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Abstract. Even if the recent literature on enhanced convergence rates for Tikhonov
regularization of ill-posed problems in Banach spaces shows substantial progress, not all
factors influencing the best possible convergence rates under sufficiently strong smooth-
ness assumptions were clearly determined. In particular, it was an open problem
whether the structure of the residual term can limit the rates. For residual norms
of power type in the functional to be minimized for obtaining regularized solutions the
latest rates results for nonlinear problems by Neubauer in [14] indicate an apparent
qualification of the method caused by the residual norm exponent p. The new message
of the present paper is that optimal rates are shown to be independent of that exponent
in the range 1 ≤ p < ∞ . However, on the one hand the smoothness of the image space
influences the rates, and on the other hand best possible rates require specific choices of
the regularization parameters α > 0. While for all p > 1 the regularization parameters
have to decay to zero with some prescribed speed depending on p when the noise level
tends to zero in order to obtain the best rates, the limiting case p = 1 shows some
curious behavior. For that case the α-values must get asymptotically frozen at a fixed
positive value characterized by properties of the solution as the noise level decreases.

1. Introduction

We consider nonlinear ill-posed problems

F (x) = y , (1.1)

where F : D(F ) ⊂ X → Y is a nonlinear operator mapping between Banach or Hilbert
spaces X and Y . For the practical treatment of noisy data yδ of y with

‖y − yδ‖ ≤ δ
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and noise level δ > 0 the stable approximate solution of (1.1) requires regularization
methods. Our focus is on variational regularization, where regularized solutions are
obtained by minimizing the Tikhonov type functional

T δ
α := 1

p
‖F (x) − yδ‖p + αR(x) , α > 0 , (1.2)

with minimizers xδ
α.

In Hilbert spaces and for p = 2, R(x) = ‖x − x∗‖2 rates

‖xδ
α − x†‖ = O

(

δ
1

2

)

as δ → 0

for the convergence of regularized solutions xδ
α to the exact solution x† of (1.1) were

already proven in [5] (cf. [4, Chapter 10]) under a source condition

x† − x∗ = F ′(x†)∗w, w ∈ Y ,

and some additional assumptions. Convergence rates up to such order characterize the
low rate region and corresponding rate proofs can be performed by using the ansatz

T δ
α (xδ

α) ≤ T δ
α (x†) . (1.3)

In recent papers progress in this region including extensions to Banach spaces was
achieved by using variational inequalities (see [10, 17] and references therein).

On the other hand, the enhanced rate region showing higher convergence rates up to

‖xδ
α − x†‖ = O

(

δ
2

3

)

as δ → 0

under stronger source conditions up to

x† − x∗ = F ′(x†)∗F ′(x†) v , v ∈ X ,

was entered for nonlinear problems in Hilbert spaces with the paper [12], where rate
proofs were obtained using ansatz (1.3) and the first order optimality conditions for a
minimizer of the Tikhonov functional. Some appropriate alternative ansatz for obtain-
ing error estimates in the enhanced rate region is

T δ
α (xδ

α) ≤ T δ
α (x† − z)

with appropriately chosen element z ∈ X. This idea can already be found in [11] and
has been used in different works, see, e.g., [4, 18, 19] for the Hilbert space setting,
in [15] for X being a Banach space and Y being a Hilbert space, and in [8, 14] for
Banach spaces X and Y . In the present paper, which improves and extends recent
the results from [14] on enhanced convergence rates, we show that for all exponents
1 ≤ p < ∞ in the residual term of (1.2) the obtained convergence rates coincide when
the regularization parameter α = α(δ) is chosen in an appropriate manner depending
on p.
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2. Preliminaries

The existence of minimizers xδ
α of (1.2) acting as regularized solutions to (1.1) as well as

their stability are guaranteed under the following conditions on X, Y , F , D(F ), and R
(see also [14] and [10, 17]) that we will assume throughout this paper. If the condition

α(δ) → 0 and
δp

α(δ)
→ 0 as δ → 0 (2.1)

is satisfied, then we even have (weak) convergence of regularized solutions (compare
[17, Theorem 3.26]).

(A1) X and Y are reflexive Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively,
which define the strong convergence in that spaces. We will omit space indices
whenever it is clear from the context what norm is meant. X∗ and Y ∗ denote the
dual spaces of X and Y with dual forms 〈 ·, · 〉Y ∗,Y and 〈 ·, · 〉X∗,X , respectively,
that allow us to define the corresponding weak convergence. Again we omit space
indices.

(A2) Y is s-smooth for some s > 1, i.e., for the modulus of smoothness ρY : [0,∞] → R
the estimate

ρY (τ) := 1
2
sup{‖y + ȳ‖ + ‖y − ȳ‖ − 2 : ‖y‖ = 1, ‖ȳ‖ ≤ τ} ≤ csτ

s

holds for some cs > 0 and all τ ≥ 0.

