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Abstract

Convergence rates results for the Tikhonov regularization of non-
linear ill-posed operator equations are missing, even for a Hilbert space
setting, if a range type source condition fails and if moreover nonlinear-
ity conditions of tangential cone type cannot be shown. This situation
applies for a deautoconvolution problem in complex-valued L?-spaces
over finite real intervals, occurring in a slightly generalized version in
laser optics. For this problem we show that the lack of applicable con-
vergence rates results can be overcome under the assumption that the
solution of the operator equation has a sparse Fourier representation.
Precisely, we derive a variational source condition for that case, which
implies a convergence rate immediately. The surprising observation is
that a sparsity assumption imposed on the solution leads to success,
although the used norm square is not known to be a sparsity promoting
penalty in the Tikhonov functional.
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1 Introduction

In the seminal paper [8], ENGL, KUNISCH and NEUBAUER achieved a break-
through for obtaining convergence rates for Tikhonov-regularized solutions
to ill-posed operator equations

F(x)=vy (1.1)

with nonlinear forward operators F' : D(F) C X — Y mapping between a
convex subset D(F) of a Hilbert space X and a Hilbert space Y, where ||-|| and
(-,+) denote norms and inner products, respectively, for both spaces X and
Y. Ill-posed equations (1.1) are mathematical manifestations of nonlinear
inverse problems with numerous applications in natural sciences, engineering
and finance.

Given an exact right-hand side y € F(D(F)) let 2T € D(F) be a cor-
responding solution to (1.1). Typically, only a noisy measurement of y is
available. By y° € Y we denote such a measurement and we assume that

Iy’ =yl <o (1.2)

for some noise level § > 0.
The Tikhonov regularization method consists in approximating the exact
solution z! by minimizers 2 of the Tikhonov functional

To(2) = |F(e) =" I* + ala - 2|*, =€ D(F). (1.3)

Here, Z € X is a reference element playing the role of an initial guess for
and a > 0 is the regularization parameter controlling the trade-off between
the data fidelity term ||F(x) — °||? and the penalty term ||z — Z||%. In [§]
estimates

|20 — 2f|| = O(\/g) as 0—0 (1.4)

for the solution error in terms of the noise level § were obtained, where the
regularization parameter o has to be chosen in the right way depending on



0. Such convergence rates results are of high interest for understanding the
behavior of regularization methods and also for comparing the performance
and efficiency of different methods.

In the present paper we deal with a concrete ill-posed nonlinear operator
F' arising in optical measurement setups for characterizing ultra-short laser
pulses. The operator is of autoconvolution-type and it is known that the con-
vergence rate results of [8] and also more recent results are not applicable.
Nevertheless, we derive an estimate (1.4) using a tailor-made proof. Starting
with the assumption that the exact solution z' has a sparse Fourier rep-
resentation we obtain a variational source condition, also called variational
inequality (cf. [16]) or variational smoothness assumption (cf. [10]), which is
known to imply the desired convergence rate immediately. In this context, it
seems to be a surprising observation that the assumption of a sparse solution
yields a convergence rate for the Tikhonov regularization of the deautocon-
volution problem, although the used penalty term is not sparsity promoting.
For approaches and results concerning the regularization with sparsity con-
straints we refer, for example, to the papers [19, 20, 22| and to corresponding
chapters and paragraphs in the monographs [18, 23, 24].

The structure of the paper is as follows: In Section 2 we introduce and dis-
cuss the considered autoconvolution operator F'. Then in Section 3 we present
an overview of existing convergence rates results for nonlinear operators and
comment on their non-applicability to our specific operator. Section 4 derives
a variational source condition for a slightly different operator and, based on
that result, in Section 5 we present and prove our main convergence rate
result for the autoconvolution operator F'.

