ∈ N,
such that limm→∞ ‖A∗zm − v‖X = 0 and ‖zm‖Y � ‖g̃m‖Y + ‖gm‖Y � 2n0. This means that
v ∈ {A∗g; ‖g‖Y � 2n0}. Since v ∈ {

w; ‖w‖Xρ1 (G) � ε0
}

is arbitrary, inclusion (3.3) is valid.
To complete the proof of lemma 2, we set C2 = ε0

2n0
. Let ‖w‖Xρ1 (G) � C2R. For

w̃ = ε0
C2R

w, we then have ‖w̃‖Xρ1 (G) � ε0. Hence, (3.3) yields

w̃ = ε0

C2R
w ∈ {A∗g; ‖g‖Y � 2n0},

that is,

w ∈
{
A∗

(
C2R

ε0
g

)
; ‖g‖Y � 2n0

}
= {A∗h; ‖h‖Y � R}.

Thus the proof of lemma 2 is complete. �

Second step. In this step, we estimate from above the error ‖f0 − fα‖X. Since f0 = 0 implies
g0 = 0, fα = 0 and ‖f0 − fα‖X = 0, we can assume here that f0 �= 0. We will separately
discuss the two cases:

Case 1. 0 < ‖f0‖Xρ2 (G) � C2
C1

.

Case 2. ‖f0‖Xρ2 (G) � C2
C1

.

Case 1. We will estimate from above

inf
‖w‖Xρ1 (G)�C2R

‖f0 − w‖X.

Let t ∈ (0, t1) be arbitrarily given. Then, we can determine N ∈ N such that σN+1 � t <

σN < t1. We set w = ∑N
n=1(f0, ϕn)ϕn, where (·, ·) denotes the scalar product in X. Then,

by (2.3), we have

‖w‖2
Xρ1 (G) =

N∑
n=1

|(f0, ϕn)|2
ρ1(σn)2

=
N∑

n=1

|(f0, ϕn)|2
ρ2(σn)2

(
ρ2(σn)

ρ1(σn)

)2

� C2
1

(
ρ2(σN)

ρ1(σN)

)2

‖f0‖2
Xρ2 (G).

Therefore, since ρ2 is increasing, we obtain

‖f0 − w‖2
X =

∞∑
n=N+1

ρ2(σn)
2ρ2(σn)

−2|(f0, ϕn)|2

� ρ2(σN+1)
2

∞∑
n=N+1

|(f0, ϕn)|2
ρ2(σn)2

� ρ2(σN+1)
2‖f0‖2

Xρ2 (G),

that is,

inf

{
‖f0 − w‖X; ‖w‖Xρ1 (G) � C1

(
ρ2

ρ1

)
(σN)‖f0‖Xρ2 (G)

}
� ρ2(σN+1)‖f0‖Xρ2 (G). (3.4)

Since ρ2

ρ1
is decreasing and ρ2 is increasing in (0, t1], we have

(
ρ2

ρ1

)
(σN) <

(
ρ2

ρ1

)
(t) and

ρ2(σN+1) � ρ2(t) for any t ∈ [σN+1, σN). Since{
w; ‖w‖Xρ1 (G) � C1

(
ρ2

ρ1

)
(σN)‖f0‖Xρ2 (G)

}
⊂

{
w; ‖w‖Xρ1 (G) � C1

(
ρ2

ρ1

)
(t)‖f0‖Xρ2 (G)

}
,
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by (3.4) we have

inf

{
‖f0 − w‖X; ‖w‖Xρ1 (G) � C1

(
ρ2

ρ1

)
(t)‖f0‖Xρ2 (G)

}
� inf

{
‖f0 − w‖X; ‖w‖Xρ1 (G) � C1

(
ρ2

ρ1

)
(σN)‖f0‖Xρ2 (G)

}
� ρ2(σN+1)‖f0‖Xρ2 (G) � ρ2(t)‖f0‖Xρ2 (G).