(A3) The exponent p in (1.2) is in the interval [1,∞).

(A4) The functional R : D(R) ⊂ X → [0,∞] is convex and weakly sequentially lower
semi-continuous.

(A5) The operator F : D(F ) ⊂ X → Y is weakly sequentially closed and the domain
D(F ) is also weakly sequentially closed.

(A6) D := D(F ) ∩ D(R) 6= ∅.

(A7) Let x† ∈ D be an R-minimizing solution of equation (1.1), i.e.,

R(x†) = min{R(x) : F (x) = y} ,

which exists due to [17, Theorem 3.25], and let F be Gâteaux-differentiable in x†.
Moreover, we assume that the subdifferential ∂R(x†) consists of a single element
dR(x†) ∈ X∗.

(A8) The level sets Mα(M) := {x ∈ D : 1
p
‖F (x) − y‖p

Y + αR(x) ≤ M} are weakly
sequentially compact for all α, M > 0.

(A9) There is an exponent r > 1 and constants cr > 0, ρR > 0 such that

DR(x, x†) ≤ cr ‖x − x†‖r

for all x ∈ D(R) with ‖x − x†‖ ≤ ρR. Here, DR denotes the Bregman distance
defined by (see, e.g., [17])

DR(x, x†) := R(x) − R(x†) − 〈 dR(x†), x − x† 〉 .
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(A10) There are constants cF ≥ 0 and ρF > 0 such that

‖F (x) − F (x†) − F ′(x†)(x − x†)‖ ≤ cFDR(x, x†)

for all x ∈ D with R(x) ≤ R(x†) + ρF and ‖F (x) − F (x†)‖ ≤ ρF .

Note that Assumption (A10) (also exploited, e.g., in [16, Assumption 3.1], [10, formula
(16)] and [9, Def. 2.5, case c1 = 0, c2 = 1]) expresses the nonlinearity behaviour of F
in a neighbourhood of x†.

Due to (A2), the function fp(y) := 1
p
‖y‖p, y ∈ Y , p > 1, is strictly convex and

Fréchet-differentiable. Its derivative Jp := f ′
p is the so called duality mapping of Y with

gauge function t 7→ tp−1. Jp is continuous and surjective from Y → Y ∗ and

Jp(λy) = |λ|p−1sgn (λ) Jp(y) , λ ∈ R , (2.2)

(see [3, Chap. I+II]). The Bregman distance of fp is defined by

Dp(y, ȳ) := 1
p
‖y‖p − 1

p
‖ȳ‖p − 〈 Jp(ȳ), y − ȳ 〉 , y, ȳ ∈ Y .

It always holds that Dp(y, ȳ) ≥ 0.
It was discovered independently by the first two authors and published in [7, 8, 14]

that one obtains the convergence rate

DR(xδ
α, x†) = O

(

δ
rs

r+s−1

)

if p ≥ s (2.3)

and
DR(xδ

α, x†) = O
(

δ
rp

r+p−1

)

if 1 < p < s ,

whenever x† satisfies the strong source condition

dR(x†) = F ′(x†)#Jp(F
′(x†)vp) for some vp ∈ X (2.4)

and α(δ) is chosen appropriately. Here A# : Y ∗ → X∗ denotes the Banach space adjoint
of a bounded linear operator A : X → Y . Proofs of this result are essentially based on
an estimate for Dp(y, ȳ) that was derived using results in [21]. It turns out that this
estimate can be improved if ȳ 6= 0. Moreover, it can be extended to the case p = 1,
which was already mentioned in [8]. With this improved estimate one can show that
the rate in (2.3) also holds uniformly for all 1 ≤ p < s provided that dR(x†) 6= 0, i.e.,
the rate is independent of p.

For the extension to the case p = 1 we need the following considerations: first of all
note that

Jp(y) = ‖y‖p−2J2(y) (2.5)

for all p > 1. Therefore, it is an immediate consequence that an element x† satisfying
source condition (2.4) for some p > 1 will also satisfy the source condition with p = 2,
however, with a scaled element v2 and vice versa, i.e., if x† satisfies condition

dR(x†) = F ′(x†)#J2(F
′(x†)v2) for some v2 ∈ X , (2.6)

then it also satisfies condition (2.4) for any p > 1 with vp = ‖F ′(x†)v2‖
2−p

p−1 v2. Note
that then

Jp(F
′(x†)vp) = J2(F

′(x†)v2) (2.7)
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and for p → 1 we have the limiting relations ‖vp‖ → 0 in case ‖F ′(x†)v2‖ < 1 and
‖vp‖ → ∞ in case ‖F ′(x†)v2‖ > 1. If F ′(x†)v2 = 0, then also F ′(x†)vp = 0, since
‖F ′(x†)v2‖ = ‖F ′(x†)vp‖

p−1.
Furthermore, (2.5) implies that

Dp(y, ȳ) := 1
p
‖y‖p − 1

p
‖ȳ‖p − ‖ȳ‖p−2〈 J2(ȳ), y − ȳ 〉 .

