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Abstract

In the last years convergence rates results for Tikhonov regularization of nonlinear

ill-posed problems in Banach spaces have been published, where the classical concept

of source conditions was replaced with variational inequalities holding on some level

sets. This essentially advanced the analysis of non-smooth situations with respect to

forward operators and solutions. In fact, such variational inequalities combine both

structural conditions on the nonlinearity of the operator and smoothness properties

of the solution. Varying exponents in the variational inequalities correspond to

different levels of convergence rates. In this paper, we discuss the range of occurring

exponents in the Banach space setting. To lighten the cross-connections between

generalized source conditions, degree of nonlinearity of the forward operator and

associated variational inequalities we study the Hilbert space situation and even

prove some converse result for linear operators. Finally, we outline some aspects

for the interplay of variational regularization and conditional stability estimates for

partial differential equations. As an example, we apply the theory to a specific

parameter identification problem for a parabolic equation.
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1 Introduction

After turn of the millennium there seems to be a substantial progress in regularization
theory for the stable approximate solution of ill-posed inverse problems. On the one
hand, partially motivated by specific applications in imaging and by a growing interest
in sparsity of solutions as well as in new types of stabilizing terms in variational regu-
larization, the Banach space treatment of linear and nonlinear operator equations and
occurring difficulties in this context came into the focus of recent papers and books. On
the other hand, Bregman distances for measuring the regularization error and variational
inequalities for replacing the standard form of source conditions offer now good prospects
for proving convergence rates results also for non-smooth situations with respect to solu-
tion and forward operator. For recent results we refer to the monograph [29] and in an
exemplary manner to the papers [3, 4, 10, 12, 13, 14, 19, 21, 22, 26, 27, 28, 30, 31, 33] as
well as to the thesis [24].

This paper is devoted to the utility of variational inequalities combining both struc-
tural conditions on the nonlinearity of the operator and smoothness properties of the
solution. Varying exponents in the variational inequalities correspond to different levels
of convergence rates. We are going to discuss the range of occurring exponents in the
Banach space setting and the interplay of general source conditions and variational in-
equalities in Banach and Hilbert spaces. The paper is organized as follows: In Section 2
we describe the Tikhonov type regularization for the stable approximate solution of non-
linear ill-posed operator equations in a Banach space setting under basic assumptions
which follow the corresponding assumptions of the papers [13, 14]. As in the previous
papers the focus is again on level sets for the Tikhonov sum functional, and the majority
of conditions under consideration have to hold on such sets. Section 3 summarizes propo-
sitions on convergence and convergence rates under variational inequalities. Moreover,
we recall the concept of a degree of nonlinearity for characterizing the local structural
nonlinearity conditions in the solution point. The range of occurring exponents in the
variational inequalities is discussed in Section 4. Here the forward operator and the sta-
bilizing functional are assumed to be Gâteaux differentiable. We distinguish three typical
cases of exponents and make assertions for all of them. In Section 5 the concept of the
degree of nonlinearity will be modified, since weaker norms with respect to the first or-
der Taylor remainder extend the applicability of the theory to a wider class of problems.
Some open questions cannot be answered currently for the general Banach space setting.
Therefore we restrict our considerations in the concluding Section 6 to Hilbert spaces
situations. Under that restriction we are able to formulate assertions on the interplay of
variational inequalities and Hölder source conditions with fractional exponents including
some converse result for the subcase of linear operators. For inverse problems in partial
differential equations conditional stability estimates are frequently more appropriate than
estimates for the Taylor remainder. Therefore, we outline some cross-connections between
variational regularization and conditional stability estimates for partial differential equa-
tions. Estimates of this type are currently in the focus of numerous papers with respect
to various methods such as Carleman estimates. We refer, e.g., to the monograph [16].
In our concluding section, as an example we apply the theory to a specific parameter
identification problem for a parabolic equation.
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2 Problem, notation, and basic assumptions

We are going to study ill-posed operator equations

F (u) = v (2.1)

expressing inverse problems with an in general nonlinear forward operator F : D(F ) ⊆
U → V possessing the domain D(F ) and mapping between normed real linear spaces U
and V with norms ‖ · ‖U and ‖ · ‖V , respectively. Based on noisy data vδ of the exact
right-hand side v = v0 ∈ F (D(F )) with

‖vδ − v‖V ≤ δ (2.2)

and noise level δ ≥ 0 we consider stable approximate solutions uδ
α as minimizers over U

of the Tikhonov type functional

T vδ

α (u) := ‖F (u) − vδ‖p
V + α Ω(u) (2.3)

with a prescribed norm exponent
1 < p < ∞

and a regularization parameter α > 0. In this context, let Ω : U → [0, +∞] be a stabilizing
functional with

D(Ω) := {u ∈ U : Ω(u) 6= +∞} 6= ∅

and set T vδ

α (u) = ∞ if u /∈ D(F ). For studies on residual terms S(F (u), vδ) in (2.3)
replacing ‖F (u) − vδ‖p

V we refer to [24] and [9], where the latter reference also makes
assertions on p < 1 in the norm case.

Throughout this paper we make the following assumptions:

Assumption 2.1

1. U and V are reflexive Banach spaces with duals U∗ and V ∗, respectively. In U and
V we consider in addition to the norm convergence the associated weak convergence.
That means in U

uk ⇀ u ⇐⇒ 〈f, uk〉U∗,U → 〈f, u〉U∗,U ∀f ∈ U∗

for the dual pairing 〈·, ·〉U∗,U with respect to U∗ and U . The weak convergence in V
is defined in an analog manner.

2. F : D(F ) ⊆ U → V is weakly-weakly sequentially continuous and D(F ) is weakly
sequentially closed, i.e.,

uk ⇀ u in U with uk ∈ D(F ) =⇒ u ∈ D(F ) and F (uk) ⇀ F (u) in V.

3. The functional Ω is convex and weakly sequentially lower semi-continuous.

4. The domain D := D(F ) ∩ D(Ω) is non-empty.
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5. For every α > 0, c ≥ 0, and for the exact right-hand side v = v0 of (2.1), the sets

Mv
α(c) := {u ∈ D : T v

α(u) ≤ c} (2.4)

are weakly sequentially pre-compact in the following sense: every sequence {uk}
∞
k=1

in Mv
α(c) has a subsequence, which is weakly convergent in U to some element from

U .

Under the stated assumptions existence and stability of regularized solutions uδ
α can be

shown (cf. [14, §3] and [29, Theorems 3.22 and 3.23]).

In the Banach space theory of Tikhonov type regularization methods, regularization
errors are frequently measured, for the convex functional Ω with subdifferential ∂Ω, by
means of Bregman distances

Dξ(ũ, u) := Ω(ũ) − Ω(u) − 〈ξ, ũ− u〉U∗,U , ũ ∈ D(Ω) ⊆ U ,

at u ∈ D(Ω) ⊆ U and ξ ∈ ∂Ω(u) ⊆ U∗. The set

DB(Ω) := {u ∈ D(Ω) : ∂Ω(u) 6= ∅}

is called Bregman domain. For more details see, e.g., [29, Lemmas 3.16 and 3.17].

An element u† ∈ D is called an Ω-minimizing solution to (2.1) if

Ω(u†) = min {Ω(u) : F (u) = v, u ∈ D} < ∞ .

Such Ω-minimizing solutions exist under Assumption 2.1 if (2.1) has a solution u ∈ D
(see [29, Theorem 3.25]), and by [29, Theorem 3.26]

3 Convergence, convergence rates, the degree of non-

linearity, and variational inequalities

As the following proposition shows, all regularized solutions associated with data possess-
ing a sufficiently small noise level δ belong to a common weakly pre-compact level set of
type Mv

α(c) whenever the regularization parameters α = α(δ) are chosen such that weak
convergence to Ω-minimizing solutions u† is enforced.

