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Abstract
In this paper, we are looking for answers to the question whether a non-
compact linear operator with non-closed range applied to a compact linear
operator mapping between Hilbert spaces can, in a specific situation, destroy
the degree of ill-posedness determined by the singular value decay rate of the
compact operator. We partially generalize a result of Vu Kim Tuan and Gorenflo
(1994 Inverse Problems 10 949–55) concerning the non-changing degree of
ill-posedness of linear operator equations with fractional integral operators
in L2(0, 1) when weight functions appear. For power functions m(t) = tα

(α > −1), we prove the asymptotics σn(A) ∼
∫ 1

0 m(t) dt

πn
for the singular values

of the composite operator [Ax](s) = m(s)
∫ s

0 x(t) dt in L2(0, 1). We
conjecture this asymptotic behaviour also for exponential functions m(t) =
exp(−1/tα)(α > 0) that play some role for the local degree of ill-posedness
for a nonlinear inverse problem in option pricing in Hein and Hofmann (2003
Inverse Problems 19 1319–38).

1. Introduction

Since Wahba in 1980 distinguished, in her paper [25], between mildly, moderately and severely
linear ill-posed problems

Ax = y (x ∈ X, y ∈ Y,A ∈ L(X, Y )), (1)

the discussion of measures for the ill-posedness of inverse problems and its consequences for
condition numbers of discretized problems and regularization, partially exploiting Hilbert
scale techniques, plays an important role in the theory of inverse problems (see, e.g.,
[1, 2, 4, 15, 18, 20–23, 26]). If only the smoothing properties of the injective compact linear
forward operator A mapping between infinite-dimensional Hilbert spaces are considered, then
the decay rate of the positive, non-increasing sequence {σn(A)}∞n=1 of singular values of A
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tending to zero as n → ∞ is a frequently used measure of ill-posedness (see, e.g., [4, p 40],
[9, p 31] and [19, p 235]). It defines a finite degree µ ∈ (0,∞) of ill-posedness if σn(A) � n−µ

is valid3. In [14], we suggested considering the more general interval of ill-posedness

[µ(A), µ(A)] =
[

lim inf
n→∞

−log σn(A)

log n
, lim sup

n→∞
−log σn(A)

log n

]
,

where µ and µ can also be zero and infinity. As proposed and motivated in [7, 10, 11], such
measures are also helpful for evaluating the local behaviour of ill-posedness for nonlinear
operator equations

F(x) = y (x ∈ D(F) ⊆ X, y ∈ Y ) (2)

with continuous nonlinear forward operator F at a point x0 ∈ D(F) by considering a linearized
version of (2) as an equation (1) with the Fréchet derivative A = F ′(x0), which is compact
whenever F is compact ([3, theorem 4.19]). For non-compact linear operators A, in particular
multiplication operators, some ideas concerning ill-posedness measures were presented in
[12]. Some interdependences between an ill-posed nonlinear equation (2) and its linearization
with respect to the local degree of ill-posedness characterized by F ′(x0) and the degree of
nonlinearity of F at x0 including consequences for regularization were formulated in [13].

In this paper, for X = Y = L2(0, 1) with norm ‖ · ‖, we try to measure the ill-posedness
of the class of linear operator equations (1) with an injective integral operator

[Ax](s) = m(s)

∫ s

0
x(t) dt (0 � s � 1), (3)

which is a composition A = M ◦ J of the simple integration operator

[Jx](s) =
∫ s

0
x(t) dt (0 � s � 1) (4)

and an injective multiplication operator

[Mh](t) = m(t)h(t) (0 � t � 1). (5)

In this paper, we only consider multiplier (weight) functions

m ∈ L1(0, 1) with |m(t)| > 0 a.e. on [0, 1] (6)

such that the composition operator A = M ◦ J is compact. Linear operators (3), in particular,
occur as Fréchet derivatives F ′(x0) of composite nonlinear operators F = N ◦ J : D(F) ⊂
L2(0, 1) → L2(0, 1) with half-space domains

