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Abstract
In this paper, we enlighten the role of variational inequalities for obtaining
convergence rates in Tikhonov regularization of nonlinear ill-posed problems
with convex penalty functionals under convexity constraints in Banach spaces.
Variational inequalities are able to cover solution smoothness and the structure
of nonlinearity in a uniform manner, not only for unconstrained but, as
we indicate, also for constrained Tikhonov regularization. In this context,
we extend the concept of projected source conditions already known in
Hilbert spaces to Banach spaces, and we show in the main theorem that
such projected source conditions are to some extent equivalent to certain
variational inequalities. The derived variational inequalities immediately yield
convergence rates measured by Bregman distances.

1. Introduction

After the millennium, there was a substantial progress in regularization theory including
convergence rate results for linear and nonlinear ill-posed operator equations in Banach
spaces (see, e.g., [1, 4, 6, 13, 23–25]). The extension of the theory from Hilbert spaces to
Banach spaces was strongly motivated by a wide field of inverse problems in natural sciences,
engineering and finance, which were modeled by the operator equations under consideration.
Owing to the seminal paper [6] the concept of Bregman distances could be established as a
powerful tool for measuring the regularization error in the Banach space setting. The paper
[13] introduced variational inequalities into the theory that cover solution smoothness and the
structure of nonlinearity in a uniform manner. From those variational inequalities which are
formulated based on dual pairings, Bregman distances and norms of differences of operator
values, one can immediately derive convergence rates in Tikhonov regularization with convex
penalty functionals also for non-smooth operators. In [10] it was shown that the classical
concept of source conditions and the variational inequality concept coincide for the special
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case of linear operators in Hilbert spaces. The discussions in [3, 11, 13, 15] concerning the
interplay of source conditions and such variational inequalities, however, do not explicitly
meet the practically important case that a priori information restricts the admissible solutions
to a convex set.

In a Hilbert space setting, Tikhonov regularization of ill-posed operator equations under
convexity constraints was originally studied in a systematic way for the linear case in [21] and
extended to nonlinear problems and general Hölder source conditions in [7, 22]. It was outlined
there that source conditions required for obtaining convergence rates can be constructed by
applying metric projectors to classical source conditions. This is mostly a reformulation of
another type of variational inequality formulated for inner products and holding for all elements
of the convex set of admissible solutions. For the analysis of such projected source conditions,
we also refer to [8, 16, 19, 20, 26, 27].

In this paper, we extend the results on projected source conditions to the concept of
Tikhonov-type regularization in Banach spaces in light of the variational inequality approach
from [13].

The paper is organized as follows. After preparing the setting in the next section we present
our main result in section 3. The normal cone condition occurring there is reinterpreted as
a projected source condition in section 4. For linear forward operators, the main theorem is
proven in section 5 and for nonlinear ones in section 6.

2. Problem setting and basic assumptions

We consider the problem of solving ill-posed operator equations

F(x) = y (2.1)

as mathematical models of inverse problems, where F : D(F ) ⊆ X → Y is, in general, the
nonlinear forward operator possessing the domain D(F ) and mapping between Banach spaces
X and Y with dual spaces X∗ and Y ∗, respectively. For simplicity, we denote by ‖ · ‖ the norms
in both spaces X and Y. In X and Y, we consider in addition to the norm convergence the
associated weak convergence. That means in X

xk ⇀ x ⇐⇒ 〈ξ, xk〉 → 〈ξ, x〉 for all ξ ∈ X∗

for the dual pairing 〈·, ·〉 with respect to X∗ and X. The weak convergence in Y is defined in
an analog manner.

Ill-posedness of (2.1) means that for exact right-hand sides y = y0 ∈ F(D(F )), the
solutions of the operator equation need not be uniquely determined and small perturbations
on the right-hand side may lead to arbitrarily large errors in the solution. For such problems,
regularization methods are required in order to obtain stable approximate solutions. Here we
assume that perturbed data yδ are available instead of y satisfying the inequality

‖yδ − y‖ � δ (2.2)

with noise level δ � 0 and that a priori information can be exploited which allows us to restrict
the set of admissible solutions to some non-empty subset

C ⊆ D(F ), C convex,

of the domain of F. The set C defines the constraints of the problem.
Our focus is on Tikhonov-type regularization with the penalty functional � : X → [0,∞]

and regularization parameter α � 0, where the regularized solutions xδ
α are the solutions of

the extremal problem

T δ
α (x) := ‖F(x) − yδ‖p + α �(x) → min, subject to x ∈ C, (2.3)
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with a prescribed norm exponent 1 < p < ∞. In this context, we refer to

D(�) := {x ∈ X : �(x) < ∞}
as the domain of � and set D := D(�) ∩ C = ∅.