If ȳ 6= 0, then the limit p → 1 exists and we may define:

D1(y, ȳ) := ‖y‖ − ‖ȳ‖ − ‖ȳ‖−1〈 J2(ȳ), y − ȳ 〉 , ȳ 6= 0 . (2.8)

We are now in the position to prove the following estimate:

Lemma 2.1. Let Assumption (A2) hold. Then for some c̄s > 0 the estimate

Dp(y, ȳ) ≤ c̄s‖ȳ‖
p−s‖y − ȳ‖s

holds if ȳ 6= 0 and if 1 ≤ p ≤ s.

Proof. Let p > 1. Using [21, Theorem 2] we obtain the estimate

Dp(y, ȳ) ≤ ĉp

∫ 1

0
t−1[max{‖ȳ + t(y − ȳ)‖ , ‖ȳ‖}]p

·ρY (t‖y − ȳ‖ [max{‖ȳ + t(y − ȳ)‖ , ‖ȳ‖}]−1) dt

for some ĉp > 0. Let us now assume that ȳ 6= 0 and that 1 < p ≤ s. Then (A2) implies
with max{‖ȳ + t(y − ȳ)‖ , ‖ȳ‖} ≥ ‖ȳ‖ that

Dp(y, ȳ) ≤ ĉp cs‖ȳ‖
p−s‖y − ȳ‖s

∫ 1

0
ts−1 dt . (2.9)

Thus, the assertion is proven for 1 < p ≤ s. Since an inspection of the proof of [21,
Theorem 2] shows that ĉp may be bounded independently of p for all 1 < p ≤ s, this
allows us to apply the limiting process p → 1 to the estimate (2.9) taking into account
the definition of (2.8). This yields the assertion also for p = 1.

3. Convergence rates

We have mentioned in the last section that the results of [8, 14] can be improved if
dR(x†) 6= 0. Before we present these results, we show that the case dR(x†) = 0 is a
very special, not really interesting case.

Proposition 3.1. Let assumptions (A1), (A3) – (A8) hold. Moreover, assume that
dR(x†) = 0. Then the following assertions hold:

(i) R(x†) = min{R(x) : x ∈ X}

(ii) xα = x†, where xα is the regularized solution for exact data, i.e, yδ = y.
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(iii) Let α(δ) be any parameter selection method such that δp/α(δ) → 0 as δ → 0.
Then

‖F (xδ
α) − yδ‖ ≤ δ and DR(xδ

α, x†) ≤ 1
p

δp

α(δ)
.

This means that the convergence rate of DR(xδ
α, x†) → 0 as δ → 0 can be arbitrarily

fast.

Proof. Obviously, 0 ≤ DR(x, x†) = R(x) − R(x†). Therefore,

1
p
‖F (x†) − y‖p + αR(x†) = αR(x†) ≤ 1

p
‖F (x) − yδ‖p + αR(x)

for all x ∈ D. This proves assertions (i) and (ii).
Let us now turn to assertion (iii): for any α > 0 it holds that

1
p
‖F (xδ

α) − yδ‖p + αR(xδ
α) ≤ 1

p
‖F (x†) − yδ‖p + αR(x†) .

Thus,
1
p
‖F (xδ

α) − yδ‖p + αDR(xδ
α, x†) ≤ 1

p
δp ,

which immediately proves the assertion.

In the following, we restrict ourselves to the more interesting case dR(x†) 6= 0. Using
the notation of [14, Theorem 3] we first derive estimates for DR(xδ

α, x†).

Lemma 3.2. Let assumptions (A1), (A3) – (A8), and (A10) hold. Furthermore,
assume that x† satisfies condition (2.6) and that cF ‖w‖ < 1 with w := J2(F

′(x†)v2).
We distinguish two cases:

(i) Let p > 1 and assume that zα := x† − α
1

p−1 vp ∈ D for all 0 < α ≤ ᾱ with vp as

in (2.4). Moreover, let bα := −α
1

p−1 F ′(x†)vp. Then there are positive constants c1

and c2 such that

DR(xδ
α, x†) ≤ c1α

−1Dp(F (zα) − yδ, bα) + c2DR(zα, x†) (3.1)

provided that α, δ > 0, and α−1δp are sufficiently small.

