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Abstract: Conditional stability estimates require additional regularization for obtain-
ing stable approximate solutions if the validity area of such estimates is not completely
known. In this context, we consider ill-posed nonlinear inverse problems in Hilbert
scales satisfying conditional stability estimates characterized by general concave index
functions. For that case, we exploit Tikhonov regularization and provide convergence
and convergence rates of regularized solutions for both deterministic and stochastic
noise. We further discuss a priori and a posteriori parameter choice rules and illus-
trate the validity of our assumptions in different model and real world situations.
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1 Introduction

In this paper, we investigate the operator equation

F (f) = g, (1)

which acts as model of an inverse problem with a (possibly nonlinear) forward operator

F : D(F ) ⊆ X → Y,

with domain D(F ) mapping between the infinite dimensional separable real Hilbert spaces X with
norm ‖·‖ and Y with norm ‖·‖Y. Let denote by f † ∈ D(F ) the uniquely determined solution of (1)
for the exact right-hand side g = F (f †) ∈ Y. Moreover let, as is typical for inverse problems, (1)
be locally ill-posed at f †, which means that for closed balls Br(f

†) := {f ∈ D(F )
∣∣ ‖f − f †‖ ≤ r}

around f † with arbitrarily small radii r > 0 there exist sequences {fn}∞n=1 ⊂ Br(f
†) such that

lim inf
n→∞

‖fn − f †‖ > 0, but lim
n→∞

‖F (fn) − F (f †)‖Y = 0 (cf., e.g., [20, Def. 3]). Consequently, in

order to find stable approximate solutions to equation (1) based on observed noisy data gobs of g,
some kind of stabilization is required. Our focus here is on variational regularization in a Hilbert
scale under conditional stability estimates.
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For considering the Hilbert scale we introduce a densely defined (unbounded and closed) linear
self-adjoint operator L : D(L) ⊂ X → X , which is strictly positive such that we have for some
m > 0

‖Lx‖ ≥ m‖x‖ for all x ∈ D(L). (2)

The operator L satisfying (2) generates a Hilbert scale {Xν}ν∈R with X0 := X , Xν = D(Lν), and
with corresponding norms ‖x‖ν := ‖Lνx‖X . It is well-known that for a triple of indices −a < t ≤ s
the interpolation inequality

‖f‖t ≤ ‖f‖
s−t
s+a

−a ‖f‖
t+a
s+a
s (3)

holds for all f ∈ Xs.

In the following, we will consider a mixed data model, which allows to treat both deterministic
and stochastic error contributions. Therefore recall the notion of a Hilbert space process Z on
Y, which is a bounded linear mapping Z : Y → L2 (Ω,A,P) with a probability space (Ω,A,P).
Note that, by definition, P [Z ∈ Y] = 0, and it is common to write 〈Z, g〉 := Z (g) for g ∈ Y. A
Hilbert space process Z is called centered, if E [〈Z, g〉] = 0 for all g ∈ Y, and it is called white,
if Cov [〈Z, g1〉 , 〈Z, g2〉] = 〈g1, g2〉 for all g1, g2 ∈ Y. A Hilbert space process Z is called Gaussian,
if (〈Z, g1〉 , ..., 〈Z, gn〉) follows a multivariate Gaussian distribution for any choice of g1, ..., gn ∈ Y
and n ∈ N. With this notion in mind, we consider the data model

gobs = g† + σZ + δξ (4)

with a centered Gaussian white noise Z on Y, some (deterministic) element ξ ∈ Y with ‖ξ‖Y ≤ 1,
and parameters σ, δ > 0. Model (4) covers both deterministic and stochastic error contributions,
parameterized by δ and σ respectively, see [1] for examples. Note that if σ = 0, then gobs ∈ Y,
the measurements gobs at hand are purely deterministic and satisfy the classical bound

‖gobs − g‖Y ≤ δ (5)

with the noise level δ > 0. In this case we concretize the situation by assigning gobs = gδ. If
σ > 0, then P

[
gobs ∈ Y

]
= P [Z ∈ Y] = 0 and hence (4) has to be understood in a weak sense,

this is for each g ∈ Y we observe
〈
gobs, g

〉
=
〈
g†, g

〉
+ δ 〈g, ξ〉+ σ 〈Z, g〉 , (6)

where, by definition, 〈Z, g〉 is a random variable with distribution N
(
0, ‖g‖2Y

)
, and for two ele-

ments g1, g2 ∈ Y the dependency structure is encoded in Cov [〈Z, g1〉 , 〈Z, g2〉] = E [〈Z, g1〉 〈Z, g2〉] =
〈g1, g2〉.
Initially, we pose two assumptions which are valid throughout the paper. The first assumption
refers to properties of F , D(F ) and f †. Moreover, it defines occurring indices a and s, u in the
Hilbert scale under consideration.

Assumption 1.

(a) The domain D(F ) of F is a convex and closed subset of X .

(b) The operator F : D(F ) ⊆ X → Y is weak-to-weak sequentially continuous, i.e. xn ⇀ x0 in
X with xn ∈ D(F ), n ∈ N, and x̄ ∈ D(F ) implies F (xn)⇀ F (x̄) in Y .

(c) There exists u > 0 such that f † ∈ Xu, where f
† ∈ D(F ) is the unique solution to (1) for

given right-hand side g.

(d) There are further indices a, s ∈ R such that a ≥ 0, 0 ≤ s < u ≤ 2s+ a, and −a < s.

In the following we will need closed balls and their intersections with the domain of definition
D(F ) of F , this is

Bν
µ(f̄) :=

{
f ∈ Xν

∣∣ ‖f − f̄‖ν ≤ µ
}
, Dν

µ

(
f̄
)
:= Bν

µ(f̄) ∩D(F )

2



in Xν (ν ∈ R) with center f̄ ∈ Xν and radius µ (0 < µ ≤ ∞), where we write for simplicity Bµ(f̄)
and Dµ(f̄) instead of B0

µ(f̄) and D0
µ(f̄), respectively. Now we are in position to introduce the

second assumption in form of a conditional stability estimate.

Assumption 2. There are a concave index function1 ϕ, values θ ≥ 0, ρ > 0 and R > 0 as well
as a subset Q of Dθ

ρ

(
f †
)
⊂ D(F ) such that the conditional stability estimate

‖f − f †‖−a ≤ Rϕ
(
‖F (f)− F (f †)‖Y

)
(7)

holds for all f ∈ Q, where the multiplier R may depend on a, ϕ and Q.

There are two main sources for verifying conditional stability estimates of the form (7):

(A) Local structural conditions for the nonlinearity of F ,

(B) Global inequalities of the forward operator F .

In general, the local nonlinearity conditions in (A) require Gâteaux or Fréchet derivatives F ′(f) in
the solution point f = f † or in small intersected balls f ∈ Dr(f

†) around f †, whereas the global
inequalities in (B) do not need derivatives of F at all. Such global inequalities typically occur in
parameter identification problems for partial differential equations, sometimes in connection with
Carleman estimates. In the Appendix we present for motivation and illustration three examples
for relevant sets Q. Feasible elements f , for which the conditional stability estimate (7) is valid,
belong in all three examples to the intersection of D(F ) with one or two closed balls of the type
Bν

µ(f̄). The Examples 3 and 4 in the Appendix refer to local conditions in the sense of (A),
whereas Examples 5 and 6 are based on global inequalities in the sense of (B).

Under the stated assumptions we search for approximate solutions f̂α to f †, which are regularized
solutions as minimizers

f̂α ∈ argmin
f∈D(F )

[
S
(
F (f) ; gobs

)
+ α ‖f‖2s

]
(8)

of the Tikhonov functional with s-norm square penalty ‖f‖2s and a data fidelity term S
(
·; gobs

)
.

