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Abstract
In this paper we consider the iteratively regularized Gauss–Newton method
(IRGNM) in a Banach space setting and prove optimal convergence rates under
approximate source conditions. These are related to the classical concept of
source conditions that is available only in Hilbert space. We provide results
in the framework of general index functions, which include, e.g. Hölder and
logarithmic rates. Concerning the regularization parameters in each Newton
step as well as the stopping index, we provide both a priori and a posteriori
strategies, the latter being based on the discrepancy principle.

1. Introduction

We are going to consider a nonlinear ill-posed operator equation

F(x) = y (1)

where the possibly nonlinear operator F : D(F ) ⊆ X → Y with domain D(F ) maps between
real Banach spaces X and Y. For simplicity, let the symbol ‖·‖ designate the norm for both
spaces. Specifically, we assume X to be reflexive and uniformly smooth. For some of our
results we will assume that X is q-convex with some q > 1.

Since we are interested in the ill-posed situation, i.e. F fails to be continuously invertible,
and the data are contaminated with noise, regularization has to be applied (see, e.g., [4, 25],
and references therein).

* Research has been partly conducted during the Mini Special Semester on Inverse Problems, 18 May–15 July
2009, organized by RICAM (Austrian Academy of Sciences), Linz, Austria, and moreover supported by Deutsche
Forschungsgemeinschaft (DFG) under Grant HO1454/7-2 as well as within the Cluster of Excellence SimTech,
University of Stuttgart.
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Throughout this paper we will assume that an exact solution x† ∈ D(F ) of (1) exists, i.e.
F(x†) = y, and that the (deterministic) noise level δ in an upper estimate

‖y − yδ‖ � δ (2)

of the difference between exact right-hand side y and noisy data yδ is known.
Tikhonov-type variational regularization in Banach spaces has been studied recently with

error estimates measured by Bregman distances, e.g. in [3] for linear ill-posed problems, and
in [9, 12, 13, 19–21, 23] for nonlinear ill-posed problems (1).

Iterative regularization approaches in Hilbert spaces pose an attractive alternative to
variational regularization methods. These approaches were comprehensively analyzed in the
monographs [1, 17] (see also the references therein). So far, to the authors’ best knowledge,
iterative solvers for nonlinear ill-posed problems in Banach spaces have only been formulated
in [1, section 4.3] and [18]. In [1], the case X = Y was considered and convergence including
rates under sufficiently strong source conditions was proven for generalized Gauss–Newton
methods. On the other hand, in [18] convergence of the iteratively regularized Gauss–Newton
method and the nonlinear Landweber iteration has been proven in the general situation of
possibly different Banach spaces X and Y without imposing any source condition. For an
analysis of Landweber-type methods in Banach space we refer to [10] and [24].

The aim of this paper is to provide rate results for the iteratively regularized Gauss–
Newton method in a complementary situation, i.e. under weaker source conditions than those
assumed in [1], and for not necessarily equal preimage and image space. The obtained rates
will be called optimal referring to corresponding optimal rate results in Hilbert space settings.

For Hilbert spaces X by spectral theory one can define at a point x†, where F is Gâteaux
differentiable with derivative F ′(x†), linear operators f (F ′(x†)∗F ′(x†)) : X → X for any
index function f . We call a function f : (0,∞) → (0,∞) (or its restriction to a right
neighborhood of zero) the index function if f is continuous and strictly increasing with
limt→0+ f (t) = 0. The properties of non-negativity and self-adjointness of the operator
F ′(x†)∗F ′(x†) : X → X carry over to the new operators. This allows expressing the
smoothness of the solution x† to (1) with respect to the linearization F ′(x†) of the forward
operator F in that point. Depending on the specific character of such occurring smoothness
Hölder source conditions and general source conditions (see below (8) and (12), respectively)
leads to corresponding convergence rates for various regularization methods. For Banach
spaces, however, we have F ′(x†)∗ : Y ∗ → X∗ and hence f (F ′(x†)∗F ′(x†)) is not well
defined. Since general source conditions measuring the solution’s smoothness are not
available, additional ideas and concepts have to be exploited. Originally developed in [11]
for linear ill-posed problems, the concept of approximate source conditions can help to bridge
this gap also in the nonlinear case (see, e.g., [9]). In this context, the degree of violation of a
benchmark source condition is expressed by so-called distance functions d(R).

The iteratively regularized Gauss–Newton method can be generalized to a Banach space
setting by calculating iterates xδ

k+1 = xδ
k+1(αk) in a variational form as

xδ
k+1(α) ∈ argminx∈D(F )

∥∥Tk

(
x − xδ

k

)
+ gk

∥∥r
+ α ‖x − x0‖p , k = 0, 1, . . . , (3)

where p, r ∈ (1,∞), (αk)k∈N is a sequence of regularization parameters, x0 is some a priori
guess and we abbreviate

Tk = F ′(xδ
k

)
, gk = F

(
xδ

k

) − yδ.

Under the assumptions on X the functional x 	→ 1
p
‖x‖p is strictly convex and Fréchet-

differentiable for all p > 1. Hence, the subdifferential Jp(x) := ∂
{

1
p
‖x‖p

}
is single valued

and the corresponding duality mapping Jp with the gauge function t 	→ tp−1 is continuous and
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bijective from X to its dual space X∗. This in general nonlinear mapping Jp is characterized
by

x∗ ∈ Jp(x) ⇐⇒ 〈x∗, x〉 = ‖x‖p and ‖x∗‖ = ‖x‖p−1,

where 〈x∗, x〉 with x ∈ X and x∗ ∈ X∗ is the dual pairing of X and X∗. To analyze convergence
rates we employ the Bregman distance �p(x̃, x) between x̃ ∈ X and x ∈ X, defined as

�p(x̃, x) = 1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃ − x〉.

If X is q-convex, then there is a constant c > 0 depending on q such that

�q(x̃, x) � c‖x̃ − x‖q for all x̃, x ∈ X (4)

(see, e.g., [2, lemma 2.7]).

2. Approximate source conditions and variational inequalities

In order to overcome the absence of Hölder and general source conditions we first extend the
Hilbert space standard source condition [4, p 277, formula (11.2)] to the Banach space setting
as

∃ w ∈ Y ∗ : Jp(x† − x0) = F ′(x†)∗w. (5)

Under condition (5) we can estimate

|〈Jp(x† − x0), x − x†〉| = |〈w,F ′(x†)(x − x†)〉| � ‖w‖‖F ′(x†)(x − x†)‖,
which implies the variational inequality

∃ β > 0 ∀ x ∈ D(F ) : |〈Jp(x† − x0), x − x†〉| � β‖F ′(x†)(x − x†)‖, (6)

where in contrast to to the ideas of [12] we only use ‖F ′(x†)(x−x†)‖ instead of ‖F(x)−F(x†)‖
on the right-hand side.

Usually (see [12] and [13]) variational inequalities for proving convergence rates for the
Tikhonov-type regularization in Banach spaces have to hold for appropriate x ∈ D(F ) in an
additive form

∃β1, β2 > 0 : |〈Jp(x† − x0), x − x†〉| � β1�p(x, x†) + β2‖F(x) − F(x†)‖
rather than in the product form (6). Note, however, that the additive form under the assumption

∃K > 0 ∀x ∈ D(F ) : ‖F(x) − F(x†) − F ′(x†)(x − x†)‖ � K�p(x, x†) (7)

immediately follows from the product form by the triangle inequality.
By avoiding ‖F(x)−F(x†)‖ on the right-hand side we are up to some extent independent

of the tangential cone condition (7). In particular, we will, e.g., prove optimal rates under a
mere Lipschitz condition on F ′ provided (5) holds.

