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1Preliminaries and Notations

Nature laughs at the difficulties of
integration.

Pierre-Simon Laplace, 1749–1827

1.1 WHERE WE ARE

Descriptive statistics1 is the process of using and analyzing descriptive statistics, which is a
summary statistic that quantitatively describes or summarizes features of a collection of infor-
mation.

Exploratory data analysis2 is an approach to analyzing data sets to summarize their main
characteristics, often with visual methods.

Mathematical statistics3 is the application of probability theory, a branch of mathematics, to
statistics, as opposed to techniques for collecting statistical data.

1.2 NOTATION

Observed variable is a variable that can be observed and directly measured.

Latent variable (from Latin latere (hidden), as opposed to observable variables), is a variable
that is not directly observed but rather inferred (through a mathematical model) from other
variables that are observed.

Explanatory variable see independent variable

Independent variable The models or experiments investigate how the dependent variables
depend on independent variables. Synonyms, especially in statistics, are predictor vari-
able, regressor, controlled variable, manipulated variable, explanatory variable, risk factor
(medical statistics), feature (in machine learning and pattern recognition) or input variable.

Dependent variable Synonyms are response variable, regressand, predicted variable, mea-
sured variable, explained variable, experimental variable, responding variable, outcome
variable or label.

Categorical variable a variable that can take on one of a limited, and usually fixed, number of
possible values, assigning each individual or other unit of observation to a particular group
or nominal category on the basis of some qualitative property.

Location parameter determines the location or shift of a distribution

1Deskriptive, beschreibende oder beurteilende Statistik
2Explorative Statistik
3Mathematische Statistik
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10 PRELIMINARIES AND NOTATIONS

Scale parameter is a special kind of numerical parameter of a parametric family of probability
distributions. The larger the scale parameter, the more spread out the distribution.

Rate parameter is the reciprocal of a scale parameter.

Nuisance parameter is any parameter which is not of immediate interest but which must be
accounted for in the analysis of those parameters which are of interest.

Population a set of similar items or events which is of interest for some question or experiment.

Population parameter a statistical parameter is a quantity that indexes a family of probability
distributions.

U-statistics unbiased.

L-statistics is a linear combination of order statistics.

L-estimate is a robust estimation technique based on linear combinations of order statistics.

R-estimate robust, based on the rank.

M-estimator is a broad class of robust estimators, which are obtained as the minima of sums
of functions of the data (as maximum likelihood, cf. page 107).

Z-estimator (for zero) is a class of estimators which satisfy a system of equations.

Z-score (aka standard or normal score) of a raw score 𝑥 is 𝑧 = (𝑥 − 𝜇)/𝜎.

1.3 THE EXPECTATION

Let 𝑋 : Ω → X be a random variable on a probability space (Ω, Σ, 𝑃). Different ways to denote
the expectation include

E𝑃 𝑋 B

∫
Ω

𝑋 d𝑃 =

∫
Ω

𝑋 (𝜔)𝑃(d𝜔) =
∫
X
𝑥 𝑃(𝑋 ∈ d𝑥) (∈ X);

more generally, for a measurable function 𝑔 : X → Y,

E𝑃 𝑔(𝑋) =
∫
Ω

𝑔(𝑋) d𝑃 =

∫
Ω

𝑔
(
𝑋 (𝜔)

)
𝑃(d𝜔)

=

∫
X
𝑔(𝑥) 𝑃(𝑋 ∈ d𝑥) =

∫
X
𝑔(𝑥) 𝑃𝑋 (d𝑥) = E𝑃𝑋 𝑔 (∈ Y), (1.1)

where 𝑃𝑋 B 𝑃◦𝑋−1 is the law of 𝑋 or the image measure (also known as push forward measure
and occasionally denoted 𝑋∗𝑃 B 𝑃𝑋; recall the notation and identities 𝑃(𝑋 ∈ 𝐴) B 𝑃

(
𝑋−1 (𝐴)

)
=

𝑃 ({𝜔 : 𝑋 (𝜔) ∈ 𝐴}) = E1𝐴).4

Definition 1.1 (Support). The support5 of a measure 𝑃 is supp(𝑃) B ⋂{
𝐴 = 𝐴 : 𝑃(𝐴𝑐) = 0

}
.

Note, that the support is topologically closed.

4We shall also write 𝑋 ∈ 𝐴 to express that 𝑃 (𝑋 ∈ 𝐴) = 1.
5Träger, dt.
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1.4 MULTIVARIATE RANDOM VARIABLES

Consider multivariate random variables, i.e., random variables with 𝑋 : Ω→ X = R𝑛.

Definition 1.2 (Cumulative distribution function, cdf). The cumulative distribution function (cdf,
for short) is

𝐹 (𝑥) B 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋1 ≤ 𝑥1, . . . , 𝑋𝑛 ≤ 𝑥𝑛) = 𝑃𝑋
(
(−∞, 𝑥1] × · · · × (−∞, 𝑥𝑛]

)
.

We shall also write 𝐹𝑋 to associate the distribution function 𝐹𝑋 and the random variable 𝑋.

For 𝑔 : R𝑛 → Y we have that

E𝑃 𝑔(𝑋) =
∫
R𝑛
𝑔(𝑥) d𝐹 (𝑥), (1.2)

where “d𝐹 (𝑥)” (often also “d𝑛𝐹 (𝑥)” ) is understood as a Riemann–Stieltjes integral.

Definition 1.3. For a random variables 𝑋 : Ω→ R𝑑 on (Ω, Σ, 𝑃) and 𝑋 ′ : Ω′ → R𝑑 on (Ω′, Σ′, 𝑃′)
we shall write

𝑋 ∼ 𝑋 ′

if they coincide in distribution, i.e., if 𝐹𝑋 = 𝐹𝑋′ .

Definition 1.4 (Probability density function, pdf). The function 𝑓 : R𝑛 → [0,∞) is the probability
density function (pdf, for short, density) with respect to the Lebesgue measure, if

𝐹 (𝑥1, . . . , 𝑥𝑛) =
∫ 𝑥1

−∞
· · ·

∫ 𝑥𝑛

−∞
𝑓 (𝑡1, . . . , 𝑡𝑛) d𝑡𝑛 · · · d𝑡1.

Remark 1.5. If 𝑋 has a density, then

𝑓 (𝑥1, . . . , 𝑥𝑛) =
𝜕

𝜕𝑥1
· · · 𝜕

𝜕𝑥𝑛
𝐹 (𝑥1, . . . , 𝑥𝑛). (1.3)

Note that d𝐹 (𝑥) = 𝑓 (𝑥) d𝑥 (often also d𝑛𝐹 (𝑥) = 𝑓 (𝑥) d𝑥𝑛 or 𝑓 (𝑥) = d𝑛𝐹
d𝑥𝑛 in R𝑛) with 𝑓 (·) the

Radon–Nikodym derivative with respect to the Lebesgue measure d𝑥 (or d𝑥𝑛), i.e., 𝑓 (𝑥) d𝑥 =

𝑃(𝑋 ∈ d𝑥). The expectation (1.2) thus is

E𝑃 𝑔(𝑋) =
∫
R𝑛
𝑔(𝑥) 𝑓 (𝑥) d𝑥 (∈ Y). (1.4)

Definition 1.6 (Variance). The covariance matrix of random vectors 𝑋 ∈ 𝐿2 (𝑃;R𝑛) and 𝑌 ∈
𝐿2 (𝑃;R𝑚) is the matrix

cov(𝑋,𝑌 ) B E
(
𝑋 𝑌⊤

)
− (E 𝑋) (E𝑌 )⊤ = E (𝑋 − E 𝑋) (𝑌 − E𝑌 )⊤ ∈ R𝑛×𝑚;

the variance is
var 𝑋 B cov(𝑋, 𝑋).

It holds that cov(𝑌, 𝑋) = cov(𝑋,𝑌 )⊤.

Definition 1.7 (Precision). The matrix (var 𝑋)−1 is the precision matrix.
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Corollary 1.8 (Linear transformation and scale-invariance, matrix congruence). It holds that

cov(𝑐 + 𝐴 𝑋, 𝑑 + 𝐵𝑌 ) = 𝐴 · cov(𝑋,𝑌 ) · 𝐵⊤ and var(𝑏 + 𝐴 𝑋) = 𝐴 · var 𝑋 · 𝐴⊤. (1.5)

Proposition 1.9 (Covariance of linear combinations). Let 𝑎, 𝑏, 𝑐 and 𝑑 be matrices (of adequate
dimension ) and 𝑋, 𝑌 , 𝑊 and 𝑉 random variables. It holds that

cov(𝑎 𝑋 +𝑏𝑉, 𝑐𝑌 +𝑑𝑊) = 𝑎 cov(𝑋,𝑌 ) 𝑐⊤ +𝑎 cov(𝑋,𝑊) 𝑑⊤ +𝑏 cov(𝑉,𝑌 ) 𝑐⊤ +𝑏 cov(𝑉,𝑊) 𝑑⊤. (1.6)

Lemma 1.10. The covariance matrix is necessarily positive semi-definite.

Proof. Indeed, define the R-valued random variable 𝑍 B 𝑎⊤𝑋, then 0 ≤ var 𝑍 = 𝑎⊤ · var 𝑋 · 𝑎 for
all vectors 𝑎. Hence, var 𝑋 is non-negative definite, the result. □

Remark 1.11. The covariance matrix of the multinomial distribution is singular, cf. Exercise 1.15.

Remark 1.12 (Approximation towards the delta method). For 𝑋 ≈ E 𝑋 and 𝑔(·) smooth we have
the Taylor series approximation 𝑔(𝑋) ≈ 𝑔(E 𝑋) + 𝑔′ (E 𝑋) (𝑋 − E 𝑋). It follows from (1.5) that

var 𝑔(𝑋) ≈ 𝑔′ (E 𝑋) · var 𝑋 · 𝑔′ (E 𝑋)⊤,

or var 𝑔(𝑋) ≈ 𝑔′ (E 𝑋)2 · var 𝑋 if 𝑋 is R-valued.

Proposition 1.13 (Hoeffding’s6 covariance identity, cf. Lehmann [9]). For 𝑋, 𝑌 ∈ R (recall Foot-
note 4) it holds that

cov(𝑋,𝑌 ) =
∬
R×R

𝐹𝑋,𝑌 (𝑥, 𝑦) − 𝐹𝑋 (𝑥) · 𝐹𝑌 (𝑦) d𝑥d𝑦,

where 𝐹𝑋,𝑌 (·, ·) is the joint distribution function of (𝑋,𝑌 ) and 𝐹𝑋 (·) and 𝐹𝑌 (·) its marginals.

Proof. (cf. Lehmann [9]7). Let ( 𝑋̃, 𝑌 ) be an independent copy of (𝑋,𝑌 ), i.e., 𝑃( 𝑋̃ ≤ 𝑥,𝑌 ≤ 𝑦) =
𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝐹𝑋,𝑌 (𝑥, 𝑦). Then

2 cov(𝑋,𝑌 ) = 2E(𝑋 𝑌 ) − 2E(𝑋)E(𝑌 )
= E(𝑋 − 𝑋̃) (𝑌 − 𝑌 ) (1.7)

= E

∫ ∞

−∞

∫ ∞

−∞

(
1(−∞,𝑥 ] ( 𝑋̃) − 1(−∞,𝑥 ] (𝑋)

) (
1(−∞,𝑦 ] (𝑌 ) − 1(−∞,𝑥 ] (𝑌 )

)
d𝑥d𝑦, (1.8)

as 𝑏 − 𝑎 =
∫ ∞
−∞ 1(−∞,𝑥 ] (𝑎) − 1(−∞,𝑥 ] (𝑏) d𝑥. We may interchange the integral and the expectation,

as all are assumed to be finite. Hence

(1.8) =
∫ ∞

−∞

∫ ∞

−∞
2𝐹 (𝑥, 𝑦) − 2𝐹 (𝑥)𝐹 (𝑦) d𝑥d𝑦,

from which the assertion follows. □

Proposition 1.14 (Transformation of densities). Let 𝑔(·) be invertible with inverse 𝑔−1 ∈ 𝐶1

(continuous, with continuous derivative), then

𝑓𝑔 (𝑋) (𝑦) = 𝑓𝑋
(
𝑔−1 (𝑦)

)
·
��det

(
𝑔−1)′ (𝑦)

��︸           ︷︷           ︸
Jacobian

=
𝑓𝑋

(
𝑔−1 (𝑦)

)��det 𝑔′
(
𝑔−1 (𝑦)

) �� . (1.9)

6Wassily Hoeffding, 1914–1991
7Erich Leo Lehmann, 1917–2007, American statistician (with German origin)
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Proof. Let ℎ(·) be any test function. By (1.4) and changing the variables,

E ℎ
(
𝑔(𝑋)

)
=

∫
X
ℎ
(
𝑔(𝑥)

)
𝑓𝑋 (𝑥) d𝑥 =

∫
Y
ℎ(𝑦) · 𝑓𝑋

(
𝑔−1 (𝑦)

) ��det
(
𝑔−1)′ (𝑦)

�� d𝑦;

on the other hand,

E ℎ
(
𝑔(𝑋)

)
=

∫
Y
ℎ(𝑦) · 𝑓𝑔 (𝑋) (𝑦) d𝑦

by (1.4) for the random variable 𝑔(𝑋). The result follows now by comparing the integrands,
as the test functions ℎ(·) are arbitrary. Of course, one may choose the simple test function
ℎ(·) = 1𝐴(·) as well to deduce the result. □

Corollary 1.15 (Linear transformation). It holds that

𝑓𝑏+𝐴·𝑋 (𝑦) = 𝑓𝑋
(
𝐴−1 (𝑦 − 𝑏)

)
·
��det 𝐴−1�� .

1.5 INDEPENDENCE

Definition 1.16. Two events 𝐸1, 𝐸2 ∈ Σ are independent, if 𝑃(𝐸1 ∩ 𝐸2) = 𝑃(𝐸1) · 𝑃(𝐸2).

Definition 1.17. Two random variables 𝑋𝑖 are independent, if all events {𝑋𝑖 ∈ 𝐴} and
{
𝑋 𝑗 ∈ 𝐵

}
are independent for 𝑖 ≠ 𝑗 .

Corollary 1.18. If 𝑋 and 𝑌 are independent, then cov(𝑋,𝑌 ) = 0.