Proposition 3.1 Consider an a priori choice α = α(δ) > 0, 0 < δ < ∞, for the
regularization parameter in (2.3) depending on the noise level δ such that

α(δ) → 0 and
δp

α(δ)
→ 0, as δ → 0. (3.1)

Provided that (2.1) has a solution u ∈ D then under Assumption 2.1 every sequence
{un}

∞
n=1 := {uδn

α(δn)}
∞
n=1 of regularized solutions corresponding to a sequence {vδn}∞n=1 of

data with lim
n→∞

δn = 0 has a subsequence {unk
}∞k=1, which is weakly convergent in U ,

i.e. unk
⇀ u†, and its limit u† is an Ω-minimizing solution of (2.1) with

Ω(u†) = lim
k→∞

Ω(unk
).
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For given αmax > 0 let u† denote an Ω-minimizing solution of (2.1). If we set

ρ := 2p−1αmax(1 + Ω(u†)) , (3.2)

then we have u† ∈ Mv
αmax

(ρ) and there exists some δmax > 0 such that

uδ
α(δ) ∈ Mv

αmax
(ρ) for all 0 ≤ δ ≤ δmax . (3.3)

Proof: The first part of the proposition concerning convergence replicates only the result
of [29, Theorem 3.26] and we refer to the proof ibidem. The second part can be proven
as follows: Owing to (3.1) there exists some δmax > 0 such that α(δ) ≤ αmax and δp

α(δ)
≤ 1

2

for all 0 < δ ≤ δmax. Then for such δ, by writing for simplicity α instead of α(δ), we have
with (a + b)p ≤ 2p−1(ap + bp) (a, b ≥ 0, p > 1) the estimate

T v
αmax

(uδ
α) ≤ 2p−1

[
∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ δp + αmaxΩ(uδ

α)
]

= 2p−1
[
∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ αΩ(uδ

α) + (αmax − α)Ω(uδ
α) + δp

]

≤ 2p−1
[

T vδ

α (u†) + (αmax − α)Ω(uδ
α) + δp

]

≤ 2p−1
[

δp + αΩ(u†) + (αmax − α)Ω(uδ
α) + δp

]

.

From T vδ

α (uδ
α) ≤ T vδ

α (u†) (α > 0) we obtain Ω(uδ
α) ≤ δp

α
+Ω(u†) and with αmax

α
≥ 1, δp

α
≤ 1

2

this yields

T v
αmax

(uδ
α) ≤ 2p−1

[

δp + αmax
δp

α
+ αmaxΩ(u†)

]

≤ 2p−1

[

2αmax
δp

α
+ αmaxΩ(u†)

]

≤ ρ

and hence proves (3.3). Evidently, it holds T v
αmax

(u†) = αmaxΩ(u†) ≤ 2p−1αmaxΩ(u†) for
all p > 1, which implies u† ∈ Mv

αmax
(ρ) and completes the proof.

Proposition 3.1 makes only assertions on weakly convergent sequences of regularized
solutions. However, the convergence rates results presented below will imply the strong
convergence of such sequences. For further results on strong convergence we refer, for
example, to Proposition 3.32 in [29].

For the analysis of nonlinear problems both the smoothness of Ω-minimizing solutions
u† and the smoothness of the forward operator F in a neighbourhood of u† are essential
ingredients. In this context, the term ‘smoothness’ has to be considered in a very general
sense. With respect to the operator we recall the concept of a degree of nonlinearity from
[13, Definition 2.5] which represents a Banach space update of Definition 1 from [15].

Definition 3.2 Let c1, c2 ≥ 0 and c1 + c2 > 0. We define F to be nonlinear of degree
(c1, c2) for the Bregman distance Dξ(·, u

†) of Ω at a solution u† ∈ DB(Ω) ⊆ U of (2.1)
with ξ ∈ ∂Ω(u†) ⊆ U∗ if there is a constant K > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 (3.4)

for all u ∈ Mv
αmax

(ρ).
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In recent publications the distinguished role of variational inequalities

〈

ξ, u† − u
〉

U∗,U
≤ β1Dξ(u, u†) + β2

∥

∥F (u) − F (u†)
∥

∥

κ

V
for all u ∈ Mv

αmax
(ρ) (3.5)

with some ξ ∈ ∂Ω(u†), two multipliers 0 ≤ β1 < 1, β2 ≥ 0 and an exponent κ > 0
for obtaining convergence rates was elaborated. The subsequent proposition outlines the
chances of such variational inequalities for ensuring convergence rates in Tikhonov type
regularization. Here we summarize convergence rates results from [13], [14], and [29,
Section 3.2].

Proposition 3.3 Assume that F, Ω,D, U and V satisfy the Assumption 2.1 and that
there is an Ω-minimizing solution from the Bregman domain u† ∈ DB(Ω). If there exist
an element ξ ∈ ∂Ω(u†) and constants 0 ≤ β1 < 1, β2 ≥ 0, and 0 < κ ≤ 1 such that the
variational inequality (3.5) holds with ρ from (3.2), then we have the convergence rate

Dξ(u
δ
α(δ), u

†) = O (δκ) as δ → 0 (3.6)

for an a priori parameter choice α(δ) ≍ δp−κ.

Proof: We write again for simplicity α instead of α(δ) and note that the parameter choice
rule α ≍ δp−κ satisfies the condition (3.1) with the consequence that Proposition 3.1 is
applicable. Then by using T vδ

α (uδ
α) ≤ T vδ

α (u†), (2.2), and the definition of the Bregman
distance we can estimate as follows:

∥

∥F (uδ
α) − vδ

∥

∥

p

V
+ αDξ(u

δ
α, u†) ≤ δp + α

(

Ω(u†) − Ω(uδ
α) + Dξ(u

δ
α, u†)

)

. (3.7)

Moreover, by exploiting the inequality (a + b)κ ≤ aκ + bκ (a, b > 0, 0 < κ ≤ 1) because of
(3.3) we obtain from the variational inequality (3.5) that

Ω(u†) − Ω(uδ
α) + Dξ(u

δ
α, u†) = −

〈

ξ, uδ
α − u†〉

U∗,U

≤ β1 Dξ(u
δ
α, u†) + β2

∥

∥F (uδ
α) − F (u†)

∥

∥

κ

V

≤ β1 Dξ(u
δ
α, u†) + β2

(
∥

∥F (uδ
α) − vδ

∥

∥

κ

V
+ δκ

)

.

Therefore from (3.7) it follows that

∥

∥F (uδ
α) − vδ

∥

∥

p

V
+αDξ(u

δ
α, u†) ≤ δp+α

(

β1Dξ(u
δ
α, u†) + β2

(
∥

∥F (uδ
α) − vδ

∥

∥

κ

V
+ δκ

))

. (3.8)

Using the variant

a b ≤ ε ap1 +
bp2

(ε p1)p2/p1p2
(a, b ≥ 0, ε > 0 p1, p2 > 1 with

1

p1
+

1

p1
= 1) (3.9)

of Young’s inequality twice with ε := 1, p1 := p/κ, p2 := p/(p − κ) and b := αβ2, on the
one hand with a := ‖F (uδ

α) − u†‖κ
V and on the other hand with a := δκ, the inequality

αDξ(u
δ
α, u†) ≤ 2δp + αβ1Dξ(u

δ
α, u†) +

2(p − κ)

(p/κ)κ/(p−κ) p
(αβ2)

p/(p−κ)
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follows from (3.8). Because of 0 ≤ β1 < 1 this provides us with the estimate

Dξ(u
δ
α, u†) ≤

2δp + 2(p−κ)

(p/κ)κ/(p−κ) p
(α β2)

p/(p−κ)

α (1 − β1)
(3.10)

for sufficiently small δ > 0, which yields (3.6) for the a priori parameter choice α ≍ δp−κ

and proves the proposition. As a by-product from formula (3.10) we obtain for the case
δ = 0 of noiseless data the corresponding estimate

Dξ(u
0
α, u†) ≤ Ĉ α

κ
p−κ (3.11)

with some constant Ĉ > 0.

Remark 3.4 The Proposition 3.3 shows the formidable capability of variational inequal-

ities (3.5) for obtaining convergence rates without any additional requirements on the
solution smoothness and on the nonlinearity structure of the forward operator. In this
sense, the validity of such variational inequality (3.5) on the associated level set embodies
an advantageous combination of properties on u† and F in a neighbourhood of u†. Nec-
essary and sufficient conditions for (3.5) are given in the literature only in a fragmented
manner, mostly expressing the interplay with classical source conditions.

In the next section we discuss the limited variability of exponents κ > 0 in (3.5).

4 A case distinction for the exponent in the variational

inequality

We specify the general Assumption 2.1 to Assumption 4.1 by additional requirements for
local use in this section.

Assumption 4.1

1. F, Ω,D, U and V satisfy the Assumption 2.1.

2. Let u† ∈ D be an Ω-minimizing solution of (2.1).

3. The operator F is Gâteaux differentiable in u† with the Gâteaux derivative
F ′(u†) ∈ L(U, V ).

4. The functional Ω is Gâteaux differentiable in u† with the Gâteaux derivative
ξ = Ω′(u†) ∈ U∗, i.e., the subdifferential ∂Ω(u†) = {ξ} is a singleton.

Remark 4.2 The Gâteaux differentiability of F and Ω in u† implies that u† belongs to
core(D), the algebraic interior of D. Not in all cases the algebraic interior core(D) and its
subset int(D), the set of inner points, do coincide. In such cases u† need not be an inner
point of the domains D(F ) and D(Ω).