2 Autoconvolution operators
Having in mind its application in laser optics, see e.g. [12], we are interested
in the autoconvolution operator F': L*(0,1) — L*(0,2) defined by
min(s,1)
[F(x)](s) == / (s —t)z(t)dt, se€(0,2). (2.1)
max(s—1,0)

Here L?(0,1) and L?(0,2) denote the Hilbert spaces of square integrable
Lebesgue measurable complex-valued functions on (0, 1) and (0,2), respec-
tively. If one interprets a function x € L?(0,1) as a function defined on the
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whole real line R with support contained in (0, 1), then the operator F' can
be written as

[F(z)](s) = /x(s —t)x(t)dt, seR, (2.2)
R

where the support of F/(z) (as a function on R) is contained in (0,2). This
is the usual autoconvolution operator on the real line, but restricted to func-
tions with support in (0, 1). The operator F', enriched with a device depen-
dent kernel function, plays an important role in the SD-SPIDER method
for characterizing ultra-short laser pulses (see [1, 3, 11]). Ill-posedness of F
has been shown in |9, 13] and [5]. Moreover, an algorithm for finding global
minimizers of the Tikhonov functional (1.3) has been presented in [21], see
also [1].

As a tool for proving our convergence rates result for Tikhonov’s regu-
larization method applied to this concrete operator F' we also need another
type of convolution operator. By * : L?(0,1) x L*(0,1) — L*(0, 1) we denote
the symmetric bilinear operator defined by

s

[z % Z](s) := /x(s —t)Z(t)dt + /a:(s +1—-t)z(t)dt, se(0,1). (2.3)

0

Interpreting the functions in L?(0,1) as 1-periodic functions on R, the oper-
ator * attains the form

1

[z % Z|(s) := /:c(s —t)z(t)dt, se(0,1), (2.4)

0

which is the usual convolution of periodic functions. The following lemma
shows that F' and % are closely related.

Lemma 2.1. Let A: L?(0,2) — L?(0,1) be the linear operator defined by
[Az](s) == z(s) + 2(s+ 1), s€(0,1). (2.5)
Then A is bounded with || A|| < v/2 and we have
AF(z) =z x*x

for all z € L*(0,1).



Proof. The boundedness follows from

HAzH?:/|z(t)+z(t+1)\2dtg/(2yz<t)|2+2\z(t+1)|2) dt = 2|22

and the equality of Ao I and * immediately follows from (2.1) and (2.3). [

For the sake of completeness we recall the convolution theorem for peri-
odic functions explicitly: Denote by (e®)),cz the canonical Fourier basis of
L?(0,1), that is,

e®(t) = exp(2mkti), te(0,1), (2.6)
and by x; := (z,e®) and 7, := (#,e®) the Fourier coefficients of x and 7,
respectively. Then
THT = Zxk i e®. (2.7)
kEZ

In addition to the original deautoconvolution problem (1.1) with operator
F : L?(0,1) — L*(0,2) from (2.1) we will also consider a modified deauto-
convolution problem with forward operator Ao F : L?(0,1) — L?(0,1) in
Section 4, where the operator A : L%*(0,2) — L*(0,1) has been introduced
in Lemma 2.1 by formula (2.5). Lemma 2.1 and the well-known convolution
theorem will be the relevant ingredients for our main convergence rate proof
in Section 5.

3 Existing convergence rates results are not ap-
plicable

The convergence rates result of [8] (see also [7, Theorem 10.4]) is based on four
assumptions: The operator F' has to be Fréchet differentiable on its domain

D(F). Denoting the Fréchet derivative at « € D(F) by F'(z) : X — Y
Lipschitz continuity of this derivative implying

|1F(E) - F(z) - F'(2)(i — 2)|| < g li—z|2  forall &zecD(F) (3.1)

is required. Moreover, the exact solution has to satisfy a source condition

ot — 2= F(2")w (3.2)



with some w € Y, and the source element w has to satisfy the smallness

condition
Lw| < 1. (3.3)

If all these assumptions are fulfilled and the regularization parameter is cho-
sen as a = a(d) ~ §, then the convergence rate (1.4) can be proven.

