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Abstract. The authors study linear ill-posed operator equations in
Hilbert space. Such equations become conditionally well-posed by im-
posing certain smoothness assumptions, often given relative to the op-
erator which governs the equation. Usually this is done in terms of
general source conditions. Recently smoothness of an element was given
in terms of properties of the distribution function of this element with re-
spect to the self-adjoint associate of the underlying operator. In all cases
the original ill-posed problem becomes well-posed, and properties of the
corresponding modulus of continuity are of interest, specifically whether
this is a concave function. The authors extend previous concavity re-
sults of a function related to the modulus of continuity, and obtained for
compact operators in B. Hofmann, P. Mathé, and M. Schieck, Modulus

of continuity for conditionally stable ill-posed problems in Hilbert space,
J. Inverse Ill-Posed Probl. 16 (2008), no. 6, 567–585, to the general
case of bounded operators in Hilbert space, and for recently introduced
smoothness classes.

Dedicated to the 70th anniversary of the RAS Corresponding-Member

Vladimir V. Vasin

1. Introduction

The focus of this note is on linear ill-posed problems that can be written
as operator equations

(1) Ax = y, x ∈ X, y ∈ Y,

where A : X → Y is a bounded injective linear mapping between infinite-
dimensional separable Hilbert spaces X and Y endowed with inner products
〈 · , · 〉 and norms ‖·‖. We associate A with the positive self-adjoint operator

(2) H := A∗A : X → X

and set a := ‖H‖ = ‖A‖2 such that a is the maximum value of the spec-
trum σ(H) of H and zero the corresponding minimum value which moreover
represents an accumulation point of σ(H) in the ill-posed case. Following
the notation of [14] for the ill-posedness of (1) characterized by a non-closed
range R(A) of A we distinguish between the ill-posedness of type I where A
is non-compact and of type II where A is compact, for more details see also
[3, 7].

The solution theory of ill-posed problems is preferably based on the fact
that these problems become conditionally well-posed after imposing certain
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smoothness assumptions by restricting the admissible solutions to a set M.
Then the severity of the ill-posedness phenomenon in solving a problem (1)
depends on the interplay between the smoothing properties of the operator
A and the smoothness of potential solutions x ∈ M ⊂ X. The solution
theory may be considered element-wise and, as this is traditionally done,
uniformly for smoothness classes.

For the analysis of ill-posed problems solution smoothness is most often
measured relative to the operator A governing the equation (1), precisely its
self-adjoint associate H. First, one can quantify the individual smoothness
of an element x ∈ X with respect to H by using the point-wise spectral
information, i.e., the distribution function

(3) F 2
x (t) := ‖Etx‖2 := 〈χ(0,t](H)x, x〉 = ‖χ(0,t](H)x‖2, 0 < t <∞,

where χ(0,t] is the characteristic function on the interval (0, t]. This idea
goes back to [15, 16] and it was further explored in [2], This non-decrea-
sing and right-continuous function F 2

x , which satisfies the limit condition
lim
t→0

F 2
x (t) = 0 as a consequence of the ill-posedness, can be rewritten as

F 2
x (t) =

t
∫

0

d‖Esx‖2 for t > 0, where Et = Et(H), 0 ≤ t ≤ a, denotes the

spectral resolution of the operator H. Note that

‖h(H)x‖2 =

a
∫

0

h2(t) d‖Etx‖2 =

a
∫

0

h2(t) dF 2
x (t)

holds for any bounded measurable real function h. We refer to [1, Sect. 2.3]
and [18, Chapt. 12] for details on spectral theory of bounded and self-adjoint
linear operators in Hilbert space.

The most prominent, and traditional way of quantifying solution smooth-
ness uses smoothness classes in terms of source sets M = Mϕ,R defined
as

(4) Mϕ,R := {x ∈ X : x = ϕ(H) v, v ∈ X, ‖v‖ ≤ R}, R > 0.

Above, the functions ϕ : (0, a] → (0,∞) are derived from variable Hilbert
scales and called index functions; these are assumed to be increasing with
lim
t→+0

ϕ(t) = 0. Here we follow the concept of [12, 13] or more recently [5, 11].