7



Case κ > 1:

The following proposition shows that exponents κ > 1 in the variational inequality (3.5)
under Assumption 4.1 in principle cannot occur.

Proposition 4.3 Under the Assumption 4.1 the variational inequality (3.5) cannot hold
with ξ = Ω′(u†) 6= 0 and multipliers β1, β2 ≥ 0 whenever κ > 1.

Proof: To prove the proposition we assume that the variational inequality (3.5) holds
for ξ = Ω′(u†) 6= 0 and some κ > 1 with multipliers β1, β2 ≥ 0 and for all u ∈ Mv

αmax
(ρ).

Then there is an element uξ ∈ U with 〈ξ, uξ〉U∗,U > 0 and some t0 > 0 such that because

of u† ∈ core(D) we have u† − tuξ ∈ Mv
αmax

(ρ) for all 0 ≤ t ≤ t0. Hence we have for all
0 < t ≤ t0

0 < 〈ξ, tuξ〉U∗,U ≤ β1Dξ(u
† − tuξ, u

†) + β2

∥

∥F (u† − tuξ) − F (u†)
∥

∥

κ

V

and dividing by t > 0

〈ξ,uξ〉
U∗,U

≤β1

»

Ω(u†−tuξ)−Ω(u†)

t
+〈ξ,uξ〉

U∗,U

–

+β2

‚

‚

‚

‚

F (u†−tuξ)−F (u†)

t

‚

‚

‚

‚

κ

V

tκ−1. (4.1)

The left-hand side of inequality (4.1) is a positive constant. The right-hand side, however,
tends to zero as t → 0, since we have the limit conditions

lim
t→0

‖Ω(u†−tuξ)−Ω(u†)

t
+〈ξ,uξ〉

U∗,U
‖=0 and lim

t→0

‚

‚

‚

‚

F (u†−tuξ)−F (u†)

t

‚

‚

‚

‚

V

=‖F ′(u†)uξ‖V <∞ ,

because of the Gâteaux-differentiability of F and Ω in u†. This contradicts the assump-
tion and proves the proposition.

Case κ = 1:

As the next proposition shows the variational inequality (3.5) is closely connected with
the source condition ξ ∈ R(F ′(u†)∗), where R(A) denotes the range of a linear operator A.
The assertion a) of Proposition 4.4 repeats the Proposition 3.38 from [29], but reflects in
contrast to the original the fact that the proof ibidem does not need the condition β1 < 1.
Note that the proof given there is similar to the proof of Proposition 4.3 presented above.
On the other hand, for the assertion b) of Proposition 4.4 and its proof we refer to
Proposition 3.35 in [29].

Proposition 4.4 Under the Assumption 4.1 the following two assertions hold:

a) The validity of a variational inequality

〈

ξ, u† − u
〉

U∗,U
≤ β1Dξ(u, u†) + β2

∥

∥F (u) − F (u†)
∥

∥

V
for all u ∈ Mv

αmax
(ρ) (4.2)

for ξ = Ω′(u†) and two multipliers β1, β2 ≥ 0 implies the source condition

ξ = F ′(u†)∗ w, w ∈ V ∗. (4.3)
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b) Let F be nonlinear of degree (0, 1) for the Bregman distance Dξ(·, u
†) of Ω at u†, i.e.,

we have
∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K Dξ(u, u†) (4.4)

for a constant K > 0 and all u ∈ Mv
αmax

(ρ). Then the source condition (4.3) together
with the smallness condition

K ‖w‖V ∗ < 1 (4.5)

imply the validity of a variational inequality (4.2) with ξ = Ω′(u†) and multipliers
0 ≤ β1 = K‖w‖V ∗ < 1, β2 = ‖w‖V ∗ ≥ 0.

Case 0 < κ ≤ 1:

The following proposition extends the result b) of Proposition 4.4 to a wider class of
degrees of nonlinearity. The particular case κ = 1 discussed above occurs here only for
the complementary situation c1 > 0.

Proposition 4.5 Under the Assumption 4.1 let F be nonlinear of degree (c1, c2) with
0 < c1 ≤ 1, 0 ≤ c2 < 1, c1 + c2 ≤ 1 for the Bregman distance Dξ(·, u

†) of Ω at u†, i.e., we
have

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K ‖F (u) − F (u†)‖ c1

V Dξ(u, u†)c2 (4.6)

for a constant K > 0 and all u ∈ Mv
αmax

(ρ). Then the source condition (4.3) without any
additional condition implies the validity of a variational inequality (3.5) with

κ =
c1

1 − c2
, (4.7)

ξ = Ω′(u†) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.

Proof: We can estimate for u ∈ Mv
αmax

(ρ)

〈

ξ, u† − u
〉

U∗,U
=

〈

F ′(u†)∗ w, u† − u
〉

U∗,U
=

〈

w, F ′(u†)(u† − u)
〉

V ∗,V
≤ ‖w‖V ∗‖F ′(u†)(u†−u)‖V

≤ ‖w‖V ∗

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
+ ‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

V

≤ K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 + ‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

V
.

Taking into account that
∥

∥F (u) − F (u†)
∥

∥

V
≤ ρ1/p for u ∈ Mv

αmax
(ρ) this implies for

the case c2 = 0 and 0 < c1 ≤ 1 the variational inequality (3.5) with β1 = 0, β2 =

‖w‖V ∗(K + ρ
1−c1

p ) and κ = c1. On the other hand, for 0 < c2 < 1 and 0 < c1 ≤ 1 the
variant (3.9) of Young’s inequality with p1 := 1

c2
, p2 := 1

1−c2
, ε := c2, a := Dξ(u, u†) c2 and

b := K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
yields here

K‖w‖V ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 ≤ c2 Dξ(u, u†)+(1−c2)(K‖w‖V ∗)

1
1−c2

∥

∥F (u) − F (u†)
∥

∥

c1
1−c2
V .

and hence the validity of a variational inequality (3.5) with κ = c1
1−c2

and multipliers

0 ≤ β1 = c2 < 1, β2 = ρ
1−κ

p ‖w‖V ∗ + (1 − c2)K
1

1−c2 ‖w‖
1

1−c2
V ∗ .
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This proves the proposition.

Note that essential ingredients for Proposition 4.5 and its proof have already been
presented in [13, Lemma 3.1]. The proposition shows that the variational inequality (3.5)
holds with the maximum exponent κ = 1 if either c1 itself is maximal, i.e., c1 = 1, or its
defect in the case 0 < c1 < 1 can be compensated by c2 > 0 whenever we have c1 + c2 = 1.

We mention here three questions, which cannot be answered in the moment for the
used general Banach space setting under consideration in this paper:
I. Are there alternative sufficient conditions for obtaining a variational inequality (3.5)
with exponents 0 < κ < 1 when ξ fails to satisfy a source condition (4.3)?
II. What combinations of c1 and c2 in the degree of nonlinearity do really occur?
III. Are the degrees of nonlinearity (c1, c2) with c1 + c2 > 1 of interest?
The questions, however, will be partially answered in the subsequent Section 5 for the
standard Tikhonov regularization in a Hilbert space setting

Remark 4.6 Taking into account that only exponents 0 < κ ≤ 1 make sense in general,
we close this section with some remark on the pathological case p < 1. It is well-known
that the case p = 1 in the Tikhonov functional (2.3) is singular and leads to the so-called
exact penalization (see [4, 11, 14]). Even if the numerical difficulties (non-convexity)
should discourage any attempt to use 0 < p < 1 in variational regularization with norm
powers as residual term, it is of interest whether convergence rates also can be obtained
in that case. It seems to be no problem to extend the assertions on existence and stability
to that case. However, the convergence condition δp

α(δ)
→ 0 as δ → 0 shows that the decay

of α(δ) → 0 has to become slow if p is very small. For obtaining convergence rates this
corresponds with the a priori parameter choice α(δ) ≍ δp−κ in Proposition 3.3, which only
works for

0 < κ < p whenever 0 < p < 1 . (4.8)

As one can easily check by the proof the assertion Dξ(u
δ
α(δ), u

†) = O (δκ) of Proposition 3.3

can be extended to the case (4.8) for the same α-choice. The important consequence is
that an exponent 0 < p < 1 for κ ≥ p artificially bounds the occurring convergence rate
to Dξ(u

δ
α(δ), u

†) = O (δν) which then only holds for 0 < ν < p. In this context we make

the important note that the validity of a variational inequality (3.5) with some exponent
0 < κ ≤ 1 implies the validity of such variational inequalities also for all positive exponents
smaller than κ, where when indicated the corresponding level sets have to be adapted.