Moreover, for the Banach space setting the form (6) allows us to use as a substitute for
the Hölder-type Hilbert space source condition

∃ w ∈ X : J2(x
† − x0) = x† − x0 = (F ′(x†)∗F ′(x†))ν/2w, (8)

for 0 < ν < 1, the following variational inequality:

∃ β > 0 ∀x ∈ B : |〈Jp(x† − x0), x − x†〉| � βDx0
p (x†, x)

1−ν
2 ‖F ′(x†)(x − x†)‖ν . (9)

Here

B = D(F ) ∪ Bρ(x0)

3
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with Bρ(x0) being a closed ball with radius ρ > 0 around x0, and we use the notation

Dx0
p (x̃, x) := �p(x̃ − x0, x − x0).

Precisely, the intermediate source condition (9) can be motivated from the Hilbert space case,
since the usual source condition (8) implies (9)

|〈J2(x
† − x0), x − x†〉| = |〈w, (F ′(x†)∗F ′(x†))ν/2(x − x†)〉|

� ‖w‖‖x − x†‖1−ν‖(F ′(x†)∗F ′(x†))1/2(x − x†)‖ν

= ‖w‖‖x − x†‖1−ν‖F ′(x†)(x − x†)‖ν

by the interpolation inequality taking into account that Dx0
p (x†, x) = ‖x − x†‖2. More

generally, one can consider index functions f : (0,∞) → (0,∞) with

φ := (f 2)−1 being convex (10)

and assume the variational inequality

∀x ∈ D(F ), x �= x† : |〈Jp(x† − x0), x − x†〉| � Dx0
p (x†, x)1/2f

(‖F ′(x†)(x − x†)‖2

D
x0
p (x†, x)

)
(11)

to hold, which again can be motivated from the Hilbert space case. Namely, if (10) holds, by
Jensen’s inequality, the general Hilbert space source condition

∃ w ∈ X : J2(x
† − x0) = x† − x0 = f (F ′(x†)∗F ′(x†))w (12)

implies

|〈J2(x
† − x0), x − x†〉| = |〈w, f (F ′(x†)∗F ′(x†))(x − x†)〉|

� ‖w‖‖x − x†‖f
(‖F ′(x†)(x − x†)‖2

‖x − x†‖2

)
.

This includes, e.g., logarithmic source conditions as appropriate for exponentially ill-posed
problems, cf, [14].

Now we will show that variational inequalities like (9) and (11) can also be concluded from
the approach of approximate source conditions outlined in [9] for the situation of nonlinear
problems and Tikhonov regularization. We refer to (5) as a benchmark source condition,
which can be expected to hold only in very specific situations. However, it is always fulfilled
in an approximate manner as

∃ rR ∈ X∗, ∃ wR ∈ Y ∗, ‖wR‖Y ∗ � R : Jp(x† − x0) = F ′(x†)∗wR + rR (13)

for all R � 0. Based on this observation, we define a distance function d(R) for all R � 0
measuring the distance of the element Jp(x†−x0) with respect to sets in X∗ which occur when
the operator F ′(x†)∗ : Y ∗ → X∗ is applied to closed balls with radius R in the space Y ∗, i.e.

d(R) := inf
w∈Y ∗:‖w‖Y∗ �R

‖Jp(x† − x0) − F ′(x†)∗w‖X∗ . (14)

The distance function is well defined as a non-negative and non-increasing continuous function
for all R � 0. Since by Alaoglu’s theorem the unit ball in Y ∗ is weak∗ compact and the dual
norm function is weak∗ lower semicontinuous, the infimum in (14) is a minimum and assumed
in some wR ∈ Y ∗. Under the condition

Jp(x† − x0) ∈ R(F ′(x†)∗)
‖·‖X∗ \R(F ′(x†)∗) (15)

it is evident that d(R) is strictly positive for all R � 0 and tends to zero as R → ∞,
cf [9, lemma 4.1 and remark 4.2]. In such a case the decay rate of the distance function
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d(R) to zero as R → ∞ measures the degree of violation of Jp(x† − x0) with respect to
the benchmark source condition (5). As the following proposition will show, this degree of
violation determines the function f in variational inequalities like (11).

Proposition 1. Let X be q-convex. Under conditions (4) and (15) let d be a continuous and
strictly decreasing majorant of the distance function d from (14) in the sense that the inequality
0 < d(R) � d(R) holds for all R > 0 and that we have the limit condition limR→∞ d(R) = 0.
Then a variational inequality

|〈Jq(x
† − x0), x − x†〉| � Dx0

q (x†, x)1/qf

(‖F ′(x†)(x − x†)‖q

D
x0
q (x†, x)

)
(16)

holds with the index function

f (t) = 2 max{1, c−1/q}d (
−1(t)
)

t > 0,

with 
(R) =
(

d(R)

R

)q

R > 0, (17)

for all x ∈ D(F ) such that x − x† /∈ N (F ′(x†)).

Proof. Since the infimum in (14) is a minimum, we have for all R � 0 an additive
decomposition (13) with ‖rR‖X∗ = d(R). Then the following equations and estimates can be
stated for 0 < R < ∞:

|〈Jq(x
† − x0), x − x†〉| = |〈F ′(x†)∗wR + rR, x − x†〉|

= |〈wR, F ′(x†)(x − x†)〉 + 〈rR, x − x†〉|
� R‖F ′(x†)(x − x†)‖ + d(R)‖x − x†‖.

Taking into account the q-convexity of X this yields

|〈Jq(x
† − x0), x − x†〉| � R‖F ′(x†)(x − x†)‖ +

d(R)

c1/q
Dx0

q (x†, x)1/q

� R‖F ′(x†)(x − x†)‖ +
d(R)

c1/q
Dx0

q (x†, x)1/q

� max{1, c−1/q}[R‖F ′(x†)(x − x†)‖ + d(R)Dx0
q (x†, x)1/q ].

Since 
(R) is strictly decreasing and continuous for 0 < R < ∞ with limits limR→0 
(R) =
∞ and limR→∞ 
(R) = 0, the equation 
(R) = ( ‖F ′(x†)(x−x†)‖

D
x0
q (x†,x)1/q

)q
has a unique solution

R0 > 0 for all x ∈ D(F ) such that x − x† /∈ N (F ′(x†)). For that R0 > 0 the two terms in
the last sum above coincide and we obtain the estimate (16). As 
−1(t) is strictly decreasing
for all 0 < t < ∞ with limits limt→0 
−1(t) = ∞ and limt→∞ 
−1(t) = 0, under the
assumption on d stated in the proposition the composite function d ◦
−1 is an index function.
This completes the proof. �

Remark 1. The function f from (17) has the following property: by using the monotonicity
inverting substitution R := 
−1(t), the quotient function

ζ(t) := t1/q

d(
−1(t))
= 
(R)1/q

d(R)
= d(R)

Rd(R)
= 1

R

is strictly increasing for 0 < t < ∞, and tends to zero as t → 0 and R → ∞, respectively.
Hence, the quotient f (t)

t1/q is strictly decreasing for all t > 0. Moreover, we should note here
that for 2-convex Banach spaces X, i.e. for q = 2, the variational inequality (16) obtained by

5
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proposition 1 attains the form (11) which is required as an assumption in the theorems 1 and
2 below. Furthermore, we have to mention that a function f that occurs when 
 is replaced
in (17) by a majorant function 
 (with same monotonicity and limit properties as 
) is also
an index function and a majorant of f . That fact will be exploited in remark 3.