In case of our autoconvolution operator F' : L*(0,1) — L?*(0,2) with
D(F) = L?*(0,1) and Fréchet derivative

min(s,1)

P! (2)h](s) = 2 / w(s— ) ht)dt, s e (0,2),

max(s—1,0)

for x,h € L*(0,1) the Lipschitz condition (3.1) holds with L = 2, because
we have for all z,z € L*(0,1) that

IF(#) = F(x) = F'(2)(@ = 2)| = [|[F(@ - 2)|| < [|& - =]*.

If z = 0 is chosen as reference element in the Tikhonov functional (1.3),
which is the standard situation if no additional a priori information can
be provided, then the source condition (3.2) together with the smallness
condition (3.3) can only hold in the trivial case 2T = 0 as the following
Lemma 3.1 will show. Also for & # 0, (3.2) is hardly satisfied in combination
with (3.3) as was discussed in [5, Proposition 2.6].

Lemma 3.1. For F : L*(0,1) — L*(0,2) from (2.1) and & = 0 in (1.3) the
source condition (3.2) attaining the form

aﬂw:;/ﬁ@w@+w@, 0<t<l, wel?0,2),  (34)

can only hold together with the smallness condition (3.3) attaining the form
2lw| <1 (3.5)
if ot = 0.

Proof. The equation (3.4), the structure of which can simply be verified, can
be considered as a fixed point equation z' = Tz', where the linear operator 7'
mapping in L?(0,1) is contractive whenever (3.5) holds. Hence by Banach’s
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fixed point theorem ' = 0 is the uniquely determined solution of the fixed
point equation. The contractivity of T" becomes evident, because we have

/01 /01 w(s +t)|*ds dt = /01 (/tH1 |w(7')]2d7') dt < ||w|

and by the Cauchy Schwarz inequality

1,1 1/2
HTx*IIS(/ / |w<s+t>|2dsdt) o] < 2 ] "],
0 0

]

In the past 25 years the classical convergence rates result of [8] has been
extended and generalized in many different directions. On the one hand we
can replace (3.1) by a local nonlinearity condition of tangential cone type.
That is, we assume that

IF(2) = F(a") = F'(a") (@ — 2" < o(|F(2) = F@aN])  (3.6)

holds for all z € D(F) N B,(x"), where B,(z') is a ball around z! with
sufficiently small radius » > 0 and o : [0, 00) — [0, 00) is an index function,
i.e., a strictly increasing and continuous function with ¢(0)=0. Then the
source condition (3.2) yields convergence rates for Tikhonov regularization
without any smallness condition. The obtained rate function is not the square
root of the noise level but involves the index function o from (3.6). Such rates
results can also be extended to Tikhonov regularization in Banach spaces (cf.,
e.g., |4, 24]).

On the other hand, if a nonlinear operator F' satisfies (3.6) for some
index function o, but the source condition (3.2) fails, then the method of
approximate source conditions helps to compensate this deficit. Here one
considers the distance functions

d(R) = min{|z" — 2 — F'(2"* w| : w € Y, |w|| < R},

defined for r > 0, and obtains convergence rates depending on ¢ in (3.6) and
on the decay of d(R) for R — oo. In this context (3.2) serves as benchmark
source condition and d(R) measures its violation. Also these results can be
extended to Banach space settings (cf., e.g., [15, 4]).

In case of our autoconvolution operator F' a tangential cone type condition
(3.6) has not been verified up to now. Thus, extensions of the classical
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convergence rates result which rely on such conditions cannot be applied to
this operator.

Recently, based on the initial paper [16], it was shown that in particular
for nonlinear ill-posed problems in Hilbert and Banach spaces variational
source conditions can play a crucial role for obtaining convergence rates. This
modern tool combines the expression of solution smoothness with respect
to the forward operator F', previously expressed by source conditions like
(3.2), and the structure of nonlinearity of F' in a vicinity of the solution
o', previously expressed by conditions like (3.1) or (3.6). For the classical
Hilbert space situation of Tikhonov regularization with a penalty functional
of norm square type (cf. (1.3)) and error measure ||z° — x'||? such variational
source conditions attain the form

Blz—a'? < o =] —|la" = 2|* + (| F(2) = F@")])) ~ forall zeM.