Throughout this paper, we make the following assumptions.

Assumption 2.1.

(a) F : D(F ) ⊆ X → Y is weakly sequentially continuous and D(F ) is weakly sequentially
closed, i.e.

xk ⇀ x and xk ∈ D(F ) �⇒ x ∈ D(F ) and F(xk) ⇀ F(x).

(b) The functional � is convex and weakly sequentially lower semi-continuous.
(c) For every α > 0 and c � 0, the level sets

Mα(c) := {
x ∈ D : T 0

α (x) � c
}

are weakly sequentially pre-compact in the following sense: provided that Mα(c) is non-
empty, then every sequence from Mα(c) has a subsequence, which is weakly convergent
to some element from X.

(d) Let x† ∈ D = D(�) ∩ C satisfy

�(x†) = min{�(x) : F(x) = y, x ∈ D} < ∞,

i.e. x† is an �-minimizing solution to (2.1) in C. For that x†, the subdifferential

∂�(x†) := {ξ ∈ X∗ : �(x) � �(x†) + 〈ξ, x − x†〉 for all x ∈ X} ⊆ X∗

at x† is assumed to be non-empty, and moreover a bounded linear operator F ′[x†] : X →
Y is assumed to exist such that

F ′[x†](x − x†) = lim
t→+0

1

t
(F (x† + t (x − x†)) − F(x†)) for all x ∈ C.

Remark 2.2. In principle, assumption 2.1 above and the assumptions in [13] are comparable.
Hence, for all α > 0 and all yδ , the existence of regularized solutions xδ

α minimizing T δ
α can be

concluded from theorem 3.1 in [13]. Moreover, from [13, theorem 3.4], we find the existence
of �-minimizing solutions x† required in our assumption 2.1 (d) if the operator equation (2.1)
has a solution in C and if C is closed and therefore due to the convexity also weakly closed.
In this context, note that in [13, assumption 4.1] conditions were formulated that had to hold
on level sets Mαmax(ρ) for sufficiently large ρ > 0. Throughout this paper, we will avoid such
conditions by making associate assumptions for all elements from C. We conclude this remark
by mentioning that the operator F ′[x†] in assumption 2.1 (d) is a Gâteaux derivative if x† is
an inner point of C.

As obvious for regularization theory in Banach spaces, we will use Bregman distances
with respect to � of two elements x and x̃ from D(�) and associated with some ξ̃ ∈ ∂�(x̃)

which are defined as

Bξ̃ (x, x̃) := �(x) − �(x̃) − 〈ξ̃ , x − x̃〉.
The Bregman distance can be defined only for x̃ with ∂�(x̃) = ∅.

We measure the accuracy of approximations xδ
α ∈ D to solutions x† ∈ D of (2.1) in the

form Bξ †
(
xδ

α, x†) for some ξ † ∈ ∂�(x†). Following the ideas from [13] with the extensions in
[15] and [3], then one can prove the following convergence rate result.
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Proposition 2.3. Let ϕ : [0,∞) → [0,∞) be a concave and increasing function, twice
differentiable on (0,∞) with limt→+0 ϕ(t) = 0, and assume that there are β1 ∈ [0, 1), β2 � 0
and ξ † ∈ ∂�(x†) such that the �-minimizing solution x† of (2.1) satisfies the variational
inequality

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2 ϕ(‖F(x) − F(x†)‖) for all x ∈ C. (2.4)

Then

Bξ †
(
xδ

α(δ), x
†) = O(ϕ(δ)) as δ → 0 (2.5)

for an appropriate parameter choice α = α(δ).