By means of C1‖f0‖Xρ2
� C2, setting R = (

ρ2

ρ1

)
(t), we have

inf
‖w‖Xρ1 (G)�C2R

‖f0 − w‖X � ρ2

((
ρ2

ρ1

)−1

(R)

)
‖f0‖Xρ2 (G), R � R1.

Hence lemma 2 yields

inf
‖g‖Y �R

‖f0 − A∗g‖X � ρ2

((
ρ2

ρ1

)−1

(R)

)
‖f0‖Xρ2 (G), R � R1.

Thus, by estimate (2.6) of lemma 1, we obtain in this case

‖f0 − fα‖X � ρ2

((
ρ2

ρ1

)−1

(R)

)
‖f0‖Xρ2 (G) +

√
αR, R � R1. (3.5)

Case 2. Let C3 = 1
2‖f0‖Xρ2 (G)

C2
C1

. Then, ‖C3f0‖Xρ2 (G) � C2
C1

. Therefore, noting that fα =
(A∗A + αI)−1A∗g0, inequality (3.5) of case 1 yields

‖f0 − fα‖X � ρ2

((
ρ2

ρ1

)−1

(R)

)
‖f0‖Xρ2 (G) +

1

C3

√
αR, R � R1. (3.6)

Third step. In this step, we will complete the proof of theorem 1. We have fα,δ =
(A∗A + αI)−1A∗gδ and by the spectral theory ‖(A∗A + αI)−1A∗‖L(Y,X) � 1

2
√

α
as a

consequence of
√

λ
λ+α

� 1
2
√

α
for all λ � 0 and α > 0 (cf, e.g., formula (2.48) on p 45 in Engl

et al [6] or, for compact A, theorem 4.13 in Colton and Kress [5]). From (3.5) and (3.6), we
then obtain for δ > 0, α > 0 and R � R1

‖f0 − fα‖X � C

{
ρ2

((
ρ2

ρ1

)−1

(R)

)
+

√
αR

}
(3.7)

and

‖fα,δ − f0‖X � ‖fα − f0‖X + ‖fα,δ − fα‖X

� ‖fα − f0‖X + ‖(A∗A + αI)−1A∗‖L(Y,X)‖gδ − g0‖Y

� C

{
ρ2

((
ρ2

ρ1

)−1

(R)

)
+

√
αR +

δ√
α

}
� C�(R, α; δ), R � R1 (3.8)

with a constant C = max
{‖f0‖Xρ2 (G), C

−1
3 , 1

}
. This estimate ensures the assertion of

theorem 1 and completes the proof. �
In the following sections we will discuss some consequences of theorem 1 with specific

choices of ρ1 and ρ2 and compare them with the former results in the regularization theory.
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4. Hölder-type index functions

In this section, we consider the case where the index functions in formulae (2.1) and (2.2) of
the standing assumption are of the form

ρ1(t) = tν, ρ2(t) = tµ (0 � t � σ1) with fixed exponents 0 < µ � ν. (4.1)

Then Xρ1(G) and Xρ2(G) are two elements of a conventional Hilbert scale {X̃s(G)}s∈[0,∞)

generated by the operator G with X̃s(G) = R(Gs), X̃0(G) = X and ‖f ‖X̃s (G) = ‖G−sf ‖X.
This case is of particular interest if the operator A is finitely smoothing in the sense of Mair
[17], i.e., if the ordered singular values σn(A) of the compact operator A decay to zero not
faster than a power n−p with a finite exponent p > 0 as n → ∞. Then, we can formulate

Theorem 2. Let us hold with 0 < µ � ν

R(Gν) ⊂ R(A∗) = R
(
(A∗A)

1
2
)

and f0 ∈ R(Gµ). (4.2)

If we denote by fα,δ the Tikhonov-regularized solution (1.4), then for the a priori regularization
parameter choice

α = c0δ
2ν

ν+µ (4.3)

with some constant c0 > 0 we obtain the convergence rate

‖fα,δ − f0‖X = O
(
δ

µ

ν+µ

)
as δ → 0. (4.4)

Proof. Note that (4.2) coincides with (2.1)–(2.2) in the standing assumption. Now we
distinguish case 1 with µ < ν, where theorem 2 is a corollary of theorem 1, and case 2 with
µ = ν, where the result is well known (see, e.g., corollary 3.1.3 in Groetsch [9]).