(3.7)
Here /3 € (0, 1] is some constant, ¢ is a concave index function, and M C X
is a set which has to contain all Tikhonov minimizers z?, for all sufficiently
small §, where « is assumed to be chosen somehow for each §. Based on such
a variational source condition one obtains the convergence rate

lzg — 2" = O(p(8))  as 6 =0

(cf., e.g., |17] and for more general error measures [10| and [14]).

Variational source conditions (3.7) can be obtained from the Lipschitz
condition (3.1) in combination with the source condition (3.2) and the small-
ness condition (3.3) and also from the tangential cone type condition (3.6) in
combination with the source condition (3.2). But as mentioned above both
sets of conditions are not available for the autoconvolution operator F' under
consideration.

Nevertheless, in Section 5 we will derive a variational source condition
for F from (2.1) if 2T € L?(0,1) has a sparse Fourier representation. For
the sake of completeness let us mention at this point that in the past ten
years diverse convergence rates results for Tikhonov regularization of nonlin-
ear ill-posed problems under sparsity constraints have been published, also
exploiting the approach of variational source conditions (see [23, §3.3]). How-
ever, corresponding derivations of suitable variational source conditions rely
on tangential cone type nonlinearity conditions and therefore again do not
apply to our deautoconvolution problem. Thus, the only chance to obtain a
variational source condition for our F'is a tailor-made proof.



4 Rates for a modified deautoconvolution prob-
lem

Before we verify convergence rates result for the operator F' : L?(0,1) —
L?(0,2) defined by (2.1), we study the simpler situation of deconvolving
periodic functions. That is, we derive a variational source condition for the
operator A o F' with A from Lemma 2.1, which then yields a convergence
rate. Based on the variational source condition for A o F' we will derive a
variational source condition for F' in Section 5.

We only consider the case z = 0 in the Tikhonov function (1.3) and want
to obtain a variational source condition of the form

E(z,z") < ||z||* = ||l2t||> + ¢ ||AF(z) — AF(21)]] forall zeX (4.1)

for some ¢ > 0. Due to the non-injectivity of F as a consequence of F(x') =
F(—z') the norm square ||z — x']|? is not suitable as error measure E(z,z),
because with z = —zT the inequality (4.1) would imply ||2 z||* < 0. However,
a reasonable choice is
E(z,z") := (dist(z, S))? (4.2)
with the distance
dist(z, S) := inf ||z — ||

zfes
between x and S, where

S:={i' € X : AF(i") = AF(2")}.
Owing to the convolution theorem (2.7) we immediately see that
S={i'e X7l =] or &l = —af for all k € 7}, (4.3)
where the :%L and the :L‘L are the Fourier coefficients of Z' and ', respectively.

From this observation we can derive a more handy expression for dist(x, S).
First, we note that

(dist(z, S)) Zm1n{|$k - $k|2 |z + $k| }

keZ

again with x; and a:k denoting the Fourier coefficients of x and z', respec-
tively. Defining a sequence (& (x))rez by

1 ex_kxT >0,
gk(x):z{l’ f Re(zp)) > 0 (84

—1, else



a simple calculation shows that then
min{|z), — o2 |z + x2|2} = |zy, — Ex(z) z} |2

Thus,
(dist(x,8))* = _ ok — () xf > (4.5)

kEZ

Now we are ready to prove a variational source condition (4.1) for Ao F
for the error measure (4.2).

Proposition 4.1. Let 2t have a sparse Fourier representation, that is, only
N Fourier coefficients with respect to the basis (2.6) do not vanish. Then
the variational source condition (4.1) with error measure (4.2) and constant

c= 2N is satisfied.