3. Convergence rates with a priori parameter choice

To prove convergence rates we make the following assumption on the nonlinearity of F:

sup
v,ṽ∈X,
x†+v∈B
x†+ṽ∈B

‖(F ′(x† + ṽ) − F ′(x†))v‖
‖F ′(x†)v‖c̃1D

x0
p (x†, v + x†)c̃2‖F ′(x†)ṽ‖c̃3D

x0
p (x†, ṽ + x†)c̃4

� K (18)

with

c̃1 + c̃2
2ν

ν + 1
� 1

2
, c̃3 + c̃4

2ν

ν + 1
� 1

2
(19)

as well as

c̃1 + c̃2r � 1
2 and c̃3 + c̃4r � 1

2

and((
c̃1 + c̃2r > 1

2 ∧ c̃3 + c̃4r > 1
2

)
or K sufficiently small

)
.

The latter, for ν = 1, follows from the usual Lipschitz condition on F ′ in terms of the Bregman
distance in X:

sup
v,ṽ∈X,
x†+v∈B
x†+ṽ∈B

‖(F ′(x† + ṽ) − F ′(x†))v‖2

D
x0
p (x†, v + x†)Dx0

p (x†, ṽ + x†)
� L2.

Note the relation to the concept of degree of nonlinearity, see, e.g, [9], with (18) implying
(2.5) in [9, definition 2.5] for c1 = c̃1 + c̃3, c2 = c̃2 + c̃4. The necessity of using a
slightly stronger condition here comes from the need for estimating the difference between
the derivatives of F in the proof of theorem 1, see (38) below.

An a priori choice of αk and k∗ satisfying

α0 � 1, αk → 0 as k → ∞, 1 � αk

αk+1
� Ĉ for all k (21)

and

k∗(δ) = min
{
k ∈ N : α

ν+1
r(ν+1)−2ν

k � τδ
}
, in the case of (9) (22)

k∗(δ) = min
{
k ∈ N : αk � ϕr(τδ)

}
, in the case of (11) (23)

with

ϕr(t) = t r−2�−1(t), �(λ) := f (λ)
√

λ (24)

yields the following rate result.

Proposition 2. Assume that a solution x† to (1) exists, and that F satisfies (18) with (19), (20).
Moreover, let p, r ∈ (1,∞), let τ be chosen sufficiently large and let x0 be close enough to
x† so that Dx0

p (x†, x0) is sufficiently small. Additionally, assume that B�
ρ̄ (x†) ⊆ B for some

ρ̄ > 0, where B�
ρ̄ (x†) is a ball with respect to the Bregman distance.

Then for all k � k∗(δ)−1 with k∗(δ) according to (22), (23), the iterates xδ
k+1 := xδ

k+1(αk)

with αk according to (21) are well defined.

6
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Proof. The assertion follows from results in [18]. �

Theorem 1. Let the assumptions of proposition 2 be satisfied.

(i) Let a variational inequality (9) with β sufficiently small hold.
Then, with the a priori choice (22) we obtain optimal convergence rates

Dx0
p (x†, xk∗) = O

(
δ

2ν
ν+1
)
, as δ → 0 (25)

as well as in the noise free case δ = 0∥∥T (xδ
k+1 − x†)∥∥ = O

(
α

ν+1
r(ν+1)−2ν

k

)
,

Dx0
p

(
x†, xδ

k+1

) = O
(
α

2ν
r(ν+1)−2ν

k

) (26)

for all k ∈ N.
(ii) Let a variational inequality (11) with

t 	→ f (t)√
t

monotonically decreasing, (27)

and

∀0 < t � t̂ : f (Ĉr t) � Ĉf f (t) (28)

∀0 < t � t̃ : f (C̃r t) � C̃f f (t) (29)

with

Ĉr = (
ĈĈ2−r

f

)2/r
, C̃r = (

C̃C̃2−r
f

)2/r
,

1 � Ĉϕ := (
ĈĈ2

f

)1/r
<

1

(2Cκ)1/rK
, 1 � C̃ϕ := (

C̃C̃2
f

)1/r
,

C̃ = (2M)2−r Ĉ, Ĉ, Cκ,M as in (21), (50), (51)

t̂ = �−1
(
Ĉϕϕ−1

r (α0)
)/

Ĉr , t̃ = �−1
(
C̃ϕϕ−1

r ((2M)r−2α0)
)/

C̃r ,

(30)

hold and assume

c̃1 = c̃3 = 1
2 , c̃2 = c̃4 = 0,

as well as K sufficiently small in (18).
Then with the a priori choice (23), we obtain optimal convergence rates

Dx0
p (x†, xk∗) = O(f 2(�−1(δ))) = O

(
δ2

�−1(δ)

)
as δ → 0 (31)

with � as in (24), as well as in the noise free case δ = 0∥∥T (xδ
k+1 − x†)∥∥ = O

(
ϕ−1

r (αk)
)
,

Dx0
p

(
x†, xδ

k+1

) = O
(
f
(
�−1

(
ϕ−1

r (αk)
))2) (32)

for all k ∈ N.

Remark 2. Condition (27) implies for all C > 0 the inequality

f (�−1(Ct)) � max{
√

C, 1}f (�−1(t)) (t � 0). (33)

Because of the monotonicity of the index functions f and �−1, we have f (�−1(Ct)) �
f (�−1(t)) for 0 < C � 1. On the other hand, by substituting u := �(t) we have that
f (�−1(τ ))√

τ
= f (u)√

�(u)
=

√
f (u)√

u
showing in view of (27) that these quotient functions with positive

7
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arguments τ and u, respectively, are both monotonically increasing. Consequently, we have
f (�−1(Ct))√

Ct
� f (�−1(t))√

t
for C > 1. Both facts imply together (33).

Moreover, condition (27) means that the variational inequality condition determined by
the index function f is not too strong, i.e. the decay rate of f (t) → 0 as t → 0 is not faster
than the corresponding decay rate of

√
t . A sufficient condition for that is the concavity of

f 2 which is equivalent to condition (10). From remark 1 we learned that condition (27) is
satisfied for the function f from proposition 1 whenever q = 2. By the same arguments it
follows that this remains true for all 2 � q < ∞.

We wish to point out that (18), (19) and (20) get weaker for a larger smoothness index
ν, which corresponds to results in Hilbert space (see, e.g., [5]), where—as here—in the case
ν = 1 a Lipschitz condition suffices to prove optimal convergence rates. In the case of a
general index function f , we have to restrict ourselves to the strongest case in (18), (19) and
(20) corresponding to ν = 0.

Note that q-convexity of X is not required for the results of theorem 1. If X is q-convex,
then inequality (4) implies

‖x̃ − x‖q = O
(
δ

2ν
ν+1
)
, as δ → 0

in case (i) of theorem 1 and

‖x̃ − x‖q = O(f 2(�−1(δ))) = O

(
δ2

�−1(δ)

)
, as δ → 0

in case (ii) of theorem 1.