Proof. Indeed,

E(𝑋 · 𝑌⊤) =
∬

𝑥 · 𝑦⊤ 𝑃(𝑋 ∈ d𝑥,𝑌 ∈ d𝑦)

=

∬
𝑥 · 𝑦⊤ 𝑃(𝑋 ∈ d𝑥) · 𝑃(𝑌 ∈ d𝑦)

=

∫
𝑥 𝑃(𝑋 ∈ d𝑥) ·

∫
𝑦⊤ 𝑃(𝑌 ∈ d𝑦)

= E 𝑋 · E𝑌⊤,

the assertion. □

It follows from the definition that 𝑋, 𝑌 ∈ R are independent, iff 𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝐹𝑋 (𝑥) · 𝐹𝑌 (𝑦). If 𝑋
and 𝑌 have a density, then further, by (1.3), 𝑓𝑋,𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) · 𝑓𝑌 (𝑦).

Definition 1.19 (Iid). The random variables 𝑋𝑖, 𝑖 = 1, 2, . . . are independent and identically
distributed (iid, for short), if they are independent and they share the same law.

Theorem 1.20 (Existence of independent copies). Let 𝑋 be a random variable. Then there exist
a probability space together with countably many independent random variables 𝑋𝑖, 𝑖 = 1, 2, . . .
which share the law of 𝑋.

Proof. Let Ω̃ B ΩN be the space of countable trajectories over Ω and Σ̃ its product 𝜎-algebra.
Define the pre-measure (product measure) 𝑃̃(𝐴1 × · · · × 𝐴𝑛 × Ω × Ω × . . . ) B 𝑃(𝐴1) · . . . · 𝑃(𝐴𝑛).
By the Carathéodory extension theorem,8 𝑃̃ extends to a probability measure on Σ̃.

The independent copies are 𝑋𝑖 (𝜔̃) B 𝑋 (𝜔𝑖), where 𝜔̃ = (𝜔1, 𝜔2, . . . ) ∈ Ω̃. □

8Constantin Carathéodory, 1873–1950, Greek mathematician
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1.6 DISINTEGRATION AND CONDITIONAL DENSITIES

Let 𝑓𝑋,𝑌 (𝑥, 𝑦) be the joint density of (𝑋,𝑌 ) ∈ X ×Y as outlined in Section 1.4 above (with X = R𝑛

and Y = R𝑚), i.e.,
𝑃(𝑋 ∈ d𝑥, 𝑌 ∈ d𝑦) = 𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥d𝑦.

Then the marginal density

𝑓𝑋 (𝑥) =
∫
Y
𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑦 (1.10)

is the density of 𝑋.

Definition 1.21. The conditional density is

𝑓 (𝑦 | 𝑥) B 𝑓𝑌 |𝑋=𝑥 (𝑦 | 𝑥) B
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋 (𝑥)

, (1.11)

sometimes also described by 𝑃(𝑌 ∈ d𝑦 | 𝑋 = 𝑥) = 𝑓𝑌 |𝑋=𝑥 (𝑦 | 𝑋 = 𝑥) d𝑦.

It holds that
𝑃(𝑋 ∈ 𝐴,𝑌 ∈ 𝐵) =

∫
𝐴

∫
𝐵

𝑓 (𝑦 | 𝑥) d𝑦 𝑓𝑋 (𝑥) d𝑥

and thus
E 𝑔(𝑋,𝑌 ) =

∫
X

∫
Y
𝑔(𝑥, 𝑦) 𝑓 (𝑦 | 𝑥) d𝑦︸                      ︷︷                      ︸
=E

(
𝑔 (𝑥,𝑌 ) |𝑋=𝑥

) · 𝑓𝑋 (𝑥) d𝑥 = EE
(
𝑔(𝑋,𝑌 ) | 𝑋

)
.

The identity E 𝑔(𝑋,𝑌 ) = EE
(
𝑔(𝑋,𝑌 ) | 𝑋

)
is known as law of total expectation.

1.7 UNIVARIATE RANDOM VARIABLES AND QUANTILES

A random variable with range X = R is said to be univariate.

Definition 1.22. The quantile function or generalized inverse is

𝐹−1
𝑋 (𝛼) = inf {𝑥 : 𝑃(𝑋 ≤ 𝑥) ≥ 𝛼} . (1.12)

𝑚 ∈ R is a median if
𝑃(𝑋 ≤ 𝑚) ≥ 1

2
and 𝑃(𝑋 ≥ 𝑚) ≥ 1

2
; (1.13)

in particular, 𝐹−1
𝑋
(1/2) is a median. The quartiles are 𝐹−1

𝑋
(1/4) and 𝐹−1

𝑋
(3/4), the deciles 𝐹−1

𝑋
(𝑖/10).

The interquartile range (IQR) is
𝐹−1
𝑋 (3/4) − 𝐹−1

𝑋 (1/4) . (1.14)

If X = R, then one may change the variables (use (1.2)) to get

E𝑃 𝑔(𝑋) =
∫
R
𝑔(𝑥) d𝐹 (𝑥) =

∫ 1

0
𝑔
(
𝐹−1 (𝛼)

)
d𝛼, (1.15)

Further, for every 𝑎 ∈ R, one may integrate (1.15) by parts so that

E 𝑔(𝑋) = 𝑔(𝑎) −
∫ 𝑎

−∞
𝑔′ (𝑥)𝐹 (𝑥) d𝑥 +

∫ ∞

𝑎

𝑔′ (𝑥)
(
1 − 𝐹 (𝑥)

)
d𝑥. (1.16)
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Proposition 1.23. The mean 𝜇 B E 𝑋 minimizes the squared deviation 𝑓 (𝑐) = E(𝑋 − 𝑐)2.

Proof. By linearity, the derivative is 0 = 𝑓 ′ (𝑐) = 2E(𝑋 − 𝑐) and hence the assertion. □

Proposition 1.24. The median 𝑚𝑋 minimizes the absolute deviation 𝑓 (𝑐) = E |𝑋 − 𝑐 |.

Proof. Note that 𝑓 (𝑐) = E |𝑋 − 𝑐 | =
∫ 𝑐
−∞ 𝑃(𝑋 ≤ 𝑡) d𝑡 +

∫ ∞
𝑐
𝑃(𝑋 > 𝑡) d𝑡 by (1.16). It follows with

Leibniz’s integral rule that 0 = 𝑓 ′ (𝑐) = 𝑃(𝑋 ≤ 𝑐) − 𝑃(𝑋 > 𝑐). The assertion follows together with
𝑃(𝑋 ≤ 𝑐) + 𝑃(𝑋 > 𝑐) ≥ 1. □

Corollary 1.25. It holds that |𝜇 − 𝑚 | ≤ 𝜎.

Proof. By Jensen’s inequality, |𝜇 − 𝑚 | = |E 𝑋 − 𝑚 | ≤ E |𝑋 − 𝑚 |. From Proposition 1.24 and
Hölder’s inequality we conclude further that E |𝑋 − 𝑚 | ≤ E |𝑋 − 𝜇 | = E

(
1 · |𝑋 − 𝜇 |

)
≤
√
E 12 ·√︁

E(𝑋 − 𝜇)2 = 𝜎. □

Definition 1.26 (Quantile loss). For 𝛼 ∈ (0, 1) define the nonnegative and convex loss function

ℓ𝛼 (𝑦) B
{
−(1 − 𝛼) 𝑦 if 𝑦 ≤ 0,
𝛼 · 𝑦 if 𝑦 ≥ 0

=

(
𝛼 − 1

2

)
𝑦 + 1

2
|𝑦 | .

Proposition 1.27. The quantiles satisfy the optimal location problem

𝐹−1
𝑋 (𝛼) ∈ arg min

𝑐∈R
E ℓ𝛼 (𝑋 − 𝑐).

Proof. With (1.15) and differentiating (recall the Leibniz integral rule) with respect to 𝑐 to obtain
the first order condition for the minimum it follows that

0 =
𝜕

𝜕𝑐
E ℓ𝛼 (𝑋 − 𝑐)

=
𝜕

𝜕𝑐

(
(1 − 𝛼)

∫ 𝑐

−∞
𝑐 − 𝑥 d𝐹𝑋 (𝑥) + 𝛼

∫ ∞

𝑐

𝑥 − 𝑐 d𝐹𝑋 (𝑥)
)

= (1 − 𝛼)
∫ 𝑐

−∞
d𝐹𝑋 (𝑥) − 𝛼

∫ ∞

𝑐

d𝐹𝑋 (𝑥)

= (1 − 𝛼)𝐹𝑋 (𝑐) − 𝛼
(
1 − 𝐹𝑋 (𝑐)

)
= 𝐹𝑋 (𝑐) − 𝛼

and hence the result. □

Definition 1.28 (Expectiles, cf. [12]). For 𝛼 ∈ [0, 1], define the scoring function (loss function)

ℓ𝛼 (𝑦) B
{
(1 − 𝛼) 𝑦2 if 𝑦 ≤ 0,
𝛼 · 𝑦2 if 𝑦 ≥ 0,

The expectiles are

𝑒𝛼 (𝑋) B arg min
𝑐∈R

E ℓ𝛼 (𝑋 − 𝑐).

For 𝛼 ≥ 1/2, the expectiles constitute the unique solution of the equation

𝛼 E(𝑋 − 𝑐)+ = (1 − 𝛼)E(𝑐 − 𝑋)+,
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Definition 1.29 (Huber9 loss function). The function

ℓ𝛿 (𝑥) B
{ 1

2𝑥
2 for |𝑥 | ≤ 𝛿,

𝛿

(
|𝑥 | − 1

2𝛿
)

for |𝑥 | ≥ 𝛿

is called Huber loss function.

The Huber loss function combines properties of 𝑥 ↦→ 𝑥2 and 𝑥 ↦→ |𝑥 | from above.

1.8 PROBLEMS

Exercise 1.1. The cdf of a (standard) uniform random variable 𝑈 is 𝑃(𝑈 ≤ 𝑢) = 𝑢, 𝑢 ∈ [0, 1].
Show that E 𝑢 = 1

2 and var𝑈 = 1
12 . Give the pdf, cdf, E and var for a random variable which is

uniform in [𝑎, 𝑏].

Exercise 1.2. Give the cdf, pdf, expectation and variance of the random variable 𝑈̃ B 𝑎 + (𝑏 −
𝑎)𝑈.

Exercise 1.3. Verify the linear transformation, Corollary 1.15.

Exercise 1.4. Show that 𝑓1/𝑋 (𝑦) = 𝑓𝑋
( 1
𝑦

)
· 1
𝑦2 .

Exercise 1.5. Verify (1.16), which assumptions on 𝑔(·) do we need?

Exercise 1.6. Verify the identity in Definition 1.6.

Exercise 1.7 (Uniform ratio distribution). Let𝑈1 and𝑈2 ∼ 𝑈 [0, 1] be independent and uniformly
distributed on [0, 1]. Show that 𝑃

(
𝑈2
𝑈1
∈ d𝑥

)
= 𝑓𝑈2/𝑈1 (𝑥) d𝑥, where the density of the random

quotient 𝑈2
𝑈1

is 𝑓𝑈2/𝑈1 (𝑥) =
{

1/2 if 𝑥 ≤ 1,
1/2𝑥2 if 𝑥 > 1.

Exercise 1.8. Let 𝑈𝑖 ∼ 𝑈 [0, 1] be independent uniforms. Show that

𝑃
(
𝑈1 · . . . ·𝑈𝑛 ∈ d𝑧

)
=
(− log 𝑧)𝑛−1

(𝑛 − 1)! d𝑧,

𝑧 ∈ (0, 1).

Exercise 1.9. Verify the integration by parts formula for Riemann–Stieltjes integrals,∫ 1

0
𝑓 (𝑥) d𝑔(𝑥) = 𝑓 (𝑥)𝑔(𝑥) |1𝑥=0 −

∫ 1

0
𝑔(𝑥) d 𝑓 (𝑥).

Exercise 1.10. Compute
∫ 1

0 𝑥3 d𝑥2.

Exercise 1.11. Compute
∬
[0,1]2 𝑥

2𝑦 d2 𝑦2𝑥.

Exercise 1.12 (Riemann–Stieltjes integrals in two dimensions). Verify that

(i)
∬
[0,1]2 𝑔(𝑥, 𝑦) d

2 (𝑥 · 𝑦) =
∫ 1

0

∫ 1
0 𝑔(𝑥, 𝑦) d𝑥 d𝑦,

9Peter Jost Huber, 1934
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(ii)
∬
[0,1]2 𝑔(𝑥, 𝑦) d

2 min (𝑥, 𝑦) =
∫ 1

0 𝑔(𝑥, 𝑥) d𝑥 (comonotonicity) and

(iii)
∬
[0,1]2 𝑔(𝑥, 𝑦) d

2 max (0, 𝑥 + 𝑦 − 1) =
∫ 1

0 𝑔(𝑥, 1 − 𝑥) d𝑥 (antimonotonicity).

Exercise 1.13 (Conditional density). Show that 𝑓 (·|𝑦) defined in (1.10) and (1.11) are densities.

Exercise 1.14. Show that var
(
𝑋

𝑌

)
=

(
var 𝑋 cov(𝑋,𝑌 )

cov(𝑌, 𝑋) var𝑌

)
, where cov(𝑌, 𝑋) = cov(𝑋,𝑌 )⊤.

Multinomial distribution

Exercise 1.15 (Multinomial distribution). The probability mass function (pmf) of the multinomial
distribution (multivariate binomial distribution) bin(𝑛; 𝑝1, . . . , 𝑝𝑘) (where

∑𝑘
𝑖=1 𝑝𝑖 = 1) with support{

(𝑖1, . . . , 𝑖𝑘) ∈ N𝑘0 : 𝑖1 + · · · + 𝑖𝑘 = 𝑛
}

is
𝑃
(
(𝑋1, . . . , 𝑋𝑘) = (𝑖1, . . . , 𝑖𝑘)

)
=

𝑛!
𝑖1! · . . . · 𝑖𝑘!

𝑝
𝑖1
1 · . . . · 𝑝

𝑖𝑘
𝑘
.

Show that

bin(𝑚; 𝑝1, . . . , 𝑝𝑘) + bin(𝑛; 𝑝1, . . . , 𝑝𝑘) ∼ bin(𝑚 + 𝑛; 𝑝1, . . . , 𝑝𝑘)

for independent random variables.