If σ = 0 in (4), i.e. if we have deterministic data gobs = gδ ∈ Y, we will consider the most common

choice S
(
g; gobs

)
= 1

2

∥∥g − gδ
∥∥2
Y
, i.e. (8) specializes to

f̂α ∈ argmin
f∈D(F )

[
1

2

∥∥F (f)− gδ
∥∥2
Y
+ α ‖f‖2s

]
(9)

If σ > 0 in (4), then one has gobs /∈ Y with probability 1 as discussed above, and hence∥∥g − gobs
∥∥
Y

= +∞ a.s. for any g ∈ Y. However, the functional T
(
g; g†

)
= 1

2

∥∥g − g†
∥∥2
Y

can

still be interpreted as an ideal data fidelity term, which is unavailable (as g† is unknown). In view

of (6) it seems natural to use S
(
g; gobs

)
:= 1

2 ‖g‖
2
Y −

〈
g, gobs

〉
as data fidelity term in that case,

which ensures well-definedness and formally differs from T
(
·; g†

)
only by the additive constant

1
2

∥∥gobs
∥∥2
Y
(which is however +∞ in the stochastic case). Hence, for stochastic noise we consider

f̂α ∈ argmin
f∈D(F )

[
1

2
‖F (f)‖2Y −

〈
F (f) , gobs

〉
+ α ‖f‖2s

]
. (10)

Note that the penalty f 7→ ‖f‖2s is a non-negative, convex and sequentially lower semi-continuous
functional. By definition of the Hilbert scale, for all s ≥ 0, this functional is stabilizing in the
sense that all its sublevel sets are weakly sequently compact in X . Under Assumption 1, existence
and stability of approximate solutions f̂α in the sense of [32, Section 4.1.1] are then evident, since

1We call a function ϕ : [0,∞) → [0,∞) index function if it is continuous, strictly increasing and satisfies the
boundary condition ϕ(0) = 0.
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Assumptions 3.11 and 3.22 in [32] are satisfied (in case of stochastic noise, this is a.s. the case).

Moreover, note that we always have for the minimizer of the Tikhonov functional f̂α ∈ Xs, which
means that there is a radius ρ > 0 such that f̂α and f † both belong to Ds

ρ(0). In order to obtain

convergence of the regularized solutions to f †, the interplay of the noise magnitude and the choice
of the regularization parameter α > 0 must be appropriate.
To prove even convergence rates in variational regularization, smoothness conditions have to be
imposed on f †. It will be shown that the conditional stability estimate (7) from Assumption 2
allows us to verify error estimates and convergence rates for the constructed approximate solutions
and that the property f † ∈ Xu ∩D(F ) is sufficient to serve as such a smoothness condition if the
index u matches the set Q from (7). In this context, however, we should emphasize that the
stability estimate (7) is not powerful enough to yield alone stable approximate solutions to (1)
since Q is in general not or not completely known. Therefore, the additional use of Tikhonov-type
regularization is needed in order to force the approximate solutions into the set Q of admissible
elements for (7) for sufficiently small noise.
In the context of smoothness conditions we also mention commonalities between conditional sta-
bility estimates (7) and variational source conditions, which have become a major tool to derive
convergence rates during the last decade. In case of the Hilbert scale regularization (9) and
adapted to (7), variational source conditions attain the form

‖f − f †‖−a ≤ ‖f‖2s − ‖f †‖2s +Rϕ(‖F (f)− F (f †)‖Y) for all f ∈M, (11)

valid for some set of admissible elements M . Variational source conditions of the form (11) with
ϕ (t) =

√
t have been introduced in [15] and appeared recently for example in [4, 9, 10, 13, 17,

23, 31, 32]. Similar to conditional stability estimates, variational source conditions express in an
implicit way both nonlinearity conditions and solution smoothness of the underlying nonlinear
inverse problem.
There is a certain connection between conditional stability estimates (7) and variational source
conditions, which depends very much on the set M . Since the difference ‖f‖2s −‖f †‖2s may attain
positive and negative values for varying f ∈M , there is no immediate connection. However, ifM is
such that the roles of f and f † in (11) can be interchanged, then each variational source condition
immediately implies a conditional stability estimate as examined in [23]. If (11) is validated based
on spectral source conditions and nonlinearity estimates, this will in general not be the case. For
another approach to variational source conditions with general convex penalty functionals in the
Tikhonov regularization of linear problems we refer to [16, 26].
More recently, there have been approaches (see e.g. [23, 24, 25, 35]) to verify variational source
conditions directly for specific problem instances without relying on nonlinearity assumptions or
spectral source conditions or on both. In this case, it can happen that the set M allows to
interchange f and f † in (11), and hence also a conditional stability estimate follows, see e.g.
Example 6 in the appendix.

The remainder of the paper is organized as follows: The focus of Section 2 is on convergence
and convergence rate assertions for deterministic inverse problems. As main result of Section 2,
in Theorem 1 and its Corollary 1 convergence rates for general concave index functions ϕ in
the conditional stability estimate (7) are formulated and proven. This section closes a gap in the
theory by extending the results recently published in [7] from the Hölder case to the case of general
concave index functions. Section 3 is the statistical counterpart to Section 2 with Theorem 2 and
Corollary 3 as main result concerning convergence rates. In the Appendix we finally discuss a
series of motivating examples.

2 Deterministic Inverse Problems

In this section we consider a deterministic noise model, this is (4) with σ = 0. Recall that this

implies gobs ∈ Y, ‖gobs − g‖Y ≤ δ and we write gobs = gδ and f̂α = f δ
α. Based on Assumption 1

4



the following proposition on convergence is an immediate consequence of [32, Theorem 4.3 and
Corollary 4.6]. In this context, we also take into account the usual properties of Hilbert scales,
moreover the Kadec-Klee property of Hilbert spaces and the fact that f † is assumed to be the
unique solution to (1) and sufficiently smooth.

Proposition 1. Let α = α(δ) (a priori choice) or α = α(δ, gδ) (a posteriori choice) be choices of
the regularization parameter α > 0 satisfying the limit conditions

α → 0 and
δ2

α
→ 0 as δ → 0, (12)

then we have under Assumption 1 and for δn → 0 as n→ ∞, αn = α(δn) or αn = α(δn, g
δn), and

fn = f δn
αn

lim
n→∞

‖F (fn)− g‖Y = 0, (13)

lim
n→∞

‖fn‖s = ‖f †‖s, (14)

and
lim
n→∞

‖fn − f †‖ν = 0 for all 0 ≤ ν ≤ s. (15)

Based on conditional stability estimates required by Assumption 2, however, we can even prove
convergence rates for the regularized solutions. We remark that the set Q of admissible elements
with associated radii and Hilbert scale indices and the index function ϕ in this assumption need
not be known. On the other hand, as long as the choice of the regularization parameter α > 0
obeys the condition (12), we have by formula (15) from Proposition 1 that for fixed ν ∈ [0, s] and
arbitrarily small radii ρ > 0 there is some δ > 0 such that f δ

α ∈ Dν
ρ(f

†) whenever 0 < δ ≤ δ.
In the following we will employ some convex analysis. The Fenchel conjugate of a function h :
R → R̄ is defined by h∗ (y) := supx∈R

[xy − h (x)]. For an index function h (defined on [0,∞)) the
Fenchel conjugate can be defined accordingly by extending h to all of R by setting h (−x) := ∞
for x > 0, which leads to

h∗ (y) := sup
x≥0

[xy − h (x)] .

Note that h∗ is always convex as a supremum over affine linear functions, and that for convex h
it holds (h∗)

∗
= h. For such h we furthermore denote by ∂h (x) the subdifferential of h, i.e.

∂h (x) =
{
y ∈ R

∣∣ h (z) ≥ h (x) + y (z − x) for all z ∈ R
}
.

The Fenchel-Young inequality states that

ab ≤ h (a) + h∗ (b) (16)

for all a, b ∈ R with equality if and only if a ∈ ∂h∗ (b), which for convex h is in turn equivalent to
b ∈ ∂h (a). For more details on convex analysis we refer to [30].
Now we are ready to formulate our first main theorem, which yields an error decomposition.