Proof. To show (i), observe that under the assumption (9) we get, with the notation T = F ′(x†),∥∥xδ
k+1 − x0

∥∥p − ‖x† − x0‖p = p�p

(
x† − x0, x

δ
k+1 − x0

)
+ p

〈
Jp(x† − x0), x

δ
k+1 − x†〉

� pDx0
p

(
x†, xδ

k+1

) − pβDx0
p

(
x†, xδ

k+1

)(1−ν)/2 ∥∥T (xδ
k+1 − x†)∥∥ν

� pDx0
p

(
x†, xδ

k+1

)
− pβ

(
εDx0

p

(
x†, xδ

k+1

)
+ C

(
ε,

ν + 1

2

)∥∥T (xδ
k+1 − x†)∥∥2ν/(ν+1)

)
(34)

with ε > 0 to be chosen sufficiently small later on,

C(ε, 1) = 1,

and

C(ε, μ) = max

{
1, φ

((
ε

1 − μ

)1/μ
)}

= max

{
1,

μ

(1 − μ)(μ+1)/μ
ε−(1−μ)/μ

}
for μ ∈ (0, 1), where φ(λ) = λμ−ε

λ
so that

λμ � ε + C(ε, μ)λ for all λ > 0. (35)

By minimality in (3) we have for any solution x† ∈ Bρ(x0) of (1)∥∥Tk

(
xδ

k+1 − xδ
k

)
+ gk

∥∥r
+ αk

∥∥xδ
k+1 − x0

∥∥p

�
∥∥Tk

(
x† − xδ

k

)
+ gk

∥∥r
+ αk‖x† − x0‖p. (36)

8
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Combining (34) and (36) we get by the simple inequality (a − b)r + br � 1
2r−1 a

r

1

2r−1

∥∥T (xδ
k+1 − x†)∥∥r

+ αkp(1 − βε)Dx0
p

(
x†, xδ

k+1

)
�

∥∥Tk

(
x† − xδ

k

)
+ gk

∥∥r
+
(∥∥(Tk − T )

(
xδ

k+1 − x†)∥∥ +
∥∥Tk

(
x† − xδ

k

)
+ gk

∥∥)r
+ αkpβC

(
ε,

ν + 1

2

)∥∥T (xδ
k+1 − x†)∥∥2ν/(ν+1)

.

The terms on the right-hand side can be estimated by means of (18),∥∥Tk

(
x† − xδ

k

)
+ gk

∥∥ �
∥∥(Tk − T )

(
xδ

k − x†)∥∥ +
∥∥F (

xδ
k

) − F(x†) − T
(
xδ

k − x†)∥∥ + δ

� 2K
∥∥T (xδ

k − x†)∥∥c̃1+c̃3
Dx0

p

(
x†, xδ

k

)c̃2+c̃4 + δ (37)∥∥(Tk − T )
(
xδ

k+1 − x†)∥∥ � K
∥∥T (xδ

k+1 − x†)∥∥c̃1
∥∥T (xδ

k − x†)∥∥c̃3
Dx0

p

(
x†, xδ

k+1

)c̃2
Dx0

p

(
x†, xδ

k

)c̃4

(38)

which, together with the simple inequality (a + b)r � 2r−1(ar + br), yields

1

2r−1

∥∥T (xδ
k+1 − x†)∥∥r

+ αkp(1 − βε)Dx0
p

(
x†, xδ

k+1

)
� (1 + 2r−1)

(
2K

∥∥T (xδ
k − x†)∥∥c̃1+c̃3

Dx0
p

(
x†, xδ

k

)c̃2+c̃4 + δ
)r

+ 2r−1
(
K
∥∥T (xδ

k+1 − x†)∥∥c̃1
Dx0

p

(
x†, xδ

k+1

)c̃2
∥∥T (xδ

k − x†)∥∥c̃3
Dx0

p

(
x†, xδ

k

)c̃4
)r

+ αkpβC

(
ε,

ν + 1

2

)∥∥T (xδ
k+1 − x†)∥∥2ν/(ν+1)

.

Applying the estimate

aζ b � ε̃a + C(ε̃, 1 − ζ )b1/(1−ζ ) (39)

for ζ ∈ (0, 1], that follows from (35) with λ := b1/(1−ζ )

a
and μ = 1 − ζ to the last term, and

ab � 1
2a2 + 1

2b2 to the second term on the right-hand side, we get(
1

2r−1
− ε̃

)∥∥T (xδ
k+1 − x†)∥∥r

+ αkp(1 − βε)Dx0
p

(
x†, xδ

k+1

)
(40)

� (1 + 2r−1)
(
2K

∥∥T (xδ
k − x†)∥∥c̃1+c̃3

Dx0
p

(
x†, xδ

k

)c̃2+c̃4 + δ
)r

(41)

+
2r−1Kr

2

∥∥T (xδ
k+1 − x†)∥∥2rc̃1

Dx0
p

(
x†, xδ

k+1

)2rc̃2 (42)

+
2r−1Kr

2

∥∥T (xδ
k − x†)∥∥2rc̃3

Dx0
p

(
x†, xδ

k

)2rc̃4 (43)

+ C

(
ε̃,

r(ν + 1) − 2ν

r(ν + 1)

)(
αkpβC

(
ε,

ν + 1

2

)) r(ν+1)

r(ν+1)−2ν

, (44)

where we choose ε̃ < 1
2r−1 . Considering (40) and (44) and neglecting the rest (which is just an

estimate of the nonlinearity error) for a moment, we expect that (26) can be obtained, which

we prove as follows: dividing (40)–(44) by α
r(ν+1)

r(ν+1)−2ν

k+1 , using (21), (19) and (22), and defining

γk := max

⎧⎨
⎩
∥∥T (xδ

k − x†)∥∥r

α
r(ν+1)

r(ν+1)−2ν

k

,
Dx0

p

(
x†, xδ

k

)
α

2ν
r(ν+1)−2ν

k

⎫⎬
⎭ ,

9
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we get the following estimate:

min

{
1

2r−1
− ε̃, p(1 − βε)

}
γk+1 � (1 + 2r−1)2r−1(2K)rĈ

r(ν+1)

r(ν+1)−2ν γ
c̃1+c̃3+(c̃2+c̃4)r
k

+
2r−1Kr

2
γ

2(c̃1+rc̃2)
k+1 +

2r−1Kr

2
Ĉ

r(ν+1)

r(ν+1)−2ν γ
2(c̃3+rc̃4)
k

+ C(ε̃,
r(ν + 1) − 2ν

r(ν + 1)
)

(
pβC

(
ε,

ν + 1

2

)) r(ν+1)

r(ν+1)−2ν

Ĉ
r(ν+1)

r(ν+1)−2ν +
(1 + 2r−1)2r−1

τ r
.

Therewith we get a recursive estimate of the form(
1 − Aγ

2(c̃1+rc̃2)−1
k+1

)
γk+1 � B

(
γ

c̃1+c̃3+(c̃2+c̃4)r−1
k + γ

2(c̃3+rc̃4)−1
k

)
γk + c, (45)

where c can be made small by making β small and τ large.
From this we can now derive an induction step of the form

γk � γ̄ ⇒ γk+1 � γ̄ (46)

as follows: using (20) and the fact that A and B will be small if K is small, we can first of all
conclude that for γ̄ , ζ̄ sufficiently small, the function

h(γ ) : (0, γ̄ ) → (0, ζ̄ )

γ 	→ (1 − Aγ 2(c̃1+rc̃2)−1)γ

is strictly monotonically increasing and invertible with

h−1(ζ ) � 2ζ.