Proof. Since xδ
α ∈ C for all α > 0 and all δ � 0, the assertion can be proven in the same way

as theorem 4.4 in [13] for the case ϕ(t) = t and theorem 4.3 in [3] for general ϕ. One only
has to replace the sets Mαmax(ρ) there by C. We also refer to both papers with respect to the
explicit structure of the required parameter choice. �

In the following, we formulate sufficient and for the special case ϕ(t) = t also
necessary conditions under which a variational inequality (2.4) holds true. With those
studies, we complement the results presented in [13, remark 4.2 and 4.3], [24, section 3.2],
[15, section 4–6] and [3, section 5] on the interplay of source conditions, nonlinearity
conditions and variational inequalities by extending them to convexity constraints expressed
by the set C.

In a Hilbert space setting under constraints imposed by a convex and closed set C and for
nonlinear Tikhonov regularization with the penalty functional �(x) = ‖x−x̄‖2, the traditional
source conditions

x† − x̄ = F ′[x†]∗w, w ∈ Y,

(cf, e.g., [9, chapter 10]) have to be replaced by the projected source conditions

x† = PC(x̄ + F ′[x†]∗w), w ∈ Y, (2.6)

in order to obtain comparable convergence rates, where PC : X → X denotes the metric
projector onto the set C which is well defined in the Hilbert space X. By means of the inner
product 〈·, ·〉 in the Hilbert space X, this condition can be rewritten as

〈F ′[x†]∗w + x̄ − x†, x − x†〉 � 0 for all x ∈ C (2.7)

or when using the normal cone

NC(x̃) := {z ∈ X : 〈z, x − x̃〉 � 0 for all x ∈ C} (2.8)

of C at the point x̃ ∈ C alternatively as

F ′[x†]∗w + x̄ − x† ∈ NC(x†) (2.9)

(cf, e.g., [7, 22]).
In the Banach space setting and for general convex penalty functionals �, source

conditions for the unconstrained case attain the form

ξ † = F ′[x†]∗η, η ∈ Y ∗, (2.10)

for some ξ † ∈ ∂�(x†) (cf, e.g., [13, 24] and [3, 12, 15]). An extension of the concept of
projected source conditions to the Banach space setting can be based on the extended analog

F ′[x†]∗η − ξ † ∈ NC(x†) (2.11)

of condition (2.9), where the associated normal cone NC(x†) of C at x† ∈ C is defined as

NC(x†) := {ξ ∈ X∗ : 〈ξ, x − x†〉 � 0 for all x ∈ C} (2.12)

exploiting the dual pairing 〈·, ·〉 with respect to X∗ and X.
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3. Main result

Let C be convex and let assumption 2.1 concerning F, �, their domains D(F ), D(�), and
the element x† be satisfied. Then we can formulate our main result connecting the projected
source conditions (2.11) with the variational inequalities (2.4).

Theorem 3.1. If there are ξ † ∈ ∂�(x†) and η ∈ Y ∗ such that (2.11) with the normal cone
(2.12) is valid and if the nonlinearity condition

‖F ′[x†](x − x†)‖ � ϕ(‖F(x) − F(x†)‖) for all x ∈ C (3.1)

is satisfied for some concave and increasing function ϕ : [0,∞) → [0,∞) with
limt→+0 ϕ(t) = 0, then the variational inequality (2.4) is fulfilled for all β1 ∈ [0, 1) and
all β2 � ‖η‖.

If ND(�)(x
†) ∩ (−NC(x†)) = {0} and if at least one of the sets D(�) or C has interior

points, then we also have a converse result: if there are ξ † ∈ ∂�(x†) and constants β1 ∈ [0, 1),
β2 � 0, such that

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2‖F(x) − F(x†)‖ for all x ∈ C, (3.2)

then elements ξ̃ † ∈ ∂�(x†) and η ∈ Y ∗ exist with ‖η‖ � β2 such that

F ′[x†]∗η − ξ̃ † ∈ NC(x†)

with NC(x†) from (2.12).

The proof of theorem 3.1 will be given in section 6 in a rather simple way after presenting
some preparations and auxiliary results in the subsequent sections. Note that the nonlinearity
condition (3.1) can be replaced by alternative conditions; see remark 6.2.