Case 1 (µ < ν). In this case, the index functions (4.1) satisfy conditions (2.3) with C1 = 1,
since

(
ρ2

ρ1

)
(t) = tµ−ν, t > 0, is strictly monotone decreasing with limt→0 tµ−ν = ∞. Then,

inequality (2.4) attains the form

‖fα,δ − f0‖X � C

(
R

µ

µ−ν +
√

αR +
δ√
α

)
. (4.5)

By equating the first and the second terms in the sum of the right-hand side of formula (4.5),
we obtain R = α

µ−ν

2ν . This ansatz for R = R(α) need not be optimal, but implies the error
estimate

‖fα,δ − f0‖X � C

(
2α

µ

2ν +
δ√
α

)
,

and with a priori choice (4.3) for α = α(δ), we can obtain convergence rate (4.4).

Case 2 (µ = ν). Here lemma 1 directly applies with dR ≡ 0 for all R > 0. This yields
‖fα − f0‖X � √

αR and (4.4) whenever α is chosen by (4.3). �

Remark 2. We should note that theorem 2 can be proven alternatively based on the conclusion

R(Gν) ⊂ R
(
(A∗A)

1
2
) �⇒ R(Gµ) = R

(
(Gν)

µ

ν

) ⊂ R
(
(A∗A)

µ

2ν

)
(4.6)

which is, for 0 < µ � ν, an immediate consequence of the Heinz–Kato inequality (see, e.g.,
the corollary of theorem 2.3.3 on p 45 in Tanabe [24] or proposition 8.21 in Engl et al [6])
taking into account that, for s > 0, the range R(Gs) of the injective compact operator Gs

and the domain D(G−s) coincide. Namely, under assumption (4.2) we obtain from (4.6) a
source condition

f0 ∈ R((A∗A)γ ) (4.7)
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with γ = µ

2ν.
As is well known (see, e.g., corollary 3.1.1 in Groetsch [9]), condition (4.7)

provides for any 0 < γ � 1 an error estimate

‖fα − f0‖X � C̃αγ

of Tikhonov regularization with a constant C̃ depending on γ . Similarly, by (3.8), this
implies (4.4) if α is chosen according to (4.3).

Now, we return to the inverse wave source problem in � ⊂ R
2 introduced in example 1

in section 1 and consider (1.5) under the assumption that

T >
1

2
sup

x,x ′∈�

|x − x ′|.

Let us recall that we define the linear operator A : L2(�) −→ L2(∂� × (0, T )) by Af =
∂u(f )

∂ν

∣∣
∂�×(0,T )

. We set X = L2(�) and Y = L2(∂�×(0, T )). Let (Lu)(x) = −�u(x), x ∈ �

with D(L) = H 2(�) ∩ H 1
0 (�). Then the fractional power Ls, s > 0, is defined (e.g., [24]),

and R(L) = L2(�),G = L−1, is a compact and positive self-adjoint operator. Moreover,
Gs = L−s and R(Gs) = H 2s(�) if 0 � s < 1

4 , and R(Gs) = H 2s
0 (�) if 1

4 < s < 3
4

(e.g., [7]). Since theorem 3 in Yamamoto [29] shows that

H 1
0 (�) ⊂ R(A∗),

the condition R(Gν) ⊂ R(A∗) in (4.2) holds here with ν = 1
2 . If f0 ∈ H 1

0 (�), then our
theorem 2 recovers theorem 4 in [29]. A more interesting situation is f0 = χD , where χD

denotes the characteristic function of a smooth subdomain D ⊂ �. Then, by the definition of
Sobolev spaces of fractional orders (e.g., [1]), we can verify that χD ∈ H 2µ(�) = R(Gµ) if
µ < 1

4 . Thus, our strategy applies to the reconstruction of a source term concentrating in D.