By using the induction hypothesis γk � γ̄ with a possibly reduced value of γ̄ , we can achieve
that the right-hand side of (45) is smaller than ζ̄ so that by applying h−1 to both sides of (45),
we can conclude

γk+1 � 2B
(
γ

(c̃1+c̃3)+(c̃2+c̃4)r−1
k + γ

2(c̃3+c̃4r)−1
k

)
γk + 2c

� 2B(γ̄ (c̃1+c̃3)+(c̃2+c̃4)r−1 + γ̄ 2(c̃3+c̃4r)−1)γ̄ + 1
2 γ̄ , (47)

where we use the fact that we can make β small and τ large so that c <
γ̄

4 . Now we use (20)
again to achieve

2B(γ̄ (c̃1+c̃3)+(c̃2+c̃4)r−1 + γ̄ 2(c̃3+rc̃4)−1) � 1
2

by possibly decreasing γ̄ . Inserting this into (47) yields γk+1 � γ̄ .
Applying (46) as an induction step we can conclude that

γk � γ̄ for all k � k∗
and therewith, by possibly decreasing γ̄ to below ρ̄2,

Dx0
p

(
x†, xδ

k

)
� γkα

2ν
r(ν+1)−2ν

k � γ̄ � ρ̄2 for all k � k∗

provided γ0 and Dx0
p (x†, x0) are sufficiently small. By the assumption B�

ρ̄ (x†) ⊆ B, this yields
well definedness of the iterates. Moreover,

Dx0
p

(
x†, xδ

k∗

)
� γ̄ α

2ν
r(ν+1)−2ν

k∗ � γ̄ (τδ)
2ν
ν+1 .

In the general case (ii) i.e. with the variational inequality (11), we have to apply somewhat
different techniques as compared to the special case (9). We get, in place of (34), the estimate∥∥xδ

k+1 − x0

∥∥p − ‖x† − x0‖p

= p�p

(
x† − x0, x

δ
k+1 − x0

)
+ p

〈
Jp(x† − x0), x

δ
k+1 − x†〉

� pDx0
p

(
x†, xδ

k+1

) − pDx0
p

(
x†, xδ

k+1

)1/2
f

(∥∥F ′(x†)
(
xδ

k+1 − x†)∥∥2

D
x0
p

(
x†, xδ

k+1

)
)

, (48)

10
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which together with (36)–(38) implies

1

2r−1

∥∥T (xδ
k+1 − x†)∥∥r

+ αkpDx0
p

(
x†, xδ

k+1

)
� (1 + 2r−1)

(
2K

∥∥T (xδ
k − x†)∥∥ + δ

)r
+

2r−1Kr

2

∥∥T (xδ
k+1 − x†)∥∥r

+
2r−1Kr

2

∥∥T (xδ
k − x†)∥∥r

+ αkpDx0
p

(
x†, xδ

k+1

)1/2
f

(∥∥T (xδ
k+1 − x†)∥∥2

D
x0
p

(
x†, xδ

k+1

)
)

in place of (40)–(44), which by moving the second term on the right-hand side to the left-hand
side, using Kr < 2

2r−1 and (23), yields an inequality of the form

trk+1 + αkd2
k+1 � κtrk + m

(
ϕ−1

r (αk)
)r

+ Mαkdk+1f

(
t2k+1

d2
k+1

)
(49)

for all k � k∗ − 1, where we use the abbreviations

dk = Dx0
p (x†, xδ

k )
1/2,

tk = ∥∥T (xδ
k − x†)∥∥ , (50)

κ = 2r (1 + 2r−1)2r−1 + 2r−1/2

c̃
Kr = CκK

r,

m = (1 + 2r−1)2r−1

τ r c̃
,

M = p

c̃
, (51)

c̃ = min

{
1

2r−1
− 2r−1Kr

2
, p

}
.

Now we prove by induction that for all k � k∗ (or in the case δ = 0 for all k ∈ N)

dk � C1f
(
�−1(ϕ−1

r (αk)
))

(52)

tk � C2ϕ
−1
r (αk) (53)

where C2 is sufficiently large so that (cf (30))

Ĉϕ �
(
2
(
κ + m

/
Cr

2

))−1/r
, C̃ϕ � C2

2M
(54)

and C1 :=
√

Cr
2

min{1,Ĉ} so that

C2
1 Ĉ � Cr

2, C2
1 � Cr

2 . (55)

For this purpose, observe that (49) together with the induction hypothesis implies

trk+1 + αkd2
k+1 �

(
κCr

2 + m
)(

ϕ−1
r (αk)

)r
+ Mαkdk+1f

(
t2k+1

d2
k+1

)
. (56)

We distinguish between two cases:

if
(
κCr

2 + m
)(

ϕ−1
r (αk)

)r � Mαkdk+1f
(

t2k+1

d2
k+1

)
, we get from (56)

trk+1 + αkd2
k+1 � 2Mαkdk+1f

(
t2k+1

d2
k+1

)
. (57)

11
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Since in the case dk+1 = 0 (and therewith tk+1 = 0) and in the case tk+1 = 0
(
and therewith

dk+1 = 0 by d2
k+1 � 2Mdk+1f

( t2k+1

d2
k+1

))
, the assertions (52) and (53) trivially hold for k replaced

by k + 1, we may assume w.l.o.g. that dk+1 �= 0 and tk+1 �= 0. Multiplying (57) with tk+1 and
dividing by d2

k+1 we get

t2k+1

d2
k+1

tr−1
k+1 + αktk+1 � 2Mαk�

(
t2k+1

d2
k+1

)
,

which implies

�

(
t2k+1

d2
k+1

)
tr−1
k+1 � 2Mαk

with, according to (27), the monotonically increasing function

� : u 	→
√

u

f (u)
= u

�(u)

and

tk+1 � 2M�

(
t2k+1

d2
k+1

)
i.e. �−1

(
tk+1

2M

)
� t2k+1

d2
k+1

, (58)

consequently

�

(
�−1

(
tk+1

2M

))
tr−1
k+1 � 2Mαk.