5 The degree of nonlinearity with weaker norms

In the Banach space setting the condition (4.6) characterizing the degree of nonlinearity is
in general difficult to verify for specific nonlinear inverse problems. As was shown in [14]
sometimes the situation tends to the better if weaker norms are introduced in addition
to the stronger ones (cf. [14, Remark 4.2]). Therefore we relax the condition by imposing
a weaker norm on the first order Taylor remainder on the left hand side of (4.6). In this
context, we complement the Assumption 4.1 as follows:
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Assumption 5.1

1. Let hold the Assumption 4.1.

2. Let Ṽ be a reflexive Banach space with dual Ṽ ∗, where V is densely and continuously
embedded in Ṽ such that we have with a constant C > 0

‖v‖Ṽ ≤ C ‖v‖V for all v ∈ V .

3. For the Ω-minimizing solution u† ∈ D with ξ = Ω′(u†) let exist c1 > 0 and 0 ≤ c2 < 1
such that we have with some constant K > 0

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

Ṽ
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 (5.1)

for all u ∈ Mv
αmax

(ρ).

4. For that ξ there exists an element w̃ ∈ Ṽ ∗ such that

〈

ξ, u† − u
〉

U∗,U
≤

∣

∣

∣

〈

w̃, F ′(u†)(u − u†)
〉

Ṽ ∗,Ṽ

∣

∣

∣
(5.2)

for all u ∈ Mv
αmax

(ρ).

Proposition 5.2 Under the Assumption 5.1 a variational inequality

〈

ξ, u† − u
〉

U∗,U
≤ β1Dξ(u, u†) + β2

∥

∥F (u) − F (u†)
∥

∥

κ

V

holds for all u ∈ Mv
αmax

(ρ) with κ = c1
1−c2

and for some 0 ≤ β1 < 1, β2 ≥ 0.

Hence Proposition 3.3 applies and yields

Dξ(u
δ
α(δ), u

†) = O (δκ) as δ → 0

for an a priori parameter choice α(δ) ≍ δp−κ.

Proof: The proof is completely analogous to that of Proposition 4.5. Only the constants
are different and they are just without meaning in the present case c1 > 0. Namely, we
can estimate for u ∈ Mv

αmax
(ρ)

〈

ξ, u† − u
〉

U∗,U
≤

∣

∣

∣

〈

w̃, F ′(u†)(u − u†)
〉

Ṽ ∗,Ṽ

∣

∣

∣

≤ ‖w̃‖Ṽ ∗‖F ′(u†)(u† − u)‖Ṽ ≤ C ‖w̃‖Ṽ ∗‖F ′(u†)(u† − u)‖V

≤ C ‖w̃‖Ṽ ∗

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
+ C ‖w̃‖Ṽ ∗

∥

∥F (u) − F (u†)
∥

∥

V

≤ C K‖w̃‖Ṽ ∗

∥

∥F (u) − F (u†)
∥

∥

c1

V
Dξ(u, u†) c2 + C ‖w̃‖Ṽ ∗

∥

∥F (u) − F (u†)
∥

∥

V
.

Then Young’s inequality yields the variational inequality as in the former proof.
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Remark 5.3 Proposition 5.2 extends the main result of [14], where the convergence
rate Dξ(u

δ
α(δ), u

†) = O (δ) was shown under similar assumptions. Precisely, in [14] the

nonlinearity condition (5.1) was focused on exponents c1 = 0, c2 = 1 and (5.2) had to be
complemented by a smallness condition K‖w̃‖Ṽ ∗ < 1. Note that as in [14] the condition
(5.2) of our Proposition 5.2 is satisfied if there is an element w̃ ∈ Ṽ ∗ such that the equation

〈

ξ, u† − u
〉

U∗,U
=

〈

w̃, F ′(u†)(u − u†)
〉

Ṽ ∗,Ṽ
(5.3)

holds for all u ∈ Mv
αmax

(ρ). This is easy to verify if V = L2 and Ṽ = L2−ε (0 < ε < 1).

Then we have Ṽ ∗ = Lµ with µ = 2−ε
1−ε

> 2 and (5.3) attains the form

〈

ξ, u† − u
〉

U
=

〈

w̃, F ′(u†)(u − u†)
〉

V ∗,V

(cf. [14, Remark 4.2 and §6]).

6 Extended results for Hilbert space situations

In Assumption 6.1 we specify now the requirements expressing the setting of this section.

Assumption 6.1

1. Set p := 2 and let U, V be Hilbert spaces, where we identify U and U∗ as well as V
and V ∗ by using the Riesz isomorphism. By the adjoint A∗ of a linear operator A
in this section we always mean the Hilbert space adjoint.

2. The operator F, D(F ), u† and ξ are chosen such that they satisfy together with U, V
and Ω the Assumption 4.1.

3a. Let Ω(u) := ‖u − u∗‖2
U with fixed reference element u∗ ∈ U and D(Ω) = U.

3b. Let B : D(B) ⊂ U → U be an unbounded injective, positive definite, self-adjoint
linear operator with domain D(B) dense in U . Furthermore let C̃ > 0 be a constant
such that ‖u‖Ũ := ‖Bu‖u ≥ C̃ ‖u‖U (u ∈ Ũ), and Ũ is a Hilbert space with norm
‖ · ‖Ũ stronger than ‖ · ‖U . Moreover, let Ω(u) := ‖Bu‖U = ‖u‖Ũ with D(Ω) = Ũ .

Remark 6.2 (Case 3a) Under the Assumption 6.1 in the case 3a the Ω-minimizing
solutions and the classical u∗-minimum solutions (cf. [7, 8]) coincide. Moreover, we have
D = D(F ) and for ξ and Dξ(ũ, u) the simple structure

ξ = 2 (u† − u∗) and Dξ(ũ, u) = ‖ũ − u‖2
U (6.1)

with Bregman domain DB(Ω) = U . Regularized solutions uδ
α are minimizers over U of

the classical Tikhonov functional of Hilbert space type

T vδ

α (u) := ‖F (u) − vδ‖2
V + α ‖u − u∗‖2

U

comprehensively studied in [7, Chapter 10].

12



Remark 6.3 (Case 3b) Under the Assumption 6.1 in the case 3b we have D(Ω) = Ũ

and if the limit 〈ξ, û〉U = Ω′(u†) û = lim
t→0

Ω(u†+tû−Ω(u†)
t

exists it has the form 〈ξ, û〉U =

2 〈Bu†, Bû〉U = 〈B2u†, û〉U . If and only if u† ∈ D(B2) = {u ∈ U : ‖B2u‖U < ∞} (a
proper subset of Ũ), the symbol Ω′(u†) characterizes the Gâteaux derivative of Ω at the
point u† characterized as a bounded linear functional defined on the whole space U . Just
then the subdifferential ∂Ω(u†) is nonempty and a singleton ∂Ω(u†) = {ξ} with

ξ = 2 B2u† and Dξ(ũ, u) = ‖B(ũ − u)‖2
U ≥ C̃2 ‖ũ − u‖2

U , (6.2)

where the Bregman domain is DB(Ω) = D(B2). Regularized solutions uδ
α are minimizers

over Ũ of the functional

T vδ

α (u) := ‖F (u) − vδ‖2
V + α ‖Bu‖2

U .

Note that for all 0 < µ ≤ 1 as a consequence of (6.2) a convergence rate

Dξ(u
δ
α(δ), u

†) = O (δµ) implies ‖uδ
α(δ) − u†‖ = O

(

δ
µ
2

)

.

6.1 The Hilbert space situation for variational inequalities

In this subsection under Assumption 6.1 we refer to Case 3a. To focus on the distinguished
character of the Hilbert space setting we will specify the Definition 3.2 as follows:

Definition 6.4 Let c1, c2 ≥ 0 and c1 + c2 ≥ 0. We define F to be nonlinear of degree
(c1, c2) at a solution u† ∈ D(F ) of (2.1) if there is a constant K > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V
‖u − u†‖ 2c2

U (6.3)

for all u ∈ Mv
αmax

(ρ).

Remark 6.5 In this Hilbert space setting we can formulate conditions for admissible
pairs (c1, c2) in formula (6.3) of Definition 6.4 and study the smoothness background of
such degrees of nonlinearity.