Combining the first part of theorem 3.1 with proposition 2.3, we obtain convergence rates
from a projected source condition (2.11) in Banach spaces. In fact, if there are ξ † ∈ ∂�(x†)
and η ∈ Y ∗ such that

F ′[x†]∗η − ξ † ∈ NC(x†)

with NC(x†) from (2.12) and if

‖F ′[x†](x − x†)‖ � ϕ(‖F(x) − F(x†)‖) for all x ∈ C,

then theorem 3.1 yields a variational inequality (2.4), and based on this inequality
proposition 2.3 provides the convergence rate

Bξ †
(
xδ

α(δ), x
†) = O(ϕ(δ)) as δ → 0

for an appropriate parameter choice α = α(δ).

4. Projected source conditions

In this section, we will show that the conditions of the form (2.11) that play a prominent role
in our theory can be referred to as projected source conditions generalizing (2.6) to Banach
spaces and sets of constraints C that fulfill the following assumption.

Assumption 4.1.

(a) X is a reflexive, strictly convex and smooth Banach space.
(b) C is a non-empty, closed and convex subset of X.
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Under assumption 4.1, the duality mapping J : X → X∗ for the Banach space X (as an
analog to the Riesz isomorphism in the Hilbert space) defined as

J (x) := {ξ ∈ X∗ : 〈ξ, x〉 = ‖x‖2 = ‖ξ‖2} ⊆ X∗ (4.1)

is a well defined, bijective and unitary mapping, i.e. the set J (x) is a singleton for all x ∈ X,

and we have J−1 = J∗ (see, e.g., [28, proposition 47.19]), where J∗ denotes the duality
mapping on X∗. Moreover, the metric projector PC : X → X is well defined and determines
for all x̃ ∈ X a unique element

PC(x̃) := argminx∈C‖x − x̃‖ (4.2)

(see, e.g., [2, chapter 3, section 3.2]). Following [18], we have the equivalence

x† = PC(x̃) ⇐⇒ 0 ∈ −J (x̃ − x†) + NC(x†).

Hence, under assumption 4.1, condition (2.11) can be rewritten as

F ′[x†]∗η − ξ † ∈ NC(x†) ⇐⇒ J (J∗(F ′[x†]∗η − ξ †)) ∈ NC(x†)

⇐⇒ 0 ∈ −J (x† + J∗(F ′[x†]∗η − ξ †) − x†) + NC(x†)

⇐⇒ x† = PC(x† + J∗(F ′[x†]∗η − ξ †)).

As this chain of equivalences shows, (2.11) attains the alternative form

x† = PC(x† + J∗(F ′[x†]∗η − ξ †)), (4.3)

which is a projective version of (2.10) under the convexity constraints expressed by the set C.

Example 4.2. If X, Y are Hilbert spaces and C is a non-empty closed and convex subset of X,
then assumption 4.1 is satisfied, and we can verify the projected source condition (4.3) for the
most prominent version of Tikhonov regularization in Hilbert spaces. We identify X∗ = X by
using the Riesz isomorphism J, and set p = 2 and �(x) := 1

2‖x − x̄‖2 with fixed x̄ ∈ X in
(2.3). That is, we consider the minimization problem

‖F(x) − yδ‖2 +
α

2
‖x − x̄‖2 → min, subject to x ∈ C.

For this specific setting, the subdifferential of � at x† is ∂�(x†) = {ξ †} with ξ † = x† − x̄, and
therefore with the Riesz isomorphism J and by setting w := η, the projected source condition
(4.3) reduces to (2.6).

5. The case of linear forward operators

We first consider bounded linear operators A = F : X → Y with adjoint A∗ : Y ∗ → X∗.
Theorem 3.1 will turn out to be an extension of the results derived in this section.

The proofs below are essentially based on separation of convex sets. Therefore, we state
the following separation theorem, which is an immediate consequence of [5, theorem 2.1.2].

Lemma 5.1. Let E1, E2 ⊆ X×R be convex sets. If one of them has non-empty interior and the
interior does not intersect with the other set, then ξ ∈ X∗ and τ ∈ R exist with (ξ, τ ) = (0, 0)

such that

sup
(x,t)∈E1

(〈ξ, x〉 + τ t) � inf
(x,t)∈E2

(〈ξ, x〉 + τ t).