(ii) Let p = 1 and assume that zκ := x† − κv2 ∈ D for all 0 < κ ≤ κ̄. Moreover, let
bκ := −κF ′(x†)v2, α = α0 := ‖F ′(x†)v2‖

−1, and and assume that ρF in (A10)
satisfies

α0R(x†) < ρF . (3.2)

Then there are positive constants c3 and c4 such that

DR(xδ
α, x†) ≤ c3α

−1
0 D1(F (zκ) − yδ, bκ) + c4DR(zκ, x

†) (3.3)

provided that κ, δ > 0 are sufficiently small.

Proof. We first consider case (i): let us assume that α ≤ ᾱ in the following. Then,
due to (2.2) and (2.7), it holds that

Jp(bα) = −αJp(F
′(x†)vp) = −αJ2(F

′(x†)v2) = −α w . (3.4)
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Since xδ
α is a minimizer of the Tikhonov functional (1.2), it holds that

1
p
‖F (xδ

α) − yδ‖p + αR(xδ
α) ≤ 1

p
‖F (zα) − yδ‖p + α R(zα). (3.5)

By (2.6) and (3.4) we obtain

R(xδ
α) − R(zα) = DR(xδ

α, x†) − DR(zα, x†) + 〈 dR(x†), xδ
α − zα 〉

= DR(xδ
α, x†) − DR(zα, x†) + 〈ω, F ′(x†)(xδ

α − zα) 〉

and

1
p
‖F (xδ

α) − yδ‖p − 1
p
‖F (zα) − yδ‖p

= Dp(F (xδ
α) − yδ), bα) − Dp(F (zα) − yδ, bα) + 〈 Jp(bα), F (xδ

α) − F (zα) 〉

= Dp(F (xδ
α) − yδ), bα) − Dp(F (zα) − yδ, bα) − α〈ω, F (xδ

α) − F (zα) 〉.

Using the settings

rα := F (zα) − F (x†) − F ′(x†)(zα − x†) , (3.6)

rδ
α := F (xδ

α) − F (x†) − F ′(x†)(xδ
α − x†) , (3.7)

the estimate (3.5) is equivalent to

Dp(F (xδ
α) − yδ, bα) + αDR(xδ

α, x†)

≤ Dp(F (zα) − yδ, bα) + αDR(zα, x†)

+α〈w, F (xδ
α) − F (zα) − F ′(x†)(xδ

α − zα) 〉

= Dp(F (zα) − yδ, bα) + αDR(zα, x†) + α〈w, rδ
α − rα 〉 . (3.8)

We will now show that (A10) is applicable to xδ
α and zα provided that α, δ, and α−1δp

are sufficiently small. Due to the fact that

1
p
‖F (xδ

α) − yδ‖p + αR(xδ
α) ≤ 1

p
δp + αR(x†) ,

this is obvious for xδ
α. Moreover, (A4) and the Gâteaux-differentiability of F in x† imply

that R(zα) → R(x†) and F (zα) → F (x†) as α → 0.
Now, under the above conditions on α and δ, it follows with (A10) and (3.8) that

Dp(F (xδ
α) − yδ, bα) + α (1 − cF ‖w‖) DR(xδ

α, x†)

≤ Dp(F (zα) − yδ, bα) + α (1 + cF ‖w‖) DR(zα, x†) .

Thus, the estimate (3.1) holds with c1 := (1 − cF ‖w‖)−1 and c2 := (1 + cF ‖w‖)c1.
Next we consider case (ii): let us assume that 0 < κ ≤ κ̄. Then, it follows as above

that
J2(bκ) = −κJ2(F

′(x†)v2) = −κ w

and
‖F (xδ

α) − yδ‖ + αR(xδ
α) ≤ ‖F (zκ) − yδ‖ + αR(zκ) .

Together with (2.6), (3.7), κ‖bκ‖
−1 = ‖F ′(x†)v2‖

−1 = α, and setting

r̄κ := F (zκ) − F (x†) − F ′(x†)(zκ − x†) (3.9)
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we obtain

‖F (xδ
α) − yδ‖ − ‖F (zκ) − yδ‖

= D1(F (xδ
α) − yδ, bκ) − D1(F (zκ) − yδ, bκ) − α〈ω, F (xδ

α) − F (zκ) 〉

and hence the estimate

D1(F (xδ
α) − yδ, bκ) + αDR(xδ

α, x†)

≤ D1(F (zκ) − yδ, bκ) + αDR(zκ, x
†)