A sufficient condition for the classical case c1 = 0, c2 = 1, assumed for example in [29,
Section 3.2]), is the Lipschitz continuity

‖F ′(u) − F ′(u†)‖L(U,V ) ≤ L‖u − u†‖U

of F ′ for all u in a neighbourhood of u†. On the other hand, the case c1 = 1, c2 =
0 characterized by a tangential cone condition is frequently discussed in the theory of
iterative regularization (cf. [7, Chapter 11] and [18]). In [13] the focus is on the case c1 > 0,
0 < c1 + c2 ≤ 1, but it is well-known that numerous applications of ill-posed nonlinear
inverse problems occur, where c1 = 1, c2 = 1/2 can be shown, i.e. 1 < c1 + c2 ≤ 2. We
conjecture that the conditions

0 ≤ c1, c2 ≤ 1, 0 < c1 + 2c2 ≤ 2 (6.4)

characterize all really occurring situations apart from singular cases.
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As already mentioned in [15] the pairs (c1, c2) of the degree of nonlinearity are not
necessarily uniquely determined. Namely, under a local Lipschitz condition

‖F (u) − F (u†)‖V ≤ C ‖u − u†‖U (6.5)

for all u in a neighbourhood of u† a degree (c1, c2) evidently implies the degree (0, c1/2+c2).
Then c1 + 2c2 > 2 would lead to some ε > 0 such that

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
≤ K ‖u − u†‖2+ε

U

for all u from appropriate level sets. If the operator F is continuously twice differentiable
in a neighbourhood of u† with bilinear operators F ′′(u) : U × U → V using the integral
representation of the second order Taylor remainder this would imply ‖F ′′(u†)(h, h)‖V = 0
for all h ∈ U indicating a singular case.

Using similar arguments as in the proof of Proposition 4.3 we can easily see that for
F ′(u†) 6= 0 an inequality

∥

∥F ′(u†)(u − u†)
∥

∥

V
≤ K

∥

∥F (u) − F (u†)
∥

∥

c1

V

cannot hold for all u ∈ Mαmax(ρ) whenever c1 > 1. Then because of c1 − 1 > 0 an ansatz
u := u† + th with h 6= 0 and ‖h‖U sufficiently small would after division by t > 0 lead to

∥

∥F ′(u†)h
∥

∥

V
≤ K

∥

∥F ′(u†)h
∥

∥

V
lim
t→0

∥

∥F (u) − F (u†)
∥

∥

c1−1

V
= 0

in the limit case for t → 0.

Proposition 6.6 Under the Assumption 6.1 in one of the version 3a or 3b let the operator
F mapping between the Hilbert spaces U and V be nonlinear of degree (c1, c2) at u† with
c1 > 0 and let ξ satisfy the general source condition

ξ = (F ′(u†)∗F ′(u†))η/2w, 0 < η < 1, w ∈ U. (6.6)

Then we have the variational inequality (3.5) with exponent

κ = min

{

2ηc1

1 + η(1 − 2c2)
,

2η

1 + η

}

(6.7)

for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.

Proof: Under the general source condition (6.6) we can estimate for all u ∈ Mαmax(ρ)
with the interpolation inequality [7, formula (2.49), p. 47]

〈

ξ, u† − u
〉

U
≤

〈

w, (F ′(u†)∗F ′(u†))η/2(u† − u)
〉

U

≤ ‖w‖U‖(F
′(u†)∗F ′(u†))η/2(u† − u)‖η

U‖u
† − u‖1−η

U = ‖w‖U‖F
′(u†)(u† − u)‖η

V ‖u
† − u‖1−η

U ,

where 〈·, ·〉U denotes the inner product in the Hilbert space U . Now we use the degree of
nonlinearity in order to estimate the term ‖F ′(u†)(u†−u)‖η

V from above for u ∈ Mαmax(ρ).
Owing to 0 < η < 1 we have

‖F ′(u†)(u† − u)‖η
V ≤ ‖F (u) − F (u†) − F ′(u†)(u − u†)‖η

V + ‖F (u†) − F (u)‖η
V
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and hence with some constants K1, K2 > 0
〈

ξ, u† − u
〉

U
≤ ‖w‖U

(

‖F (u) − F (u†) − F ′(u†)(u − u†)‖η
V + ‖F (u†) − F (u)‖η

V

)

‖u†−u‖1−η
U

≤ K1‖F (u†) − F (u)‖c1η
V ‖u† − u‖1−η+2c2η

U + K2‖F (u†) − F (u)‖η
V ‖u

† − u‖1−η
U .

Applying again Young’s inequality (3.9) twice with ε := 1/4 such that terms 1
4
‖u† − u‖2

U

occur in a sum with powers of ‖F (u†)−F (u)‖V we obtain with some constants C1, C2 > 0

〈

ξ, u† − u
〉

U
≤

1

2
‖u† − u‖2

U + C1‖F (u†) − F (u)‖
2c1η

1+η(1−2c2)

V + C2‖F (u†) − F (u)‖
2η

1+η

V .

Taking into account that there is a constant K̄ > 0 such that ‖F (u†) − F (u)‖V ≤ K̄ for
all u ∈ Mαmax(ρ) we have the variational inequality

〈

ξ, u† − u
〉

U
≤

1

2
‖u† − u‖2

U + β2‖F (u†) − F (u)‖κ
V

with κ from (6.7) for all such u and some constant β2 > 0. This completes the proof.

Remark 6.7 An exponent κ = 2η
1+η

in Proposition 6.6 indicates order optimal conver-

gence rates with respect to the general source condition (6.6). This is the case if the
condition

1 + η(1 − 2c2 − c1) ≤ c1 (6.8)

already occurring in [15] is satisfied. Note that the condition (6.8) holds for 0 < η < 1
only if either c1 = 1 or for 0 < c1 < 1 if c1 + c2 > 1 and η is large enough. In the case
c1 = 0, c2 = 1 no convergence rate result based on low order general source conditions
(6.6) is known (see also [17]). We conjecture that such results really cannot be formulated.

The authors have no general answer to the question whether one can formulate converse
assertions concluding in the Hilbert space setting from a variational inequality (3.5) with
exponents 0 < κ < 1 and nonlinear forward operator F to Hölder source conditions of
type (6.6). However, for the subcase of a continuous linear operator

F := A ∈ L(U, V ) (6.9)

we can prove a converse result in the following proposition (cf. also [6, Section 3] with
respect to approximate source conditions). Since the conditions ξ ∈ R(F ′(u†)∗) and
ξ ∈ R((F ′(u†)∗F ′(u†))1/2) are equivalent this result complements for the subcase the
assertion a) of our Proposition 4.4 and of Proposition 3.38 in [29] which just handle the
case κ = 1. We should mention here that for linear operators (6.9) no structural condition
(degree of nonlinearity) is required and Proposition 6.6 always yields the implication from

ξ = (A∗A)η/2w, 0 < η < 1, w ∈ U, (6.10)

to a variational inequality
〈

ξ, u† − u
〉

U
≤ β1‖u

† − u‖2
U + β2

∥

∥A(u† − u)
∥

∥

κ

V
(6.11)

with exponent

κ =
2η

1 + η
∈ (0, 1) (6.12)

for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0.
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Proposition 6.8 If for linear forward operators (6.9) a variational inequality (6.11) holds
for all u ∈ Mαmax(ρ) and multipliers 0 ≤ β1 < 1, β2 ≥ 0, then under Assumption 6.1 a
general source condition (6.10) is valid for all η < κ

2−κ
.

Proof: Under Assumption 6.1 we obtain from (6.11) and (3.11) for noiseless data and an
a priori parameter choice α(δ) ≍ δ2−κ the estimate

‖u0
α − u†‖U ≤ Ĉ α

κ
2(2−κ) .

This allows us to apply the converse result of [20] for linear Tikhonov regularization which
provides a Hölder source condition (6.10) for all exponents η > 0 satisfying the inequality
η < κ

2−κ
. This completes the proof.

6.2 Hilbert space regularization and conditional stability

In this subsection under Assumption 6.1 we refer to Case 3b. For parameter identification
problems in partial differential equations (cf., e.g., [2, 16]) nonlinear forward operators
F occur, for which the required Taylor remainder

∥

∥F (u) − F (u†) − F ′(u†)(u − u†)
∥

∥

V
is

difficult to handle and the variational inequality approach may fail. However, let hold for
all R > 0 a conditional stability estimate of the form

‖u1 − u2‖U ≤ K ‖F (u1) − F (u2)‖
κ
V , if ui ∈ D(F ) ∩ Ũ , ‖ui‖Ũ ≤ R (i = 1, 2) (6.13)

with some 0 < κ ≤ 1 and a constant K = K(R) > 0 which may depend on the radius R.