Theorem 1. Let the Assumptions 1 and 2 hold and let the regularization parameter α > 0 be
chosen a priori or a posteriori such that for sufficiently small noise levels 0 < δ ≤ δ̄ the regularized
solutions f δ

α belong to the set Q of admissible elements of the conditional stability estimate (7).
Then we have for such δ with the function

ψu,s,a(t) :=
(
ϕ(

√
t)
) 2(u−s)

a+u

, t > 0,

depending on the concave index function ϕ and on the indices a, s, u the error estimate

‖f δ
α − f †‖2s ≤ δ2

α
+ C(−ψu,s,a)

∗

(
− 1

8Cα

)
(17)

with a constant C = C
(
R,
∥∥f †
∥∥
u
, u, s, a

)
.

5



Proof. By assumption we have f δ
α, f

† ∈ Q for all 0 < δ ≤ δ̄. Hence using (3) and (7) we can
compute

∥∥f †
∥∥2
s
−
∥∥f δ

α

∥∥2
s
+
∥∥f δ

α − f †
∥∥2
s
≤ 2

∥∥f †
∥∥
u

∥∥f δ
α − f †

∥∥
2s−u

≤ 2
∥∥f †
∥∥
u

∥∥f δ
α − f †

∥∥u−s
s+a

−a

∥∥f δ
α − f †

∥∥ 2s+a−u
s+a

s

≤ 2R
∥∥f †
∥∥
u

∥∥f δ
α − f †

∥∥ 2s+a−u
s+a

s
ϕ
(∥∥F

(
f δ
α

)
− g†

∥∥
Y

)u−s
s+a

.

Next we apply Young’s inequality (this is just (16) with h(a) = ap/p and h∗(b) = bq/q) in the
form

ab = (εa)

(
b

ε

)
≤ εp

p
ap +

1

qεq
bq (18)

with ε =
(
p/(4R

∥∥f †
∥∥
u
)
)1/p

, p = 2s+2a
2s+a−u and q = 2s+2a

a+u . This yields

∥∥f †
∥∥2
s
−
∥∥f δ

α

∥∥2
s
+
∥∥f δ

α − f †
∥∥2
s
≤ 1

2

∥∥f δ
α − f †

∥∥2
s
+ Cϕ

(∥∥F
(
f δ
α

)
− g†

∥∥
Y

) 2u−2s
a+u

with a constant C = C
(
R,
∥∥f †
∥∥
u
, u, s, a

)
. Thus we have

∥∥f †
∥∥2
s
−
∥∥f δ

α

∥∥2
s
+

1

2

∥∥f δ
α − f †

∥∥2
s
≤ Cϕ

(∥∥F
(
f δ
α

)
− g†

∥∥
Y

) 2u−2s
a+u

. (19)

It follows from the minimizing property of f δ
α in (9), that

1

2

∥∥F
(
f δ
α

)
− gobs

∥∥2
Y
+ α

∥∥f δ
α

∥∥2
s
≤ 1

2

∥∥F
(
f †
)
− gobs

∥∥2
Y
+ α

∥∥f †
∥∥2
s
≤ δ2

2
+ α

∥∥f †
∥∥2
s

where we used (5). Due to the triangle inequality and (a+ b)2 ≤ 2a2 + 2b2 it holds

∥∥F
(
f δ
α

)
− g†

∥∥2
Y
≤ 2

∥∥F
(
f δ
α

)
− gobs

∥∥2
Y
+ 2δ2

which hence implies

1

4

∥∥F
(
f δ
α

)
− g†

∥∥2
Y
− δ2

2
+ α

∥∥f δ
α

∥∥2
s
≤ δ2

2
+ α

∥∥f †
∥∥2
s

Some rearranging yields

1

8

∥∥F
(
f δ
α

)
− g†

∥∥2
Y
≤ δ2 + α

(∥∥f †
∥∥2
s
−
∥∥f δ

α

∥∥2
s

)
− 1

8

∥∥F
(
f δ
α

)
− g†

∥∥2
Y
. (20)

Combining (19) and (20) gives

1

8

∥∥F
(
f δ
α

)
− g†

∥∥2
Y
+
α

2

∥∥f δ
α − f †

∥∥2
s
≤ δ2 + α

(∥∥f †
∥∥2
s
−
∥∥f δ

α

∥∥2
s
+

1

2

∥∥f δ
α − f †

∥∥2
s

)
− 1

8

∥∥F
(
f δ
α

)
− g†

∥∥2
Y

≤ δ2 + Cαϕ
(∥∥F

(
f δ
α

)
− g†

∥∥
Y

) 2u−2s
a+u − 1

8

∥∥F
(
f δ
α

)
− g†

∥∥2
Y

≤ δ2 + Cα sup
τ≥0

[
ϕ (τ)

2u−2s
a+u − 1

8Cα
τ2
]

≤ δ2 + Cα (−ψu,s,a)
∗

(
− 1

8Cα

)
. (21)

The claim follows by from dividing by α.
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Remark 1. Note that the assumption in Theorem 1 that for sufficiently small noise levels 0 <
δ ≤ δ̄ the regularized solutions f δ

α belong to the set Q of admissible elements of the conditional
stability estimate (7) is satisfied if the choice of the regularization parameter satisfies the condition
(12) and if the set Q is the intersection of a finite number of closed intersected balls Dν

ρ(f
†) with

0 ≤ ν ≤ s.

Before we conclude with convergence rates under a priori and a posteriori parameter choice rules,
let us collect some facts about the approximation error in (17):

Remark 2. Let

ϕapp (α) := (−ψu,s,a)
∗

(
− 1

α

)
= sup

τ≥0

[
ψu,s,a (τ) −

τ

α

]
, α > 0.

(a) As ψu,s,a (0) = 0 we obtain ϕapp (α) ≥ 0 for all α > 0.

(b) As ψu,s,a and α 7→ − τ
α for fixed τ > 0 are monotonically increasing, we also find that ϕapp

is monotonically increasing.

(c) The concavity of ϕ together with ϕ (0) = 0 implies that

ψu,s,a (Cτ) = ϕ
(√

C
√
τ
) 2(u−s)

a+u ≤
(√

Cϕ
(√
τ
)) 2(u−s)

a+u

= C
u−s
a+uψu,s,a (τ) (22)

for any C > 1, τ > 0. Thus it holds

ϕapp (Cα) = sup
τ≥0

[
ψu,s,a (τ) −

τ

Cα

]

= sup
τ ′≥0

[
ψu,s,a

(
C

a+u
a+s τ ′

)
− C

u−s
a+s

τ ′

α

]

≤ sup
τ ′≥0

[
C

u−s
a+sψu,s,a (τ

′)− C
u−s
a+s

τ ′

α

]

= C
u−s
a+sϕapp (α)

for C > 1, i.e. we have

ϕapp (Cα) ≤ max
{
1, C

u−s
a+s

}
ϕapp (α) (23)

for all α,C > 0.

(d) Fix α > 0. By the equality condition in the Fenchel-Young inequality (16) it holds

ϕapp (α) = ψu,s,a (τ (α))−
τ (α)

α
(24)

for any choice τ (α) ∈ ∂ (−ψu,s,a)
∗ (− 1

α

)
. Employing (22) we find

0 ≤ ϕapp (α) = ψu,s,a (τ (α))−
τ (α)

α
≤ max

{
1, (τ (α))

u−s
a+u

}
ψu,s,a (1)−

τ (α)

α
,

which implies
τ (α)

max
{
1, (τ (α))

u−s
a+u

} ≤ ψu,s,a (1)α.

As u− s < a+ u this yields τ (α) → 0 as α→ 0 and furthermore by (24) that ϕapp (α) → 0
as α → 0.