+α〈ω, F (xδ
α) − F (zκ) − F ′(x†)(xδ

α − zκ) 〉

= D1(F (zκ) − yδ, bκ) + αDR(zκ, x
†) + α〈w, rδ

α − r̄κ 〉 ,

where D1 is defined as in (2.8). Due to (3.2) and ‖F (xδ
α)−yδ‖ +αR(xδ

α) ≤ δ +αR(x†),
it follows that R(xδ

α) ≤ R(x†) + ρF and ‖F (xδ
α) − F (x†)‖ ≤ ρF for δ > 0 sufficiently

small. Thus, (A10) is applicable to xδ
α if δ is sufficiently small. Since it follows as above

that (A10) is also applicable to zκ if κ is sufficiently small, we get that

D1(F (xδ
α) − yδ, bκ) + α (1 − cF ‖w‖) DR(xδ

α, x†)

≤ D1(F (zκ) − yδ, bκ) + α (1 + cF ‖w‖) DR(zκ, x
†)

for δ, κ sufficiently small. Thus, the estimate (3.3) holds with c3 := c1 and c4 := c2,
where c1 and c2 are as in case (i).

Using the lemma above, the smoothness property (A2) of Y , and the approximation
condition (A9) for DR(x, x†), we are in the position to prove convergence rates.

Theorem 3.3. Let assumptions (A1) – (A10) hold. Furthermore, assume that x†

satisfies condition (2.6) with dR(x†) 6= 0 and that cF ‖w‖ < 1 with w := J2(F
′(x†)v2).

We distinguish two cases:

(i) Let p > 1 and assume that zα := x† − α
1

p−1 vp ∈ D for all 0 < α ≤ ᾱ with vp as in
(2.4). Moreover, assume that the regularization parameter is chosen as

α ∼ δ(p−1) s
r+s−1 . (3.10)

(ii) Let p = 1 and assume that zκ := x† − κv2 ∈ D for all 0 < κ ≤ κ̄. Moreover,
assume that ρF in (A10) satisfies (3.2) and that the regularization parameter is
chosen as

α = α0 := ‖F ′(x†)v2‖
−1 . (3.11)

Then, in both cases, the Tikhonov regularized solutions converge with the rate

DR(xδ
α, x†) = O

(

δ
rs

r+s−1

)

as δ → 0 . (3.12)

Proof. First of all note that the condition dR(x†) 6= 0 implies that F ′(x†)v2 6= 0 and
that F ′(x†)v2 6= 0. Hence, bα and bκ, defined as in Lemma 3.2, are non zero. Therefore,
Lemma 2.1 is applicable to both elements.

Let us first consider case (i): We may restrict ourselves to the case 1 < p < s, since
the case p > s was shown already in [14]. Since α = α(δ) behaves as in (3.10), we may
assume that δ > 0 is so small that the estimate (3.1) is valid.
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To derive estimates in terms of α and δ we first note that, due to (A9),

DR(zα, x†) = O
(

α
r

p−1

)

as α → 0 . (3.13)

Noting that (A10) and (3.6) yield that

‖F (zα) − yδ − bα‖ = ‖y − yδ + rα‖ ≤ δ + cF DR(zα, x†)

for δ > 0 sufficiently small, Lemma 2.1 implies that

Dp(F (zα) − yδ, bα) = O
(

‖bα‖
p−s(δs + DR(zα, x†)s)

)

as δ → 0 . (3.14)

Combining (3.1), (3.13), (3.14), and noting that rs − s + 1 > r yields

DR(xδ
α, x†) = O

(

α− s−1

p−1 δs + α
rs−s+1

p−1 + α
r

p−1

)

= O
(

α− s−1

p−1 δs + α
r

p−1

)

as δ → 0 .

Now the a-priori parameter choice (3.10) implies the assertion (3.12).
Next we consider case (ii): assuming that

κ = κ(δ) → 0 as δ → 0 ,

we obtain similar as above with (A10) and (3.9) that

‖F (zκ) − yδ − bκ‖ = ‖y − yδ + r̄κ‖ ≤ δ + cF DR(zκ, x
†)

for δ > 0 sufficiently small. Now (A9), Lemma 1 (case p = 1), and (3.3) yield that

DR(xδ
α, x†) = O

(

‖bκ‖
1−s‖F (zκ) − yδ − bκ‖

s + DR(zκ, x
†)

)

= O
(

κ1−s(δs + DR(zκ, x
†)s) + DR(zκ, x

†)
)

= O
(

κ1−sδs + κr
)

as δ → 0 .

Choosing κ = δ
s

r+s−1 implies the desired rate (3.12).

As already mentioned in the introduction, case (i) of the theorem above improves the
results of [14, Theorem 3]. Of course all other convergence rates results in [14] may be
improved in the same way, i.e, min{p, s} may always be replaced by s.