Exercise 1.16. Show the marginal distributions 𝑃(𝑋ℓ = 𝑖) =
(𝑛
𝑖

)
𝑝𝑖
ℓ
(1 − 𝑝ℓ)𝑛−𝑖, 𝑖 = 0, . . . , 𝑛 (the

usual binomial distribution bin(𝑛, 𝑝ℓ)) for ℓ = 1, . . . , 𝑘, and

𝑃(𝑋ℓ = 𝑖, 𝑋𝑚 = 𝑗) = 𝑛!
𝑖! 𝑗! (𝑛 − 𝑖 − 𝑗)! 𝑝

𝑖
ℓ 𝑝

𝑗
𝑚 (1 − 𝑝ℓ − 𝑝𝑚)𝑛−𝑖− 𝑗

with support
{
(𝑖, 𝑗) ∈ N2

0 : 𝑖 + 𝑗 ≤ 𝑛
}
.

Exercise 1.17. Verify the moments

E

©­­­­«
𝑋1
𝑋2
...

𝑋𝑘

ª®®®®¬
= 𝑛

©­­­­«
𝑝1
𝑝2
...

𝑝𝑘

ª®®®®¬
and var

©­­­­«
𝑋1
𝑋2
...

𝑋𝑘

ª®®®®¬
= 𝑛

©­­­­­«
𝑝1 (1 − 𝑝1) −𝑝1𝑝2 . . . −𝑝1𝑝𝑘

−𝑝2𝑝1 𝑝2 (1 − 𝑝2)
. . .

...
...

. . .
. . . −𝑝𝑘−1𝑝𝑘

−𝑝𝑘 𝑝1 . . . −𝑝𝑘 𝑝𝑘−1 𝑝𝑘 (1 − 𝑝𝑘)

ª®®®®®¬
.

Show that the covariance matrix is singular (cf. Remark 1.11). Argue, why 𝑋𝑖 and 𝑋 𝑗 are corre-
lated, why the correlations are negative and why the matrix is singular.
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2Sample mean and sample variance

If your experiment needs statistics, you
ought to have done a better experiment.

attributed to Erneset Rutherford,
1871–1937

Definition 2.1. For random variables 𝑋𝑖, 𝑖 = 1, . . . 𝑛, the sample mean1 statistics is

𝑋𝑛 B
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 (2.1)

(a measure of location) and the (uncorrected) sample variance – a measure of spread – is2

𝑉𝑛 B
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
. (2.2)

The (Bessel corrected) sample variance is3

𝑠2
𝑛 B

1
𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
=

𝑛

𝑛 − 1
𝑉𝑛. (2.3)

Remark 2.2. The distinction between 𝑠2
𝑛 and 𝑉𝑛 is a common source of confusion. Take care

when consulting the literature to determine which convention is used, especially since the unin-
formative notation 𝑠 is commonly used for both.

Proposition 2.3. It holds that (compare with (1.7))

𝑠2
𝑛 =

1
2 𝑛(𝑛 − 1)

𝑛∑︁
𝑖, 𝑗=1

(
𝑋𝑖 − 𝑋 𝑗

)2
. (2.4)

Remark 2.4. Note that there are 𝑛(𝑛 − 1) non-zero summands in (2.4).

1Stichprobenmittel
2Stichprobenvarianz
3korrigierte Stichprobenvarianz

19



20 SAMPLE MEAN AND SAMPLE VARIANCE

Proof. Indeed,

1
2𝑛2

𝑛∑︁
𝑖, 𝑗=1
(𝑋𝑖 − 𝑋 𝑗 )2 =

1
2𝑛2

𝑛∑︁
𝑖, 𝑗=1

(
𝑋𝑖 − 𝑋𝑛 − (𝑋 𝑗 − 𝑋𝑛)

)2

=
1

2𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
(𝑋𝑖 − 𝑋𝑛)2 − 2(𝑋𝑖 − 𝑋𝑛) · (𝑋 𝑗 − 𝑋𝑛) + (𝑋 𝑗 − 𝑋𝑛)2

=
1

2𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
(𝑋𝑖 − 𝑋𝑛)2 −

1
𝑛2

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛) ·

𝑛∑︁
𝑗=1
(𝑋 𝑗 − 𝑋𝑛) +

1
2𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
(𝑋 𝑗 − 𝑋𝑛)2

=
𝑛

2𝑛2

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛)2 + 0 + 𝑛

2𝑛2

𝑛∑︁
𝑗=1
(𝑋𝑛 − 𝑋 𝑗 )2 =

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛)2 = 𝑉𝑛.

Multiply with 𝑛
𝑛−1 to get the assertion. □

Remark 2.5. We have that 𝑠2
𝑛 = 0 iff 𝑋𝑖 = 𝑋 𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑛.

Proposition 2.6 (Algebraic formula for the variance,4 cf. Exercise 2.6). For every (sic!) 𝜉 ∈ R
(thus for 𝜉 = 𝜇 = E 𝑋) it holds that

𝑉𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
=

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉)2 −

(
𝑋𝑛 − 𝜉

)2
. (2.5)

Particularly (𝜉 = 0) it holds that 𝑉𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑋

2
𝑖
−

(
1
𝑛

∑𝑛
𝑖=1 𝑋𝑖

)2
, i.e., 𝑉𝑛 = E𝑃𝑛

𝑋2 −
(
E𝑃𝑛

𝑋
)2 for the

empirical measure 𝑃𝑛 (·) = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖

(·).

Proof. Write

𝑉𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜉 − (𝑋𝑛 − 𝜉)

)2
=

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉)2 − 2(𝑋𝑖 − 𝜉) (𝑋𝑛 − 𝜉) + (𝑋𝑛 − 𝜉)2

=
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉)2 − (𝑋𝑛 − 𝜉)2,

and hence the assertion. □

Proposition 2.7. By involving the sample 𝑋 = (𝑋1, . . . , 𝑋𝑛) explicitly in the notation it holds that

(i) 𝛼𝑋 + 𝛽 = 𝛼𝑋 + 𝛽 (the sample mean is linear),

(ii) 𝑠2
𝑛 (𝛼𝑋) = 𝛼2 · 𝑠2

𝑛 (𝑋) and

(iii) 𝑠2
𝑛 (𝑋 + 𝑐) = 𝑠2

𝑛 (𝑋) (the sample variance is shift-invariant).

2.1 PROPERTIES OF THE SAMPLE MEAN AND SAMPLE VARIANCE ESTI-
MATORS

Some content follows http://www.randomservices.org/random/sample.

4Steinerscher Verschiebungssatz
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2.1 PROPERTIES OF THE SAMPLE MEAN AND SAMPLE VARIANCE ESTIMATORS 21

Proposition 2.8. Let 𝑋𝑖 be uncorrelated with E 𝑋𝑖 =: 𝜇 and 𝜎2 B var 𝑋𝑖 < ∞, 𝑖 = 1, . . . , 𝑛. Then

(i) E 𝑋𝑛 = 𝜇 and

(ii) var 𝑋𝑛 = 𝜎2

𝑛
(= O (1/𝑛)) .

Proof. By linearity, E 𝑋𝑛 = E 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖 =

1
𝑛

∑𝑛
𝑖=1E 𝑋𝑖 = 𝜇. Further, cov(𝑋𝑖 , 𝑋 𝑗 ) =

{
𝜎2 if 𝑖 = 𝑗 ,

0 else
and thus

var 𝑋𝑛 = E
(
𝑋𝑛 − E 𝑋𝑛

)2
= E

(
𝑋𝑛 − 𝜇

)2
= E

(
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)

)2

=
1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
E(𝑋𝑖 − 𝜇) (𝑋 𝑗 − 𝜇) =

1
𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

cov(𝑋𝑖 , 𝑋 𝑗 ) =
𝑛

𝑛2 var 𝑋 =
𝜎2

𝑛
.

Hence the assertion. □

Proposition 2.9. Let 𝑚 ≤ 𝑛 and 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 uncorrelated. Then

(i) cov
(
𝑋𝑚, 𝑋𝑛

)
= 𝜎2

𝑛
,

(ii) corr
(
𝑋𝑚, 𝑋𝑛

)
=

√︁
𝑚
𝑛

(≤ 1) and

(iii) E 𝑋𝑚 · 𝑋𝑛 = 𝜇2 + 𝜎2

𝑛
.

Proof. As 𝑋𝑖, 𝑖 > 𝑚, are independent from 𝑋𝑚 it follows with (1.6) that

cov
(
𝑚 𝑋𝑚, 𝑛 𝑋𝑛

)
= cov

(
𝑚 𝑋𝑚, 𝑚 𝑋𝑚

)
+ cov

(
𝑚 𝑋𝑚, 𝑛 𝑋𝑛 − 𝑚 𝑋𝑚

)
= var

(
𝑚 𝑋𝑚

)
+ 0 = 𝑚2𝜎

2

𝑚
= 𝑚 𝜎2,

hence cov
(
𝑋𝑚, 𝑋𝑛

)
= 𝜎2

𝑛
.

Further, corr
(
𝑋𝑚, 𝑋𝑛

)
=

𝜎2
𝑛√︃

𝜎2
𝑚

𝜎2
𝑛

=
√︁
𝑚
𝑛

and E 𝑋𝑚 · 𝑋𝑛 = cov
(
𝑋𝑚, 𝑋𝑛

)
+ E 𝑋𝑚 · E 𝑋𝑚 = 𝜎2

𝑛
+

𝜇2. □

Proposition 2.10. The moment generating function of 𝑋𝑛 is 𝑚
𝑋𝑛
(𝑡) = E 𝑒𝑡 𝑋𝑛 =

(
E 𝑒𝑡𝑋𝑖

)𝑛
=

𝑚𝑋𝑖
( 𝑡
𝑛
)𝑛.

Proof. Indeed, 𝑚
𝑋𝑛
(𝑡) = E 𝑒𝑡 𝑋𝑛 = E 𝑒

𝑡
𝑛

∑𝑛
𝑖=1 𝑋𝑖 = E

∏𝑛
𝑖=1 𝑒

𝑡
𝑛
𝑋𝑖 =

∏𝑛
𝑖=1E 𝑒

𝑡
𝑛
𝑋𝑖 = 𝑚𝑋𝑖

(
𝑡
𝑛

)𝑛. □

Proposition 2.11. Let 𝑋𝑖 be independent and identically distributed (iid) with central 4th moment
𝜇4 B E (𝑋 − E 𝑋)4 < ∞.5 Then

(i) E𝑉𝑛 = 𝑛−1
𝑛
𝜎2 and

(ii) var𝑉𝑛 = (𝑛−1)2
𝑛3 𝜇4 − (𝑛−1) (𝑛−3)

𝑛3 𝜎4 (= O (1/𝑛)).
5The dimensionless quantity 𝐾 B 𝜇4/𝜎4 is called kurtosis (Wölbung, Kurtosis, dt.).
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22 SAMPLE MEAN AND SAMPLE VARIANCE

Corollary 2.12. It holds that

(i) E 𝑠2
𝑛 = 𝜎

2,

(ii) var 𝑠2
𝑛 =

1
𝑛

(
𝜇4 − 𝑛−3

𝑛−1𝜎
4
)
, but

(iii) E
√
𝑉𝑛 < E 𝑠𝑛 ≤ 𝜎, where 𝑠𝑛 B

√︁
𝑠2
𝑛 is the (uncorrected) sample standard deviation.

By (iii), 𝑉𝑛 and 𝑠𝑛 are negatively biased estimators that tend to underestimate 𝜎.

Proof of the corollary. The first assertion is immediate. Note then that 𝑉𝑛 = 𝑛−1
𝑛
𝑠2
𝑛 < 𝑠2

𝑛 and by
monotonicity of

√ · thus
√
𝑉𝑛 < 𝑠𝑛, (almost) everywhere. From Jensen’s inequality for the convex

function 𝜑 : 𝑥 ↦→ 𝑥2 we finally get (E 𝑠𝑛)2 = 𝜑 (E 𝑠𝑛) ≤ E 𝜑(𝑠𝑛) = E 𝑠2
𝑛 = 𝜎

2. □

Proof. Use Steiner’s theorem (2.5) with 𝜇 = E 𝑋𝑖. Then the expectation is given by

E𝑉𝑛 = E
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)2 − E

(
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)

)2

=
1
𝑛

𝑛∑︁
𝑖=1
E (𝑋𝑖 − 𝜇)2 − E

1
𝑛2

𝑛∑︁
𝑖, 𝑗=1
(𝑋𝑖 − 𝜇) (𝑋 𝑗 − 𝜇) = 𝜎2 − 𝑛

𝑛2𝜎
2 =

𝑛 − 1
𝑛

𝜎2.

From (2.4) we deduce that

var 𝑠2
𝑛 = cov

(
𝑠2
𝑛, 𝑠

2
𝑛

)
=

1
4𝑛2 (𝑛 − 1)2

𝑛∑︁
𝑖, 𝑗 ,𝑘,ℓ=1

cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑘 − 𝑋ℓ)2

)
.

In view of (2.5) we may assume 𝜇 = E 𝑋𝑖 = 0. Now we have that

(i) cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑘 − 𝑋ℓ)2

)
= 0 if 𝑖 = 𝑗 or 𝑘 = ℓ; there are 2𝑛3 − 𝑛2 such terms.

(ii) cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑘 − 𝑋ℓ)2

)
= 0 if 𝑖, 𝑗 , 𝑘 and ℓ are all distinct; there are 𝑛(𝑛−1) (𝑛−2) (𝑛−3)

such terms.

(iii) cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑘 − 𝑋ℓ)2

)
= 2𝜇4 + 2𝜎4 if 𝑖 ≠ 𝑗 and {𝑘, ℓ} = {𝑖, 𝑗}. Indeed

var
(
(𝑋𝑖 − 𝑋 𝑗 )2

)
=E(𝑋𝑖 − 𝑋 𝑗 )4 −

(
E(𝑋𝑖 − 𝑋 𝑗 )2

)2

=E
(
𝑋4
𝑖 − 4𝑋3

𝑖 𝑋 𝑗 + 6𝑋2
𝑖 𝑋

2
𝑗 − 4𝑋𝑖𝑋3

𝑗 + 𝑋4
𝑗

)
−

(
E 𝑋2

𝑖 − 2𝑋𝑖𝑋 𝑗 + 𝑋2
𝑗

)2

=2𝜇4 + 6𝜎4 − (2𝜎2)2 = 2𝜇4 + 2𝜎4;

there are 2𝑛(𝑛 − 1) such terms.