To explain the cross-connections between conditional stability and the degree of non-
linearity one should note that if F is nonlinear of degree (0, c2), 0 < c2 ≤ 1, at the point
u† in the sense of Definition 6.4, then (6.13) implies a degree (2c2 κ, 0). In other words, the
conditional stability with some Hölder rate converts the degree of nonlinearity to (c1, 0)
such that c1 > 0. In [5], a rate of the condition stability is related with the convergence
rate of regularized solutions. That is:

Proposition 6.9 Under Assumption 2.1 let F, Ω,D, U and V satisfy the Hilbert space
specification expressed by items 1, 2, and 3b of Assumption 6.1, i.e., regularized solutions
uδ

α are minimizers over D = D(F ) ∩ Ũ of the functional

T vδ

α (u) := ‖F (u) − vδ‖2
V + α ‖u‖2

Ũ . (6.14)

Moreover, for all R > 0 let hold a conditional stability estimate of the form (6.13) with
some 0 < κ ≤ 1 and a constant K = K(R) > 0. Then for a solution u† ∈ D of equation
(2.1) we obtain the convergence rate

‖uδ
α(δ) − u†‖U = O (δκ) as δ → 0 . (6.15)

with an a priori parameter choice cδ2 ≤ α(δ) ≤ cδ2 with constants 0 < c ≤ c < ∞.
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Proof: For the proof we follow ideas of [5]. As a minimizer of (6.14) the element uδ
α

satisfies the inequalities

‖F (uδ
α) − vδ‖2

V ≤ ‖F (uδ
α) − vδ‖2

V + α ‖uδ
α‖

2
Ũ
≤ ‖F (u†) − vδ‖2

V + α ‖u†‖2
Ũ

.

Hence we have
‖F (uδ

α) − vδ‖2
V ≤ δ2 + α ‖u†‖2

Ũ

and with α(δ) ∼ δ2

‖F (uδ
α(δ)) − vδ‖V = O (δ) as δ → 0 . (6.16)

In a similar manner one obtains α‖uδ
α‖

2
Ũ
≤ δ2+α ‖u†‖2

Ũ
and ‖uδ

α(δ)‖Ũ ≤ R :=
√

1
c

+ ‖u†‖2
Ũ
.

Because we also have ‖u†‖Ũ ≤ R the estimate (6.13) is applicable and yields with some
constants K = K(R)

‖uδ
α(δ) − u†‖U ≤ K

∥

∥F (uδ
α(δ)) − F (u†)

∥

∥

κ

V
≤

∥

∥F (uδ
α(δ)) − vδ

∥

∥

κ

V
+

∥

∥F (u†) − vδ
∥

∥

κ

V
.

Taking into account (6.16) and
∥

∥F (u†) − vδ
∥

∥

κ

V
≤ δκ this proves the proposition.

Example 6.10 We give an example that shows the applicability of Proposition 6.9 for
inverse problems in partial differential equations:

Let G ⊂ R
n be a bounded domain with smooth boundary ∂G and set L := −∆ with

D(L) = H2(G)∩H1
0 (G). Here and henceforth H2(G), H1

0 (G), Hθ(0, T ), θ > 0, etc. denote
usual Sobolev spaces. We consider











∂ty = −Ly + u(t)y(x, t), x ∈ G, t > 0,

y(x, 0) = a(x), x ∈ G,

y|∂G×(0,T ) = 0.

(6.17)

The equation models a reaction and diffusion process whose reaction rate depends on t
with factor u(t). We are interested in an inverse problem of determining such a function
u forming a time factor u(t), 0 < t < T , by available observation data. The observations
are represented by interior mean data. In this context, let G0 ⊂ G be a subdomain such
that G0 ⊂ G. Then we observe noisy data of the function

v(t) :=

∫

G0

y(x, t)dx, 0 < t < T,

which expresses the exact right-hand in equation (2.1) (see [25] as for similar inverse
problems). Both u and v are functions over the time interval (0, T ) under consideration.

We consider (6.17) as an ordinary differential equation in t in a Hilbert space L2(G)
with the norm ‖ · ‖. We set y(t); = y(·, t) mapping from (0, T ) to L2(G). Then we can
write (6.17) as

{

y′(t) = −Ly + u(t)y(t), t > 0,

y(0) = a, x ∈ G.
(6.18)
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We treat (6.18) with respect to the semigroup theory (cf., e.g., [23]) and note that y(t) ∈
D(L), t > 0, refers to the boundary condition in (6.17), where we assume

a ∈ C∞
0 (G), a 6≡ 0, a(x) ≥ 0, x ∈ G. (6.19)

Moreover, let hold the substitution

ϕ(η) :=

∫

G0

η(x)dx, η ∈ L2(G).

We will show that the forward operator F : u 7→ v is mapping from L2(0, T ) into
H1(0, T ) is well-defined and satisfies there a stability estimate . First let ‖u‖L2(0,T ) ≤ R.
Henceforth Cj > 0 denote constants which are dependent on R, a, but independent of the
choice of u. We have

y(t) = e−tLa +

∫ t

0

u(s)e−(t−s)Ly(s)ds, t > 0. (6.20)

Therefore

Ly(t) = e−tLLa +

∫ t

0

u(s)e−(t−s)LLy(s)ds, t > 0.

Then

‖Ly(t)‖ ≤ C1 +

∫ t

0

C1|u(s)|‖Ly(s)‖ds, t > 0.

Now Gronwall’s inequality yields

‖Ly(t)‖ ≤ C1 exp

(

C1

∫ t

0

|u(s)|ds

)

≤ C1e
C1R

√
T ≡ C2, 0 ≤ t ≤ T. (6.21)

By (6.20), we obtain

y′(t) = −e−tLLa + u(t)y(t) −

∫ t

0

u(s)e−(t−s)LLy(s)ds, t > 0. (6.22)

Therefore, using (6.21), we have

‖y′(t)‖ ≤ C3 + C3‖u(t)y(t)‖ +

∫ t

0

C3|u(s)|‖Ly(s)‖ds ≤ C3 + C3|u(t)| +

∫ t

0

C3|u(s)|ds,

so that
∫ t

0

‖y′(η)‖2dη ≤ C4

∫ t

0

|u(η)|2dη + C4, 0 < t < T.

Hence
‖ϕ(y′(u))‖L2(0,T ) + ‖ϕ(y(u))‖L2(0,T ) ≤ C5 if ‖u‖L2(0,T ) ≤ R. (6.23)

Consequently F : L2(0, T ) −→ H1(0, T ) is well-defined.

Now let u1, u2 ∈ L2(0, T ) and let ‖u1‖L2(0,T ), ‖u2‖L2(0,T ) ≤ R, and set z1 = y(u1), z2 =
y(u2). Then

(z1 − z2)(t) =

∫ t

0

(u1 −u2)(s)e
−(t−s)Lz1(s)ds+

∫ t

0

u2(s)e
−(t−s)L(z1 − z2)(s)ds, 0 < t < T.

(6.24)
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By (6.21), we obtain

‖L(z1 − z2)(t)‖ ≤ C1

∫ t

0

|(u1 − u2)(s)|‖Lz1(s)‖ds + C1

∫ t

0

|u2(s)|‖L(z1 − z2)(s)‖ds

≤ C6

∫ t

0

|(u1 − u2)(s)|ds + C6

∫ t

0

|u2(s)|‖L(z1 − z2)(s)‖ds.

Gronwall’s inequality yields

‖L(z1 − z2)(t)‖ ≤ C6

(
∫ t

0

|(u1 − u2)(s)|
2ds

)

1
2

+

∫ t

0

exp

(

C6

∫ t

0

|u2(s)|ds

)

× C6|u2(s)| × C6

(
∫ t

0

|(u1 − u2)(ξ)|
2dξ

)

1
2

ds,

that is,

‖L(z1 − z2)(t)‖ ≤ C7

(
∫ t

0

|(u1 − u2)(s)|
2ds

)

1
2

, 0 ≤ t ≤ T. (6.25)

Next we estimate

(z1 − z2)
′(t) = (u1 − u2)(t)z1(t) + u2(t)(z1 − z2)(t)

−
∫ t

0
(u1 − u2)(s)e

−(t−s)ALz1(s)ds −
∫ t

0
u2(s)e

−(t−s)LL(z1 − z2)(s)ds.

Here

ϕ(z1)(t) × (u1 − u2)(t) =
∫ t

0
(u1 − u2)(s)ϕ(e−(t−s)LLz1(s))ds (6.26)

+ ϕ((z1 − z2)
′)(t) − u2(t)(ϕ(z1 − z2))(t) +

∫ t

0
u2(s)ϕ(e−(t−s)LL(z1 − z2)(s))ds.

By (6.19) and the maximum principle, we have

ϕ(z1)(t) ≥ ε, 0 ≤ t ≤ T,

where ε > 0 depends on u1. Consequently

(u1 − u2)(t) =
∫ t

0
(u1 − u2)(s)ϕ(z1)(t)

−1ϕ(e−(t−s)LLz1(s))ds + ϕ(z1)(t)
−1ϕ((z1 − z2)

′)(t)

−ϕ(z1)(t)
−1u2(t)ϕ(z1 − z2)(t) +

∫ t

0
u2(s)ϕ(z1)(t)

−1ϕ(e−(t−s)LL(z1 − z2)(s))ds.