The choice α = c0δ
2

1+2µ , with 0 < µ < 1
4 , yields

‖fα,δ − f0‖L2(�) = O
(
δ

2µ

1+2µ

)
as δ −→ 0.

Another approach (see [20]) also yielding convergence rate (4.4) for the Tikhonov
regularization with f0 ∈ R(Gµ) and a priori choice (4.3) of the regularization parameter
is based on a given degree of ill-posedness ν > 0 for the operator A determined by estimates
of the form

Ĉ−1‖f ‖R(G−ν ) � ‖Af ‖Y � Ĉ‖f ‖R(G−ν ) for all f ∈ X (4.8)

with ‖f ‖R(G−ν ) = ‖Gνf ‖X and a fixed constant Ĉ > 0. Taking the dual, we see that (4.8)
implies R(Gν) ⊂ R(A∗) such that theorem 2 is applicable for 0 < µ � ν. Example 2 below
presents such a situation. However, we should note that requirement (4.8) because of the right
inequality can be essentially stronger than the purely algebraic inclusion R(Gν) ⊂ R(A∗) in
theorem 2.3

Example 2 (Abel integral equation). Let X = Y = L2(0, 1), 0 < ν � 1 and let us consider a
linear Abel integral operator A : X −→ X defined by

(Af )(t) = 1

�(ν)

∫ t

0
(t − ξ)ν−1K(t, ξ)f (ξ) dξ, 0 � t � 1.

Here �(ν) is the gamma function, and K = K(t, ξ) is assumed to satisfy the conditions:
K ∈ C({(t, ξ); 0 � ξ � t � 1}), K(t, t) = 1, 0 � t � 1,

there exists a decreasing function k ∈ L2(0, 1) such that∣∣ ∂K
∂ξ

(t, ξ)
∣∣ � k(ξ), 0 � ξ � t � 1.

3 Recently, the authors realized that R(Gν) ⊂ R(A∗) implies the left inequality of (4.8) for some constant Ĉ > 0.
Details and consequences concerning this fact will be discussed in a forthcoming paper with A Böttcher and
U Tautenhahn.
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We introduce a Hilbert scale (see [8])

X̃s(G) =


Hs(0, 1), 0 � s < 1

2 ,{
u ∈ H

1
2 (0, 1); ∫ 1

0 (1 − t)−1|u(t)|2 dt < ∞}
, s = 1

2 ,

{u ∈ Hs(0, 1); u(1) = 0}, 1
2 < s � 1.

(4.9)

Then, for our example, we can prove (see theorem 1 in [8]) an inequality chain of form (4.8)
and by taking the dual, theorem 2 is applicable.

Remark 3. In the context of formula (4.8) for X = L2(0, 1) and elements X̃s(G) as (4.9),
Hilbert scales occur if the operator G corresponds with fractional powers J β, β > 0 of the
operator (Jf )(t) = ∫ t

0 f (ξ) dξ, 0 � t � 1 (see, e.g., [8] or [14]). These scales are appropriate
for compact integral operators A. In such a case, the exponent µ > 0 in theorem 2 expresses
the smoothness of f0 measured by using a Sobolev scale. On the other hand, a study on
non-compact multiplication operators A in section 4 of Hofmann and Fleischer [13] shows
that convergence rates of Tikhonov regularization only depend on the smoothing properties of
A whenever f0 ∈ L∞(0, 1). For that situation, theorem 2 does not apply.

5. Strictly convex index function and logarithmic convergence rates

In this section, we consider the case where the index functions in formulae (2.1) and (2.2)
of the standing assumption are of the form{

ρ1 ∈ C2[0, σ1], ρ1 is strictly increasing and is strictly convex in 0 � t � t1 � σ1,

ρ2(t) = t, 0 � t � σ1, limt→0
t

ρ1(t)
= ∞.