D(F) = {x ∈ L2(0, 1) : x(t) � c0 � 0 a.e. on [0, 1]} (7)

defined as

[F(x)](s) = [N(Jx)](s) = k(s, (Jx)(s)) (0 � s � 1; x ∈ D(F)), (8)

where the linear integral operator J forms the inner operator and a nonlinear Nemytskii
operator N the outer operator. Here, N is generated by the sufficiently smooth function
k(s, v)((s, v) ∈ [0, 1] × [0,∞)), where the multiplier function m in (3) is of the form

m(t) = ∂k

∂v
(t, (Jx0)(t)). (9)

Such Fréchet derivatives F ′(x0) = M ◦ J appear, for example, in iterative solutions of
corresponding nonlinear inverse problems (2).

3 Here the notation an � bn for sequences of positive numbers an and bn denotes the existence of positive constants
c1 and c2 such that c1 � an/bn � c2 for all sufficiently large n. If moreover limn→∞ an/bn = 1 we write an ∼ bn.



Some results and a conjecture on the degree of ill-posedness for integration operators with weights 429

From the explicitly given singular values

σn(J ) = 1

π
(
n − 1

2

) ∼ 1

πn
(n = 1, 2, . . .)

of the compact integration operator J ∈ L(L2(0, 1)) and for multiplier functions m which
satisfy

0 < c � |m(t)| � C a.e. on [0, 1], (10)

we may derive the inequalities cσn(J ) � σn(A) � Cσn(J ) and hence the asymptotics

σn(A) � n−1 (11)

based on spectral equivalence (see, e.g., [9, lemma 2.46]). That means the degree of ill-
posedness is µ = 1 for all such multiplier functions. Examples for nonlinear operators (8)
leading to situation (10) are presented in [11].

Note that (10) implies a continuous (non-compact) multiplication operator M ∈
L(L2(0, 1)) and hence the compactness of the linear operator A. Moreover, it is well known
that the operator A from (3) is also compact whenever we have

|m(t)| � Ctα a.e. on [0, 1] (12)

for a constant C > 0 and some exponent α > −1 (cf [27]). We have a non-closed range
of M, i.e. Range(M) �= Range(M), whenever m has essential zeros. Then an additional
ill-posedness factor occurs the strength of which should be evaluated. Source conditions
x0 = A∗w(w ∈ L2(0, 1), ‖w‖ � R) that are important as sufficient conditions for convergence
rates in regularization would imply

x ′
0

m
∈ L2(0, 1) and

∥∥∥∥x ′
0

m

∥∥∥∥ � R (13)

for A from (3). If we assume that limt→0 m(t) = 0 and t = 0 is the only essential zero of
the non-negative multiplier function m, then the strength of the requirement (13) grows when
the decay rate of m(t) → 0 as t → 0 grows. However, we conjecture that the asymptotics
(11) remains true for all multiplier functions m satisfying (6) and (12) and that consequently
the non-compact operator M does not destroy the degree of ill-posedness determined by the
compact operator J. We prove this in the form

σn(A) ∼
∫ 1

0 m(t) dt

πn
∼

(∫ 1

0
m(t) dt

)
σn(J ) as n → ∞ (14)

for the family of power functions

m(t) = tα (0 < t � 1) and α > −1 (15)

in the subsequent paragraph. Sophisticated numerical experiments in [6] suggest assuming
that formula (14) also holds for the family

m(t) = exp

(
− 1

tα

)
(0 < t � 1) and α > 0, (16)

even though such exponential multiplier functions (16) decrease faster to zero as t → 0
than the power functions (15) and hence seem to have a higher potential for ill-posedness.
Multiplier functions

K1 exp
(
−c1

t

)
� m(t) � K2 exp

(
− c2√

t

)
(0 < t � 1; c1, c2,K1,K2 > 0)
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occurring in a nonlinear inverse problem of option pricing are bounded below and above by
exponential functions and were recently discussed in [8, p 1333]. This problem, which aims
to determine a time-dependent volatility function, leads to an operator A from (3), where A as
the Fréchet derivative of the associated forward operator F is of the form (8) and the function
k generating the Nemytskii operator N represents the Black–Scholes function UBS analysed in
detail in the paper [8].