(iv) cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑘 − 𝑋ℓ)2

)
= 𝜇4 − 𝜎4 if 𝑖 ≠ 𝑗 , 𝑘 ≠ ℓ and # ({𝑖, 𝑗} ∩ {𝑘, ℓ}) = 1. Indeed,

cov
(
(𝑋𝑖 − 𝑋 𝑗 )2, (𝑋𝑖 − 𝑋ℓ)2

)
= E(𝑋𝑖 − 𝑋 𝑗 )2 (𝑋𝑖 − 𝑋ℓ)2 − E(𝑋𝑖 − 𝑋 𝑗 )2E(𝑋𝑖 − 𝑋ℓ)2

= E
(
𝑋4
𝑖 − 2𝑋3

𝑖 𝑋 𝑗 + 𝑋2
𝑖 𝑋

2
𝑗 − 2𝑋3

𝑖 𝑋ℓ + 4𝑋2
𝑖 𝑋 𝑗𝑋ℓ − 2𝑋𝑖𝑋2

𝑗 𝑋ℓ + 𝑋2
𝑖 𝑋

2
ℓ − 2𝑋𝑖𝑋 𝑗𝑋2

ℓ + 𝑋
2
𝑗 𝑋

2
ℓ

)
−

(
E 𝑋2

𝑖 − 2𝑋𝑖𝑋 𝑗 + 𝑋2
𝑗

)2

= 𝜇4 + 3𝜎4 − (2𝜎2)2 = 𝜇4 − 𝜎4;
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and there are 4𝑛(𝑛 − 1) (𝑛 − 2) such terms. By collecting terms we get that

var 𝑠2
𝑛 =

4𝑛(𝑛 − 1) (1 + 𝑛 − 2)𝜇4 + 4𝑛(𝑛 − 1) (1 − 𝑛 + 2)𝜎4

4𝑛2 (𝑛 − 1)2
=

1
𝑛

(
𝜇4 −

𝑛 − 3
𝑛 − 1

𝜎4) .
□

Proposition 2.13. It holds that

(i) cov
(
𝑋𝑛, 𝑠

2
𝑛

)
=
𝜇3
𝑛

with central third moment6 𝜇3 B E(𝑋 − E 𝑋)3, or

(ii) corr
(
𝑋𝑛, 𝑠

2
𝑛

)
=

𝜇3

𝜎

√︂
𝜇4− 𝑛−3

𝑛−1 𝜎
4
.

Proof. As above,

cov
(
𝑋𝑛, 𝑠

2
𝑛

)
=

1
2𝑛2 (𝑛 − 1)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗 ,𝑘=1

cov
(
𝑋𝑖 , (𝑋 𝑗 − 𝑋𝑘)2

)
.

Now we have that

(i) cov
(
𝑋𝑖 , (𝑋 𝑗 − 𝑋𝑘)2

)
= 0 if 𝑗 = 𝑘; there are 𝑛2 such terms;

(ii) cov
(
𝑋𝑖 , (𝑋 𝑗 − 𝑋𝑘)2

)
= 0 if 𝑖, 𝑗 , 𝑘 are all distinct; there are 𝑛(𝑛 − 1) (𝑛 − 2) such terms.

Finally

(iii) cov
(
𝑋𝑖 , (𝑋 𝑗 − 𝑋𝑘)2

)
= 𝜇3 if 𝑗 ≠ 𝑘 and 𝑖 ∈ { 𝑗 , 𝑘}: indeed

cov
(
𝑋 𝑗 , (𝑋 𝑗 − 𝑋𝑘)2

)
= E 𝑋 𝑗 (𝑋 𝑗 − 𝑋𝑘)2 − E 𝑋 𝑗 · E(𝑋 𝑗 − 𝑋𝑘)2

= E 𝑋3
𝑗 − 2E 𝑋2

𝑗 𝑋𝑘 + E 𝑋 𝑗𝑋2
𝑘 − E 𝑋 𝑗 E 𝑋

2
𝑗 + 2E 𝑋 𝑗 E 𝑋 𝑗𝑋𝑘 − 2E 𝑋 𝑗 E 𝑋2

𝑘

= E 𝑋3
𝑗 = 𝜇3;

there are 2𝑛(𝑛 − 1) such terms.

□

2.2 COVARIANCE AND CORRELATION

Definition 2.14. The (corrected) sample covariance of random variables (𝑋𝑖 , 𝑌𝑖) is (cf. (1.7))

𝑞𝑛 B
1

2𝑛(𝑛 − 1)

𝑛∑︁
𝑖, 𝑗=1

(
𝑋𝑖 − 𝑋 𝑗

) (
𝑌𝑖 − 𝑌 𝑗

)⊤
. (2.6)

Remark 2.15. Exercise 2.7 addresses a generalization for a weighted sample.

Proposition 2.16. It holds that (cf. (2.4) and Exercise 2.8)

𝑞𝑛 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)
·
(
𝑌𝑖 − 𝑌𝑛

)⊤
. (2.7)

6The dimensionless quantity 𝑆 B 𝜇3/𝜎3 is called skewness (Schiefe, dt).
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24 SAMPLE MEAN AND SAMPLE VARIANCE

In what follows we discuss univariate random variables only, i.e., 𝑋, 𝑌 ∈ R as the generaliza-
tions are obvious.

Proposition 2.17 (Parallel computation of the mean and the sample variance). Let 𝐴, 𝐵 be a
partition of the sample, i.e., sets with 𝐴 ¤∪𝐵 = {1, 2, . . . , 𝑛} and 𝑛𝐴 + 𝑛𝐵 = 𝑛. With an obvious
generalization in notation it holds that7

𝑋𝑛 =
𝑛𝐴 𝑋𝐴 + 𝑛𝐵 𝑋𝐵

𝑛𝐴 + 𝑛𝐵
, (2.8)

𝑠2
𝑛 =

𝑛𝐴 − 1
𝑛 − 1

𝑠2
𝐴 +

𝑛𝐵 − 1
𝑛 − 1

𝑠2
𝐵 +

𝑛𝐴 · 𝑛𝐵
𝑛 (𝑛 − 1)

(
𝑋𝐴 − 𝑋𝐵

)2 and

𝑞𝑛 =
𝑛𝐴 − 1
𝑛 − 1

𝑞𝐴 +
𝑛𝐵 − 1
𝑛 − 1

𝑞𝐵 +
𝑛𝐴 · 𝑛𝐵
𝑛 (𝑛 − 1)

(
𝑋𝐴 − 𝑋𝐵

) (
𝑌 𝐴 − 𝑌𝐵

)
.

Proof. We have with (2.8) that

𝑉𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 −

𝑛𝐴

𝑛
𝑋𝐴 −

𝑛𝐵

𝑛
𝑋𝐵

)2

=
𝑛𝐴

𝑛

1
𝑛𝐴

∑︁
𝑖∈𝐴

(
𝑋𝑖 − 𝑋𝐴 +

𝑛𝐵

𝑛

(
𝑋𝐴 − 𝑋𝐵

) )2
+ 𝑛𝐵
𝑛

1
𝑛𝐵

∑︁
𝑖∈𝐵

(
𝑋𝑖 − 𝑋𝐵 −

𝑛𝐴

𝑛

(
𝑋𝐴 − 𝑋𝐵

) )2
.

It follows from (2.5) with 𝜉 = 𝑋𝐴 − 𝑛𝐵
𝑛

(
𝑋𝐴 − 𝑋𝐵

)
(and 𝜉 = 𝑋𝐵 + 𝑛𝐴𝑛

(
𝑋𝐴 − 𝑋𝐵

)
for the second sum,

resp.) that

𝑉𝑛 =
𝑛𝐴

𝑛

(
𝑉𝐴 +

(𝑛𝐵
𝑛

(
𝑋𝐴 − 𝑋𝐵

) )2
)
+ 𝑛𝐵
𝑛

(
𝑉𝐵 +

(𝑛𝐴
𝑛

(
𝑋𝐴 − 𝑋𝐵

) )2
)

=
𝑛𝐴

𝑛
𝑉𝐴 +

𝑛𝐵

𝑛
𝑉𝐵 +

(
𝑛𝐴 𝑛

2
𝐵

𝑛3 +
𝑛𝐵 𝑛

2
𝐴

𝑛3

) (
𝑋𝐴 − 𝑋𝐵

)2

=
𝑛𝐴

𝑛
𝑉𝐴 +

𝑛𝐵

𝑛
𝑉𝐵 +

𝑛𝐴 𝑛𝐵

𝑛2
(
𝑋𝐴 − 𝑋𝐵

)2

and thus the second assertion. The remaining assertion follows by an obvious modification of
the preceding proof using Exercise 2.6. □

Corollary 2.18 (Update formulae, cf. Exercise 2.4). It holds that

𝑋𝑛+1 = 𝑋𝑛 +
𝑋𝑛+1 − 𝑋𝑛
𝑛 + 1

,

𝑌𝑛+1 = 𝑌𝑛 +
𝑌𝑛+1 − 𝑌𝑛
𝑛 + 1

,

𝑠2
𝑛+1 =

𝑛 − 1
𝑛

𝑠2
𝑛 +

𝑛 + 1
𝑛2

(
𝑋𝑛+1 − 𝑋𝑛+1

)2 for 𝑛 ≥ 1 and

𝑞𝑛+1 =
𝑛 − 1
𝑛

𝑞𝑛 +
𝑛 + 1
𝑛2

(
𝑋𝑛+1 − 𝑋𝑛+1

) (
𝑌𝑛+1 − 𝑌𝑛+1

)
for 𝑛 ≥ 1,

where 𝑠2
1 and 𝑞1 ∈ R are arbitrary.

7Similar formulae can be shown for higher moments.
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2.2 COVARIANCE AND CORRELATION 25

Proposition 2.19 (Cf. Proposition 2.12). Let (𝑋𝑖 , 𝑌𝑖) be independent and identically distributed (iid),
then8

E 𝑞𝑛 = cov(𝑋,𝑌 ).

Proof. Use (2.6) or Exercise 2.6 below. □

Definition 2.20 (Pearson). Pearson’s correlation coefficient is

𝜌 = 𝜌𝑋,𝑌 B
cov(𝑋,𝑌 )
𝜎𝑋 · 𝜎𝑌

=
E(𝑋 − E 𝑋) (𝑌 − E𝑌 )√︁

E(𝑋 − E𝑌 )2 ·
√︁
E(𝑌 − E𝑌 )2

.

The sample correlation is

𝑟𝑛 = 𝑟𝑋,𝑌 ;𝑛 B
𝑞𝑛

𝑠𝑋;𝑛 · 𝑠𝑌 ;𝑛
=

∑𝑛
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

) (
𝑌𝑖 − 𝑌𝑛

)
√︂∑𝑛

𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
·
√︂∑𝑛

𝑖=1

(
𝑌𝑖 − 𝑌𝑛

)2
. (2.9)

Equivalent expressions for the sample correlation include

𝑟𝑋,𝑌 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝑋𝑛
𝑉𝑋;𝑛

𝑌𝑖 − 𝑌𝑛
𝑉𝑌 ;𝑛

=
1

𝑛 − 1

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝑋𝑛
𝑠𝑋;𝑛

𝑌𝑖 − 𝑌𝑛
𝑠𝑌 ;𝑛

.

Proposition 2.21. If 𝑋𝑖 and 𝑌𝑖 are independent, then E 𝑟𝑛 = 0 and var 𝑟𝑛 = 1
𝑛−1 .

Definition 2.22 (Kendall’s 𝜏). Kendall’s rank correlation coefficient9 is

𝜌𝜏 B 𝑃
(
(𝑋 − 𝑋̃) (𝑌 − 𝑌 ) > 0︸                    ︷︷                    ︸

concordant

)
− 𝑃

(
(𝑋 − 𝑋̃) (𝑌 − 𝑌 ) < 0︸                    ︷︷                    ︸

discordant

)
(2.10)

= E sign
(
(𝑋 − 𝑋̃) (𝑌 − 𝑌 )

)
,

where ( 𝑋̃,𝑌 ) is an independent copy of (𝑋,𝑌 ).

Remark 2.23. Figure 2.1 displays various ranks of programming languages.

Definition 2.24. The estimator for Kendall’s rank correlation coefficient for independent pairs
(𝑋𝑖 , 𝑌𝑖) is

𝑟𝜏 B
1

𝑛(𝑛 − 1)

𝑛∑︁
𝑖≠ 𝑗

sign(𝑋𝑖 − 𝑋 𝑗 ) · sign(𝑌𝑖 − 𝑌 𝑗 ),

cf. (2.7) and Figure 2.1.

Remark 2.25. Kendall’s rank correlation coefficient 𝜌𝜏 as well as the estimator 𝑟𝜏 satisfy −1 ≤
𝜌𝜏 , 𝑟𝜏 ≤ 1.

Definition 2.26 (Spearman’s rank correlation coefficient 𝜌𝑠). Spearman’s10 rho is

𝜌𝑠 B corr
(
𝐹𝑋 (𝑋), 𝐹𝑌 (𝑌 )

)
.

8Note, that (𝑋𝑖 , 𝑌𝑖 ) is independent from (𝑋 𝑗 , 𝑌𝑗 ) for 𝑖 ≠ 𝑗, but 𝑋𝑖 and 𝑌𝑖 are correlated.
9Maurice Kendall, 1907–1983, British statistician
10Charles Spearman, 1863–1945, English psychologist
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26 SAMPLE MEAN AND SAMPLE VARIANCE

Figure 2.1: Ranking of important programming languages, cf. https://redmonk.com
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2.3 IF 𝜇 WERE KNOWN... 27

Definition 2.27. The rank is
rg(𝑋(𝑖) ) B 𝑖, (2.11)

i.e., 𝑋rg(𝑋𝑖 ) = 𝑋(𝑖) , where 𝑋(1) ≤ 𝑋(2) ≤ · · · ≤ 𝑋(𝑛) . Spearman’s correlation coefficient is defined
as the Pearson correlation coefficient between the ranked variables (cf. Exercise 2.9),

𝑟𝑠 B corr
(
rg(𝑋𝑖), rg(𝑌𝑖)

)
=

cov
(
rg(𝑋𝑖), rg(𝑌𝑖)

)√︁
var rg(𝑋𝑖) ·

√︁
var rg(𝑌𝑖)

.

Remark 2.28. Spearman’s rank coefficient is more robust than Pearson’s correlation coefficient.

Proposition 2.29. Let 𝐶 (𝑥, 𝑦) be the copula of (𝑋,𝑌 ), i.e., 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐶
(
𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)

)
,

then

(i) 𝜌𝜏 = 4
∫ 1

0

∫ 1
0 𝐶 (𝑢, 𝑣) d𝐶 (𝑢, 𝑣) − 1 and

(ii) 𝜌𝑠 = 12
∫ 1

0

∫ 1
0

(
𝐶 (𝑢, 𝑣) − 𝑢 · 𝑣

)
d𝑢d𝑣 = 12

∫ 1
0

∫ 1
0 𝐶 (𝑢, 𝑣) d𝑢d𝑣 − 3.