7



Corollary 1. Let the assumptions of Theorem 1 hold true, suppose that ψu,s,a is concave, and let
α = α∗ be chosen such that

− 1

α∗
∈ ∂ (−ψu,s,a)

(
δ2
)
. (25)

Then we obtain the convergence rate

‖f δ
α∗

− f †‖s = O
(√

ψu,s,a (δ2)

)
= O

(
(ϕ (δ))

u−s
a+u

)
as δ → 0. (26)

Proof. Due to Remark 2(c) we can simplify the error estimate (17) to

∥∥f δ
α − f †

∥∥2
s
≤ C′

(
δ2

α
+ (−ψu,s,a)

∗

(
− 1

α

))
(27)

with C′ = max
{
C,C (8C)

u−s
a+s

}
and C as in Theorem 1. Note that the infimum over α > 0 of the

right-hand side of (27) can be computed as

inf
α>0

[
δ2

α
+ (−ψu,s,a)

∗

(
− 1

α

)]
= − sup

α>0

[
−δ

2

α
− (−ψu,s,a)

∗

(
− 1

α

)]

= − sup
τ<0

[
δ2τ − (−ψu,s,a)

∗
(τ)
]

= − (−ψu,s,a)
∗∗ (

δ2
)
.

By concavity of ψu,s,a, the last expression equals ψu,s,a

(
δ2
)
. Furthermore choosing α = α∗ such

that the infimum is attained at α∗ corresponds to equality in the Fenchel-Young inequality

−δ
2

α
≤ (−ψu,s,a)

∗

(
− 1

α

)
+ (−ψu,s,a)

∗∗ (
δ2
)
,

which is attained if and only if − 1
α∗

∈ ∂ (−ψu,s,a)
(
δ2
)
. It remains to show that α∗ as in (25)

satisfies (12). By the equality condition in the Fenchel-Young inequality (16) it holds

(−ψu,s,a)
∗

(
− 1

α∗

)
= ψu,s,a

(
δ2
)
− δ2

α∗
.

As the left-hand side is ≥ 0, this implies immediately δ2

α∗
≤ ψu,s,a

(
δ2
)
→ 0 as δ → 0.

For any convex function on [0,∞), the subdifferential can be represented as an interval with
borders given by left- and right-hand sided derivatives. Thus the concavity of ψu,s,a implies

−∂ (−ψu,s,a)
(
δ2
)
=

[
sup

t∈(δ2,∞)

ψu,s,a (t)− ψu,s,a

(
δ2
)

t− δ2
, inf
t∈[0,δ2)

ψu,s,a

(
δ2
)
− ψu,s,a (t)

δ2 − t

]

As the supremum tends to ∞ as δ tends to 0 (c.f. [36, Rem 3.31]), this also proves α → 0 as
δ → 0.

Remark 3. (a) The additional assumption that ψu,s,a itself is also concave in Corollary 1 seems
rather mild. In case of a Hölder-type function ϕ, this follows immediately from concavity of
ϕ itself, see Example 1 below. Similarly, if ϕ is of logarithmic type as in Example 6, then
concavity of ψu,s,a is also evident.

(b) We will give another possible expression for an a priori parameter choice rule avoiding convex
analysis in Corollary 3.
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Let us now turn to an a posteriori parameter choice rule. Given a set of candidate parameters
α1 = δ2, αj = α1r

2j−2 with some r > 1 for j = 2, ...,m where m is the first value such that
αm ≥ 1, we define

jLep = max
{
1 ≤ j ≤ m

∣∣ ∥∥ûαi
− ûαj

∥∥
s
≤ 4r1−i for all i ≤ j

}
, (28)

i.e. αLep := αjLep is chosen according to the Lepskĭı-type balancing principle. This gives the
following result:

Corollary 2. Let the assumptions of Theorem 1 hold true and choose α = αLep according to (28).
Suppose further that f δ

α ∈ Q for all α in the previously described candidate set and any sufficiently
small δ with the set of admissible elements Q for (7). Then we obtain the a posteriori convergence
rate

‖f δ
αLep

− f †‖s = O
(√

ψu,s,a (δ2)

)
= O

(
(ϕ (δ))

u−s
a+u

)
as δ → 0. (29)

Proof. Note that (17) together with (23) yields an error decomposition of the form

∥∥f δ
α − f †

∥∥
s
≤ δ√

α
+ C

√
ϕapp (α) (30)

with some constant C > 0. For our set of parameter candidates this gives yields

∥∥ûαj
− f †

∥∥
s
≤ 1

2
(Φ (j) + Ψ (j)) , 1 ≤ j ≤ m

with Ψ (j) = (2δ)/
√
αj = 2r1−j and Φ (j) = C

√
ϕapp (αj). By construction, Ψ is non-increasing,

Φ is non-decreasing, and Φ (1) ≤ Ψ(1) = 2 if δ is sufficiently small. Furthermore Ψ (i) ≤ rΨ(i+ 1),
and hence it follows from [27, Cor. 1] that

∥∥∥ûαjLep
− f †

∥∥∥
s
≤ 3r min

1≤j≤m
[Φ (j) + Ψ (j)]

= 3rC min
1≤j≤m

[
δ

2
√
αj

+

√
(−ψu,s,a)

∗

(
− 1

αj

)]
.

By some elementary convex analysis we conclude as in [36, Lemma 3.42], exploiting (23), that the
minimum on the right-hand side can be replaced by the infimum over all α, provided that δ is
sufficiently small (cf. also [37]).

Example 1 (Hölder type conditional stability). Let us consider the Hölder special case ϕ (t) = tγ

of the conditional stability estimate (7) with exponents 0 < γ ≤ 1, which has recently been studied
in a slightly modified form in [7]. Here we obtain

ψu,s,a (t) = t
γ(u−s)
a+u

and hence for q := γ(u−s)
a+u that

(
−ψ∗

u,s,a

)
(−v) = sup

t≥0
[tq − tv] ∼ v

q
q−1 ,

because it can be seen via differentiation that the supremum is attained for t =
(

v
q

) 1
q−1

. Thus

ϕapp (α) ∼ α
q

1−q and

α
(
−ψ∗

u,s,a

)(
− 1

8α

)
∼ α

q
1−q

+1 ∼ α
1

1−q ∼ α
a+u

a+u−γ(u−s) .
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This term coincides with the corresponding error term in [7, Lemma 3.3]. Hence, the convergence
rate from (26) attains in this example the form

‖f δ
α∗

− f †‖s = O
(
δγ

u−s
a+u

)
as δ → 0, (31)

which again coincides with the rate results of Theorems 2.1 and 2.2 in [7]. Note that in case of a
linear forward operator, these rates are known to be order optimal as also discussed in [7]. The a
priori choice (25) for the regularization parameter leads for the Hölder type conditional stability
to

α∗ = α∗(δ) ∼ δ2−2γ u−s
a+u . (32)

Remark 4. The case of Hölder type conditional stability considered in Example 1 allows us to
discuss briefly the borderline situation u = s. Evidently, then the a priori parameter choice
(32) attains the form α∗ = α∗(δ) ∼ δ2, which is in a general Hilbert space setting well-known
from [6] as an appropriate choice for conditional stability estimates of a form like in Example 5
below. However, in our setting f † ∈ Xs with this parameter choice formula (31) cannot serve
as a convergence rate result, because the exponent of δ is not positive. Moreover Proposition 1
does not apply, since δ2/α∗ → 0 as δ → 0 fails. Hence, one cannot even show at all convergence
‖f δ

α∗
− f †‖s → 0 as δ → 0 and if the set Q in (7) restricts the applicability of the conditional

stability estimate to balls around f †, then u = s is in contrast to u > s does not ensure that
f δ
α∗

∈ Q. Asking for reasons why [6] recommends α∗ = α∗(δ) ∼ δ2 nevertheless also for the
borderline situation u = s of conditional stability, we see that Cheng and Yamamoto in [6] use for
finding approximate solutions the minimization problem

f̂α ∈ argmin
f∈D(F )∩Q

[
1

2

∥∥F (f)− gobs
∥∥2
Y
+ α ‖f‖2s

]

instead of (9), which needs to know the set Q. Then one can show at least a convergence rate
result in the X -norm of the form

‖f δ
α∗

− f †‖ = O
(
δγ

u
a+u

)
as δ → 0. (33)

For γ = 1 such rate result (33) takes place also under somewhat stronger conditions for
‘oversmoothing’ penalties in the case u < s with ‖f †‖s = ∞. In this context, we refer to [19],
where for the a priori parameter choice (32), here with δ2/α∗ → ∞ as δ → 0, (33) is proven, see
also [18] for the same convergence rate result by using the discrepancy principle.