(5.1)

Then, we have
(

ρ2

ρ1

)′
(t) = ρ1(t)−tρ ′

1(t)

ρ2
1 (t)

and (ρ1 − tρ ′
1)

′ = −tρ ′′
1 < 0 in 0 < t � t1. Hence

(ρ1 − tρ ′
1)(t) < (ρ1 − tρ ′

1)(0) = 0, which means that
(

ρ2

ρ1

)′
< 0. Therefore, condition (2.3) is

also satisfied. Note that as a consequence of (5.1), the inverse function ρ−1
1 is strictly concave

in a right neighbourhood of zero with limt→0
ρ−1

1 (t)

t
= ∞. In the following, we focus on

situations such that we moreover have

lim
t→0

tκ

ρ1(t)
= ∞ for all exponents κ > 0. (5.2)

This case is in particular of interest if A is infinitely smoothing in the sense of [17], i.e., for
severely ill-posed problems (1.1), where the requirements for conventional source conditions
f0 ∈ R((A∗A)γ ) for some 0 < γ < 1 are rather hard to satisfy (see also [15]). Then we can
formulate

Theorem 3. Let us hold

R(ρ1(G)) ⊂ R(A∗) = R
(
(A∗A)

1
2
)

and f0 ∈ R(G). (5.3)

By fα,δ we denote the Tikhonov-regularized solution (1.4), and we set

�(s) = ρ−1
1 (

√
s)

√
s, 0 � s � s1. (5.4)

Then for the a priori regularization parameter choice

α = �−1(c1δ), (5.5)

with some constant c1 > 0, we obtain the convergence rate

‖fα,δ − f0‖X = O
(
ρ−1

1

(√
�−1(δ)

))
as δ → 0. (5.6)
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Proof. This theorem is derived from theorem 1. We equate both terms in the right-hand side

of formula (3.7) and have an equation ρ2

ρ1
(
√

αR) = R, that is, ρ−1
1 (

√
α)√

α
= R. By setting R(α) =

ρ−1
1 (

√
α)√

α
we have limα→0 R(α) = ∞, since limt→0

ρ−1
1 (t)

t
= ∞. For this choice, according to

(2.4) we can write

�(R(α), α; δ) = 2ρ−1
1 (

√
α) +

δ√
α

. (5.7)

We note that �(t) and ρ−1
1 (

√
�−1(t)) are strictly increasing index functions. Then the

parameter choice (5.5) is well defined for sufficiently small δ > 0 and we easily derive the
convergence rate

‖fα,δ − f0‖X = O
(
ρ−1

1

(√
�−1(c1δ)

))
as δ → 0 (5.8)

from formula (5.7). This, however, immediately implies the convergence rate (5.6) to be
proven. Namely, we have ρ−1

1 (
√

�−1(c1δ)) � max(c1, 1)ρ−1
1 (

√
�−1(δ)) for sufficiently

small δ > 0 as a consequence of the monotonicity of ρ−1
1 (

√
�−1(δ)) for c1 � 1 and as a

consequence of
ρ−1

1 (
√

�−1(c1δ))

c1δ
� ρ−1

1 (
√

�−1(δ))

δ
for c1 > 1. By setting s = ρ−1

1 (
√

�−1(t))

it holds
ρ−1

1 (
√

�−1(t))

t
= s

sρ1(s)
= 1

ρ1(s)
and we easily see that the function

ρ−1
1 (

√
�−1(t))

t
is

decreasing for sufficiently small t. Hence the proof of theorem 3 is complete. �

It should be mentioned that a convergence rate of form (5.6) is order optimal and is valid
(see, e.g., the remarks in Mathé and Pereverzev [19, p 1265]) if a general source condition

f0 ∈ R(ρo(A
∗A)) (5.9)

with the concave index function ρ0(t) = ρ−1
1 (

√
t) (0 � t � t) is assumed. The interplay

between this fact and theorem 3 would be completely evident if we could prove the implication

R(ρ1(G)) ⊂ R
(
(A∗A)

1
2
) �⇒ R(G) ⊂ R(ρ0(A

∗A)) (5.10)

for every strictly convex index function ρ1. This would be an essential generalization of the
Heinz–Kato inequality, and to our best knowledge, (5.10) is an open problem for general
index functions ρ1.