Proof. It follows from (2.10) that 𝜌𝜏 = 2𝑃
(
(𝑋 − 𝑋̃) (𝑌 − 𝑌 ) > 0

)
−1 and by interchanging the pairs

( 𝑋̃,𝑌 ) and (𝑋,𝑌 ) that

𝜌𝜏 = 4𝑃
(
𝑋 ≤ 𝑋̃, 𝑌 ≤ 𝑌

)
− 1

= 4E 𝑃
(
𝑋 ≤ 𝑋̃, 𝑌 ≤ 𝑌

�� 𝑋̃, 𝑌 )
− 1

= 4
∫ ∞

−∞

∫ ∞

−∞
𝑃(𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) d𝐹 (𝑥, 𝑦) − 1

= 4
∫ ∞

−∞

∫ ∞

−∞
𝐶 (𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)) d𝐶 (𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)) − 1

= 4
∫ 1

0

∫ 1

0
𝐶 (𝑢, 𝑣) d𝐶 (𝑢, 𝑣) − 1

and thus (i).
As for Spearman’s rho recall that 𝐹𝑋 (𝑋) ∼ 𝑈 [0, 1] which has variance var𝑈 = 1

12 . Formula (ii)
follows from Hoeffding’s formula, Proposition 1.13. □

2.3 IF 𝜇 WERE KNOWN...

Definition 2.30. The mean squared error function and the mean absolute error function are

mse(𝑋; 𝜉) B 1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉)2, mae(𝑋; 𝜉) B 1

𝑛

𝑛∑︁
𝑖=1
|𝑋𝑖 − 𝜉 | .

For convenience, we set 𝑊2
𝑛 B mse(𝜇) = ∑𝑛

𝑖=1 (𝑋𝑖 − 𝜇)2 with 𝜇 = E 𝑋.

Proposition 2.31. It holds that

(i) E𝑊2
𝑛 = 𝜎2,

(ii) var𝑊2
𝑛 = 1

𝑛

(
𝜇4 − 𝜎4),

(iii) 𝑊2
𝑛 → 𝜎2 as 𝑛→∞ with probability 1,
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28 SAMPLE MEAN AND SAMPLE VARIANCE

(iv)
√
𝑛
𝑊2

𝑛−𝜎2

𝜇4−𝜎4 → N (0, 1) in distribution;

(v) E𝑊𝑛 ≤ 𝜎, i.e., 𝑊𝑛 is negatively biased and tends to underestimate 𝜎.

Proof. var(𝑋𝑖 − 𝜇)2 = E(𝑋𝑖 − 𝜇)4 −
(
E(𝑋𝑖 − 𝜇)2

)2
= 𝜇4 − 𝜎4. □

Proposition 2.32. Covariance and correlation are cov
(
𝑋𝑛,𝑊

2
𝑛

)
=
𝜇3
𝑛

and corr
(
𝑋𝑛,𝑊

2
𝑛

)
=

𝜇3√
𝜎2 (𝜇4−𝜎4 )

.

Proof. By independence, cov
(
𝑋𝑛,𝑊

2
𝑛

)
=

∑𝑛
𝑖

1
𝑛2 cov

(
𝑋𝑖 , (𝑋𝑖 − 𝜇)2

)
. But

cov
(
𝑋𝑖 , (𝑋𝑖 − 𝜇)2

)
= cov

(
𝑋𝑖 − 𝜇, (𝑋𝑖 − 𝜇)2

)
= E(𝑋𝑖 − 𝜇)3 − E(𝑋𝑖 − 𝜇)E(𝑋𝑖 − 𝜇)2 = 𝜇3.

□

Lemma 2.33. Additional knowledge is helpful: it holds that var𝑊𝑛 < var 𝑠2
𝑛.

Proof. Indeed, var 𝑠2
𝑛 − var𝑊𝑛 = 1

𝑛

(
𝜇4 − 𝑛−3

𝑛−1𝜎
4
)
− 1
𝑛

(
𝜇4 − 𝜎4) = 2𝜎4

𝑛(𝑛−1) > 0. □

2.4 PROBLEMS

Exercise 2.1 (Empirical distribution). For 𝑥1, . . . , 𝑥𝑁 given, let 𝑋 have the discrete distribution
𝑃 (𝑋 = 𝑥𝑖) = 1

𝑁
. Show that E 𝑋 = 𝑥𝑁 and var 𝑋 = 𝑉𝑁 . Does the result contradict (i) in Proposi-

tion 2.11?

Exercise 2.2 (Cf. Rüschendorf [17, Beispiel 2.1.3]). Let 𝑥1, . . . , 𝑥𝑁 be given and draw a sam-
ple 𝑋1, . . . , 𝑋𝑛 successively, without replacement (i.e., the vector (𝑋1, . . . , 𝑋𝑛) with 𝑛 ≤ 𝑁 is iid
and uniformly distributed on 𝑥1, . . . , 𝑥𝑁 ; note, however, that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are not independent).
Verify that the estimator 𝜇̂𝑛 B 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 satisfies

(i) E 𝜇̂𝑛 = 1
𝑁

∑𝑁
𝑘=1 𝑥𝑘 =: 𝜇 and

(ii) var 𝜇̂𝑛 = 𝑁−𝑛
𝑁−1

𝜏2

𝑛
, where 𝜏2 B 1

𝑁

∑𝑁
𝑘=1 (𝑥𝑘 − 𝜇)2.

Discuss the result for 𝑛 small (𝑛 ≪ 𝑁) and large (𝑛 = 𝑁, 𝑛 = 𝑁 − 1, etc.).
Hint: observe that var 𝑋𝑖 = 𝜏2, cov(𝑋𝑖 , 𝑋 𝑗 ) = − 𝜏2

𝑁−1 , 𝑖 ≠ 𝑗 , and follow the proof of Proposi-
tion 2.8.

Exercise 2.3. Show that 𝑉1 = 0 and
√
𝑉2 = 1

2 |𝑋2 − 𝑋1 |.

Exercise 2.4. Verify the update formulae in Corollary 2.18.

Exercise 2.5. Show that 1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)
·
(
𝑌𝑖 − 𝑌𝑛

)
= 1
𝑛

∑𝑛
𝑖=1 𝑋𝑖𝑌𝑖 − 𝑋𝑛𝑌𝑛.

Exercise 2.6 (Generalization of Theorem 2.5 (Steiner)). Each sample (𝑋𝑖 , 𝑌𝑖) is assigned a
weight 𝑤𝑖. Verify that for arbitrary 𝜉, 𝜂 ∈ R and normalized weights 𝑤𝑖 (i.e.,

∑𝑛
𝑖=1 𝑤𝑖 = 1)

𝑛∑︁
𝑖=1

𝑤𝑖

(
𝑋𝑖 − 𝑋

𝑤

𝑛

) (
𝑌𝑖 − 𝑌

𝑤

𝑛

)
=

𝑛∑︁
𝑖=1

𝑤𝑖 (𝑋𝑖 − 𝜉) (𝑌𝑖 − 𝜂) −
(
𝑋
𝑤

𝑛 − 𝜉
) (
𝑌
𝑤

𝑛 − 𝜂
)
, (2.12)

where 𝑋
𝑤

𝑛 B
∑𝑛
𝑖=1 𝑤𝑖 𝑋𝑖 and 𝑌

𝑤

𝑛 B
∑𝑛
𝑖=1 𝑤𝑖 𝑌𝑖 are the weighted means.
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Exercise 2.7. Show that the estimator

𝑞𝑤𝑛 B
1

1 −∑𝑛
𝑖=1 𝑤

2
𝑖

𝑛∑︁
𝑖=1

𝑤𝑖
(
𝑋𝑖 − 𝑋

𝑤

𝑛

) (
𝑌𝑖 − 𝑌

𝑤

𝑛

)
is an unbiased estimator for cov(𝑋,𝑌 ) for a weighted iid sample (𝑋𝑖 , 𝑌𝑖) ∼ (𝑋,𝑌 ). (Hint: use
Exercise 2.6 with weights and follow the proof of Proposition 2.11(i).)

Compare with (2.7).

Exercise 2.8. Verify (2.7).

Exercise 2.9. Show that rg(𝑋𝑖) = 𝑛+1
2 and var rg(𝑋𝑖) = 𝑛2−1

12 , if all rg(𝑋𝑖) are distinct.11

Exercise 2.10. Show that Spearman’s coefficient is

𝑟𝑠 =
6

𝑛2 (
𝑛2 − 1

) 𝑛∑︁
𝑖, 𝑗=1

(
rg(𝑋𝑖) − rg(𝑋 𝑗 )

) (
rg(𝑌𝑖) − rg(𝑌 𝑗 )

)
= 1 − 6

𝑛
(
𝑛2 − 1

) 𝑛∑︁
𝑖=1

𝑑2
𝑖 , (2.13)

where 𝑑𝑖 B rg(𝑌𝑖) − rg(𝑋𝑖) is the difference between the two ranks of each observation and all
rg(𝑋𝑖), as well as all rg(𝑌𝑖) are distinct.

Exercise 2.11. Show that Spearman’s coefficient is

(i) 𝑟𝑠 = 1, iff rg(𝑋𝑖) = rg(𝑌𝑖) for 𝑖 = 1, . . . , 𝑛 and

(ii) 𝑟𝑠 = −1, iff rg(𝑋𝑖) + rg(𝑌𝑖) = 𝑛 + 1, 𝑖 = 1, . . . , 𝑛.

Exercise 2.12. Derive from Markov’s inequality that

𝑃

(���𝑋𝑛 − 𝜇��� ≥ 𝜀) ≤ 𝜎2

𝜀2𝑛
= O

(
1
𝑛

)
and

𝑃

(��𝑠2
𝑛 − 𝜎2�� ≥ 𝜀) ≤ 1

𝜀2𝑛

(
𝜇4 −

𝑛 − 3
𝑛 − 1

𝜎4
)
= O

(
1
𝑛

)
.

11Recall that
∑𝑛

𝑖=1 𝑖 =
𝑛(𝑛+1)

2 and
∑𝑛

𝑖=1 𝑖
2 =

𝑛(𝑛+1) (2𝑛+1)
6 .
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3Normal distribution

The law would have been personified by
the Greeks and deified, if they had known
of it.

Francis Galton, 1822–1911, on the
Central Limit Theorem

3.1 UNIVARIATE NORMAL DISTRIBUTION

An R-valued random variable 𝑋 with parameters 𝜇 and 𝜎2 is normally distributed (Gaussian,1
N

(
𝜇, 𝜎2)) if its density is 𝜑𝜇,𝜎 (·) B 1

𝜎
𝜑

( · −𝜇
𝜎

)
, where

𝜑(𝑧) = 1
√

2𝜋
𝑒−

1
2 𝑧

2
(3.1)

is the bell curve. The standard normal distribution is 𝑍 ∼ N(0, 1), its cdf. is Φ(𝑥) B
∫ 𝑥
−∞ 𝜑(𝑧) d𝑧

(cf. Table 3.1).
Remark 3.1 (Random variable generation). See Algorithm 1 and 2 below (page 50) to efficiently
generate Gaussian variables.
Remark 3.2 (𝜑 is a density). For completeness we include a proof that 𝜑(·) is a density.2 Indeed,
by Fubini’s law,(∫ ∞

−∞
𝑒−

1
2 𝑧

2
d𝑧

)2
=

∫ ∞

−∞
𝑒−

1
2 𝑥

2
d𝑥 ·

∫ ∞

−∞
𝑒−

1
2 𝑦

2
d𝑦 =

∬
R2
𝑒−

1
2 (𝑥

2+𝑦2 ) d𝑥 d𝑦. (3.2)

Employ polar coordinates, i.e.,
(
𝑥(𝑟, 𝜑)
𝑦(𝑟, 𝜑)

)
B

(
𝑟 cos 𝜑
𝑟 sin 𝜑

)
with Jacobian det

(
cos 𝜑 −𝑟 sin 𝜑
sin 𝜑 𝑟 cos 𝜑

)
= 𝑟. By

changing the variables (integration by substitution),

(3.2) =
∫ 2𝜋

0

∫ ∞

0
𝑒−

1
2 𝑟

2 · 𝑟 d𝑟 d𝜑 =

∫ ∞

0
𝑟 𝑒−

1
2 𝑟

2
d𝑟 ·

∫ 2𝜋

0
1 d𝜑 = −𝑒− 1

2 𝑟
2
���∞
𝑟=0
· 𝜑 |2𝜋𝜑=0 = 2𝜋, (3.3)

thus the result.
The variance of a normal distribution is (use3 𝜑′ (𝑧) = −𝑧 · 𝜑(𝑧) and the product rule)

var 𝑋 =

∫ ∞

−∞
(𝑥 − 𝜇)2 · 1

𝜎
𝜑

( 𝑥 − 𝜇
𝜎

)
d𝑥 =

𝑥←𝜇+𝜎𝑧

∫ ∞

−∞
𝜎2 𝑧2 𝜑(𝑧) d𝑧

= −𝜎2
∫ ∞

−∞
𝑧 𝜑′ (𝑧) d𝑧 = − 𝜎2 𝑧 𝜑(𝑧)

��∞
𝑦=−∞ + 𝜎

2
∫ ∞

−∞
1 · 𝜑(𝑧) d𝑧 = 𝜎2 (3.4)

by (3.3).
1Johann Carl Friedrich Gauß, 1777–1855
2Gauß attributes this result to Pierre-Simon Laplace, 1782
3This is actually the differential equation which lead Gauss to (3.1).
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32 NORMAL DISTRIBUTION

𝛼 = Φ(−𝑧𝛼) 𝑧𝛼 = Φ−1 (1 − 𝛼)
15.87 % 1.000

10 % 1.282
5 % 1.645

2.5 % 1.960
2.28 % 2.000
1.0 % 2.326
0.5 % 2.576

0.13 % 3.000
0.10 % 3.090
0.05 % 3.291
0.01 % 3.719

(a) upper-tailed scores

𝛼 = 2Φ(−𝑧𝛼) 𝑧𝛼 = Φ−1 (1 − 𝛼
2 )

31.73 % 1.000
10 % 1.645
5 % 1.960

4.55 % 2.000
2.5 % 2.241
1.0 % 2.576
0.5 % 2.807
0.27 % 3.000
0.10 % 3.291
0.05 % 3.481
0.01 % 3.891

(b) two-tailed scores

Table 3.1: 𝑍-scores of the normal distribution

Lemma 3.3 (Stein’s Lemma4). Let 𝑋 ∼ N(𝜇, 𝜎2), then E(𝑋−𝜇)𝑔(𝑋) = 𝜎2E 𝑔′ (𝑋), provided that
both integrals exist and 𝑔 decays fast enouth at ±∞.