3 Statistical Inverse Problems

Now we will discuss how to generalize the previous results to the stochastic data model (4) with
σ > 0. To analyze (10) we have to proceed differently and post additional assumptions:

Assumption 3. Let us assume that there is a Gelfand triple (V ,Y,V ′) such that the embedding
ι : V →֒ Y is Hilbert-Schmidt. Furthermore we suppose that F satisfies the interpolation inequality

∥∥F (f)− g†
∥∥
V
≤ Cθ (ρ)

∥∥F (f)− g†
∥∥θ
Y

∥∥f − f †
∥∥1−θ

s
(34)

for all f ∈ Ds
ρ

(
f †
)
with some constant Cθ (ρ), ρ > 0 and θ ∈ (0, 1).

This assumption requires some comments. First note that ι being Hilbert-Schmidt implies

E

[
‖Z‖2V′

]
= trace (ι∗Cov [Z] ι) <∞,

i.e. it holds ‖Z‖V′ <∞ a.s.
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Remark 5. Suppose that the Gelfand triple (V ,Y,V ′) is part of a Hilbert scale {Yµ}µ∈R
, i.e. there

exists t ∈ R such that V = Yt, V ′ = Y−t and Y = Y0. Furthermore assume that F is Lipschitz
continuous as F : Xs → Yr for some r > t. Then (34) is satisfied.

Proof. The interpolation inequality (3) for the Hilbert scale {Yµ}µ∈R
yields

‖g‖V ≤ ‖g‖θY ‖g‖1−θ
Yr

with θ = 1− t/r. Consequently, we find

∥∥F (f)− g†
∥∥
V
≤
∥∥F (f)− g†

∥∥θ
Y

∥∥F (f)− g†
∥∥1−θ

Yr

≤ L1−θ
∥∥F (f)− g†

∥∥θ
Y

∥∥f − f †
∥∥1−θ

s

with the Lipschitz constant L of F : Xs → Yr.

Example 2. The most common example for white noise ξ is as follows. Let Y = L2 (Ω) for some
Lipschitz domain Ω ⊂ Rd, and let V = Hs (Ω) with some s > d

2 . Then ι : Hs (Ω) →֒ L2 (Ω) is
Hilbert-Schmidt and one has the interpolation inequality (cf. (3))

‖g‖Ht ≤ ‖g‖θL2 ‖g‖1−θ
Hr

with θ = 1 − t/r whenever r > t. Consequently, if F : Xs → Hr (Ω) is Lipschitz, then (34) holds
true.

It follows similar to the deterministic case that the functional (10) admits a unique minimizer for

fixed data gobs. If Z is considered as an element of Y∗, then continuous dependency of f̂α on
Z can also be shown following the deterministic results. Convergence and convergence rates are
slightly more involved, as we will see below. For the sake of presentation we restrict ourselves to
a convergence rates result:

Theorem 2. Let the Assumptions 1, 2 and 3 be satisfied, let the data gobs be given as in (4), and

suppose (34) holds true. If there are σ0, δ0 > 0 and α is chosen such that f̂α ∈ Ds
ρ

(
f †
)
for all

0 < σ ≤ σ0, 0 < δ ≤ δ0 (with ρ as in Assumption 3), then we have (surely) the error estimate

1

8

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+
α

4

∥∥∥f̂α − f †
∥∥∥
2

s
≤ C

[
σ2 ‖Z‖2V′ α

θ−1 + δ2 + α (−ψu,s,a)
∗

(
− 1

8Cα

)]

for some constant C > 0.

Proof. Denote again

S
(
g; gobs

)
:=

1

2
‖g‖2Y −

〈
g, gobs

〉
and T

(
g; g†

)
:=

1

2

∥∥g − g†
∥∥2
Y

for g ∈ Y. Due to the minimizing property of f̂α in (10) we have

S
(
F
(
f̂α

)
; gobs

)
+ α

∥∥∥f̂α
∥∥∥
2

s
≤ S

(
F
(
f †
)
; gobs

)
+ α

∥∥f †
∥∥2
s
,

which combined with (19) implies that

1

2
T
(
F
(
f̂α

)
; g†
)
+
α

s

∥∥∥f̂α − f †
∥∥∥
2

2
≤1

2
T
(
F
(
f̂α

)
; g†
)
−
(
S
(
F
(
f̂α

)
; gobs

)
− S

(
g†; gobs

))

+ Cαϕ

(∥∥∥F
(
f̂α

)
− g†

∥∥∥
Y

) 2u−2s
s+a

. (35)
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By definition of S
(
·; gobs

)
and T

(
·; g†

)
we obtain

1

2
T
(
F
(
f̂α

)
; g†
)
−
(
S
(
F
(
f̂α

)
; gobs

)
− S

(
g†; gobs

))

=
1

4

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
−
(
1

2

∥∥∥F
(
f̂α

)∥∥∥
2

Y
−
〈
F
(
f̂α

)
, gobs

〉
− 1

2

∥∥g†
∥∥2
Y
+
〈
g†, gobs

〉)

=
1

4

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
−
(
1

2

∥∥∥F
(
f̂α

)∥∥∥
2

Y
−
〈
F
(
f̂α

)
, g†
〉
−
〈
F
(
f̂α

)
− g†, σZ + δξ

〉
+

1

2

∥∥g†
∥∥2
Y

)

=
1

4

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
−
(
1

2

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
−
〈
F
(
f̂α

)
− g†, σZ + δξ

〉)

= −1

4

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+ σ

〈
F
(
f̂α

)
− g†, Z

〉
+ δ

〈
F
(
f̂α

)
− g†, ξ

〉

≤ −1

4

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+ σ

∥∥∥F
(
f̂α

)
− g†

∥∥∥
V
‖Z‖V′ + δ

∥∥∥F
(
f̂α

)
− g†

∥∥∥
Y
.

For the last term on the right-hand side we use ab ≤ 2a2 + 1
8b

2, which yields the estimate

1

2
T
(
F
(
f̂α

)
; g†
)
−
(
S
(
F
(
f̂α

)
; gobs

)
− S

(
g†; gobs

))

≤ −1

8

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+ σ

∥∥∥F
(
f̂α

)
− g†

∥∥∥
V
‖Z‖V′ + 2δ2.

Concerning the second term on the right-hand side, using (34) and applying (18) appropriately
twice we obtain

1

2
T
(
F
(
f̂α

)
; g†
)
−
(
S
(
F
(
f̂α

)
; gobs

)
− S

(
g†; gobs

))

≤ − 1

8

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+ Cσ ‖Z‖V′

∥∥∥F
(
f̂α

)
− g†

∥∥∥
θ

Y

∥∥∥f̂α − f †
∥∥∥
1−θ

s
+ 2δ2

≤C′

(
σ ‖Z‖V′

∥∥∥f̂α − f †
∥∥∥
1−θ

s

) 2
2−θ

+ 2δ2

≤C′′σ2 ‖Z‖2V′ α
θ−1 +

α

4

∥∥∥f̂α − f †
∥∥∥
2

s
+ 2δ2

with some constants C,C′, C′′ > 0 as
∥∥∥f̂α

∥∥∥
s
is bounded. Altogether this yields

1

2
T
(
F
(
f̂α

)
; g†
)
+
α

4

∥∥∥f̂α − f †
∥∥∥
2

s
≤ C

[
σ2 ‖Z‖2V′ α

θ−1 + δ2 + αϕ

(∥∥∥F
(
f̂α

)
− g†

∥∥∥
Y

) 2u−2s
s+a

]

with some generic constant C > 0. Now we can proceed as in the deterministic case.