Example 3 (backward heat equation). Let � ⊂ R
r be a bounded domain whose boundary ∂�

is of C2-class. We consider
∂tu(x, t) = �u(x, t), x ∈ �, 0 < t < T,

u(x, t) = 0, x ∈ ∂�, 0 < t < T,

u(x, 0) = f0(x), x ∈ �.

(5.11)

Let T > 0 be arbitrarily fixed and let us discuss the determination of an initial value
f0(x), x ∈ �, by u(x, T ), x ∈ �. This is a classical severely ill-posed problem and there
are many papers on its analysis and regularization (for example, Ames and Straughan [2],
Baumeister [3, chapter 11]). Let X = L2(�) be a usual real L2-space, and let (·, ·) and ‖·‖
denote the scalar product and the norm in X, respectively. Let us number the eigenvalues
of −� with the homogeneous Dirichlet boundary condition repeatedly according to their
multiplicities:

0 < λ1 � λ2 � λ3 � · · · −→ ∞.
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Let {ϕn}n∈N be corresponding eigenfunctions such that (ϕn, ϕn) = 1. Then, it is known that
{ϕn}n∈N is an orthonormal basis in X. Moreover, we can represent the solution to (5.11) by

u(x, t) =
∞∑

n=1

e−λnt (f, ϕn)ϕn(x), x ∈ �, t > 0.

Therefore, our operator A : X −→ X is defined by

(Af )(x) =
∞∑

n=1

e−λnT (f, ϕn)ϕn(x), x ∈ �. (5.12)

Then by theorem 1 we will derive an a priori choice strategy of regularizing parameters in
reconstructing f0 under an a priori condition f0 ∈ H 1

0 (�) ∩ H 2(�). We can easily verify

(A∗g)(x) = (Ag)(x) =
∞∑

n=1

e−λnT (g, ϕn)ϕn(x), x ∈ �. (5.13)

We choose G as the inverse of the operator −� with the homogeneous Dirichlet boundary
condition and set

ρ1(t) = e− T
t , ρ2(t) = t, 0 < t < T . (5.14)

Then ρ1 and ρ2 satisfy conditions (2.3) and (5.1) with t1 = T
2 . Moreover, we can easily see

that

Xρ1(G) = R(A∗), Xρ2(G) = H 1
0 (�) ∩ H 2(�). (5.15)

Note that σn = 1
λn

, n ∈ N, are all the eigenvalues of G, and the norm ‖f ‖H 1
0 (�)∩H 2(�) is

equivalent to
(∑∞

n=1 λ2
n(f, ϕn)

2
) 1

2 .

First, we will apply theorem 3. Equation (5.5) is equivalent to

T
√

α

log 1√
α

= c1δ, (5.16)

and so under choice (5.16) of α, we have

‖fα,δ − f0‖ = O

(
1

log 1
α

)
by theorem 3. Since (5.16) is not solved in α explicitly, we will consider a quasi-minimum of
� defined by (2.4). As in the proof of theorem 3 we set(

ρ2

ρ1

)−1

(R) = √
αR,

that is, 1 = √
α e

T√
αR . Therefore, we have R = 2T√

α log 1
α

. Without loss of generality, we may

assume that α > 0 is small, so that R � R1. Then,

�

(
2T√

α log 1
α

, α; δ

)
= 4T

log 1
α

+
δ√
α

.

Let us determine α in the form of

α = c2δ
κ, c2 > 0, 0 < κ < 2. (5.17)
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Then,

�0(δ) ≡ min
α>0,R�R1

�(R, α; δ) � �

 2T

c
1
2
2 δ

κ
2 log 1

c2δκ

, c2δ
κ; δ


= 4T

log 1
c2

+ κ log 1
δ

+ c
− 1

2
2 δ1− κ

2 = O

(
1

log 1
δ

)
as δ −→ 0.