With the help of this lemma, we now derive a projected source condition (2.11) from the
variational inequality (3.2) with β1 = 1 in the case of a linear operator A = F .
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Theorem 5.2. Assume ND(�)(x
†) ∩ (−NC(x†)) = {0} and that at least one of the sets D(�)

or C has interior points. If there is some β2 � 0, such that

0 � �(x) − �(x†) + β2‖A(x − x†)‖ for all x ∈ C, (5.1)

then there exist ξ † ∈ ∂�(x†) and η ∈ Y ∗ with ‖η‖ � β2 such that

A∗η − ξ † ∈ NC(x†). (5.2)

Proof. We apply lemma 5.1 to the sets

E1 := {(x, t) ∈ X × R : x ∈ C, t � �(x†) − �(x)},
E2 := {(x, t) ∈ X × R : t � β2‖A(x − x†)‖}.

To see that the assumptions of that lemma are satisfied, first note that int E2 = ∅. Further, we
have E1 ∩ (int E2) = ∅ if we can show that E1 ∩ E2 is a subset of the boundary of E2. So let
(x, t) ∈ E1 ∩ E2 and set (xn, tn) := (

x, t − 1
n

)
for n ∈ N. Then (xn, tn) → (x, t) and using

the definition of E1 and inequality (5.1), we obtain

tn = t − 1

n
< t � �(x†) − �(x) � β2‖A(x − x†)‖ = β2‖A(xn − x†)‖,

that is, (xn, tn) /∈ E2. In other words, (x, t) is indeed a boundary point of E2.
Together with (x†, 0) ∈ E1 ∩ E2, lemma 5.1 provides ξ ∈ X∗ and τ ∈ R such that

〈ξ, x − x†〉 + τ t � 0 for all (x, t) ∈ E1, (5.3)

〈ξ, x − x†〉 + τ t � 0 for all (x, t) ∈ E2. (5.4)

If τ < 0, then (5.4) implies 〈− 1
τ
ξ, x − x†〉 � t for all t � β2‖A(x − x†)‖ and all x ∈ X,

which is obviously not possible. In the case τ = 0, inequality (5.4) gives 〈ξ, x − x†〉 � 0 for
all x ∈ X, and therefore ξ = 0. But this contradicts (ξ, τ ) = (0, 0). Thus, τ > 0 has to be
true.

From (5.4) with t := β2‖A(x − x†)‖, we obtain for all x ∈ X
〈 − 1

τ
ξ, x − x†〉 � β2‖A(x − x†)‖.

Hence there is some η ∈ Y ∗ such that 1
τ
ξ = A∗η and ‖η‖ � β2 (see [24, lemma 8.21 and its

proof]). Inequality (5.3) with t := �(x†)−�(x) now yields �(x†)−�(x) � 〈−A∗η, x−x†〉
for all x ∈ C.

To obtain a subgradient of � at x†, we apply lemma 5.1 to the sets

Ẽ1 := {(x, t) ∈ X × R : t � �(x†) − �(x)},
Ẽ2 := {(x, t) ∈ X × R : x ∈ C, t � 〈−A∗η, x − x†〉}.

The assumptions of that lemma can be verified in a similar way as discussed for E1, E2 since
int Ẽ1 = ∅ if intD(�) = ∅ and int Ẽ2 = ∅ if int C = ∅. With (x†, 0) ∈ Ẽ1 ∩ Ẽ2, lemma 5.1
yields ξ̃ ∈ X∗ and τ̃ ∈ R such that

〈ξ̃ , x − x†〉 + τ̃ t � 0 for all (x, t) ∈ Ẽ1, (5.5)

〈ξ̃ , x − x†〉 + τ̃ t � 0 for all (x, t) ∈ Ẽ2. (5.6)

If τ̃ < 0, then (5.6) implies
〈− 1

τ̃
ξ̃ , x − x†〉 � t for all t � 〈−A∗η, x − x†〉 and all x ∈ C,

which is obviously not possible
(
because

〈− 1
τ̃
ξ̃ , x − x†〉 < ∞)

. In the case τ̃ = 0, inequality
(5.5) gives 〈ξ̃ , x − x†〉 � 0 for all x ∈ D(�) and (5.6) gives 〈ξ̃ , x − x†〉 � 0 for all x ∈ C.
Thus ξ ∈ ND(�)(x