Corollary 3. Let the assumptions of Theorem 2 be satisfied and recall the notation

ϕapp (α) = (−ψu,s,a)
∗

(
− 1

α

)
, α > 0.

Define

Σ (α) =
√
α
√
ϕapp (α) and Σ̃ (α) = α1− θ

2

√
ϕapp (α), α > 0

and choose α such that

α ∼
(
Σ−1 (δ) + Σ̃−1 (σ)

)
as max {δ, σ} → 0. (36)

Then we obtain the a.s. convergence rate

∥∥∥f̂α − f †
∥∥∥
s
= O

(√
ϕapp

(
Σ−1 (δ) + Σ̃−1 (σ)

))

as max {δ, σ} → 0.
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Proof. According to Theorem 2 we have

1

C

∥∥∥f̂α − f †
∥∥∥
2

s
≤ σ2αθ−2 +

δ2

α
+ ϕapp (α)

a.s. for some sufficiently large C > 0, where we also exploited ‖Z‖V′ < ∞ a.s. and Remark 2(c).

Via δ = Σ
(
Σ−1 (δ)

)
=
√
Σ−1 (δ)

√
ϕapp (Σ−1 (δ)) and analogously σ =

(
Σ̃−1 (σ)

)1− θ
2

√
ϕapp

(
Σ̃−1 (σ)

)

we hence obtain
∥∥∥f̂α − f †

∥∥∥
s
.

σ

α1− θ
2

+
δ√
α
+
√
ϕapp (α)

.
σ

(
Σ̃−1 (σ)

)1− θ
2

+
δ√

Σ−1 (δ)
+
√
ϕapp (α)

=
√
ϕapp (Σ−1 (δ)) +

√
ϕapp

(
Σ̃−1 (σ)

)
+
√
ϕapp (α)

.

√
ϕapp

(
Σ−1 (δ) + Σ̃−1 (σ)

)

a.s., where . means up to a multiplicative constant which can change from line to line, but is
independent of α, σ and δ.

Remark 6. (a) It is immediately be clear that the convergence rate in Corollary 3 can also be
obtained under an a posteriori choice of α as in Corollary 2.

(b) In the case ϕ (t) = tγ with some 0 < γ ≤ 1 as discussed in Example 1, we compute

Σ (α) = α
1

2(1−q) , q = γ
u− s

a+ u

and hence it can be seen immediately that the a priori choices in (25) and (36) and also the
obtained rates in Theorem 1 and Theorem 2 with σ = 0 coincide.

Concerning the assumptions of Theorem 2, we finally mention the following:

Remark 7. Suppose that F maps locally Lipschitz continuous from Xs into V , i.e. there is some
C = C (ρ) such that

‖F (f1)− F (f2)‖V ≤ C (ρ) ‖f1 − f2‖s
for all f1, f2 ∈ Ds

ρ (0), and that C (ρ) = o (ρ). Then any parameter choice α = α∗ such that

max

{
σ

α
,
δ2

α

}
→ 0

as σ, δ → 0 yields f̂α ∈ Ds
ρ̄ (0) a.s. with a suitable ρ̄ > 0 as σ, δ → 0.

Proof. Similar to the proof of Theorem 2 we obtain from the minimizing property

α
∥∥∥f̂α

∥∥∥
2

s
≤ S

(
F
(
f †
)
; gobs

)
− S

(
g†; gobs

)
+ α

∥∥f †
∥∥2
s

= −1

2

∥∥∥F
(
f̂α

)
− g†

∥∥∥
2

Y
+
〈
F
(
f̂α

)
− g†, σZ + δξ

〉
+ α

∥∥f †
∥∥2
s

≤ δ2

2
+ σ ‖Z‖V′

∥∥∥F
(
f̂α

)
− g†

∥∥∥
V
+ α

∥∥f †
∥∥2
s

≤ δ2

2
+ σ ‖Z‖V′ C

(
max

{∥∥∥f̂α
∥∥∥
s
,
∥∥f †
∥∥
s

})
+ α

∥∥f †
∥∥2
s
.

As ‖Z‖V′ is a.s. bounded, this implies by C (ρ) = o (ρ) the claim.
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Appendix

In this appendix we discuss different approaches to derive conditional stability estimates as in
Assumption 2.

Variant (A): based on local structural conditions on the nonlinearity of F

Example 3 (Q = Dr(f
†), a > 0, θ = 0, strong nonlinearity conditions of tangential cone type).

This situation assumes that the forward operator F is Gâteaux or Fréchet differentiable at f † with
the derivative F ′(f †) ∈ L(X ,Y). Moreover, it is characterized by the pair of conditions

‖h‖−a ≤ K̄ ‖F ′(f †)h‖Y for all h ∈ X (37)

and
‖F ′(f †)(f − f †)‖Y ≤ K̃ ϕ(‖F (f)− F (f †)‖Y) for all f ∈ Dr(f

†), (38)

where ϕ is a concave index function and K̄, K̃ as well as r are positive constants. The first condition
(37) often occurs in regularization literature for Hilbert scale models (cf., e.g., [28, 29, 33, 34]) ,
sometimes also in the stronger version ‖h‖−a ∼ ‖F ′(f †)h‖Y for all h ∈ X , where a > 0 denotes
the degree of ill-posedness locally at f † (cf. [8, Sec. 10.4]). In the form with a general concave
index function ϕ, the second condition (38) was introduced and exploited in [2]. In the special
case of monomials ϕ(t) = tκ, however, with exponents 0 < κ ≤ 1 and associated with Hölder
rates this condition plays some role in the context of the degree (κ, ζ) of nonlinearity of F at f †

introduced in [21], where the inequality

‖F (f)−F (f †)−F ′(f †)(f − f †)‖Y ≤ K̂ ‖F (f)−F (f †)‖κY ‖f − f †‖ζ for all f ∈ Dr(f
†) (39)

for exponents 0 ≤ κ ≤ 1, 0 ≤ ζ ≤ 2 and a constant K̂ > 0 has been considered.
For strong structural conditions of nonlinearity of interest in this example and in particular for
condition (38), exponents κ > 0 are required in (39). Evidently, by the triangle inequality

‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y ≤ ‖F ′(f †)(f − f †)‖Y + ‖F (f)− F (f †)‖Y

we obtain from (38) with ϕ(t) = tκ (0 < κ ≤ 1) a tangential cone type condition

‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y ≤ ˆ̄K ‖F (f)− F (f †)‖κY for all f ∈ Dr(f
†) (40)

with a constant ˆ̄K > 0 depending on K̃ and r. Vice versa, we also derive by the triangle inequality
a condition (38) with ϕ(t) = tκ (0 < κ ≤ 1) from (40).
Weaker structural conditions of nonlinearity, which will be discussed in Example 4 below, are
characterized by the fact that F at f † does not allow for exponents κ > 0 in (39), but exponents
κ = 0 and 1 < ζ ≤ 2 are typical in case of a Hölder continuity of the derivative F ′(f) in a
neighborhood of f †.
Now we come back to the pair (37) and (38) of conditions and derive for this situation the
corresponding structure of the setQ in Assumption 2. Combining both inequalities we immediately
find a conditional stability estimate (7) of the form

‖f − f †‖−a ≤ Rϕ(‖F (f)− F (f †)‖Y) for all f ∈ Dr(f
†) (41)

with some constant R > 0 and for the subset Q = Dr(f
†) of the closed intersected ball Dθ

ρ(0),

where θ = 0 and ρ = ‖f †‖+ r.
Let us close this example with some special application using X = Y = L2(0, T ) and D(F ) = X .
We consider here the family of forward operators

[F (f)](t) = c0 exp

(
c1

∫ t

0

f(τ)dτ

)
(0 ≤ t ≤ T ) (42)
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with constants c0, c1 > 0. Such operators (42) occur in various types of parameter identification
problems, e.g. for finding time-dependent growth rate functions in ordinary differential equation
models and for identifying time-dependent conductivity functions in heat equation models (cf. for
more details [14]). The corresponding operator equation (1) is locally ill-posed everywhere on X .
Moreover, the operator F is continuously Fréchet differentiable everywhere on X and its Fréchet
derivative attains the form

[F ′(f)h](t) = c1 [F (f)](t)

∫ t

0

h(τ)dτ (0 ≤ t ≤ T, h ∈ X ).