Consequently, we can state one a priori strategy for α:

Proposition 1. In (5.11), we assume that f0 ≡ u(·, 0) ∈ H 1
0 (�) ∩ H 2(�), g0 = Af0

and ‖gδ − g0‖L2(�) � δ. Let fα,δ be the minimizer to ‖Af − gδ‖2
L2(�)

+ α‖f ‖2
L2(�)

over

f ∈ L2(�). If α is chosen according to (5.17) for the noise level δ, then

‖fα,δ − f0‖L2(�) = O

(
1

log 1
δ

)
as δ −→ 0. (5.18)

This proposition realizes the convergence shown in the existing papers by means of the
source condition (e.g., theorem 5 and proposition 14 in [15]). In the case where f0 ∈ H

µ

0 (�)

with some µ > 0, we can similarly argue and establish the same convergence rate with the
same choice of α. We can expect only the conditional stability of logarithmic type, even
if f0 is a priori assumed to be in a Sobolev space of higher order. Thus, this convergence
rate of regularized solutions is acceptable and extremely difficult to be improved for general
f0 ∈ H

µ

0 (�). Moreover, the exponent κ ∈ (0, 2) in the choice of α for the noise level δ

does not influence the convergence rate. Here we consider a simple heat equation only for
convenience, but our treatment is the same for a general backward parabolic equation with
variable coefficients, and for our strategy, we need not know exact values of the eigenvalues λn

(cf section 4 of chapter 11 in Baumeister [3]).
We note that the parameter choice (5.17) in proposition 1 is completely different from

choice (5.5) in more general theorem 3. More precisely, (5.17) oversmooths with respect to
(5.5) under assumptions (5.1) and (5.2). On the other hand, choice (5.17) has the advantage
that it does not depend on ρ1. From our standing assumption, (5.1) and (5.2), we derive

‖fα,δ − f0‖X � Ĉρ−1
1

(√
c2δ

κ
2
)
, Ĉ = Ĉ(κ) > 0 (5.19)

with a priori choice (5.17) of α, formula (5.7) and an inequality

ρ0(t) = ρ−1
1 (

√
t) � ĉt ξ , ĉ = ĉ(ξ ) > 0, (5.20)

which is valid for all ξ > 0 and sufficiently small t > 0 and follows directly from
assumption (5.2). Moreover, from (5.19) and (5.20) we obtain the order optimal convergence
rate (5.6) also for the a priori choice (5.17). It is well known as an intrinsic advantage
of the method of Tikhonov regularization that the a priori parameter choice (5.17) yields
order optimal convergence rates for logarithmic source conditions with index functions
ρ0(t) = (log(1/t))−η in (5.9) uniformly for all η > 0 (e.g., [18, p 802] and for the special
case κ = 1 [15, 17]). More generally, order optimal convergence rates based on (5.9)
and (5.17) occur if the twice differentiable and concave index function ρ0 satisfies limit
conditions limt→0

ρ0(t)

tζ
= ∞ for all ζ > 0. Such requirements are just fulfilled whenever

ρ0(t) = ρ−1
1 (

√
t) meets (5.1) and (5.2).

Example 4 (determination of initial temperature by boundary observation). Let � ⊂ R
r be

a bounded domain whose boundary ∂� is of C2-class. We consider (5.11). Here ν = ν(x)
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denotes the unit outward normal vector to ∂� at x and we set ∂u
∂ν

= ∇u · ν. We discuss the
determination of f0(x), x ∈ � by boundary observation ∂u

∂ν

∣∣
∂�×(0,T )

.

Let us recall that (Lu)(x) = −�u(x), x ∈ � with D(L) = H 2(�) ∩ H 1
0 (�) and let us

number the eigenvalues of L according to the multiplicities: 0 < λ1 < λ2 � λ3 � · · · −→ ∞.
By {ϕn}n∈N we denote the corresponding eigenvectors such that (ϕn, ϕn) = 1. Let X = L2(�)

and Y = L2(∂� × (0, T )). Then we can represent A : X −→ Y as

(Af )(x, t) = ∂u

∂ν
(x, t), x ∈ ∂�, 0 < t < T .