An inspection of the proof of case (ii) shows that the rate result remains valid if the
constant parameter choice (3.11) is replaced by an a-priori choice α(δ) with

|α(δ) − α0| ≤ O
(

δ
rs

r+s−1

)

. (3.15)

Nevertheless, α(δ) has to converge towards a number α0 > 0 that depends on x† and
is, therefore, not known. However, as Proposition 4.1 below shows, for p = 1 enhanced
rates can, in general, only be obtained if (3.15) holds.
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4. Discussion

4.1. Interpretation of limiting cases

From Theorem 3.3 we find for all p ≥ 1 that in case of appropriate parameter choices
and under the assumption that condition (A9) holds with r = 2 the rate

DR(xδ
α, x†) = O

(

δ
2s

s+1

)

as δ → 0 (4.1)

can be established. Its rate exponent grows with the smoothness s ∈ (1, 2] of the space
Y from 1 to 4/3. The maximal exponent 4/3 characterizes the limit situation s = 2 of
a Hilbert space Y .

If both X and Y are Hilbert spaces and if R(x) = ‖x − x∗‖2, then DR(x, x†) =
‖x−x†‖2, i.e., (A9) is then satisfied with r = 2. In this case the theorems above imply
for all p ≥ 1 that

‖xδ
α − x†‖ = O

(

δ
2

3

)

as δ → 0 .

A well-known saturation result (see [13]) shows that for bounded linear operators F
this rate cannot be improved.

We emphasize that all enhanced rate results under the strong source condition (2.6)
discussed here including the limiting rate with exponent 4/3 in the Bregman case and
2/3 in the Hilbert space case with R(x) = ‖x − x∗‖2 do not depend on p ∈ [1,∞).
This means that the variation of the residual term structure in (1.2) controlled by
the parameter p ∈ [1,∞) does not lead to different optimal convergence rates under
both types of source conditions characterizing the low and the enhanced rate region.
Namely, from [2] (p = 1) and [10] (p < 1) we learned that also for all p ∈ [1,∞) a
uniform rate DR(xδ

α, x†) = O(δ) as δ → 0 can be obtained under the source condition
dR(x†) = F ′(x†)#w, w ∈ Y ∗, which is weaker than (2.6). However, it is an open
problem whether such limiting rates can also be proven if 0 < p < 1 under weak and
strong source conditions, respectively. Convergence rate assertions for that p-interval
and the low rate region were made in [6] using variational inequalities.

4.2. Discussion of different parameter choices

For p > 1 in the low rate region of Banach space theory established by variational
inequalities (see [9]) the occurring convergence rates DR(xδ

α, x†) = O(δκ) as δ → 0
can, in general, be obtained by using the regularization parameter as α ∼ δp−κ, where
0 < κ ≤ 1 expresses the solution smoothness of x† and the structure of nonlinearity of
F in a compressed form. This parameter choice always satisfies the general convergence
condition (2.1). In particular, for the limiting case κ = 1 analyzed comprehensively in
[17] we have α ∼ δp−1. The enhanced rates of Theorem 3.3, however, require α ∼
δ(p−1) s

r+s−1 with smaller exponent, i.e., the decay of α(δ) → 0 as δ → 0 is slower, but
condition (2.1) is still satisfied.

For p = 1 we have exact penalization, i.e., for noise-free data (δ = 0) the regularized
solutions xδ

α are exact solutions of the equation (1.1) whenever α > 0 is chosen suffi-
ciently small. The consequences for the low rate region were discussed in [2] yielding
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also the convergence rate DR(xδ
α, x†) = O(δ) as δ → 0, but there the regularization

parameter has to be fixed as a sufficiently small value α(δ) := α0 > 0. Then condition
(2.1) fails to be satisfied, but at least δ/α(δ) → 0 as δ → 0. On the other hand, for
getting the rate DR(xδ

α, x†) = O(δ) the value α0 can be arbitrarily small, but this may
lead to exploding rate constants. To obtain best rates in the limiting process p ց 1 the
required function α(δ) ∼ δp−1 for the regularization parameter decays for δ → 0 slower
and slower for decreasing p and has to be frozen at some fixed real number α0 > 0 when
p meets 1. This number, however, can vary arbitrarily in some right neighborhood of
zero.