Proof. As 𝑧 · 𝜑(𝑧) = −𝜑′ (𝑧) and by integration by parts we have that

E(𝑋 − 𝜇)𝑔(𝑋) =
∫ ∞

−∞
𝑔(𝑥) · 𝑥 − 𝜇

𝜎
𝜑

( 𝑥 − 𝜇
𝜎

)
d𝑥 = −

∫ ∞

−∞
𝑔(𝑥) · 𝜑′

( 𝑥 − 𝜇
𝜎

)
d𝑥

=

∫ ∞

−∞
𝑔′ (𝑥) · 𝜎 𝜑

( 𝑥 − 𝜇
𝜎

)
d𝑥 = 𝜎2

∫ ∞

−∞
𝑔′ (𝑥) 1

𝜎
𝜑

( 𝑥 − 𝜇
𝜎

)
d𝑥 = 𝜎2E 𝑔′ (𝑋)

and thus the assertion. □

Example 3.4. From 𝑔(𝑥) = (𝑥 − 𝜇) we deduce that var(𝑋 − 𝜇) = 𝜎2; with 𝑔(𝑥) = (𝑥 − 𝜇)3 it holds
that E(𝑋 − 𝜇)4 = 𝜎2E 3(𝑋 − 𝜇)2 = 3𝜎4; and E(𝑋 − 𝜇)6 = 𝜎2E 5(𝑋 − 𝜇)4 = 15𝜎6, etc.

Remark 3.5. For 𝑋 ∼ N(𝜇, 𝜎2) it holds that

E [𝑋 |𝑎 ≤ 𝑋 ≤ 𝑏] = 𝜇 + 𝜎2 𝜑𝜇,𝜎 (𝑏) − 𝜑𝜇,𝜎 (𝑎)
Φ𝜇,𝜎 (𝑏) −Φ𝜇,𝜎 (𝑎)

.

Indeed, the density is 𝑓 (𝑥) =
{

𝜑𝜇,𝜎 (𝑥 )
Φ𝜇,𝜎 (𝑏)−Φ𝜇,𝜎 (𝑎) 𝑥 ∈ [𝑎, 𝑏],
0 else,

where 𝜑𝜇,𝜎 = Φ′𝜇,𝜎. The expectation

thus is

E [𝑋 |𝑎 ≤ 𝑋 ≤ 𝑏] = 𝜇 +
∫ 𝑏

𝑎

(𝑥 − 𝜇) 𝜑𝜇,𝜎 (𝑥)
Φ𝜇,𝜎 (𝑏) −Φ𝜇,𝜎 (𝑎)

d𝑥 = 𝜇 +
∫ 𝑏

𝑎

(𝑥 − 𝜇) 𝜑𝜇,𝜎 (𝑥)
Φ𝜇,𝜎 (𝑏) −Φ𝜇,𝜎 (𝑎)

d𝑥,

and now the identity 𝑧 · 𝜑(𝑧) = −𝜑′ (𝑧) from above applies.

Remark 3.6. A useful series expansion is

Φ(𝑥) = 1
2
+ 1
√

2𝜋
𝑒−

𝑥2/2
(
𝑥 + 𝑥

3

3
+ 𝑥5

3 · 5 +
𝑥7

3 · 5 · 7 + · · · +
𝑥2𝑛+1

(2𝑛 + 1)!! + . . .
)
. (3.5)

4Named after Charles Max Stein, 1920–2016, American mathematical statistician
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3.2 MULTIVARIATE NORMAL DISTRIBUTION 33

(a) Probability density function (b) Conditional Gaussians are Gaussian

Figure 3.1: Multivariate normal distribution

3.2 MULTIVARIATE NORMAL DISTRIBUTION

Definition 3.7. The random variable 𝑋 follows a multivariate normal distribution, 𝑋 ∼ N(𝜇, Σ),
if

𝑋 = 𝜇 + 𝐿 𝑍,

where 𝑍 = (𝑍1, . . . , 𝑍𝑛) is a vector of independent standard Gaussians (𝑍𝑖 ∼ N(0, 1)) and Σ =

𝐿𝐿⊤.

Remark 3.8. The matrix 𝐿 is a Cholesky factor or 𝐿 = Σ
1/2 or any other matrix with 𝐿𝐿⊤ = Σ.

Remark 3.9 (Σ is symmetric). It follows from 𝐿𝐿⊤ = Σ that Σ = Σ⊤.

Proposition 3.10. The mean of 𝑋 ∼ N(𝜇, Σ) is E 𝑋 = 𝜇 and the covariance matrix is cov 𝑋 = Σ.

Proof. By linearity of the expectation,

E 𝑋 = E (𝜇 + 𝐿 𝑍) = 𝜇 + 𝐿 E 𝑍 = 𝜇 + 0 = 𝜇

and with Corollary 1.8

var 𝑋 = var(𝐿 𝑍) = 𝐿 · var 𝑍 · 𝐿⊤ = 𝐿 · E
(
𝑍 𝑍⊤

)︸     ︷︷     ︸
1𝑛 by (3.4)

·𝐿⊤ = Σ,

the assertion. □

Example 3.11. Cf. Exercise 3.1.

Proposition 3.12 (Multivariate normal distributions are closed under linear transformations). If
𝑋 ∼ N(𝜇, Σ), then

𝑏 + 𝐴 𝑋 ∼ N
(
𝑏 + 𝐴 𝜇, 𝐴 Σ 𝐴⊤

)
. (3.6)

Proof. Indeed, 𝑏 + 𝐴 𝑋 = 𝑏 + 𝐴(𝜇 + 𝐿 𝑍) = 𝑏 + 𝐴𝜇 + 𝐴𝐿𝑍 and 𝐴𝐿 (𝐴𝐿)⊤ = 𝐴Σ𝐴⊤, the assertion. □
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34 NORMAL DISTRIBUTION

Proposition 3.13. The density of the multivariate normal distribution N(𝜇, Σ) with mean 𝜇 ∈ R𝑛
and invertible, strictly positive definite covariance matrix Σ ∈ R𝑛×𝑛 is

𝑓 (𝑥) = 1√︁
(2𝜋)𝑛 detΣ

exp
(
−1

2
(𝑥 − 𝜇)⊤ Σ−1 (𝑥 − 𝜇)

)
. (3.7)

Proof. The density of the random vector (𝑍1, . . . , 𝑍𝑛) of independent normals (𝑍𝑖 ∼ N(0, 1)) is

𝑓(𝑍1 ,...𝑍𝑛 ) (𝑧1, . . . , 𝑧𝑛) = 𝜑(𝑧1) · . . . · 𝜑(𝑧𝑛) =
1
√

2𝜋
𝑛 exp

(
− 1

2
𝑧⊤𝑧

)
.

The affine linear function 𝑔(𝑧) B 𝜇 + 𝐿 𝑧 has inverse 𝑔−1 (𝑥) = 𝐿−1 (𝑥 − 𝜇). By Proposition 1.14
the random vector 𝑋 B 𝑔(𝑍) = 𝜇 + 𝐿 𝑍 has density function

𝑓𝑋 (𝑥) = 𝑓𝑍

(
𝐿−1 (𝑥 − 𝜇)

)
·
��det 𝐿−1�� = 1√︁

(2𝜋)𝑛 detΣ
exp

©­­«−
1
2
(𝑥 − 𝜇)⊤ 𝐿−⊤𝐿−1︸   ︷︷   ︸

Σ−1

(𝑥 − 𝜇)
ª®®¬

and thus the assertion. □

Corollary 3.14. Suppose that 𝑋 ∼ N(𝜇, Σ), where Σ has eigenvectors Σ 𝑢𝑖 = 𝜎
2
𝑖
𝑢𝑖 with 𝑢⊤

𝑖
𝑢𝑖 = 1.

Then the random variables 𝑢⊤
𝑖
𝑋 ∼ N

(
𝑢⊤
𝑖
𝜇, 𝜎2

𝑖

)
, 𝑖 = 1, . . . , 𝑛, are independent and the density of 𝑋

is 𝑓𝑋 (𝑥) =
∏𝑛
𝑖=1

1
𝜎𝑖
𝜑

(
𝑢⊤
𝑖
𝑥−𝑢⊤

𝑖
𝜇

𝜎𝑖

)
.

Proof. The matrix 𝑈 B (𝑢1 | · · · | 𝑢𝑛) is unitary and

Σ = 𝑈
©­­«
𝜎2

1 0 0

0
. . . 0

0 0 𝜎2
𝑛

ª®®¬𝑈⊤.
With (3.7) and (1.9) (or Exercise 1.3) we deduce the density

𝑓𝑈⊤𝑋 (𝑧) =
1√︁

(2𝜋)𝑛 detΣ
exp

©­­«−
1
2
(
𝑧 −𝑈⊤𝜇

)⊤ ©­­«
𝜎−2

1 0 0

0
. . . 0

0 0 𝜎−2
𝑛

ª®®¬
(
𝑧 −𝑈⊤𝜇

)ª®®¬
=

𝑛∏
𝑖=1

1√︃
2𝜋 𝜎2

𝑖

exp

(
−1

2

(
𝑧𝑖 − 𝑢⊤𝑖 𝜇
𝜎𝑖

)2)
=

𝑛∏
𝑖=1

1
𝜎𝑖
𝜑

(
𝑧𝑖 − 𝑢⊤𝑖 𝜇
𝜎𝑖

)
.

This is a product and hence the components 𝑢⊤
𝑖
𝑋 are independent.

The remaining density of 𝑋 is apparent with 𝑓𝑋 (𝑥) = 𝑓𝑈𝑈⊤𝑋 (𝑥) and (1.9) again. □

Theorem 3.15 (Uncorrelated normals are independent). Suppose that (𝑋,𝑌 ) ∼ N (𝜇, Σ) follow
a multivariate normal distribution. If the components 𝑋 and 𝑌 are uncorrelated, then 𝑋 and 𝑌
are independent.

Proof. As 𝑋 and 𝑌 are not correlated, it follows that Σ =

(
Σ𝑋𝑋 0

0 Σ𝑌𝑌

)
. Hence

(
𝑋

𝑌

)
=

(
𝜇𝑋
𝜇𝑌

)
+(

𝐿𝑋𝑋 0
0 𝐿𝑌𝑌

) (
𝑍𝑋
𝑍𝑌

)
=

(
𝜇𝑋 + 𝐿𝑋𝑋 · 𝑍𝑋
𝜇𝑌 + 𝐿𝑌𝑌 · 𝑍𝑌

)
. It follows that 𝑋 and 𝑌 are independent, as 𝑍𝑋 and 𝑍𝑌

are. □

rough draft: do not distribute
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Proposition 3.16. The moment generating function of the multivariate normal distribution 𝑋 ∼
N(𝜇, Σ) is

𝑚𝑋 (𝑡) B E 𝑒𝑡
⊤𝑋 = 𝑒𝜇

⊤𝑡+ 1
2 𝑡
⊤Σ𝑡 , 𝑡 ∈ R𝑛. (3.8)

Proof. The moment generation function of the univariate normal distribution is

𝑚𝑋 (𝑡) B E 𝑒𝑡 𝑋 =

∫ ∞

−∞
𝑒𝑡 𝑥

1
𝜎
√

2𝜋
𝑒
− 1

2𝜎2 (𝑥−𝜇)2 d𝑥

= 𝑒𝜇 𝑡+
1
2 𝑡

2𝜎2 ·
∫ ∞

−∞

1
𝜎
√

2𝜋
𝑒
− 1

2𝜎2 (𝑥−𝜇−𝑡 𝜎2)2︸                         ︷︷                         ︸
pdf of N(𝜇+𝑡 𝜎2 , 𝜎2 )

d𝑥 = 𝑒𝜇 𝑡+
1
2 𝑡

2𝜎2
, (3.9)

where we have used the algebraic identity 𝑡 𝑥 − 1
2𝜎2 (𝑥 − 𝜇)2 = 𝜇 𝑡 + 1

2 𝑡
2𝜎2 − 1

2𝜎2 (𝑥 − 𝜇 − 𝑡 𝜎2)2.
For the multivariate case define 𝑌 B 𝐿−1 (𝑋 − 𝜇) and note that 𝑌 ∼ N (0,1𝑛) by Proposi-

tion 3.12; in particular the variables 𝑌𝑖 are independent by Theorem 3.15. Then

𝑚𝑋 (𝑡) = E 𝑒𝑡
⊤𝑋 = E 𝑒𝑡

⊤ (𝜇+𝐿𝑌 ) = 𝑒𝑡
⊤𝜇 E

𝑛∏
𝑖=1

𝑒(𝑡⊤𝐿)𝑖 ·𝑌𝑖 = 𝑒𝜇⊤𝑡
𝑛∏
𝑖=1
E 𝑒(𝑡⊤𝐿)𝑖 ·𝑌𝑖 ,

as 𝑌𝑖 are independent. Employing the moment generating function for the univariate normal
distribution (3.9) we have further

𝑚𝑋 (𝑡) = 𝑒𝜇
⊤𝑡

𝑛∏
𝑖=1

𝑚𝑌𝑖
( (
𝑡⊤𝐿

)
𝑖

)
= 𝑒𝜇

⊤𝑡
𝑛∏
𝑖=1

𝑒
1
2 (𝑡⊤𝐿)2𝑖 = 𝑒𝜇⊤𝑡𝑒

∑𝑛
𝑖=1

1
2 (𝑡⊤𝐿)2𝑖

= 𝑒𝜇
⊤𝑡𝑒

1
2 𝑡
⊤𝐿(𝑡⊤𝐿)⊤ = 𝑒𝜇

⊤𝑡𝑒
1
2 𝑡
⊤𝐿𝐿⊤𝑡 = 𝑒𝜇

⊤𝑡+ 1
2 𝑡
⊤Σ𝑡 ,

which concludes the proof. □

Corollary 3.17. Let 𝑋 ∼ N(𝜇, 𝜎2), then the centralized 𝑘-th (𝑘 = 0, 1, 2, . . . ) moment is

E(𝑋 − 𝜇)2𝑘 = (2𝑘)!
𝑘! 2𝑘

𝜎2𝑘 and E(𝑋 − 𝜇)2𝑘+1 = 0;

in particular, E(𝑋 − 𝜇)4 = 3𝜎4 and E(𝑋 − 𝜇)6 = 15𝜎6.