Proof. Let = € L?(0,1) and denote by (z))rez and (z])rez the Fourier coef-
ficients of  and z, respectively. Define zf € S by

il =&(x)xl, ke,
with & (x) as in (4.4). The convolution theorem (2.7) then yields
IAF(2) — AF(a")|* = | AF (2) = AF(@")|* = ||(z — &") * (z + 21)|”
= Z | — &) al]” o + &(z) 2 .

keZ

A simple calculation shows that

|2, + () x}| > |
for all k € Z. Denoting by

[:={keZ:xl #0}

the support of 7 with cardinality N we thus obtain

JAF (@) — AFD|? 2 3 for — ula) af 2 e = 37 (2 — &) af) ]

kel kel
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and by applying the Cauchy Schwarz inequality and the triangle inequality
the estimate

|AF() ~ AR > <Z|<xk — &(a) xL)asM)

kel
2

> < 3 o= &) D)l

kel

[(#F,z — "),

1
N
On the other hand, we have

(dist(x, 8))* — [l|* + [[«¥]* = [lo — 2||* — ||=[* + [|Z"]|?
= —2Re (i, x — &)
< 2|zl 17,

completing the proof. O

5 Rates for the original deautoconvolution prob-
lem

Now we come back to our original autoconvolution operator F' from (2.1)
and use the variational source condition derived in Proposition 4.1 to obtain
a variational source condition

E(x,2") < ||z|]* = [|27]]? + ¢ ||F(z) — F(z")] forall ze M (5.1)

for F', where M will be an appropriate subset of L?(0,1).

At first we have to decide which error measure is to be used. As shown
in [12, §4] the operator equation (1.1) has exactly two solutions: z' and —a.
Thus, a reasonable error measure seems to be

E(z,2") = (dist(z, {z', —2'}))* = min{||z — 27|, ||z + «|*}. (5.2)

Proposition 5.1. Let 2! have a sparse Fourier representation, that is, only
N Fourier coefficients with respect to the basis (2.6) do not vanish. Then
there are balls B,(z") and B,(—z') with radius

ri= min |zl
kE€Z: x]#0
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around x' and —x', respectively, such that the variational source condition
(5.1) for the error measure (5.2) holds with

M = B,.(z") U B,(—z") and c=2V2N.
Proof. By Proposition 4.1 we have
dist(z, 5)? < ||lz|* — ||l2t||* + 2 VN | AF () — AF (a)|

for all z € L?(0,1). The set S has been described in (4.3). Now Lemma 2.1
immediately shows

|AF(z) — AF(2")|| < V2| F(x) — F(a")]].
To complete the proof it remains to verify the inequality
dist(z, {z, —2}) < dist(x, 9) (5.3)

for z € M.

The desired inequality (5.3) is obviously satisfied if Re (%5 z]) > 0 for all
k € Z and also if Re(T x}) < 0 for all k € Z (cf. (4.5)), where the z; and the
$L again denote the Fourier coefficients of  and z, respectively. Re(7; xL) >
0 is a consequence of ||z — zT|| < r, because this last inequality implies
|z — x}| < |f| for all k with z # 0. Thus, |z4|* — 2Re(Tx z}) < 0, which
yields Re(Zf 1) > 0. Analogously one obtains Re (% z}) < 0if ||lz+ | < 7.
Consequently (5.3) holds on the two balls B,(z') and B,(—xT). O

The following convergence rate result as a consequence of Proposition 5.1
is valid for an appropriate a priori parameter choice of the regularization
parameter « as well as for the a posteriori choice called sequential discrepancy
principle in [2|, for which we also refer to the paper [17, §4.2.1].