For the enhanced rate case and p ց 1 also the decay of the function α ∼ δ(p−1) s
r+s−1

gets slower and slower and has to be frozen at some point in the limit case p = 1,
but as we indicated in Theorem 3.3 (ii) the optimal rate for p = 1 comes with the
prescribed α0 := ‖F ′(x†)v2‖

−1 (see (3.11)). Here, at least in the worst case, there is no
α1 independent of δ with 0 < α1 < α0 such that this maximum rate is also obtained for
α(δ) := α1 as the following considerations show:

Let X and Y be Hilbert spaces and assume that R(x) := 1
2
‖x‖2 and that F (x) := Ax,

where A : X → Y is a bounded linear operator with unbounded pseudoinverse A†, i.e.,
R(A) is not closed. The regularized solution xδ

α is then the minimizer of the functional

‖Ax − yδ‖ + α 1
2
‖x‖2 , α > 0 . (4.2)

Let us assume that Axδ
α − yδ 6= 0. Then the mapping x 7→ ‖Ax − yδ‖ is differentiable

in x = xδ
α and the optimality conditions for (4.2) yield

1

‖Axδ
α − yδ‖

A∗(Axδ
α − yδ) + αxδ

α = 0

or equivalently
A∗(Axδ

α − yδ) + α‖Axδ
α − yδ‖xδ

α = 0 .

Setting β := α‖Axδ
α − yδ‖ and x̄δ

β := xδ
α, this shows that

(A∗A + βI) x̄δ
β = A∗yδ .

Thus, xδ
α is equal to a standard Tikhonov regularized solution x̄δ

β, where β > 0 satisfies
the condition

α−1 = β−1‖Ax̄δ
β − yδ‖ = ‖(AA∗ + βI)−1yδ‖ =: fβ(yδ) . (4.3)

Noting that lim
β→∞

fβ(yδ) = 0 and that

lim
β→0+

fβ(yδ) =







‖(AA∗)†yδ‖ if Qyδ ∈ R(AA∗) ,

∞ else ,

we may conclude together with the monotonicity of fβ(yδ) that

xδ
α =







A†yδ if Qyδ ∈ R(AA∗) and α−1 ≥ ‖(AA∗)†yδ‖ ,

(A∗A + βI)−1A∗yδ with β solving (4.3) else .
(4.4)

Here, Q denotes the orthogonal projector onto R(A).
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We are now in the position to prove that the convergence rate in Theorem 3.3 (ii)
can only be obtained if α(δ) → ‖Av2‖

−1.

Proposition 4.1. Let X, Y , R(x), and A be as above and let xδ
α be the minimizer

of (4.2). Moreover, we assume that a sequence {λk} exists in the spectrum of AA∗

satisfying

λk ց 0 and
λk

λk+1
≤ C for all k ∈ N (4.5)

for some C ≥ 1.
If α = α(δ) is an a-priori parameter choice rule such that

sup{‖xδ
α − x†‖ : ‖yδ − y‖ ≤ δ} = o

(

δ
1

2

)

(4.6)

and if x† = A∗w with w ∈ R(A)\{0}. Then

lim
δ→0

α(δ) = ‖w‖−1. (4.7)

Proof. Since we consider worst case estimates, we may choose the data yδ as we like.
Similar as in [13], we suggest the choice

yδ := AA∗w + εAA∗Gkz , (4.8)

where ε > 0 is a fixed number to be chosen later,

z :=

{

w‖Gkw‖−1 if Gkw 6= 0 ,
arbitrary with ‖Gkz‖ = 1 otherwise ,

(4.9)

and
Gk := F 3

2
λk+1

− F 1

2
λk+1

. (4.10)

Here, {Fλ} denotes a spectral family of AA∗ and k is chosen such that

ε
3

2
λk+1 ≤ δ ≤ ε

3

2
λk , (4.11)

which is always possible for δ > 0 sufficiently small. (4.8) – (4.11) immediately imply
that

‖y − yδ‖ = ε‖AA∗Gkz‖ ≤ ε
3

2
λk+1 ≤ δ ,

and hence the data are feasible, and that

‖(AA∗ + βI)−1yδ‖2 = ‖(AA∗ + βI)−1AA∗w‖2

+ ‖(AA∗ + βI)−1AA∗Gkz‖
2(ε2 + 2ε‖Gkw‖) (4.12)

→ ‖(AA∗)†yδ‖2 = ‖w‖2 + ε2 + 2ε‖Gkw‖ as β → 0 , (4.13)

First we assume that
lim sup

δ→0
α(δ) > ‖w‖−1. (4.14)

Then there is a sequence δn > 0 such that λ1 ≥ δn → 0 and αn := α(δn) → ᾱ > ‖w‖−1

as n → ∞. We choose the data yδn as in (4.8) – (4.11) with ε = 1. Due to (4.4)
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and (4.13), there is a βn = β(δn, y
δn) such that xδn

αn
= x̄δn

βn
= (A∗A + βnI)−1A∗yδn for n

sufficiently large. Since xδ
α → x†, we also have that x̄δn

βn
→ x†. Together with x† 6= 0 this

implies that βn → 0 as n → ∞. However, then (4.3) and (4.12) imply that ᾱ ≤ ‖w‖−1

which is a contradiction. Hence, assumption (4.14) is wrong.
Now we assume that

lim inf
δ→0

α(δ) < ‖w‖−1. (4.15)

Then there is a sequence δn > 0 such that λ1 ≥ δn → 0 and αn := α(δn) → ᾱ < ‖w‖−1

as n → ∞. We choose the data yδn as in (4.8) – (4.11) with ε > 0 such that

ε2 + 2ε‖w‖ ≤
1

4
(ᾱ−1 + ‖w‖)2 − ‖w‖2 .