Proof. The coefficients of 𝑡2𝑘 in the equation E 𝑒𝑡 (𝑋−𝜇) = 𝑒
1
2 𝜎

2𝑡2 are 1
(2𝑘 )! E(𝑋 − 𝜇)

2𝑘 = 1
𝑘!

(
𝜎2

2

) 𝑘
and hence the assertion. □

Proposition 3.18 (Multivariate normal distributions are closed under convolution, cf. Exercise 3.3).
If 𝑋1 ∼ N (𝜇1, Σ1) and 𝑋2 ∼ N (𝜇2, Σ2) are independent (multivariate) normals, then

𝛼𝑋1 + 𝛽𝑋2 ∼ N
(
𝛼𝜇1 + 𝛽𝜇2, 𝛼

2Σ1 + 𝛽2Σ2

)
. (3.10)

In other words: normal distributions are closed under addition, “+”.

Proof. The moment generating function of 𝛼𝑋1 + 𝛽𝑋2 is (cf. (3.8))

𝑚𝛼𝑋1+𝛽𝑋2 (𝑡) = E 𝑒𝑡
⊤ (𝛼𝑋1+𝛽𝑋2 ) = E 𝑒𝛼𝑡

⊤𝑋1𝑒𝛽𝑡
⊤𝑋2 = E 𝑒𝛼𝑡

⊤𝑋1 · E 𝑒𝛽𝑡⊤𝑋2

= 𝑒𝛼𝜇
⊤
1 𝑡+

1
2 𝛼

2𝑡⊤Σ1𝑡 · 𝑒𝛽𝜇⊤2 𝑡+ 1
2 𝛽

2𝑡⊤Σ2𝑡 = 𝑒 (𝛼𝜇1+𝛽𝜇2 )⊤𝑡+ 1
2 𝑡
⊤ (𝛼2Σ1+𝛽2Σ2 )𝑡 .

The latter is the mgf of a N
(
𝛼𝜇1 + 𝛽𝜇2, 𝛼

2Σ1 + 𝛽2Σ2
)

random variable. □
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3.3 CONDITIONAL GAUSSIANS

Conditionals of Gaussians are Gaussian. Cf. Figure 3.1b for an illustration.

Theorem 3.19 (Cf. Liptser and Shiryaev [11, Theorem 13.1]). Suppose that(
𝑋

𝑌

)
∼ N

((
𝜇𝑋
𝜇𝑌

)
,

(
Σ𝑋𝑋 Σ𝑋𝑌
Σ𝑌𝑋 Σ𝑌𝑌

))
,

then the conditional distribution is Gaussian as well; more specifically,

𝑌 | 𝑋 ∼ N
(
𝜇𝑌 + Σ𝑌𝑋Σ−1

𝑋𝑋 (𝑋 − 𝜇𝑋) , Σ𝑌𝑌 − Σ𝑌𝑋 Σ−1
𝑋𝑋 Σ𝑋𝑌

)
, (3.11)

or
𝑋 |𝑌 ∼ N

(
𝜇𝑋 + Σ𝑋𝑌Σ−1

𝑌𝑌 (𝑌 − 𝜇𝑌 ) , Σ𝑋𝑋 − Σ𝑋𝑌 Σ−1
𝑌𝑌 Σ𝑌𝑋

)
.

Proof. Define the Schur complement 𝑆 B Σ𝑌𝑌 − Σ𝑌𝑋Σ−1
𝑋𝑋

Σ𝑋𝑌 and observe that(
Σ𝑋𝑋 Σ𝑋𝑌
Σ𝑌𝑋 Σ𝑌𝑌

)−1
=

(
1 0

−Σ𝑌𝑋Σ−1
𝑋𝑋

1

)⊤
·
(
Σ−1
𝑋𝑋

0
0 𝑆−1

)
·
(

1 0
−Σ𝑌𝑋Σ−1

𝑋𝑋
1

)
. (3.12)

Set 𝜇̃ B 𝜇𝑌 + Σ𝑌𝑋Σ−1
𝑋𝑋
(𝑥 − 𝜇𝑋). Then we have that(

𝑥 − 𝜇𝑋
𝑦 − 𝜇𝑌

)⊤ (
Σ𝑋𝑋 Σ𝑋𝑌
Σ𝑌𝑋 Σ𝑌𝑌

)−1 (
𝑥 − 𝜇𝑋
𝑦 − 𝜇𝑌

)
=

(
𝑥 − 𝜇𝑋
𝑦 − 𝜇𝑌

)⊤ (
1 0

−Σ𝑌𝑋Σ−1
𝑋𝑋

1

)⊤
·
(
Σ−1
𝑋𝑋

0
0 𝑆−1

)
·
(

1 0
−Σ𝑌𝑋Σ−1

𝑋𝑋
1

) (
𝑥 − 𝜇𝑋
𝑦 − 𝜇𝑌

)
=

(
𝑥 − 𝜇𝑋
𝑦 − 𝜇̃

)⊤
·
(
Σ−1
𝑋𝑋

0
0 𝑆−1

)
·
(
𝑥 − 𝜇𝑋
𝑦 − 𝜇̃

)
= (𝑥 − 𝜇𝑋)⊤Σ−1

𝑋𝑋 (𝑥 − 𝜇𝑋) + (𝑦 − 𝜇̃)⊤𝑆−1 (𝑦 − 𝜇̃). (3.13)

Now note that 𝑋 ∼ N(𝜇𝑋, Σ𝑋𝑋) so that the conditional density, with (1.11), is

𝑓𝑌 |𝑋 (𝑦 |𝑥) =
𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑋 (𝑥)

=

exp
(
− 1

2 (3.13)
)

√︁
(2𝜋)𝑛𝑋+𝑛𝑌 det (𝑆 Σ𝑋𝑋)

/ exp
(
− 1

2 (𝑥 − 𝜇𝑋)
⊤Σ−1

𝑋𝑋
(𝑥 − 𝜇𝑋)

)
√︁
(2𝜋)𝑛𝑋 detΣ𝑋𝑋

=

exp
(
− 1

2 (𝑦 − 𝜇̃)
⊤𝑆−1 (𝑦 − 𝜇̃)

)
√︁
(2𝜋)𝑛𝑌 det 𝑆

.

Hence the Gaussian distribution (3.11). □

Corollary 3.20 (Cf. Bishop [1]). Suppose that

𝑋 ∼ N(𝜇, Σ𝑋) and (3.14)
𝑌 | 𝑋 ∼ N(𝐴𝑋 + 𝑏, Σ𝑌 ), (3.15)
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then

𝑌 ∼ N
(
𝐴𝜇 + 𝑏, Σ𝑌 + 𝐴Σ𝑋𝐴⊤

)
and (3.16)

𝑋 |𝑌 ∼ N
(
Σ
(
𝐴⊤Σ−1

𝑌 (𝑌 − 𝑏) + Σ−1
𝑋 𝜇

)
, Σ

)
, (3.17)

where Σ B
(
Σ−1
𝑋
+ 𝐴⊤Σ−1

𝑌
𝐴
)−1.

Proof. We derive the distributions from the general Gaussian random variable(
𝑋

𝑌

)
∼ N

((
𝜇

𝐴𝜇 + 𝑏

)
,

(
Σ𝑋 Σ𝑋𝐴

⊤

𝐴Σ𝑋 Σ𝑌 + 𝐴Σ𝑋𝐴⊤
))
.

The marginals (3.14) and (3.16) are apparent. From (3.11) we infer that

𝑌 | 𝑋 ∼ N
(
𝐴𝜇 + 𝑏 + 𝐴Σ𝑋Σ−1

𝑋 (𝑋 − 𝜇), Σ𝑌 + 𝐴Σ𝑋𝐴⊤ − 𝐴Σ𝑋Σ−1
𝑋 Σ𝑋𝐴

⊤
)

= N (𝐴𝑋 + 𝑏, Σ𝑌 )

and thus (3.15). Again from (3.11) we derive that

𝑋 |𝑌 ∼ N
(
𝜇 + Σ𝑋𝐴⊤

(
Σ𝑌 + 𝐴Σ𝑋𝐴⊤

)−1 (𝑌 − 𝐴𝜇 − 𝑏), Σ𝑋 − Σ𝑋𝐴⊤
(
Σ𝑌 + 𝐴Σ𝑋𝐴⊤

)−1
𝐴Σ𝑋

)
= N

(
Σ
(
𝐴⊤Σ−1

𝑌 (𝑌 − 𝑏) + Σ−1
𝑋 𝜇

)
, Σ

)
, (3.18)

where we have employed (Σ𝑌 + 𝐴Σ𝑋𝐴⊤)−1
= Σ−1

𝑌
− Σ−1

𝑌
𝐴 Σ 𝐴⊤Σ−1

𝑌
(Woodbury matrix identity, cf.

Exercise 3.13) and thus (3.17). □

Theorem 3.21. For 𝑋 ∼ N(𝜇, Σ) and a surjective matrix 𝐴 it holds that

E [𝑋 | 𝐴𝑋 = 𝑦] = 𝜇 + Σ𝐴⊤
(
𝐴Σ𝐴⊤

)−1 (𝑦 − 𝐴𝜇) (3.19)

and
var(𝑋 | 𝐴𝑋 = 𝑦) = (1 − 𝑃) Σ, (3.20)

where
𝑃 B Σ𝐴⊤

(
𝐴Σ𝐴⊤

)−1
𝐴 (3.21)

is a projection.5

Proof. It holds that 𝑃2 = 𝑃 and Σ 𝑃⊤ = 𝑃 Σ. With(
𝑋 ′

𝑌 ′

)
B

(
𝑃(𝑋 − 𝜇)

(1 − 𝑃) (𝑋 − 𝜇)

)
and Proposition 3.10 it holds that

cov(𝑌 ′, 𝑋 ′) = E𝑌 ′ 𝑋 ′⊤ = E(1 − 𝑃) (𝑋 − 𝜇) (𝑋 − 𝜇)⊤𝑃⊤ = (1 − 𝑃) Σ 𝑃⊤ = (1 − 𝑃)𝑃 Σ = 0

so that 𝑋 ′ and 𝑌 ′ are independent by Theorem 3.15; similarly we have that

var𝑌 ′ = E(1 − 𝑃) (𝑋 − 𝜇) (𝑋 − 𝜇)⊤ (1 − 𝑃) = (1 − 𝑃) Σ (1 − 𝑃)⊤ = (1 − 𝑃) Σ.

5It is sufficient to set 𝑃 B Σ𝐴⊤
(
𝐴Σ𝐴⊤

)+
𝐴, where

(
𝐴Σ𝐴⊤

)+ is the Moore–Penrose inverese; cf. (13.6) below.
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Note, that 𝐴𝑋 = 𝑦 is equivalent to 𝑃𝑋 = Σ𝐴⊤
(
𝐴Σ𝐴⊤

)−1
𝑦 =: 𝑦′. Thus

E [𝑋 − 𝜇 | 𝐴𝑋 = 𝑦] = E [𝑋 ′ + 𝑌 ′ | 𝑃𝑋 = 𝑦′]
= E [𝑋 ′ + 𝑌 ′ | 𝑋 ′ = 𝑦′ − 𝑃𝜇]
= 𝑦′ − 𝑃𝜇

and

E
[
(𝑋 − 𝜇) (𝑋 − 𝜇)⊤

�� 𝐴𝑋 = 𝑦
]
= E

[
(𝑋 ′ + 𝑌 ′) (𝑋 ′ + 𝑌 ′)⊤

�� 𝑃𝑋 = 𝑦′
]

= E
[
𝑋 ′𝑋 ′⊤ + 𝑋 ′𝑌 ′⊤ + 𝑌 ′𝑋 ′⊤ + 𝑌 ′𝑌 ′⊤

�� 𝑋 ′ = 𝑦′ − 𝑃𝜇]
= (𝑦′ − 𝑃𝜇) (𝑦′ − 𝑃𝜇)⊤ + 0 + 0 + E𝑌 ′𝑌 ′⊤

= (𝑦′ − 𝑃𝜇) (𝑦′ − 𝑃𝜇)⊤ + (1 − 𝑃)Σ

so that var(𝑋 | 𝐴𝑋 = 𝑦) = (1 − 𝑃)Σ. The assertion now follows. □

Note that the random variable 𝑋 ′ has deficient rank, as var 𝑋 ′ = (1 − 𝑃) Σ.

Remark 3.22 (Cf. Exercise 3.11). The subspaces 𝐵 B {(1 − 𝑃)𝑥 : 𝑥 ∈ R𝑛} and 𝐵⊥ B {𝑃𝑥 : 𝑥 ∈ R𝑛}
(with 𝑃 defined in (3.21)) are orthogonal with respect to the inner product

⟨𝑥, 𝑦⟩Σ B 𝑥⊤ Σ−1 𝑦.

Remark 3.23 (Caveat). By formal computation (in line with the proofs in this section) and (3.6)
we have that

𝑃 (𝑋 ∈ d𝑥 | 𝐴𝑋 = 𝑦) = 𝑃 (𝑋 ∈ d𝑥 | 𝑃𝑋 = 𝑦′)
= 𝑃 (𝜇 + 𝑋 ′ + 𝑌 ′ ∈ d𝑥 | 𝑌 ′ = 𝑦′ − 𝑃𝜇)
= 𝑃 (𝑋 ′ + 𝜇 + 𝑦′ − 𝑃𝜇 ∈ d𝑥 | 𝑌 ′ = 𝑦′ − 𝑃𝜇)
= 𝑃 (𝑋 ′ + 𝑦′ + (1 − 𝑃)𝜇 ∈ d𝑥)
= 𝑃 (𝑦′ + (1 − 𝑃)𝑋 ∈ d𝑥)

so that

𝑋 | (𝑌 = 𝑦) ∼ N (𝑦′ + (1 − 𝑃)𝜇, (1 − 𝑃)Σ)

= N
(
Σ𝐴⊤

(
𝐴Σ𝐴⊤

)−1
𝑦 +

(
1 − Σ𝐴⊤

(
𝐴Σ𝐴⊤

)−1
𝐴

)
𝜇, (1 − 𝑃)Σ

)
= N

(
𝜇 + Σ𝐴⊤

(
𝐴Σ𝐴⊤

)−1 (𝑦 − 𝐴𝜇), (1 − 𝑃)Σ
)
.

However, the matrix (1 − 𝑃)Σ is singular (in general) so that the distribution (cf. (3.7)) does not
have a density.

3.4 PROBLEMS

Exercise 3.1. Give the pdf of a bivariate normal distribution with correlation 𝜌 ∈ (−1, 1) explicitly.

Hint: Σ =

(
𝜎2

1 𝜌 𝜎1𝜎2
𝜌 𝜎1𝜎2 𝜎2

2

)
.