Then our problem is described by (1.1). By using the operator theory [7, 24] and the trace
theorem [1], we can see that A : X −→ Y is bounded. Now, we will determine A∗. We
introduce 

∂tv(x, t) = −�v(x, t), x ∈ �, 0 < t < T,

v(x, t) = g(x, t), x ∈ ∂�, 0 < t < T,

u(x, T ) = 0, x ∈ �.

(5.21)

For g ∈ C∞
0 (∂� × (0, T )) and f0 ∈ C∞

0 (�), we see that the solutions u and v to (5.11)

and (5.21) are sufficiently smooth, so that we can calculate
∫ T

0

∫
�
(∂tu)v dx dt by the Green

theorem and integration by parts in t. Then, we have

(Af0, g)L2(∂�×(0,T )) =
(

∂u

∂ν
, v

)
L2(∂�×(0,T ))

= −(f0, v(·, 0))L2(�),

which implies

A∗g = −v(·, 0), g ∈ C∞
0 (∂� × (0, T )). (5.22)

In order to verify (2.1), we have to characterize R(A∗) = {A∗g; g ∈ Y }. By theorem 2.3
in Russell [23], we know that R(A∗) ⊃ D

(
exp

(
C4L

1
2
))

, where C4 > 0 is a constant. Since a
system {ϕn}n∈N of the eigenfunctions is an orthonormal basis in X, we have

exp
(
C4L

1
2
)
a =

∞∑
n=1

exp
(
C4λn

1
2
)
(a, ϕn)ϕn (5.23)

for a ∈ D
(
exp

(
C4L

1
2
))

. Let us choose G = L−1 and

ρ1(t) = exp

(−C4√
t

)
, ρ2(t) = t, t > 0. (5.24)

Since σn = 1
λn

, n ∈ N, if a ∈ Xρ1(G), then

∞∑
n=1

exp
(
2C4λn

1
2
)
(a, ϕn)

2 < ∞

by the definition of ‖·‖Xρ1 (G). Therefore, (5.23) yields a ∈ D
(
exp

(
C4L

1
2
))

with choice (5.24).
We can argue similarly to example 3, so that choice (5.17) of α implies

‖fα,δ − f0‖L2(�) = O

(
1(

log 1
δ

)2

)
as δ −→ 0,

for f0 ∈ H 1
0 (�) ∩ H 2(�).
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Appendix. Proof of lemma 1

First, we note

(A∗A + αI)fα = A∗g0, A∗Af0 = A∗g0. (A.1)

Let g ∈ Y and ‖g‖Y � R. Then, by (A.1) and the Cauchy–Schwarz inequality, we have

‖Afα − Af0‖2
Y = (Afα − Af0, Afα − Af0) = −α‖fα − f0‖2

X − α(f0, fα − f0)

= −α‖fα − f0‖2
X − α(f0 − A∗g, fα − f0) − α(g,A(fα − f0))

� −α‖fα − f0‖2
X + α‖f0 − A∗g‖X‖fα − f0‖X + α‖g‖Y ‖Afα − Af0‖Y

� −α‖fα − f0‖2
X + α‖f0 − A∗g‖X‖fα − f0‖X + αR‖Afα − Af0‖Y .

Taking the infimum in g, we obtain

‖Afα − Af0‖2
Y � −α‖fα − f0‖2

X + αdR‖fα − f0‖X + αR‖Afα − Af0‖Y .

Therefore,

‖Afα − Af0‖2
Y � −α‖fα − f0‖2

X + α
(

1
2d2

R + 1
2‖fα − f0‖2

X

)
+ 1

2α2R2 + 1
2‖Afα − Af0‖2

Y ,

so that
α

2
‖fα − f0‖2

X +
1

2
‖Afα − Af0‖2

Y � α

2
d2

R +
1

2
α2R2,

which completes the proof of lemma 1.
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