Since �
(
�−1

(
t
C

))
t r−1 = C�−1

(
t
C

)
t r−2 = ϕr

(
t
C

)
Cr−1, this implies

tk+1 � 2Mϕ−1
r ((2M)2−rαk) (59)

from which by (58) we get

d2
k+1 � t2k+1

�−1
( tk+1

2M

) = (2M)2

(
f

(
�−1

(
tk+1

2M

))2

� (2M)2 (f (�−1(ϕ−1
r ((2M)2−rαk))

)2
. (60)

Otherwise, if
(
κCr

2 + m
)(

ϕ−1
r (αk)

)r � Mαkdk+1f
( t2k+1

d2
k+1

)
, we get from (56)

trk+1 + αkd2
k+1 � 2

(
κCr

2 + m
)(

ϕ−1
r (αk)

)r
. (61)

From (59)–(61), using the identity

f (�−1
(
ϕ−1

r (α)︸ ︷︷ ︸
=:z

) = z√
�−1(z)

= zr/2 1√
zr−2�−1(z)

= 1√
ϕr(z)

zr/2 = 1√
α

(
ϕ−1

r (α)
)r/2

and (21), we see that in order to complete the induction proof of (52), (53), it suffices to show

ϕ−1
r (α) � Ĉϕϕ−1

r (α/Ĉ) ∀0 < α � α0, (62)

ϕ−1
r (α) � C̃ϕϕ−1

r (α/C̃) ∀0 < α � (2M)r−2α0, (63)

and use (54), (55). By the definition of ϕr , (62) can be concluded from (28) as follows: with
Ĉϕ =

√
Ĉr Ĉf , Ĉr = ĈĈ2−r

ϕ (cf (30)), λ = Ĉϕϕ−1
r (α/Ĉ), t = �−1(λ)/Ĉr , we have for any

12
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α ∈ (0, α0]:

f (Ĉr t) � Ĉf f (t) ⇔ �(Ĉr t)︸ ︷︷ ︸
λ

�
√

Ĉr Ĉf︸ ︷︷ ︸
=Ĉϕ

�(t)

⇔ �−1(λ/Ĉϕ) � t = 1

Ĉr

�−1(λ)

⇔ (λ/Ĉϕ)r−2�−1(λ/Ĉϕ) � 1

Ĉr Ĉr−2
ϕ

λr−2�−1(λ)

⇔ Ĉr Ĉ
r−2
ϕ︸ ︷︷ ︸

=Ĉ

ϕr(λ/Ĉϕ)︸ ︷︷ ︸
=α/Ĉ

� ϕr(λ)

⇔ ϕ−1
r (α) � λ = Ĉϕϕ−1

r (α/Ĉ),

where we have used the fact that the functions ϕr , � as well as their inverses are strictly
monotonically increasing. Analogously, (63) follows from (29). Therewith, the induction
proof of (52), (53) is finished.

The estimates (52), (53) immediately yield (32).
Inserting (23) into (52) for k = k∗ directly yields with (33)

dk∗ � C1f
(
�−1

(
ϕ−1

r (αk∗)
)

� C1f (�−1(τδ)
)

� C1 max{√τ , 1}f (�−1(δ))

= C1 max{√τ , 1}�(�−1(δ))√
�−1(δ)

= C1 max{√τ , 1} δ√
�−1(δ)

.

This provides us with the convergence rate assertion (31) and completes the proof of (ii). �

Corollary 1. Let the assumptions of propositions 2 and 1 with

q = p = 2,

and

∀R � R̂ : d
(
Ĉf Ĉ−1/p

r R
)

� Ĉf d(R), (64)

∀R � R̃ : d
(
C̃f C̃−1/p

r R
)

� C̃f d(R), (65)

with (30) hold, where

R̂ = 
−1
(
�−1

(
Ĉϕϕ−1

r (α0)
)/

Ĉr

)
, R̃ = 
−1

(
�−1

(
C̃ϕϕ−1

r ((2M)r−2α0)
)/

C̃r

)
.

Moreover, assume that

c̃1 = c̃3 = 1
2 , c̃2 = c̃4 = 0,

and K is sufficiently small in (18).
Then, with the a priori choice (23), we obtain convergence rates (31), (32) with f as in

(17).

Proof. The assertion follows by a combination of part (ii) of theorem 1, proposition 1 and
the fact that (28), (29) can be concluded from (64), (65): with R = 
−1(t) we get for any
t ∈ (0, t̂]:

f (Ĉr t)

f (t)
= d(
−1(Ĉr t))

d(R)
=

(
(d(
−1(Ĉr t))/
−1(Ĉr t))

p

(d(R)/R)p

)1/p

−1(Ĉr t)

R

=
(

Ĉr t

t

)1/p

−1(Ĉr t)


−1(t)
= Ĉ1/p

r


−1(Ĉr t)


−1(t)
� Ĉf ,

13
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since we have the equivalences


−1(Ĉr t) � Ĉf Ĉ−1/p
r 
−1(t) ⇔ Ĉr t � 


(
Ĉf Ĉ−1/p

r 
−1(t)
)

⇔ Ĉr
(R) � 

(
Ĉf Ĉ−1/p

r R
)

⇔ Ĉr (d(R)/R)p �
(
d
(
Ĉf Ĉ−1/p

r R
)/(

Ĉf Ĉ−1/p
r R

))p
⇔ Ĉ

p

f d(R)p � d
(
Ĉf Ĉ−1/p

r R
)p

,

where we have used the fact that 
−1 is strictly decreasing. Analogously we get (29). Note
that (27) is automatically satisfied for f defined by (17), see remark 1. Moreover, in the
case xδ

k+1 − x† ∈ N (F ′(x†)) that is not covered by proposition 1, we can conclude from
proposition 2.1 in [17] and c̃1 = c̃3 = 1

2 , c̃2 = c̃4 = 0 as well as K sufficiently small in (18)
that xδ

k+1 solves (1). �

4. Convergence rates with a posteriori parameter choice

If the exponent ν in the source condition is not known, we require a nonlinearity assumption
that corresponds to the strongest case ν = 0 in (18)–(20), namely the tangential cone condition

‖F(x) − F(x̄) − F ′(x)(x − x̄)‖ � ctc‖F(x) − F(x̄)‖ ∀x, x̄ ∈ B (66)

for some 0 < ctc < 1, ρ > 0. Note that (18) for ν = 0 with K sufficiently small becomes (66)
at x = x† with ctc = K

1−K
.

Therewith, we can prove convergence rates with a posteriori choices of the regularization
parameters αk

σ‖gk‖ �
∥∥Tk

(
xδ

k+1(αk) − xδ
k

)
+ gk

∥∥ � σ‖gk‖ (67)

(cf [6]), and of the stopping index k∗ by the discrepancy principle:

k∗(δ) = min
{
k ∈ N :

∥∥F (
xδ

k

) − yδ
∥∥ � τδ

}
. (68)

Proposition 3. Assume that a solution x† to (1) exists, that F is weakly sequentially closed
(see, e.g., (11), (12) in [18]), and satisfies (64) with ctc sufficiently small

ctc < σ < σ < 1.

Moreover, let τ be chosen sufficiently large so that

ctc +
1 + ctc

τ
� σ and ctc <

1 − σ

2
, (69)

and let x0 be close enough to x† so that Dx0
p (x†, x0) is sufficiently small. Additionally, assume

that either

(a) F ′(x) : X → Y is weakly closed for all x ∈ D(F ) and Y reflexive
or

(b) D(F ) is weakly closed

and

δ <
‖F(x0) − yδ‖

τ
.

Then for all k � k∗(δ) − 1 with k∗(δ) according to (68), the iterates

xδ
k+1 :=

{
xδ

k+1(αk), with αk as in (67) if
∥∥Tk

(
x0 − xδ

k

)
+ gk

∥∥ � σ‖gk‖
x0 else

are well defined.

14
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Proof. For well definedeness and convergence without rates, as well as the fact that the iterates
remain in B, see theorem 3 in [18]. Note that conditions (a) or (b) guarantee the existence of
αk according to (67) whenever required for the method. �

Theorem 2. Let the assumptions of proposition 3 be satisfied.