For the class of composite linear compact operators Aγ = M ◦ Jγ mapping in L2(0, 1)

and defined by

[Aγ x](s) = s−β

∫ s

0

(s − t)γ−1

�(γ )
x(t) dt (0 < s � 1; γ > β > 0), (17)

where Jγ are fractional integral operators of order γ > 0 and the multiplier functions m are
power functions with a weak pole, similar considerations as in this paper were performed by
Vu Kim Tuan and Gorenflo in 1994 (see [24]). Using Gegenbauer polynomials they proved
the asymptotics

σn(Aγ ) � n−γ (18)

for 0 � β <
γ

2 and conjectured that (18) also remains true for γ

2 � β < γ. To our knowledge,
results on the degree of ill-posedness of the class (17) do not seem to be published in the
inverse problems literature for multiplier functions m with zeros (β < 0). Here we focus on
the situation γ = 1 and present some results and a conjecture for that subcase.

2. Statement on the singular value asymptotics

In the following we prove the asymptotics (14) for the compact operator A from (3) with
power functions (15).

Theorem 2.1. For the non-increasing sequence {σn(A)}∞n=1 of singular values of the compact
linear operator A in L2(0, 1) defined by

[Ax](s) = sα

∫ s

0
x(t) dt (0 < s � 1) (19)

with exponent α > −1, we have the asymptotics

σn(A) ∼ 1

(α + 1)πn
=

(∫ 1

0
m(t) dt

)
1

πn
as n → ∞. (20)

Proof. Let σ = σ(A) > 0 be a singular value of A from (19). Then λ = 1
σ 2 > 0

satisfies the eigenvalue equation u − λA∗Au = 0 for some non-trivial function u ∈ L2(0, 1).

Taking into account the explicitly given structures of [A∗y](t) = ∫ 1
t

m(s)y(s) ds and

[A∗Ax](t) = ∫ 1
t

m2(s)
( ∫ s

0 x(τ) dτ
)

ds, for m(t) = tα (α > −1) the eigenvalue equation
can be rewritten as

u(t) − λ

∫ 1

t

s2α

(∫ s

0
u(τ) dτ

)
ds = 0 (0 < t < 1) (21)

implying the first boundary condition

u(1) = 0. (22)

Differentiation of (21) leads to u′(t) + λt2α
∫ t

0 u(τ) dτ = 0 and hence the equation

u′(t)
t2α

+ λ

∫ t

0
u(τ) dτ = 0 (0 < t < 1) (23)
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and the second boundary condition

lim
t→0

u′(t)
t2α

= 0. (24)

Finally, differentiating (23) and multiplying by the factor t2α+2 yields the second-order ODE

t2u′′(t) − 2αtu′(t) + λt2α+2u(t) = 0 (0 < t < 1). (25)

Conversely, from the differential equation (25) and the boundary conditions (22) and (24)
the integral equation (21) follows, such that the boundary value problem for equation (25)
determines the singular values σ = 1√

λ
> 0 under consideration with associated

eigenfunctions u.
The differential equation (25) possesses an explicit solution for all α > −1 (see, e.g.,

formula (1a) on p 440 in [17])

u(t) = tα+ 1
2 Zν

(
tα+1

(α + 1)σ

)
, ν = 2α + 1

2α + 2
, (26)

by exploiting the general Bessel function Zν of order ν ∈ (−∞, 1). Then the general solution
of (25) is of the form

u(t) = C1u1(t) + C2u2(t), (27)

where

u1(t) = tα+ 1
2 J−ν

(
tα+1

(α + 1)σ

)
for all α > −1, i.e. for all ν ∈ (−∞, 1), with Bessel function of the first kind Jν

(cf [5, section 7.2]) and

u2(t) = tα+ 1
2 Jν

(
tα+1

(α + 1)σ

)
(ν ∈ (−∞, 1), ν �= 0,−1,−2, . . .),

respectively,

u2(t) = tα+ 1
2 Yν

(
tα+1

(α + 1)σ

)
(ν = 0,−1,−2, . . .)

with Bessel function of the second kind Yν . The constants C1 and C2 are to be selected such
that the boundary conditions (22) and (24) are satisfied.