Furthermore, we have for some constant K̂ > 0 and for all f ∈ X

‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y ≤ K̂ ‖F (f)− F (f †)‖Y ‖f − f †‖, (43)

which indicates without an upper bound for the radius r > 0 of Dr(f
†) a degree (1, 1) of nonlin-

earity (cf. (39)). Applying the triangle inequality to (43) yields the estimate

‖F ′(f †)(f − f †)‖Y ≤ (K̂ ‖f − f †‖+ 1) ‖F (f)− F (f †)‖Y ≤ K̃ ‖F (f)− F (f †)‖Y (44)

of the form (38) with ϕ(t) = t and valid for all f ∈ Dr(f
†), where K̃ = rK̂ + 1. Taking into

account the estimate (44) one can consider the integration operator

[Jh](t) :=

∫ t

0

h(τ)dτ (0 ≤ t ≤ T ) (45)

mapping in X = L2(0, T ) in the context of the related Hilbert scale {Xτ}τ∈R generated by the
operator L = (J∗J)−1/2. Because there is a constant 0 < c < ∞ with c ≤ [F (f †)](t) (0 ≤ t ≤ T )
for the multiplier function in F ′(f †), we also find a constant 0 < cdown < ∞ such that we have
the estimate cdown‖f − f †‖−1 = cdown‖J(f − f †)‖ ≤ ‖F ′(f †)(f − f †)‖Y , which is valid for all
f ∈ X and can be rewritten in form of an inequality (37). Consequently, we find for all r > 0 a
conditional stability estimate of type (7) with a = 1 and ϕ(t) = t as

‖f − f †‖−1 ≤ R ‖F (f)− F (f †)‖Y for all f ∈ Dr(f
†),

where R = Kr+1
cdown

.

Example 4 (Q = Dr(f
†) ∩Bθ

τ (f
†), a > 0, θ > 0 , weak nonlinearity conditions of Hölder type).

This situation assumes that the forward operator F is continuously Fréchet differentiable in a
neighborhood of f † with derivatives F ′(f) ∈ L(X ,Y) for f ∈ Dr(f

†). Moreover, it is characterized
by the condition

‖h‖−a ≤ K̄ ‖F ′(f †)h‖Y for all h ∈ X, (46)

which already occurred in Example 3, in combination with a local Hölder continuity condition

‖F ′(f)− F ′(f †)‖L(X ,Y) ≤ Ǩ ‖f − f †‖η for all f ∈ Dr(f
†) (47)

for the Fréchet derivatives, where Ǩ > 0 is some constant and 0 < η ≤ 1 is the associated Hölder
exponent. As it is well-known, one derives immediately from (47) by using the mean value theorem
in integral form the estimate

‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y ≤ Ǩ

2
‖f − f †)‖η+1 for all f ∈ Dr(f

†). (48)

Thus, the degree of nonlinearity (κ, ζ) of F at f † (cf. (39)) takes place with κ = 0 and 1 < ζ =
η + 1 ≤ 2. As we will see the condition (47), which is in some sense weaker than (40), requires
in this situation a further restriction of the admissible set Q for obtaining a conditional stability
estimate (7).
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Proposition 2. Let for a > 0 and 0 < η ≤ 1 the conditions (46) and (47) hold. Moreover let

f † ∈ X a
η
∩D(F ). Then for τ <

(
K̄ Ǩ
2

)−1/η

the conditional stability estimate

‖f − f †‖−a ≤ R ‖F (f)− F (f †)‖Y (49)

holds for all f ∈ Dr(f
†) ∩D

a
η
τ (f †) with the constant R = K̄

1−τ̃ , where we set τ̃ := K̄ Ǩτη

2 < 1.

Proof. From (46) and (48) we find with the triangle inequality the estimate

‖f − f †‖−a ≤ K̄ ‖F (f)− F (f †)‖Y + K̄ ‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y

≤ K̄ ‖F (f)− F (f †)‖Y +
K̄ Ǩ

2
‖f − f †‖η+1 for all f ∈ Dr(f

†).

By using the interpolation inequality ‖h‖η+1 ≤ ‖h‖−a ‖h‖ηa/η, valid for all h ∈ Xa/η, we can further

estimate for f ∈ Xa/η as

‖f − f †‖−a ≤ K̄ ‖F (f)− F (f †)‖Y +

(
K̄ Ǩ

2
‖f − f †‖ηa/η

)
‖f − f †‖−a. (50)

Taking f ∈ Dr(f
†) ∩ D

a
η
τ (f †) with τ <

(
K̄ Ǩ
2

)−1/η

and setting τ̃ := K̄ Ǩτη

2 < 1, the inequality

(50) can be rewritten as

(1 − τ̃) ‖f − f †‖−a ≤ K̄ ‖F (f)− F (f †)‖Y ,

which yields the conditional stability estimate (49) and completes the proof.

We note that the set Q := Dr(f
†) ∩ D

a
η
τ (f †) of admissible elements in the conditional stability

estimate (49) is a subset of D
a
η
ρ (0) for some radius ρ > 0 depending on a, η, τ and f †.

Remark 8. An inspection of the above proof shows that (49) is also valid if f † /∈ X a
η
, but if we

have instead

f ∈ Dr(f
†) and f − f † ∈ X a

η
such that ‖f − f †‖ a

η
≤ τ for τ <

(
K̄ Ǩ

2

)−1/η

. (51)

Unfortunately, it is difficult to exploit the conditional stability estimate (49) in that case for the
stable approximate solution of equation (1), because approximate solutions f to f † have to satisfy

the condition (51). This, however, cannot be expected if f is a regularized solution f̂α from (9),
independent of the choices of s and α.

Let us conclude this example with the consideration of the special case η = 1 in (47), which requires
Lipschitz continuity of the Fréchet derivatives in Dr(f

†). Then we assume f † ∈ Xa ∩D(F ), and
the admissible set in the conditional stability estimate (49) attains the form Q = Dr(f

†)∩Da
τ (f

†)
with a radius τ < 2

K̄ Ǩ
of the second intersected ball. As an illustration of this case we briefly

recall the autoconvolution operator

[F (f)](s) =

s∫

0

f(s− t) f(t) dt (0 ≤ t ≤ 1) (52)

mapping in X = Y = L2(0, 1) with domain D(F ) = X , which was comprehensively analyzed
in the literature with applications in statistics, spectroscopy and laser optics (see, e.g., [11] and
[3, 10]). For noncompact nonlinear operator F from (52) we have the compact Fréchet derivative

[F ′(f)h](s) = 2

∫ s

0

f(s− t)h(t)dt (0 ≤ s ≤ 1, h ∈ X ).
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This gives the relations

‖F (f)− F (f †)− F ′(f †)(f − f †)‖Y = ‖F (f − f †)‖Y ≤ ‖f − f †‖2 for all f ∈ X ,

which coincides with (48) for Ǩ = 2 and η = 1, but here for arbitrary large radii r > 0.
Now we restrict our focus on the autoconvolution problem further to the specific solution

f †(t) ≡ 1 (0 ≤ t ≤ 1), (53)

where
‖F ′(f †)h‖Y = 2 ‖J h‖Y = 2 ‖(J∗J)1/2 h‖X for all h ∈ X ,

with the simple integration operator J from (45) such that L = (J∗J)−1/2 defines the Hilbert
scale. Hence, we have

‖f − f †‖−1 =
1

2
‖F ′(f †)(f − f †)‖Y for all f ∈ X .