By (6.21) and (6.25), we have

|(u1 − u2)(t)| ≤ C8

∫ t

0

|(u1 − u2)(s)|ds + C8(|ϕ((z1 − z2)
′)(t)| + |ϕ(z1 − z2)(t)|)

+C8

(
∫ t

0

|u2(s)|
2ds

)

1
2
(

∫ t

0

‖L(z1 − z2)(s)‖
2ds

)

1
2

.

Hence, in view of (6.25), we obtain

|(u1 − u2)(t)| ≤ C9(|ϕ((z1 − z2)
′)(t)| + |ϕ(z1 − z2)(t)|)
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+C9

∫ t

0

|(u1 − u2)(s)|ds + C6

(
∫ t

0

(
∫ s

0

|(u1 − u2)(ξ)|
2dξ

)

ds

)

1
2

.

Squaring the both sides, integrating over (0, t) and setting p(t) =
∫ t

0
|(u1 − u2)(s)|

2ds, we
have

p(t) ≤ C10

∫ t

0

(|ϕ((z1 − z2)
′)(t)|2 + |ϕ(z1 − z2)(t)|

2)ds + C10

∫ t

0

(
∫ s

0

|(u1 − u2)(ξ)|
2dξ

)

ds

+C10

∫ t

0

(
∫ s

0

(
∫ ξ

0

|(u1 − u2)(η)|2dη

)

dξ

)

ds

≤ C10

∫ t

0

(|ϕ((z1 − z2)
′)(t)|2 + |ϕ(z1 − z2)(t)|

2)ds + C10

∫ t

0

p(s)ds + C10T

∫ t

0

p(s)ds.

At the last inequality we used

∫ t

0

(
∫ s

0

(
∫ ξ

0

|(u1 − u2)(η)|2dη

)

dξ

)

ds ≤

∫ t

0

(
∫ s

0

p(ξ)dξ

)

ds

≤

∫ t

0

(
∫ s

0

p(s)dξ

)

ds ≤ t

∫ t

0

p(s)ds.

Again Gronwall’s inequality yields

p(t) ≤ C11‖ϕ(z1 − z2)‖
2
H1(0,T ), 0 < t < T.

Therefore we have proved the basic inequality for the considered inverse problem with
respect to the parabolic initial-boundary value problem (6.17):

‖u1 − u2‖L2(0,T ) ≤ C11‖F (u1) − F (u2)‖H1(0,T ) if ‖u1‖L2(0,T ), ‖u2‖L2(0,T ) ≤ R. (6.27)

Note that we have weak continuity of F as a by-product of the calculations above.
Namely, if uk converge to u weakly in L2(0, T ), then by (6.24) and (6.26) we can directly
verify that F (uk) converge to F (u) weakly in H1(0, T ).

Exploiting the result (6.27) we now come back to Proposition 6.9 by setting

U := L2(0, T ), Ũ := Hθ(0, T ),
1

2
< θ < 1, V := L2(0, T ), κ :=

θ

θ + 1
. (6.28)

We are going to prove that in such a case a stability estimate (6.13) can be verified.

Proposition 6.11 Under the setting (6.28) a conditional stability estimate (6.13) holds
true, and Proposition 6.9 is appllicable, i.e., the convergence rate (6.15) occurs for the
required choice of the regularization parameter.

Proof: We use an equivalent representation of the norm of Hθ(0, T ) by Slobodeckij (see,
e.g., [1, Theorem VII.7.48, p. 214]). We rewrite (6.22) as

y′(t) = −e−tLLa + u(t)y(t) −

∫ t

0

u(s)e−(t−s)LLy(s)ds ≡ I1(t) + I2(t) + I3(t).
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First we have

ϕ(I2(t)) = u(t)

∫

G0

y(x, t)dx.

For θ > 1
2

we have that Hθ(0, T ) ⊂ C[0, T ]. Then by (6.23) one can write

∫ T

0

∫ T

0

|u(t)ϕy(t) − u(s)ϕy(s)|2

|t − s|1+2θ
dsdt ≤ 2

∫ T

0

∫ T

0

|u(t) − u(s)|2|ϕy(t)|2

|t − s|1+2θ
dsdt

+2

∫ T

0

∫ T

0

|u(s)|2|ϕy(t) − ϕy(s)|2

|t − s|1+2θ
dsdt ≤ 2‖ϕy‖2

C[0,T ]‖u‖
2
Hθ(0,T ) + 2‖u‖2

C[0,T ]‖ϕy‖2
Hθ(0,T )

≤ 2‖ϕy‖2
C[0,T ]R

2 + 2‖u‖2
Hθ(0,T )‖ϕy‖2

Hθ(0,T ) ≤ 2C2
5R

2 + 2R2C2
5 .

Hence
‖ϕ(I2)‖Hθ(0,T ) ≤ C12.

Next we estimate:

‖ϕ(I1)‖
2
Hθ(0,T ) ≤ ‖ϕ(I1)‖

2
H1(0,T ) ≤

∫ T

0

∣

∣

∣

∣

∫

G0

e−tLLadx

∣

∣

∣

∣

2

dt+

∫ T

0

∣

∣

∣

∣

∫

G0

e−tLL2adx

∣

∣

∣

∣

2

dt

≤ C13(‖La‖2+‖L2a‖2).

By (6.20), we have

L2y(t) = e−tLL2a +

∫ t

0

u(s)e−(t−s)LL2y(s)ds.

Therefore, similarly to (6.21), Gronwall’s inequality implies ‖L2y(t)‖ ≤ C2. Then we
proceed to estimation of I3:

ϕ(I3)(t) =

∫

G0

(
∫ t

0

u(s)e−(t−s)LLy(s)ds

)

dx =

∫ t

0

u(ξ)

(
∫

G0

e−(t−ξ)LLy(ξ)dx

)

dξ.

It is sufficient to assume t ≥ s:

(t − s)−1−2θ

∣

∣

∣

∣

∫ t

0

u(ξ)

(
∫

G0

e−(t−ξ)LLy(ξ)dx

)

dξ −

∫ s

0

u(ξ)

(
∫

G0

e−(s−ξ)LLy(ξ)dx

)

dξ

∣

∣

∣

∣

2

= (t−s)−1−2θ

∣

∣

∣

∣

∣

∫ s

0

u(ξ)

(
∫

G0

e−(s−ξ)L(e−(t−s)L − 1)Ly(ξ)dx

)

dξ

+

∫ t

s

u(ξ)

(
∫

G0

e−(t−ξ)LLy(ξ)dx

)

dξ

∣

∣

∣

∣

∣

2

≤ 2(t−s)−1−2θ

∣

∣

∣

∣

∣

∫ s

0

u(ξ)

(
∫

G0

e−(s−ξ)L(e−(t−s)L − 1)Ly(ξ)dx

)

dξ

∣

∣

∣

∣

∣

2

+2(t−s)−1−2θ

∣

∣

∣

∣

∣

∫ t

s

u(ξ)

(
∫

G0

e−(t−ξ)LLy(ξ)dx

)

dξ

∣

∣

∣

∣

∣

2

≡ 2J1+2J2.
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First, noting that ‖(e−(t−s)L − 1)Ly(ξ)‖ ≤ C ′
14(t − s)‖L2a‖ (cf. [23]), we see that

∫ T

0

∫ t

0

J1dsdt ≤

∫ T

0

∫ t

0

(t−s)−1−2θ

∣

∣

∣

∣

∫ s

0

u(ξ)

(
∫

G0

e−(s−ξ)L(e−(t−s)L − 1)Ly(ξ)dx

)

dξ

∣

∣

∣

∣

2

dsdt

≤ C14

∫ T

0

∫ t

0

(
∫ s

0

|u(ξ)|2dξ

)

(t − s)−1−2θ

(
∫ s

0

‖e−(s−ξ)L(e−(t−s)L − 1)Ly(ξ)‖2dξ

)

dsdt

≤ C14

∫ T

0

∫ t

0

‖u‖2
L2(0,T )(t − s)−1−2θ

(
∫ s

0

(t − s)2‖L2y(ξ)‖2dξ

)

dsdt

≤ C15

∫ T

0

(
∫ t

0

(t − s)1−2θds

)

dt ≤ C16

by the Cauchy-Schwarz inequality and θ < 1. As a consequence of (6.21) and of
Hθ(0, T ) ⊂ C[0, T ] we have

∫ T

0

∫ t

0

J2dsdt =

∫ T

0

∫ t

0

(t − s)−1−2θ

∣

∣

∣

∣

∫ t

s

u(ξ)

(
∫

G0

e−(t−ξ)LLy(ξ)dx

)

dξ

∣

∣

∣

∣

2

dsdt

≤ C17

∫ T

0

∫ t

0

(t − s)−1−2θ

(
∫ t

s

|u(ξ)|2dξ

) (
∫ t

s

‖e−(t−ξ)LLy(ξ)‖2dξ

)

dsdt

≤ C17

∫ T

0

∫ t

0

(t − s)−1−2θ(t − s)2‖u‖2
Hθ(0,T )dsdt ≤ C18.