Then (4.4) and (4.13) imply that xδn
αn

= A†yδn for n sufficiently large. However, then

‖xδn

αn
− x†‖ = ε‖A∗Gkz‖ ≥ ε

(1

2
λk+1

)
1

2 =
(

ε
3

2
λk

ε

3

λk+1

λk

)
1

2

≥
(εδn

3C

)
1

2 ,

which is a contradiction to (4.6). Hence, assumption (4.15) is wrong. This finally proves
that assertion (4.7) holds.

Since it follows from converse results in [13] that the convergence rate O(δ
2

3 ) implies
that x† = A∗Av2 for some v2 ∈ X, Proposition 4.1 shows that the enhanced rates in
Theorem 3.3 (ii) can, in general, not be achieved if α(δ) 6→ ‖F ′(x†)v2‖

−1.
The required α-choice (3.11) and its justification by Proposition 4.1 indicate that the

so-called Bakushinskii veto (cf. [1], see also [4, Theorem 3.3]) must not be misinter-
preted. This veto says that the Moore-Penrose pseudoinverse A† of the bounded linear
operator A is bounded whenever the worst case error of an arbitrary regularization
method converges to zero for all y ∈ D(A†) and α = α(yδ) is chosen only based on the
data without using the knowledge of the noise level δ. Heuristic criteria for choosing the
regularization parameter such as the quasi-optimality method and the L-curve method
are of that form α = α(yδ) and hence the Bakushinskii veto applies, i.e., convergence
and convergence rates cannot be obtained for ill-posed problems under that kind of
parameter choice. Although the parameter α chosen by (3.11) also does not depend on
δ, this is not a contradiction to the veto. Namely, in our situation α depends on the
exact right-hand side y and hence on some additional information about the solution.
In this case the proof of the Bakushinskii veto is not applicable.

4.3. Extension to convex functions and conclusions on the choice of p

In [20, Chapter 2] the generalized version

f(‖F (x) − yδ‖) + αR(x)

of a Tikhonov functional with monotone functions f is considered. We will discuss this
problem in a Hilbert space setting for special functions f :

We assume that X and Y are Hilbert spaces and that A : X → Y is a bounded linear
operator. Moreover, we assume that g : R+

0 → R+
0 is a convex, strictly monotonically
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increasing function that is continuously differentiable on R+. We look for regularized
solutions xδ

α minimizing

g(‖Ax − yδ‖2) + α 1
2
‖x‖2 , α > 0 . (4.16)

Obviously, f(t) = g(t2) in our considerations. As above it now follows that xδ
α solves

the equation
2 g′(‖Axδ

α − yδ‖2)A∗(Axδ
α − yδ) + αxδ

α = 0

if Axδ
α 6= yδ. Thus, xδ

α is then a standard Tikhonov regularized solution

xδ
α = x̄δ

β = (A∗A + βI)−1A∗yδ with α = β 2 g′(‖Ax̄δ
β − yδ‖2) . (4.17)

This means, whenever we have a parameter rule β = β(δ, yδ) > 0 yielding a convergence
rate for ‖x̄δ

β − x†‖ , we obtain the same rate for ‖xδ
α − x†‖ if we choose α as in (4.17)

and if Ax̄δ
β − yδ 6= 0. The last assumption is always satisfied if yδ /∈ R(A)⊥.

Since, for Hilbert spaces X and Y the computation of standard regularized solutions
with residual norm square is much easier than the calculation of minimizers of (4.16)
or of (1.2) with p 6= 2, it is questionable why one should prefer such generalizations in
the Hilbert space setting. However, note that the situation may be different for Banach
spaces. If we consider Lebesgue spaces Y = Lp with p > 1, p 6= 2, then the choice of
that exponent p in (1.2) simplifies the structure of the functional and helps to reduce
the amount of computations for finding regularized solutions.

All considerations above are no longer true if g is not convex. In that case it is not
obvious how the convergence analysis for standard Tikhonov regularization could be
used to obtain results for minimizers of (4.16). Non-convex residual terms also occur
in (1.2) whenever 0 < p < 1, see [6].
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