Corollary 5.2. Under the assumptions of Proposition 5.1 the Tikhonov min-
1MIZErs a:‘sa satisfy the convergence rate

dist(z?, {zf, —2'}) = (9(\/5) as 6 —0,

if the reqularization parameter « is chosen a priori as a = «a(d) ~ 6 or a
posteriori as o = a8, 1°) according to the sequential discrepancy principle.
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Proof. As a result of [8, Theorem 2.3| the Tikhonov minimizers accumulate
at 27 and —z' if § — 0. Thus, if J is small enough, all Tikhonov minimizers
lie in the set M on which the variational source condition holds (see Propo-
sition 5.1). The derivation of convergence rates from a variational source
condition with general non-negative error measures F can be found in [10,
Chapter 4] and for the sequential discrepancy principle in [17, Theorem 2]
and |2, Proposition 9. O

For a discussion of further details to Proposition 5.1 we recall that the
corresponding constant in the variational inequality (5.1) is ¢ = 2v2N.
Then for an a priori choice of the regularization parameter

cd <a(d) <ed

with fixed constants 0 < ¢ < ¢ < oo one obtains (e.g. along the lines of 10,
Proof of Theorem 4.11]) the error estimate

dist (a2, {a, —21}) < <2 4 & 2)1/2 N (% +4EN) PG s

c 2

This also yields
9 1/2
dist(z?, {xf, —z'}) < (— + 46) VNV, (5.5)
Cc

showing that the O-constant in the corollary does not grow faster than v/ N
if the number N of non-zero Fourier coefficients increases. The estimates
(5.4) and (5.5), however, are only valid for sufficiently small noise levels
0 < ¢ < 4, where the upper bound ¢ depends on r = min, _,, 2l £0 |x,1| such

that xi((s) € B,(z") U B.(=2a") for all § € (0,9].
Remark 5.3. From the above discussion it follows that for every element
ot € L?(0,1) with a sparse Fourier coefficient sequence (x,t)kez with respect

to the basis (2.6) there is a radius r > 0 such that for F' from (2.1) a
variational inequality

lo = 2|1 < [l=)|* = [la"* + ¢ | F(2) = F(z")|  forall x € B,(a7) (5.6)

is valid. Then from |23, Proposition 3.38| we derive the existence of a source
element w € L?(0,2) such that the source condition (3.4) holds. However, as
a consequence of Lemma 3.1 we always have 2 ||w] > 1.
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Remark 5.4. One can also obtain a variational source condition (and thus
rates) if the Fourier representation of 27 is not sparse. In case of the mapping
Ao F considered in Section 4 one obtains

B (dist(z, $))* < [l]|* — |27|* + (| AF(z) — AF(z1)])

for all z € L*(0,1) with some constant 3 € (0,1) and with the concave index
function

. 1 12 /
gp(t):érellg mg |z " +2tV2n+11], t>0, (5.7)

which is essentially determined by the decay of the Fourier coefficients of .
The proof of this result uses a similar technique as applied in |6, Theorem 5.2].

Along the lines of the present section one can obtain such a variational
source condition also for the operator F, but z! and —af are not longer
interior points of the set M on which the variational source condition holds.
Thus, one cannot be sure whether the Tikhonov minimizers belong to M,
which is an important prerequisite for obtaining convergence rates. But if
the Tikhonov minimizers are in M, then the corresponding convergence rate

l dist(22, {2f, —2'}) = O(v/¢(0)) as 0 — 0.

Remark 5.5. A reason for the seemingly unmotivated occurrence of a spar-
sity assumption far away from sparsity promoting penalties in Tikhonov reg-
ularization might be the fact that at least for some quadratic operators the
minimizers of the Tikhonov functional (1.3) are sparse. This is also the case
for the operator A o F' written in the Fourier basis. Then A o F' can be con-
sidered as the mapping G : (*(Z) — (*(Z) of diagonal operator type defined
by
G(2)|g =23, kEZ,

where (?(Z) denotes the space of all square summable complex-valued se-
quences over the index set Z. The minimizers of the corresponding Tikhonov
functional

T (x) = |G(a) = | + all|® (5.8)

are given by
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51| = w2l =5, if |ug] > 3,
0,

JeAPR
else
and
5 1 5 5 1 5 . 5
arg[z) |, = B argy, or arglz], = 5 argy, + 7 if Hl’a]k‘ £ 0.
This can be shown by evaluating the necessary conditions on [a:gj , Wwritten

in polar coordinates for all k£ € Z. Obviously only finitely many components
of 2° are not zero.
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