(i) Under a variational inequality (9) we obtain optimal convergence rates

Dx0
p (x†, xk∗) = O

(
δ

2ν
ν+1
)

as δ → 0. (70)

(ii) Under a variational inequality (11) we obtain optimal convergence rates

Dx0
p (x†, xk∗) = O(f 2(�−1(δ))) = O

(
δ2

�−1(δ)

)
as δ → 0 (71)

with � as in (24).

Proof. The stopping index k∗(δ) according to (68) is finite, since on one hand, the case that∥∥Tk

(
x0 − xδ

k

)
+ gk

∥∥ < σ ‖gk‖ and therewith xδ
k+1 := x0 can happen at most every second step:

xδ
k+1 = x0 ⇒ ∥∥Tk+1

(
x0 − xδ

k+1

)
+ gk+1

∥∥ = ‖gk+1‖ � σ ‖gk+1‖ ,

so αk+1 can be chosen as in (67) (with k replaced by k + 1). On the other hand, in steps where
αk is chosen as in (67), the residual norm decreases by a factor of σ+ctc

1−ctc
which is smaller than

1 by (69):

‖gk+1‖ = ∥∥Tk

(
xδ

k+1 − xδ
k

)
+ gk + F

(
xδ

k+1

) − F
(
xδ

k

) − Tk

(
xδ

k+1 − xδ
k

)∥∥
� σ ‖gk‖ + ctc

∥∥F (
xδ

k+1

) − F
(
xδ

k

)∥∥
� (σ + ctc) ‖gk‖ + ctc ‖gk+1‖ .

Hence,

‖gk‖ �
(

σ + ctc

1 − ctc

)[k/2]

� τδ

for k sufficiently large.
Estimates (34), (36), together with (66), (2), (67), (68), yield

σ r ‖gk‖r + αk

∥∥xδ
k+1 − x0

∥∥p �
(

ctc +
1 + ctc

τ

)r

‖gk‖r + αk‖x† − x0‖p (72)

for all k � k∗(δ) − 1, provided xk ∈ Bρ(x0).
Inserting (34) into (72) and taking into account (69), (66), we get

(1 − βε)Dx0
p

(
x†, xδ

k+1

)
� βC

(
ε,

ν + 1

2

) (
(1 + ctc)

∥∥F (
xδ

k+1

) − F(x†)
∥∥)2ν/(ν+1)

(73)

in the case αk is chosen according to (67). Hence, with ε < β−1, for k = k∗−1 the discrepancy
principle (68) yields the optimal rate

Dx0
p

(
x†, xδ

k∗

)
�

βC
(
ε, ν+1

2

)
1 − βε

((1 + ctc)(1 + τ))2ν/(ν+1) δ2ν/(ν+1),

since by the signal to noise ratio assumption δ < ‖F(x0) − yδ‖/τ we can exclude the case
xδ

k∗ = x0, i.e. the case that αk∗−1 is not chosen according to (67).
In the general case (11) we get, in place of (34), (73), the estimates (48) and

Dx0
p

(
x†, xδ

k+1

)1/2 � f

(
(1 + ctc)

2
∥∥F (

xδ
k+1

) − F(x†)
∥∥2

D
x0
p

(
x†, xδ

k+1

)
)
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respectively. Hence, with k = k∗ − 1, using (66) and (68) we get

Cδ = Cδ

D
x0
p

(
x†, xδ

k∗

)1/2 Dx0
p

(
x†, xδ

k∗

)1/2

� Cδ

D
x0
p

(
x†, xδ

k∗

)1/2 f

(
C2δ2

D
x0
p

(
x†, xδ

k∗

)
)

= �

(
(Cδ)2

D
x0
p

(
x†, xδ

k∗

)
)

with C := (1 + ctc)(1 + τ) so taking the inverse of � on both sides, we get

Dx0
p

(
x†, xδ

k∗

)
� C2δ2

�−1(Cδ)
� C2 δ2

�−1(δ)
,

since C > 1 and �−1 is strictly monotonically increasing. �

Corollary 2. Under the assumptions of propositions 3, 1 with

q = p = 2,

we obtain convergence rates (71), with f as in (17).

Remark 3. Note that proposition 1 together with corollaries 1, 2 for p = q = 2 gives a
relation between logarithmic decay of the distance function and logarithmic convergence rates
(see, e.g., [14, 15]), which are particularly important for exponentially ill-posed problems.
For

d(R) = ln(R)−N (R > e),

with some N > 0, we get 
(R) = 1
ln(R)2NR2 � 1

R
; hence with Č = 2 max{1, c−1/2}, we

obtain f (λ) = Č ln(
−1(λ))−N � Č ln
(

1
λ

)−N
, so �(λ) = f (λ)

√
λ � Č ln

(
1
λ

)−N√
λ, which

implies for the quotient terms occurring in the convergence rates of corollaries 1 and 2

δ2

�−1(δ)
= [�(�−1(δ))]2

�−1(δ)
= [f (�−1(δ))]2 � Č2 ln

(
1

�−1(δ)

)−2N

� C̄N ln

(
1

δ

)−2N

for some C̄N > 0. Here we have considered only the case of sufficiently large R > 0 which
corresponds with sufficiently small noise levels δ > 0.

5. Two parameter identification examples

In this section, we consider two model problems that have previously been studied in the
Hilbert space setting, e.g, in [5–7, 16, 22], and in the Banach space setting in [18]. Since in
both examples, X and Y will be defined by Lebesgue or Sobolev–Slobodeckij spaces, we first
of all quote some facts on these spaces, see, e.g., [2, 8, 24, 26].

Lemma 1. Let � ⊆ R
dim be a smooth domain.

(a) LP (�), Wm,P (�) are

{
2-convex and P -smooth for 1 < P � 2
P -convex and 2-smooth for 2 � P < ∞.

(b) The duality mapping Jp is given by

Jp(x) = ‖x‖p−P

X |x|P−1sgn(x) in X = LP (�), (74)

Jp(x) = ‖x‖p−P

X (−∇(|∇x|P−2∇x) + |x|P−1sgn(x))

in X = W 1,P (�) if
∂x

∂n
= 0 on ∂�, (75)
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Jp(x) = ‖x‖p−P

X (�(|�x|P−2�x) − ∇(|∇x|P−2∇x) + |x|P−1sgn(x))

in X = W 2,P (�) if
∂x

∂n
= �x = 0 on ∂�, (76)

provided that W 2,p(�) is equipped with the norm

‖x‖W 2,p(�) =
(∫

�

(|�x|P + |∇x|P + |x|P ) dx

)1/P

.

Proof. Referring to e.g. [2, 8, 24, 26] for (a), and (74), we only show (75), here. If ∂x
∂n

= 0 on
∂�, then with x∗ := Jp(x) as claimed in (75), we indeed have

〈x∗, x〉X∗,X =
∫

�

‖x‖p−P

X (−∇(|∇x|P−2∇x) + |x|P−1sgn(x))x dx

= ‖x‖p−P

X

∫
�

(|∇x|P + |x|P ) dx = ‖x‖p

X,

where we have used integration by parts. Assertion (76) can be shown analogously. �

As a first example, we consider identification of the space-dependent coefficient c in the
elliptic boundary value problem

−�u + cu = f in � (77)

u = 0 on ∂� (78)

from measurements of u in � (note that inhomogeneous Dirichlet boundary conditions can be
easily incorporated into the right-hand side f if necessary). Here � ⊆ R

dim, dim ∈ {1, 2, 3}
is assumed to be a smooth bounded domain. The forward operator

F : D(F ) ⊆ X → Y (79)

and its derivative as well as the Banach space adjoint can be written as

F(c) = A(c)−1f,

F ′(c)h = −A(c)−1(h · F(c)), F ′(c)∗w = −F(c) · (A(c)−1w),

with

A(c) : H 2(�) ∩ H 1
0 (�) → L2(�)g

u → −�u + cu.