To fit the boundary condition (24) at t = 0 we consider

u′
1(t)

t2α
= t

1
2

σ
J ′

−ν

(
tα+1

(α + 1)σ

)
+

(
α +

1

2

)
t−α− 1

2 J−ν

(
tα+1

(α + 1)σ

)
.

Taking into account the well-known asymptotics (cf [5, section 7.2]) of the Bessel functions
of the first kind and their derivatives for t → 0,

J−ν(t) ∼ 1

�(1 − ν)

{(
t

2

)−ν

− 1

1 − ν

(
t

2

)2−ν
}

and

J ′
−ν(t) ∼ 1

2�(−ν)

{(
t

2

)−ν−1

− 1

1 − ν

(
t

2

)1−ν
}

,

we obtain after some algebra

u′
1(t)

t2α
= O(t) as t → 0. (28)
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Hence u1 satisfies (24). Analogously, one can show that u2 does not fulfil (24). This implies
C2 = 0 in formula (27) as a consequence of the boundary condition (24). Without loss of
generality, we set C1 = 1 and find from the boundary condition (22) the eigenvalue equation

J−ν

(
1

(α + 1)σ

)
= 0 (α > −1) (29)

for determining the eigenvalues σ > 0 for which u = u1 are the corresponding eigenfunctions.
The well-known asymptotic behaviour of the nth zero of Bessel functions J−ν (cf [16, VIII
(Zeros 1., p 146)]) provides the asymptotics

1

(α + 1)σn

∼
(

n − 1

2

)
π − νπ

2
+

π

4
as n → ∞

and hence the asymptotics of the sequence {σn}∞n=1 of solutions to (29) tending to zero as
n → ∞ can be expressed by

σn ∼ [(α + 1)πn]−1 as n → ∞. (30)

This yields relation (20) and proves the theorem. Finally, note that from the above derivation it
follows that the eigenfunction u1 is absolutely continuous with integrable u′

1 of order O(t2α+1)

as t → 0 (see formula (28)). �

Corollary 2.2. For the singular values of a compact linear operator A = M ◦ J defined
by formulae (3), (4) and (5) with a multiplier function m satisfying for some constants
−1 < α1 � α2 and c, C > 0 the inequalities

ctα2 � |m(t)| � Ctα1 a.e. on [0, 1], (31)

we have

σn(A) � n−1. (32)

Proof. By considering theorem 2.1 and the Poincaré–Fischer extremum principle

σn(A) = max
Xn⊂X

min
x∈Xn,x �=0

‖Ax‖
‖x‖ ,

where Xn represents an arbitrary n-dimensional subspace of the Hilbert space X (cf, e.g.,
[1, lemma 4.18] or [9, lemma 2.44]), the asymptotics (32) is an immediate consequence of the
inequalities

c

√∫ 1

0
s2α2 [(Jx)(s)]2 ds � ‖Ax‖ � C

√∫ 1

0
s2α1 [(Jx)(s)]2 ds for all x ∈ L2(0, 1)

that follow from (31). �

Conjecture 2.3. We conjecture that for all the compact linear operators A from (3) the
asymptotic behaviour

σn(A) ∼
(∫ 1

0
m(t) dt

)
σn(J ) as n → ∞ (33)

remains true whenever the multiplier function m satisfies the inequalities

0 < m(t) � Ctα a.e. on [0, 1] (34)

for some α > −1.

In her diploma thesis [6], Freitag performed numerical case studies concerning the decay
rates of singular values σn(A) of composite linear operators A from (3) based on three different
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numerical approaches:

(i) Numerical solution of corresponding Sturm–Liouville problems,
(ii) Galerkin approximation of A as proposed in [26],

(iii) Rayleigh–Ritz ansatz for A∗A and solving general eigenvalue problems.

She compared, in particular, the two families (15) and (16). In all studies formula (33) could
be confirmed rather convincingly and there were no hints that exponential multiplier functions
m lead to a higher degree of ill-posedness than power functions. To our knowledge, a stringent
proof of formula (33), however, is still missing for the family (16).
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