†) ∩ (−NC(x†)), which implies ξ̃ = 0 by assumption. This contradicts
(ξ̃ , τ̃ ) = (0, 0). Therefore, τ̃ > 0 is true.
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With t := �(x†) − �(x) from (5.5) we obtain
〈

1
τ̃
ξ̃ , x − x†〉 � �(x) − �(x†) for all

x ∈ X, that is, ξ † := 1
τ̃
ξ̃ ∈ ∂�(x†). Eventually, (5.6) with t := 〈−A∗η, x − x†〉 yields

〈−ξ †, x − x†〉 � 〈−A∗η, x − x†〉 for all x ∈ C. Thus, we found ξ † ∈ ∂�(x†) and η ∈ Y ∗ such
that A∗η − ξ † ∈ NC(x†). �

As a by-product of this theorem, we can show that the constant β1 in the variational
inequality (3.2) plays only a minor role if A = F is linear. In fact, if a variational inequality
holds for one β1 ∈ [0, 1), then it holds for all β1 ∈ [0, 1).

Corollary 5.3. Assume that ND(�)(x
†) ∩ (−NC(x†)) = {0} and that at least one of the sets

D(�) or C has interior points. Further let β1 ∈ [0, 1) and β2 � 0. Then

0 � �(x) − �(x†) + β2‖A(x − x†)‖ for all x ∈ C,

if and only if ξ † ∈ ∂�(x†) exists such that

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2‖A(x − x†)‖ for all x ∈ C.

Proof. Let the first inequality in the corollary be satisfied. Then theorem 5.2 provides
ξ † ∈ ∂�(x†) and η ∈ Y ∗ with ‖η‖ � β2 such that A∗η − ξ † ∈ NC(x†). From the
definition of NC(x†), we see that 〈ξ †, x − x†〉 + 〈A∗(−η), x − x†〉 � 0 and therefore
〈ξ †, x − x†〉 + β2‖A(x − x†)‖ � 0 for all x ∈ C, which together with Bξ †(x, x†) � 0
implies the second inequality in the corollary.

The reverse direction is trivially true since

�(x) − �(x†) + β2‖A(x − x†)‖ = 〈ξ †, x − x†〉 + Bξ †(x, x†) + β2‖A(x − x†)‖
� 〈ξ †, x − x†〉 + β1Bξ †(x, x†) + β2‖A(x − x†)‖ � 0

for all x ∈ C. �

The proof of the corollary implicitly proves the first part of theorem 3.1 in the case of a
linear operator A = F . For nonlinear F, the proof is given in the next section.

6. Proof of the main theorem

Now we are ready to prove theorem 3.1 as our main result. At first we show how to reduce a
variational inequality with the nonlinear operator F to a variational inequality with the bounded
linear operator F ′[x†] introduced in assumption 2.1 (d).

Lemma 6.1. If there are ξ † ∈ ∂�(x†), β1 ∈ [0, 1) and β2 � 0 such that

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2‖F(x) − F(x†)‖ for all x ∈ C, (6.1)

then

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2‖F ′[x†](x − x†)‖ for all x ∈ C. (6.2)

Proof. For fixed x ∈ C and all t ∈ (0, 1], the given variational inequality (6.1) and the
convexity of � imply
β2

t
‖F(x† + t (x − x†)) − F(x†)‖ � 1

t
〈−ξ †, t (x − x†)〉 − β1Bξ †(x† + t (x − x†), x†)

=(1 − β1)〈− ξ †, x − x†〉− β1

t
(�((1 − t)x† + tx)− �(x†))

� (1 − β1)〈−ξ †, x − x†〉 − β1(�(x) − �(x†))

= 〈−ξ †, x − x†〉 − β1Bξ †(x, x†).
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If we let t → +0 we derive under assumption 2.1 (d)

β2‖F ′[x†](x − x†)‖ = lim
t→+0

β2

t
‖F(x† + t (x − x†)) − F(x†)‖

� 〈−ξ †, x − x†〉 − β1Bξ †(x, x†)

for all x ∈ C. Therefore the variational inequality (6.2) is valid. �

Remark 6.2. We should mention here that the opposite direction in the lemma, from (6.2)
back to (6.1), is in general not true even if a modified value of the constant β2 can be accepted.
Additional assumptions on the structure of nonlinearity of F have to be satisfied for that
direction. The simplest form of such structural conditions is

‖F ′[x†](x − x†)‖ � c1 ‖F(x) − F(x†)‖ for all x ∈ C (6.3)

with some constant c1 > 0, which coincides with the nonlinearity condition (3.1) in
theorem 3.1 if ϕ(t) = c1t . For example, such a condition is an implication of the tangential
cone condition

‖F(x) − F(x†) − F ′[x†](x − x†)‖ � c2‖F(x) − F(x†)‖ for all x ∈ C

with some constant c2 > 0, which plays a prominent role for obtaining convergence rates of
iterative regularization methods; see [17] and [1].