It was shown in [18] that for

X = LP (�), Y = LR(�) (80)

with

P ∈ (1,∞), P � dim

2
, R >

P

P − 1
, R � 2dimP

dimP + 2P − 2dim
(81)

the assumptions on F in theorem 1 and with

P ∈ (1,∞), R ∈ [2,∞],
2R

R − 2
� P (82)

the assumptions on F in theorem 2 are satisfied. Here, the domain of F is set to

D(F ) = {c ∈ LP (�) | ∃ĉ ∈ L∞(�), ĉ � 0 a.e. : ‖c − ĉ‖LP (�) � γ̃ }, (83)

17
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where γ̃ < min{1/ ‖id‖H 1
0 (�)→L2P/(P−1)(�) , 1/ ‖id‖W 2,k∩H 1

0 (�)→LPk/(P−k)(�)} for some

k ∈ [ã, b̃] ∩ (1,∞) with

ã = max{2dim/(dim + 2), dimR/(dim + 2R)},
(84)

b̃ = min{P, 2dim/ max{0, dim − 2}, R, PR/(P + R)}
and (k < P ∧ R < ∞) or k > dim/2

in the first case (81), and to

D(F ) = {c ∈ L∞(�) | γ̂ � c � 0 a.e.} (85)

for some γ̂ > 0 in the second case (82).
Therewith the benchmark source condition (5) is equivalent to

w = −‖c† − c0‖p−P

LP A(c†)(|c† − c0|P−1sgn(c† − c0)) ∈ Y ∗ = LR/(R−1)(�). (86)

Choosing P as small as possible and R as large as possible corresponds to formulating the
inverse problem as weakly ill-posed as possible and therewith obviously also to making the
source condition (86) as weak as possible. Note that indeed the noise level is in practice often
given in the L∞ norm. Under conditions (81), we might, e.g., set

R = ∞, P = dim/2 + ε, k := max{2dim/(dim + 2), P },
for ε > 0 arbitrarily small, and under conditions (82)

R = ∞, P = 2.

This allows for a relaxation as compared to the Hilbert space case P = R = 2.
In the second example we deal with the identification of the space-dependent coefficient

a in

−∇(a∇u) = f in � (87)

u = 0 on ∂� (88)

from measurements of u, where again � ⊆ R
dim, dim ∈ {1, 2, 3} is assumed to be a smooth

bounded domain. Using the differential operator

A(a) : H 2(�) ∩ H 1
0 (�) → L2(�)

u → −∇(a∇u)

we can write the forward operator, its derivative, as well as the Banach space adjoint as

F(a) = A(a)−1f,

F ′(a)h = A(a)−1(∇(h∇F(a))), F ′(a)∗w = −∇F(a) · ∇(A(a)−1w).

It has been shown in [18] that with

D(F ) = {a ∈ X|a � α} (89)

with α > 0,

X = W 1,Q(�), Y = LR(�) (90)

under conditions

Q > dim, Q ∈ (1,∞), Q � R

R − 1
,

R � 2dim

max{0, dim − 2} and (R < ∞ ∨ dim < 2) ,

the assumptions on F in propositions 2, 3, theorems 1, 2, and corollaries 1, 2 are satisfied.
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For this example, the benchmark source condition (5) is equivalent to

∃w ∈ Y ∗ = LR/(R−1)(�) : −∇F(a†) · ∇(A(a†)−1w)

= ‖e0‖p−Q

W 1,Q (−∇(|∇e0|Q−2∇e0) + |e0|Q−1sgn(e0)), (91)

as well as

∂e0

∂n
= 0 on ∂�, (92)

for

e0 = a† − a0,

which amounts to a transport equation for A(a†)−1w. In the 1D case � = (0, L), condition
(91) becomes

w = −‖e0‖p−Q

W 1,QA(a†)

(∫ ·

0

−(|e0
x |Q−2e0

x

)
x

+ |e0|Q−1sgn(e0)

F (a†)x
dx

)

∈ Y ∗ = LR/(R−1)(�);
(93)

hence, the benchmark source condition is satisfied if F(a†)x is bounded away from zero as
well as

e0
x(0) = e0

x(L) = 0 and e0 ∈ W 3,R/(R−1)(�). (94)

Here we may, e.g. for arbitrarily small ε > 0, set

R = ∞, Q = 1 + ε if dim = 1, (95)

R = 1

ε̃
, Q = 2 + ε if dim = 2, (96)

with ε̃ ∈ (0, 1 − 1/(2 + ε)] arbitrarily small

R = 6, Q = 3 + ε if dim = 3. (97)

In the case dim = 1, (94) can be directly compared to the Hilbert space situation Q = R = 2,
see, e.g., [5], and with (95) yields an obvious relaxation. Note that in the higher dimensional
case, the Hilbert space setting requires a higher order Sobolev space, namely Hs(�) with
s � 1 + dim/2 − dim/Q so that Hs(�) is continuously embedded in W 1,Q(�). The Hilbert
space benchmark source condition with s = 2 therefore becomes

−∇F(a†) · ∇(A(a†)−1w) = (�2e0 − �e0 + e0) and
∂e0

∂n
= �e0 = 0 on ∂�,

(where we have used (76) with p = P = 2), which is obviously stronger than (91), (92) with
(96) or (97), since it requires more knowledge on the boundary values of a† as well as a higher
order of differentiability.

Implementation of the IRGNM in Banach space requires numerical solution of the
minimization problem (3) with a linear operator Tk in each step. If we do so, e.g., by one
of the gradient-type methods devised in [2], we have to apply Tk as well as its Banach space
adjoint (which amounts to solving a linear PDE in our parameter identification examples) and
the duality mappings Jp, Jr, J ∗

p/(p−1) = J−1
p in each inner iteration. While Jp, Jr only involve

multiplication (and in example (87), (88) by (75) also differentiation), application of J−1
p in

example (87), (88) amounts to solving a PDE with the differential operator given by (75),
which is even nonlinear unless P = p = 2.
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6. Conclusions and remarks

In this paper, we provide convergence rate results for the IRGNM under approximate source
conditions with general index functions including Hölder and logarithmic rates. Both a priori
and a posteriori parameter choice strategies are studied.

Possible future research will be on the case of enhanced source conditions corresponding
to ν ∈ (1, 2] (cf [19, 20] for Tikhonov regularization in Banach space). Moreover, different
regularization terms in place of ‖x − x0‖p are of interest. Especially sparsity enhancing terms
like the L1 norm are not covered by the theory of this paper, since L1(�) is not a uniformly
convex space. For this purpose, new ideas will have to be developed and first of all well
definedeness and convergence without rates will have to be proven (see [18] for the case
of uniformly convex spaces). Like, e.g., in [1] and [17], one might also think of using a
general regularization method (in place of Tikhonov) in each Newton step (e.g. the Landweber
iteration from [24]).
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