Unfortunately, for the solution f † from (53) with f †(1) 6= 0 we have f † ∈ Xν only for ν < 1/2 and
hence f † /∈ X1 (cf. e.g. [12, Lem. 8]). Then Proposition 2 cannot be applied immediately in case
of this solution f †, but Remark 8 is applicable and for a = 1, K̄ = 1

2 , Ǩ = 2, η = 1, τ < 2 and
arbitrarily large r > 0 we get for the autoconvolution operator F from (52) and f † from (53) the
conditional stability estimate

‖f − f †‖−1 ≤
1

2− τ
‖F (f)− F (f †)‖Y (54)

if f ∈ D(F ) and f − f † ∈ X1 such that ‖f − f †‖1 ≤ τ.

Variant (B): based on global inequalities of the forward operator F

Example 5 (Q = Dθ
ρ(0), a = 0, θ > 0, global conditional estimates). The situation of this

example is essentially different from those of Examples 3 and 4, because the focus is now on more
global conditional stability estimates

‖f − f̃‖ ≤ Rϕ
(
‖F (f)− F (f̃)‖Y

)
for all f, f̃ ∈ Dθ

ρ(0), (55)

where θ is a positive number and the multiplier R may depend on the radius ρ > 0. For f̃ =
f †, the estimate (55) is a special case of (7) with a = 0. The corresponding set Q collects
elements f ∈ D(F ) with the property ‖f‖θ ≤ ρ. Hence, all the consequences of (7) concerning
approximate (regularized) solutions are valid under the condition (55), too. However, under (55)
such consequences are uniformly valid for all f † ∈ Q and moreover no derivatives of the forward
operator F are required.
Based on the seminal paper [6] the stable approximate solution of inverse problems under a con-
ditional stability estimate (55) was studied by numerous authors in the past years. Estimates of
the form (55) can be verified in large numbers for parameter identification problems in differential
equations by powerful tools of PDE theory like Carleman estimates. With respect to concrete
applications we refer to [5, 6] and further literature mentioned therein. For a glimpse of such
examples, we briefly recall here in the following a parameter identification problem, which was
comprehensively outlined in [22] (see also [7, Sect. 5.2]).
We consider for X = Y = L2(0, T ) the identification of the parameter function f ∈ X in the
reaction-diffusion problem

∂tu(ξ, t)−∆u(ξ, t) + f(t)u(ξ, t) = 0 for ξ ∈ Ω, 0 < t ≤ T,
∂nu(ξ, t) = 0 for ξ ∈ ∂Ω, 0 < t ≤ T,
u(ξ, 0) = u0(ξ) for ξ ∈ Ω,
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from integral data

g(t) =

∫

ξ∈Ω

u(ξ, t)dξ (0 ≤ t ≤ T )

of the state variable u. The mapping f ∈ L2(0, T ) 7→
∫

ξ∈Ω

u(ξ, ·)dξ ∈ L2(0, T ) defines the forward

operator F : D(F ) ⊂ X → Y with domain D(F ) = {f ∈ L2(0, T )
∣∣ f ≥ 0 a.e.}. Then for

1/2 < θ < 1 one can show the existence of a constant R = R(ρ) such that

‖f − f̃‖L2(0,T ) ≤ R ‖F (f)− F (f̃)‖
θ

θ+1

L2(0,T )

whenever f, f̃ ∈ D(F ) and ‖f‖Hθ(0,T ) ≤ ρ, ‖f̃‖Hθ(0,T ) ≤ ρ. This is a Hölder-type conditional

stability estimate of the form (55) with the strictly concave index function ϕ(t) = t
θ

θ+1 if the
Hilbert scale is generated in such a way that Xν = Hν(0, T ) for 0 ≤ ν ≤ 1.

Example 6 (Global conditional estimates, relation to variational source conditions). As a final
example, which is also related to variational source conditions, we consider the problem of recon-
structing the refractive index n = 1− f † from far field data u∞ in the acoustic scattering problem

u(x) = exp (iκx · d) + us (x) , (56a)

∆u+ κ2nu = 0 in R
3, (56b)

∂us

∂r
− iκus = O

(
1

r2

)
as r = |x| → ∞, (56c)

u (x) = exp (iκx · d) + exp (iκr)

r

(
u∞ (x̂) +O

(
1

r2

))
as r = |x| → ∞, (56d)

where the so-called Sommerfeld radiation condition (56c) is assumed to hold uniformly for all
directions x̂ = x/r ∈ S2 =

{
x ∈ R3 | |x| = 1

}
.

In practical applications, either one or several incident directions d ∈ S2 can be measured. Here
we consider all directions d as available and define F

(
f †
)
:= u∞. This forward operator can be

seen as a mapping from L∞
(
R3
)
to L2

(
S2 × S2

)
, and its natural domain of definition is

D (F ) :=
{
f ∈ L∞

(
R

3
)
| ℑ (f) ≤ 0,ℜ (f) ≤ 1, supp (f) ⊂

{
x ∈ R

3 | |x| ≤ π
}}

,

as for all f ∈ D (F ) the problem (56a)–(56c) admits a unique solution.
For this problem, it has been shown in [23] (cf. Theorem 2.4 and Corollary 2.5 ibidem) that
a variational source condition and a conditional stability estimate hold true. More precisely, if
3/2 < m < s such that s 6= 2m+ 3/2 and f † ∈ D (F ) ∩Hs

(
R3
)
with the Fourier-based Sobolev

space Hs
(
R3
)
, then the variational source condition (11) with −a = m and the function

ϕ (t) = A
(
ln
(
3 + t−1

))−2µθ
, µ = min

{
1,

s−m

m+ 3/2

}

holds true for any 0 < θ < 1. This also implies the conditional stability estimate (7) with −a = m
and ϕ as in the above formula. Note that the case −a = m corresponds to a < 0 and is hence not
covered by our analysis.
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[2] R. I. Boţ and B. Hofmann. An extension of the variational inequality approach for obtaining
convergence rates in regularization of nonlinear ill-posed problems. J. Integral Equations
Appl., 22(3):369–392, 2010.

[3] S. Bürger and B. Hofmann. About a deficit in low order convergence rates on the example of
autoconvolution. Appl. Anal., 94:477–493, 2015.

[4] M. Burger, J. Flemming, and B. Hofmann. Convergence rates in ℓ1-regularization if the
sparsity assumption fails. Inverse Probl., 29:025013 (16pp), 2013.

[5] J. Cheng, B. Hofmann, and S. Lu. The index function and Tikhonov regularization for
ill-posed problems. J. Comput. Appl. Math., 265:110–119, 2014.

[6] J. Cheng and M. Yamamoto. On new strategy for a priori choice of regularizing parameters
in Tikhonov’s regularization. Inverse Probl., 16:L31–L38, 2000.

[7] H. Egger and B. Hofmann. Tikhonov regularization in Hilbert scales under conditional sta-
bility assumptions. Inverse Probl., 34:115015 (17pp), 2018.

[8] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems, volume 375 of
Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

[9] J. Flemming. Existence of variational source conditions for nonlinear inverse problems in
Banach spaces. J. Inverse Ill-Posed Probl., 26:277–286, 2018.

[10] J. Flemming. Variational Source Conditions, Quadratic Inverse Problems, Sparsity Promoting
Regularization – New Results in Modern Theory of Inverse Problems and an Application in
Laser Optics. Birkhäuser, Basel, 2018.
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