Source sets express the solution smoothness with respect to the spectrum of
H in an integral manner, since we have that

x ∈ Mϕ,R if and only if

a
∫

0

1

ϕ2(t)
d‖Etx‖2 ≤ R2.

Alternatively, and as this was recently suggested and roughly discussed in
[4], one can assign smoothness classes by considering, in analogy to (4), the
level sets M = Eψ,E defined as

(5) Eψ,E := {x ∈ X : F 2
x (t) ≤ E2 ψ2(t), 0 < t ≤ a}, E > 0,
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for index functions ψ : (0, a] → (0,∞). It is easy to see and was established
in [4, Prop. 9] that Mψ,E ⊂ Eψ,E if ϕ and ψ in (4) and (5) coincide.

The following structural properties of both the source and the level sets
are given next.

Proposition 1. Let the operator A be as in (1) with associate H, see (2).
Then the following properties hold true:

(1) For arbitrary index functions ϕ and ψ the sets M = Mϕ,R and
M = Mψ,E are centrally symmetric, which means that with x1, x2 ∈
M also the elements −x2 and (x1 − x2)/2 belong to M. Moreover,
both classes of sets M are convex.

(2) If the operator A is compact then the sets M = Mϕ,R and M = Eψ,E
are compact.

Proof. The central symmetry is evident by definition. Also the convexity of
Mϕ,R is clear since this set is a linear transformation of a ball. For x ∈ Eψ,E
one has that ‖χ(0,t](H)x‖ = Fx(t) ≤ E ψ(t) for all 0 < t ≤ a. Therefore
the convexity follows from the fact that the inequalities under consideration
remain valid for convex linear combinations of the elements x.

We turn to the second assertion. The compactness of the sets Mϕ,R was
established in [5, Lemma 2.8], and it follows from the fact that Mϕ,R is the
image of a closed convex set under a compact operator. Closedness of the
sets Eψ,E is immediate from (5). Also, it is clear that the set Eψ,E is bounded,
by letting t := a in (5). To see the relative compactness, let us denote
by s1 ≥ s2, · · · > 0 the eigenvalues and by u1, u2, . . . the corresponding
eigenelements of the non-negative operator H. With this notation we can
write

F 2
x (t) = ‖χ(0,t](H)x‖2 =

∑

sj≤t

|〈x, uj〉|2 ≤ E2ψ2(t)

for elements x ∈ Eψ,E and for each 0 < t ≤ a. But this yields that for any in-

dex function ψ the tails
∑∞

j=k |〈x, uj〉|
2 tend to zero as k → ∞ uniformly for

all x ∈ Eψ,E . This gives the compactness, see [10, Chapt. II], and completes
the proof. �

For source sets and level sets representing M ⊂ X the best possible error
for reconstruction of the solution x ∈ M based on noisy data yδ, satisfying
‖yδ − y‖ ≤ δ instead of the exact right-hand side y ∈ R(A), is given by

(6) ω̃(A,M, δ) := sup {‖x1 − x2‖ : x1, x2 ∈ M, ‖A(x1 − x2)‖ ≤ δ} .
In the case of centrally symmetric and convex sets M the behavior of this
function is closely connected with the behavior of the modulus of continuity

(7) ω (A,M, δ) := sup {‖x‖ : x ∈ M, ‖Ax‖ ≤ δ} , δ > 0,

of the inverse operator A−1 restricted to M, because the inequality chain

ω (A,M, δ) ≤ ω̃(A,M, δ) ≤ ω (A, 2M, δ) = 2ω (A,M, δ/2) , δ > 0,
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is valid. For more details see also [9, Lemma 4.3.1]. The modulus ω (A,M, δ)
acts as a measure of ill-posedness pre-estimating the reconstruction error in
solving (1) for given δ > 0.

The mathematical school of Sverdlovsk/Yekaterinburg, see the mono-
graph [9] by Ivanov, Vasin and Tanana, very early studied such moduli
in connection with the development of the method of quasi-solutions. In
the last decades Vladimir V. Vasin continued, extended and improved
such studies on regularization methods for the stable approximate solution
of ill-posed operator equations, see for example [20, 21, 22].