Hence ‖ϕy′‖Hθ(0,T ) ≤ C19, that is, ‖ϕy(u)‖H1+θ(0,T ) ≤ C19. The interpolation inequality
implies

‖F (u1) − F (u2)‖H1(0,T ) ≤ C20‖F (u1) − F (u2)‖
1

θ+1

Hθ+1(0,T )
‖F (u1) − F (u2)‖

θ
θ+1

L2(0,T )

≤ C20(2C19)
1

θ+1‖F (u1) − F (u2)‖
θ

θ+1

L2(0,T ).

Substituting this into (6.27), we obtain

‖u − u†‖L2(0,T ) ≤ C11C20(2C19)
1

θ+1‖F (u) − F (u†)‖
θ

θ+1

V

for ‖u‖U0, ‖u
†‖U0 ≤ R. This proves the proposition.

For classes of identification problems in partial differential equations it may be neces-
sary to replace the power-type norm differences ‖F (u1)−F (u2)‖

κ
V occurring in conditional

stability estimates (6.13) with ω(‖F (u1)−F (u2)‖V ) using more general (mostly concave)
index functions ω. For obtaining logarithmic rates such a generalization is useful with

ω(η) =

(

1
log 1

η

)κ

and some κ > 0, for example for parabolic problems backward in time

where the forward operator F : u(·, 0) 7→ u(·, T ) is defined by solutions u of the equation

∂tu = ∆u(x, t) + f(x, t, u), x ∈ G, t > 0

with boundary condition u|∂G×(0,T ) = 0. Due to the occurrence of nonlinear terms f
in the equation Carleman type inequalities are required for finding conditional stability
estimates. For such proof and related results we refer to [32] and references therein.

22



Acknowlegdgements

The paper was started during a research stay of the first author at the Graduate School of

Mathematical Sciences of the University of Tokyo in February/March 2009 and has been
completed in Linz/Austria during the Mini Special Semester on Inverse Problems, May
18 - July 15, 2009, organized by RICAM, Austrian Academy of Sciences. B. Hofmann
thanks both hosts for kind hospitality and allowance. The research of B. Hofmann was
also supported by Deutsche Forschungsgemeinschaft (DFG) under Grant HO1454/7-2.
M. Yamamoto was partly supported by Grants 20654011 and 21340021 from Japan Society
for the Promotion of Science. Moreover, both authors thank Radu Ioan Boţ and Jens

Flemming (TU Chemnitz) for fruitful discussions.

References

[1] Adams, R.A. (1975): Sobolev Spaces. New York: Academic Press.

[2] Banks, H.T.; Kunisch, K. (1989): Estimation Techniques for Distributed Param-

eter Systems. Boston, MA: Birkhäuser.

[3] Bonesky, T.; Kazimierski, K.S.; Maass, P.; Schöpfer, F.; Schuster,

T. (2008): Minimization of Tikhonov functionals in Banach spaces. Abstract and

Applied Analysis 2008. Article ID 192679 (19 pp), DOI:10.1155/2008/192679.

[4] Burger, M.; Osher, S. (2004): Convergence rates of convex variational regular-
ization. Inverse Problems 20, 1411–1421.

[5] Cheng, J.; Yamamoto, M. (2000): One new strategy for a priori choice of regu-
larizing parameters in Tikhonov’s regularization. Inverse Problems 16, L31–L38.

[6] Düvelmeyer, D.; Hofmann, B.; Yamamoto, M. (2007): Range inclusions and
approximate source conditions with general benchmark functions. Numerical Func-

tional Analysis and Optimization 28, 1245–1261.

[7] Engl, H. W.; Hanke, M.; Neubauer, A. (1996): Regularization of Inverse Prob-

lems. Dordrecht: Kluwer.

[8] Engl, H.W.; Kunisch, K.; Neubauer, A. (1989): Convergence rates for
Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5, 523–
540.

[9] Flemming, J.; Hofmann, B. (2010): A new approach to source conditions in
regularization with general residual term. Numer. Funct. Anal. Optim. 31. To appear.
Published electronically in preliminary form as arXiv:0906.3438v1.

[10] Grasmair, M.; Haltmeier, M.; Scherzer, O. (2008): sparse regularization with
lq penalty term. Inverse Problems 24, 055020 (13pp).

[11] Hein, T. (2008): Convergence rates for regularization of ill-posed problems in Ba-
nach spaces by approximate source conditions. Inverse Problems 24, 045007 (10pp).

23



[12] Hein, T. (2009): Tikhonov regularization in Banach spaces - improved convergence
rates results. Inverse Problems 25, 035002 (18pp).

[13] Hein, T.; Hofmann, B. (2009): Approximate source conditions for nonlinear ill-
posed problems – chances and limitations. Inverse Problems 25, 035003 (16pp).

[14] Hofmann, B.; Kaltenbacher, B.; Pöschl, C.; Scherzer, O (2007).: A con-
vergence rates result for Tikhonov regularization in Banach spaces with non-smooth
operators. Inverse Problems 23, 987–1010.

[15] Hofmann, B.; Scherzer, O. (1994): Factors influencing the ill-posedness of non-
linear problems. Inverse Problems 10, 1277–1297.

[16] Isakov, V. (2006): Inverse Problems for Partial Differential Equations (2nd edition).
New York, NY: Springer.

[17] Kaltenbacher, B. (2008): A note on logarithmic convergence rates for nonlinear
Tikhonov regularization. J. Inv. Ill-Posed Problems 16, 79–88.

[18] Kaltenbacher, B.; Neubauer, A.; Scherzer, O. (2008): Iterative Regulariza-

tion Methods for Nonlinear Ill-Posed Problems. Berlin: Walter de Gruyter.

[19] Lorenz, D.A.; Trede, D. (2008): Optimal convergence rates for Tikhonov regu-
larization in Besov scales. Inverse Problems 24, 055010 (14pp).

[20] Neubauer, A. (1997): On converse and saturation results for Tikhonov regulariza-
tion of linear ill-posed problems. SIAM J. Numer. Anal. 34, 517–527.

[21] Neubauer, A. (2009): On enhanced convergence rates for Tikhonov regularization
of nonlinear ill-posed problems in Banach spaces. Inverse Problems 25, 065009 (10
pp).

[22] Neubauer, A.; Hein, T.; Hofmann, B.; Kindermann, S.; Tautenhahn,

U. (2010): Improved and extended results for enhanced convergence rates of
Tikhonov regularization in Banach spaces. Appl. Anal. 89. To appear.

[23] Pazy, A. (1983): Semigroups of Linear Operators and Applications to Partial Dif-
ferential Equations. Berlin: Springer-Verlag.

[24] Pöschl, C. (2008): Tikhonov Regularization with General Residual Term. Disser-
tation. Innsbruck: Leopold Franzens Universität.

[25] Prilepko, A.I.; Orlovsky, D.G.; Vasin, I.A. (2000): Methods for Solving In-

verse Problems in Mathematical Physics. New York: Marcel Dekker.

[26] Ramlau, R. (2008): Regularization properties of Tikhonov regularization with spar-
sity constraints. Electronic Transactions on Numerical Analysis 30, 54–74.

[27] Resmerita, E. (2005): Regularization of ill-posed problems in Banach spaces: con-
vergence rates. Inverse Problems 21, 1303–1314.

[28] Resmerita, E.; Scherzer, O. (2006): Error estimates for non-quadratic regular-
ization and the relation to enhancement. Inverse Problems 22, 801–814.

24



[29] Scherzer, O.; Grasmair, M.; Grossauer, H.; Haltmeiner, M.;

Lenzen, F. (2009): Variational Methods in Imaging. New York: Springer.

[30] Schöpfer, F.; Louis, A.K.; Schuster, T. (2006): Nonlinear iterative methods
for linear ill-posed problems in Banach spaces. Inverse Problems 22, 311–329.

[31] Schöpfer, F.; Schuster, T. (2009): Fast regularizing sequential subspace opti-
mization in Banach spaces. Inverse Problems 25, 015013 (22pp).

[32] Yamamoto, M. (2009): Carleman estimates for parabolic equations and applica-
tions. Inverse Problems 25, 123013 (75pp).

[33] Zarzer, C.A. (2009): On Tikhonov regularization with non-convex sparsity con-
straints. Inverse Problems 25, 025006 (13pp).

25