The concept of a degree of nonlinearity presented for Hilbert spaces in [14] was extended
to Banach spaces in [3, 12]. From the latter two papers, it becomes clear that a condition of
type (6.3) is more powerful with respect to convergence rates than the weaker condition

‖F(x) − F(x†) − F ′[x†](x − x†)‖ � c3 Bξ †(x, x†) for all x ∈ C (6.4)

with some constant c3 � 0. Nonlinearity conditions of type (6.4) were exploited in the papers
[13] and [23]. If we replace (6.3) by (6.4), then a variational inequality (2.4) with ϕ(t) = ct ,
c � 0, can be proven, too, if there are ξ † ∈ ∂�(x†) and η ∈ Y ∗ such that (2.11) is valid
because of

‖F ′[x†](x − x†)‖ � ‖F(x) − F(x†) − F ′[x†](x − x†)‖ + ‖F(x) − F(x†)‖
� c3Bξ †(x, x†) + ‖F(x) − F(x†)‖,

but we have β1 ∈ [0, 1) only under the smallness condition c3‖η‖ < 1.
However, if we diminish the nonlinearity condition from (6.3) to (3.1) with some

increasing and strictly concave function ϕ : [0,∞) → [0,∞) satisfying limt→+0 ϕ(t) = 0,
then we obtain only a weaker variational inequality (2.4) if there are ξ † ∈ ∂�(x†) and η ∈ Y ∗

such that (2.11) is valid, but again without a smallness condition.

The proof of theorem 3.1 is now quite simple.

Proof of theorem 3.1. Assume that there are ξ † ∈ ∂�(x†) and η ∈ Y ∗ such that the
projected source condition (2.11) is satisfied. Then from the definition of NC(x†), we see that
〈ξ †, x −x†〉+ 〈F ′[x†]∗(−η), x −x†〉 � 0 and therefore 〈ξ †, x −x†〉+‖η‖‖F ′[x†](x −x†)‖ � 0
for all x ∈ C, which together with Bξ †(x, x†) � 0 and β1 ∈ [0, 1) implies

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + ‖η‖‖F ′[x†](x − x†)‖ for all x ∈ C.

Taking into account the structural assumption (3.1), we derive that the variational inequality
(2.4) is fulfilled for all β1 ∈ [0, 1) and all β2 � ‖η‖. Hence, the first assertion of theorem 3.1
is proven.
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Now assume that the special case (3.2) of (2.4) with ϕ(t) = t is satisfied for constants
β1 ∈ [0, 1) and β2 � 0. Then we have by lemma 6.1 that

〈−ξ †, x − x†〉 � β1Bξ †(x, x†) + β2‖F ′[x†](x − x†)‖ for all x ∈ C

and therefore

�(x) − �(x†) + β2‖F ′[x†](x − x†)‖
= 〈ξ †, x − x†〉 + Bξ †(x, x†) + β2‖F ′[x†](x − x†)‖
� 〈ξ †, x − x†〉 + β1Bξ †(x, x†) + β2‖F ′[x†](x − x†)‖ � 0

for all x ∈ C. Thus, the second assertion of theorem 3.1 follows from theorem 5.2. �

Acknowledgment

This research was supported by the DFG under grant HO 1454/8-1.

References

[1] Bakushinsky A B and Kokurin M Yu 2004 Iterative Methods for Approximate Solution of Inverse Problems
(Dordrecht: Springer)

[2] Barbu V and Precupanu T 1986 Convexity and Optimization in Banach Spaces (Mathematics and its Applications
(East European Series) vol 10) 2nd English edn (Bucharest: Editura Academiei, D Reidel Publishing)
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