In Section 2 we collect some properties of the modulus of continuity
ω (A,M, δ), in particular with respect to the source sets and level sets. Our
main result presented in Section 3 is to show the concavity of the associated
function ω2(A,M,

√
δ) for both classes. The paper will be completed with

some remarks on upper and lower bounds for the modulus of continuity.

2. Basic properties of the modulus of continuity

We are going to study the modulus of continuity (7) with focus on the sets
Mϕ,R and Eψ,E. At the beginning we recall the following proposition for-
mulated and proved in [6, Thm. 2.1] that characterizes the main properties
of such modulus. Below we shall set

U M := {z ∈ Z : z = U x, x ∈ M},
for linear operators U : X → Z and some Hilbert space Z. In that sense,
we use KM := {x ∈ X : x = K x̃, x̃ ∈ M} for constants K > 0 by
identifying the constant K with the multiple KI of the unit operator.

We state the following useful results.

Proposition 2. For centrally symmetric and convex sets M the following
properties hold for the moduli of continuity from (7):

(a) If M is bounded then ω (A,M, δ) is a finite, positive and non-decreasing
function for δ > 0 and it is constant for δ ≥ δ̄ := sup

x∈M

‖Ax‖.
(b) If M is relatively compact then lim

δ→0
ω (A,M, δ) = 0.

(c) ω (A,KM, δ) = K ω (A,M, δ/K) for K > 0.
(d) ω (A,M, Cδ) ≤ Cω (A,M, δ) for C > 1.
(e) ω (A,KM, Cδ) ≤ max{C,K}ω (A,M, δ) for C,K > 0.
(f) the decay rate of ω (A,M, δ) → 0 as δ → 0 is at most linear.

We add a result on the behavior of the modulus of continuity with respect
to unitary transformations.

Proposition 3.

(i) Let A and H be as in (1) and (2). Then we have that

ω (A,M, δ) = ω
(

H1/2,M, δ
)

, δ > 0.



MODULUS OF CONTINUITY 5

(ii) If B = UGU∗ : Z → Z for some unitary operator U : X → Z
mapping into the Hilbert space Z with norm ‖ · ‖∗ and some bounded
linear operator G : X → X, then

ω (G,M, δ) = ω (B,UM, δ) , δ > 0.

Proof. The first assertion (i) is an immediate consequence of ‖Ax‖ = ‖H1/2x‖
for x ∈ X. To prove (ii), let B = UGU∗. Then we have with v := Ux and
‖v‖∗ = ‖x‖

ω (G,M, δ) = sup {‖x‖ : x ∈ M, ‖Gx‖ ≤ δ}
= sup {‖U∗v‖ : U∗v ∈ M, ‖GU∗v‖ ≤ δ}
= sup {‖v‖∗ : v ∈ UM, ‖Bv‖∗ ≤ δ}
= ω (B,UM, δ) .

This completes the proof. �

We established in Proposition 1 that the sets Mϕ,R and Eψ,E are centrally
symmetric and convex. Therefore Proposition 2 applies. Within the tradi-
tional setup when smoothness is given in terms of source sets with power
type index function ϕ then it is known that the modulus of continuity is
concave and that ω (A,M, δ) ∼ δκ with 0 < κ < 1. This also holds for the
logarithmic case ω (A,M, δ) ∼ (log(1/δ))−κ with κ > 0 if δ > 0, and the
concavity of the modulus of continuity seems to be typical. However, not
necessarily the functions ω (A,M, δ) are convex for any classes M = Mϕ,R

and M = Eψ,E . Nevertheless, we can show that the associated function

ω2(A,M,
√
δ) is convex in any case for both of the classes and for all δ > 0.

Because of Proposition 2(c) and because Mϕ,R = RMϕ,1 it is sufficient to
consider the case R = 1 and the set Mϕ := Mϕ,1. Similar holds for Eψ,E
and we let Eψ := Eψ,1.

3. Concavity of the modulus on smoothness classes

Based on results from [8], see also [13, Thm. 1], it was proved in [6,
Rem. 3.6] that for compact operators A, and under a rather weak additional
condition on ϕ, the function

(8) τ(A,M, δ) := ω2(A,M,
√
δ), δ > 0,

is for M = Mϕ a concave linear spline, or more precisely the smallest concave
index function that interpolates points defined by spectral properties of A
and their interplay with the function ϕ. Later in [6, Prop. 3.5] the authors
have proved the concavity of τ with M = Mϕ for compact A, i.e., for
ill-posedness of type II. The following Theorem 3 extends this result to
ill-posedness of type I, thus covering the case of multiplication operators
with multiplier functions having an essential zero. Moreover we can prove
concavity of τ for all δ > 0 also in the case M = Eψ.
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We start with the following preliminary discussion, and we recall the
spectral theorem for bounded self-adjoint linear operators in Hilbert space,
see [23, Chapt. VII.1] and [17, Chapt. VII].

Proposition 4. For every bounded self-adjoint linear operator H : X →
X mapping in the the separable Hilbert space X there exist a measurable
space (Ω,A, µ), a unitary transformation U : X → Z := L2(Ω,A, µ), and
a measurable function f : Ω → σ(H) \ {0} ⊆ (0, ‖H‖] ⊂ R such that
Mf := UHU∗ is a multiplication operator defined as

[Mf h](ω) := f(ω)h(ω), ω ∈ Ω,

and mapping Z into itself. Moreover we have η(H) = U∗Mη(f)U for bounded
measurable functions η.

We can apply this result for the non-negative operator H = A∗A, and
thus find a non-negative function f together with a unitary mapping U such
that H = U∗MfU , where we shall abbreviate ‖g‖∗ := ‖g‖L2(Ω,A,µ). By
Proposition 3 we find that

(9) ω (A,M, δ) = ω
(

H1/2,M, δ
)

= ω
(

Mf1/2 , UM, δ
)

, δ > 0.

It is thus interesting to determine the analogs of Mϕ,R and Eψ,E in the
multiplication context, i.e., the images UMϕ,R and UEψ,E , respectively. We
state the following without proof.

Lemma 1. We have that

UMϕ,R = {g ∈ Z : g = ϕ(f)h, ‖h‖∗ ≤ 1} .

and

UEψ,E =











g ∈ Z :

∫

0<f(ω)≤t

|g(ω)|2 dµ(ω) ≤ E2ψ2(t), 0 < t ≤ a











.

The main result is the following.

Theorem. For every bounded linear operator A : X → Y with non-closed
range R(A) and arbitrary index functions ϕ and ψ defined on the interval
(0, ‖A‖2] the functions τ(A,M, δ), δ > 0, from (8) are concave for the
classes M := Mϕ and M := Eψ.

Proof. We first carry out the proof for M := Mϕ, and we use (9) together

with Lemma 1. By introducing the function Θ(t) :=
√
t ϕ(t), 0 < t ≤ a, we

find that

τ(A,Mϕ, δ) = sup
{

‖g‖2
∗ : g = ϕ(f)h, ‖h‖∗ ≤ 1, ‖

√

fg‖2
∗ ≤ δ

}

= sup
{

‖ϕ(f)h‖2
∗ : ‖h‖∗ ≤ 1, ‖Θ(f)h‖2

∗ ≤ δ
}

.
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Consider arbitrarily chosen 0 < δ1 < δ < δ2 and δ = λδ1 + (1 − λ)δ2 for
some appropriate 0 < λ < 1. With given ε > 0 we can find elements
h1, h2 ∈ L2(Ω,A, µ), ‖h1‖∗ ≤ 1, ‖h2‖∗ ≤ 1, satisfying the conditions

a
∫

0

Θ2(f(ω))h2
1(ω) dµ(ω) ≤ δ1,

a
∫

0

ϕ2(f(ω))h2
1(ω) dµ(ω) ≥ τ(A,Mϕ, δ1) − ε

and
a

∫

0

Θ2(f(ω))h2
2(ω) dµ(ω) ≤ δ1,

a
∫

0

ϕ2(f(ω))h2
2(ω) dµ(ω) ≥ τ(A,Mϕ, δ2) − ε.

We let h be chosen such that

(10) h2(ω) := λh2
1(ω) + (1 − λ)h2

2(ω), ω ∈ Ω.

Plainly, ‖h‖∗ ≤ 1. Also we have that
∫ a

0
Θ2(f(ω))h2(ω) dµ(ω)

= λ

∫ a

0
Θ2(f(ω))h2

1(ω) dµ(ω) + (1 − λ)

∫ a

0
Θ2(f(ω))h2

2(ω) dµ(ω)

≤ λδ1 + (1 − λ)δ2 = δ.

Therefore we conclude that

τ(A,Mϕ, δ) ≥
∫ a

0
ϕ2(f(ω))h2(ω) dµ(ω)

= λ

∫ a

0
ϕ2(f(ω))h2

1(ω) dµ(ω) + (1 − λ)

∫ a

0
ϕ2(f(ω))h2

2(ω) dµ(ω)

≥ λ τ(A,Mϕ, δ1) + (1 − λ) τ(A,Mϕ, δ2) − ε.

Letting ε → 0 this proves the required concavity assertion for the source
set Mϕ.

For the level set Eψ the proof is similar. We start from

τ(A, Eψ , δ) = sup











‖g‖2
∗ :

∫

0<f(ω)≤t

|g(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a











.

Again we choose h1, h2 such that

‖h1‖2
∗ ≥ τ(A, Eψ, δ1) − ε and ‖h2‖2

∗ ≥ τ(A, Eψ, δ2) − ε,

together with
∫

0<f(ω)≤t

|h1(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a,
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and
∫

0<f(ω)≤t

|h2(ω)|2 dµ(ω) ≤ ψ2(t), 0 < t ≤ a.

The same choice of h as in (10) allows us to complete the proof, and we
leave the details to the reader. �

Note that due to the identity (c) in Proposition 2 the proven concavity

carries over to the functions ω2(A,Mϕ,R,
√
δ) and ω2(A, Eψ,E ,

√
δ), respec-

tively, for all δ > 0, R > 0 and E > 0.

4. Rates on smoothness classes

The modulus of continuity is a benchmark for the reconstruction error of
regularization schemes, see the discussion in Section 1. Therefore its decay
rate to zero as δ → 0 is of interest. In the compact case such rates for
the classes Mϕ,R and Eψ,E are well studied. In particular, sharp bounds for
smoothness given in terms of source sets Mϕ,R are obtained by interpolation
techniques. However, up to a factor 2 such upper bounds can be obtained by
analyzing specific regularization techniques. It was mentioned in Section 2
that Mψ,E ⊂ Eψ,E , and upper bounds for the level sets provide also upper
bounds for the source sets. But for level sets Eψ,E upper bounds for the
regularization error are easily obtained by noticing that the distribution
function F 2

x (t) is the square of the profile function (regularization error in
the noise-free case) for spectral cut-off, we refer to [2]. This gives:

Proposition 5. Let the operator A be as in (1), and let ψ be an index
function, with associated function Θ(t) :=

√
tψ(t), 0 < t ≤ a. Then

ω (A, Eψ,E , δ) ≤ 2E ψ(Θ−1(δ/E)), 0 < δ ≤ EΘ(a),(11)

and

ω (A, Eψ,E , δ) ≥ E ψ(Θ−1(δ/E)), δ2/E2 ∈ σ(Hψ2(H)).(12)

Proof. We use the spectral cut-off regularization, i.e., when

xδα := gα(H)A∗yδ with gα(t) :=

{

1/t, t ≥ α,

0, t < α,

determines the regularized solutions xδα. As already mentioned we have in
this case that ‖x− gα(H)Hx‖2 = F 2

x (α). For x ∈ Eψ,E we have that

‖x− xδα‖ ≤ ‖x− gα(H)Hx‖ + ‖gα(H)Hx− gα(H)A∗yδ‖

≤ Fx(α) + ‖gα(H)A∗‖‖Ax− yδ‖ ≤ Fx(α) +
δ√
α

= Eψ(α) +
δ√
α
.

The choice of α = α(δ) as solution to Θ(α) = δ/E allows to complete the
proof of inequality (11).

By Mψ,E ⊂ Eψ,E we have that ω (A, Eψ,E , δ) ≥ ω (A,Mψ,E , δ). On
the other hand, ω (A,Mψ,E , δ) ≥ E ψ(Θ−1(δ/E)) is valid for δ2/E2 ∈
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σ(Hψ2(H)), see [19, Theorem 2.5], which yields (12) and completes the
proof of the proposition. �
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