Exercise 3.2. Give two random variables which are uncorrelated, but not independent. (Cf.
Theorem 3.15)
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Exercise 3.3 (Cf. Proposition 3.18). Let 𝑋1 ∼ 𝑁 (𝜇1, 𝜎
2
1 ) and 𝑋2 ∼ N(𝜇2, 𝜎

2
2 ) be independent.

Show that
𝛼𝑋1 + 𝛽𝑋2 ∼ N(𝛼𝜇1 + 𝛽𝜇2, 𝛼

2𝜎2
1 + 𝛽

2𝜎2
2 ).

Exercise 3.4. Assume that 𝑋𝑖 ∼ N(𝜇, 𝜎2) are uncorrelated normals. Show that the Z-transform
𝑍𝑖 B

𝑋𝑖−𝜇
𝜎
∼ N(0, 1) and

1
√
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇
𝜎

∼ N(0, 1).

Exercise 3.5 (Cholesky decomposition). Let 𝑋, 𝑌 be independent standard normals. Define(
𝑋 ′

𝑌 ′

)
B

(
𝑋

𝜌 · 𝑋 +
√︁

1 − 𝜌2 · 𝑌

)
, i.e.,

(
𝑋 ′

𝑌 ′

)
=

(
1 0
𝜌

√︁
1 − 𝜌2

) (
𝑋

𝑌

)
and show that 𝑋 ′ ∼ 𝑋 and 𝑌 ′ ∼ 𝑌 , but corr(𝑋 ′, 𝑌 ′) = 𝜌.

Exercise 3.6. For 𝑋, 𝑌 independent standard normals define(
𝑋 ′

𝑌 ′

)
B

(
𝑐 𝑠

𝑠 𝑐

)
·
(
𝑋

𝑌

)
=

(
𝑐 𝑋 + 𝑠𝑌
𝑠 𝑋 + 𝑐𝑌

)
,

where 𝛿 B
√︁

1 − 𝜌2, 𝑐 B
√︃

1+𝛿
2 and 𝑠 B sign(𝜌) ·

√︃
1−𝛿

2 . Show that 𝑋 ′ ∼ 𝑋 and 𝑌 ′ ∼ 𝑌 , but
corr(𝑋 ′, 𝑌 ′) = 𝜌.

Exercise 3.7. Give the density for the multivariate variable (𝑋 ′, 𝑌 ′) in the previous example.

Exercise 3.8. Suppose that
(
𝑋

𝑌

)
∼ N

((
𝜇𝑋
𝜇𝑌

)
,

(
Σ𝑋 𝐶

𝐶⊤ Σ𝑌

))
. Show that

𝛼𝑋 + 𝛽𝑌 ∼ N
(
𝛼 𝜇1 + 𝛽 𝜇2, 𝛼

2 Σ𝑋 + 𝛼 𝛽
(
𝐶 + 𝐶⊤

)
+ 𝛽2Σ𝑌

)
(cf. (3.10)).

Exercise 3.9. For 𝑋, 𝑌 ∼ N(𝜇, Σ) independent normals define 𝑋 ′ B 𝑋+𝑌√
2

and 𝑌 ′ B 𝑋−𝑌√
2

. Give
the distribution of 𝑋 ′ and 𝑌 ′ and show that they are also independent.

Exercise 3.10. Suppose that 𝑋 and 𝑍 ∼ N(0, 1) are independent. Define 𝑌 B 𝑋 · sign(𝑍) and
show that

(i) 𝑌 ∼ N(0, 1),

(ii) 𝑋 and 𝑌 are not correlated,

(iii) 𝑋 + 𝑌 is not normal. Is this a contradiction to Proposition 3.18?

Exercise 3.11. Verify Remark 3.22 above.

Exercise 3.12. Verify (3.12).

Exercise 3.13. Verify (3.18).

Exercise 3.14 (Cauchy distribution). For 𝑌 , 𝑍 ∼ N(0, 1), show that 𝑌/𝑍 has density

𝑓𝑌/𝑍 (𝑥) =
1
𝜋

1
1 + 𝑥2 , 𝑥 ∈ R.

Exercise 3.15. Use integration by parts to verify (3.5).
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4Limit theorems

Million-to-one odds happen eight times a
day in New York.a

apopulation about 8 millions
Penn Jillette, 1955

4.1 LAW OF LARGE NUMBER

Theorem 4.1 (Weak law of large numbers). Let 𝑋𝑖 be iid. with finite second moment. Then

𝑋𝑛 → 𝜇 in probability,

i.e., 𝑃
(��𝑋𝑛 − 𝜇�� > 𝜀) −−−−→

𝑛→∞
0 for every 𝜀 > 0.

Proof. By Markov’s inequality we have that

𝑃

(��𝑋𝑛 − 𝜇�� > 𝜀) = 𝑃 (
(𝑋𝑛 − 𝜇)2 > 𝜀2

)
≤ 1
𝜀2 E(𝑋𝑛 − 𝜇)

2 =
𝜎2

𝜀2 𝑛
−−−−→
𝑛→∞

0

and hence the assertion. □

4.2 CENTRAL LIMIT THEOREM

The following elementary analysis and proof follow Kersting and Wakolbinger [7]. Here is an
illustrative gif: https://en.wikipedia.org/wiki/Convergence_of_random_variables.

Lemma 4.2. Let 𝑋𝑖 be independent with E 𝑋𝑖 C 𝜇, var 𝑋𝑖 C 𝜎2 < ∞, ℎ : R→ R with ∥ℎ′′∥∞ < ∞
and ∥ℎ′′′∥∞ < ∞ then

E ℎ

(
𝑋1 + · · · + 𝑋𝑛√

𝑛

)
→ E ℎ(𝑍)

as 𝑛→∞, where 𝑍 ∼ N
(
𝜇, 𝜎2).

Proof. Let 𝑍𝑖 be independent copies of 𝑍, which are independent of all 𝑋𝑖 as well. Define 𝑈𝑖 B
𝑍1+···+𝑍𝑖−1+𝑋𝑖+1+···+𝑋𝑛√

𝑛
and note the telescoping series ℎ

(
𝑋1+···+𝑋𝑛√

𝑛

)
−ℎ

(
𝑍1+···+𝑍𝑛√

𝑛

)
=

∑𝑛
𝑖=1 ℎ

(
𝑈𝑖 + 𝑋𝑖√

𝑛

)
−

ℎ

(
𝑈𝑖 + 𝑍𝑖√

𝑛

)
. The Taylor series expansion with Peano remainder1 at 𝑈𝑖 is

ℎ

(
𝑈𝑖 +

𝑋𝑖√
𝑛

)
− ℎ

(
𝑈𝑖 +

𝑍𝑖√
𝑛

)
= ℎ′ (𝑈𝑖)

𝑋𝑖 − 𝑍𝑖√
𝑛
+ ℎ′′ (𝑈𝑖)

𝑋2
𝑖
− 𝑍2

𝑖

2𝑛
+ 𝑅𝑖,𝑛,

1Recall that ℎ (𝑥 + Δ𝑥 ) = ℎ (𝑥 ) + ℎ′ (𝑥 ) Δ𝑥 + ℎ′′ (𝑥 ) Δ𝑥2
2 + (ℎ

′′ ( 𝜉 ) − ℎ′′ (𝑥 ) ) Δ𝑥2
2 for 𝜉 ∈ (𝑥, 𝑥 + Δ𝑥 ). Choose 𝑥 = 𝑈𝑖

and Δ𝑥 =
𝑋𝑖√
𝑛

(Δ𝑥 =
𝑍𝑖√
𝑛

, resp.).
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where

𝑅𝑖,𝑛 B
ℎ′′ (𝑉𝑖) − ℎ′′ (𝑈𝑖)

2
·
𝑋2
𝑖

𝑛
− ℎ

′′ (𝑊𝑖) − ℎ′′ (𝑈𝑖)
2

·
𝑍2
𝑖

𝑛

with |𝑉𝑖 −𝑈𝑖 | ≤ |𝑋𝑖 |√
𝑛

and |𝑊𝑖 −𝑈𝑖 | ≤ |𝑍𝑖 |√𝑛 .
Define 𝑐2 B ∥ℎ′′∥∞ = sup𝑥∈R |ℎ′′ (𝑥) | and 𝑐3 B ∥ℎ′′′∥∞ = sup𝑥∈R |ℎ′′′ (𝑥) |. With | ℎ′′ (𝑉𝑖) −

ℎ′′ (𝑈𝑖) |≤ 𝑐3 |𝑉𝑖 −𝑈𝑖 | ≤ 𝑐3
|𝑋𝑖 |√
𝑛

, the Peano remainder thus satisfies��𝑅𝑖,𝑛�� ≤ 𝑐3 𝑘
3

2𝑛3/2 1{𝑋𝑖≤𝑘} +
2𝑐2
2
𝑋2
𝑖

𝑛
1{𝑋𝑖>𝑘} +

𝑐3
2
|𝑍𝑖 |3

𝑛3/2 ,

where 𝑘 > 0 is arbitrary.
By independence, as E 𝑋𝑖 = E 𝑍𝑖 = 𝜇 and var 𝑋𝑖 = var 𝑍𝑖 = 𝜎2,

E ℎ′ (𝑈𝑖)
𝑋𝑖 − 𝑍𝑖√

𝑛
= E ℎ′ (𝑈𝑖) · E

𝑋𝑖 − 𝑍𝑖√
𝑛

= 0 and

E ℎ′′ (𝑈𝑖)
𝑋2
𝑖
− 𝑍2

𝑖

2𝑛
= E ℎ′′ (𝑈𝑖) · E

𝑋2
𝑖
− 𝑍2

𝑖

2𝑛
= 0.

Recall from (3.10) that 𝑍1+···+𝑍𝑛√
𝑛
∼ 𝑍, thus����E ℎ (

𝑋1 + · · · + 𝑋𝑛√
𝑛

)
− E ℎ(𝑍)

���� ≤ 𝑐3
2
𝑛
𝑘3 + E |𝑍𝑖 |3

𝑛3/2 + 2𝑐2𝑛
E 𝑋2

𝑖
· 1{𝑋𝑖>𝑘}

𝑛

−−−−→
𝑛→∞

E
(
𝑋2
𝑖 · 1{𝑋𝑖>𝑘}

)
.

Finally note that E
(
𝑋2
𝑖
· 1{𝑋𝑖>𝑘}

)
−−−−→
𝑘→∞

0, as E 𝑋2
𝑖
< ∞ by assumption. □

Theorem 4.3 (Central limit theorem, CLT). Let 𝑋𝑖 be independent with E 𝑋𝑖 C 𝜇 and var 𝑋𝑖 C
𝜎2 < ∞. Then

𝑃

(
𝑋1 + · · · + 𝑋𝑛 − 𝑛 · 𝜇√

𝑛 𝜎
≤ 𝑥

)
−−−−→
𝑛→∞

Φ(𝑥) = 1
√

2𝜋

∫ 𝑥

−∞
𝑒−

𝑡2
2 d𝑡;

it is said that
√
𝑛
𝑋𝑛−𝜇
𝜎

D−−→ N(0, 1) in distribution (occasionally also denoted by⇝ N(0, 1)).
Proof. Let ℎ1 and ℎ2 be functions with 1(−∞,𝑥−𝜀 ] (·) ≤ ℎ1 (·) ≤ 1(−∞,𝑥 ] (·) ≤ ℎ2 (·) ≤ 1(−∞,𝑥+𝜀 ] (·)
and



ℎ′′′
𝑖




∞ < ∞. With the preceding lemma, 𝑍 ∼ N(0, 1) and monotonicity of the expectation it

follows that

𝑃(𝑍 ≤ 𝑥 − 𝜀) ≤ E ℎ1 (𝑍)

= lim
𝑛→∞

E ℎ1

(
𝑋1 + · · · + 𝑋𝑛 − 𝑛 𝜇√

𝑛 𝜎

)
≤ lim inf

𝑛→∞
𝑃

(
𝑋1 + · · · + 𝑋𝑛 − 𝑛 𝜇√

𝑛 𝜎
≤ 𝑥

)
≤ lim sup

𝑛→∞
𝑃

(
𝑋1 + · · · + 𝑋𝑛 − 𝑛 𝜇√

𝑛 𝜎
≤ 𝑥

)
≤ lim
𝑛→∞

E ℎ2

(
𝑋1 + · · · + 𝑋𝑛 − 𝑛 𝜇√

𝑛 𝜎

)
= E ℎ2 (𝑍)
≤ 𝑃(𝑍 ≤ 𝑥 + 𝜀).

The assertion follows, as 𝑍 does not give mass to atoms. □
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4.3 BOREL–CANTELLI LEMMAS

Lemma 4.4 (First Borel–Cantelli Lemma). Let 𝐸𝑛 be a sequence of events such that
∑
𝑛=1 𝑃(𝐸𝑛) <

∞. Then

𝑃

(
lim sup
𝑛→∞

𝐸𝑛

)
= 𝑃 (𝐸𝑛, infinitely often) = 0,

where
lim sup 𝐸𝑛 B

⋂
𝑚≥1

⋃
𝑛≥𝑚

𝐸𝑛 = {𝜔 : 𝜔 ∈ 𝐸𝑛 for infinitely many 𝑛} .

Proof. Define 𝐺𝑚 B
⋃
𝑛≥𝑚 𝐸𝑛. Then 𝐺𝑚 ⊃ 𝐺 B lim sup 𝐸𝑛 and consequently

𝑃(𝐺) ≤ 𝑃(𝐺𝑚) ≤
∑︁
𝑛≥𝑚

𝑃(𝐸𝑛) −−−−−→
𝑚→∞

0.

This is the assertion. □

Lemma 4.5 (Second Borel–Cantelli Lemma). If 𝐸𝑛 is a sequence of independent events and∑
𝑛=1 𝑃(𝐸𝑛) = ∞, then

𝑃

(
lim sup
𝑛→∞

𝐸𝑛

)
= 1.

Proof. Note first that 𝐺𝑚 ⊃ 𝐺𝑚+1, and thus
⋂
𝑛≥𝑚 𝐸

𝑐
𝑛 = 𝐺𝑐𝑚 is increasing, as 𝑚 increases. It

follows for 𝑚′ > 𝑚 that

𝑃

( ⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
≤ 𝑃

( ⋂
𝑛≥𝑚′

𝐸𝑐𝑛

)
=

∏
𝑛≥𝑚′

(1 − 𝑃(𝐸𝑛)) ≤ exp

(
−

∑︁
𝑛≥𝑚′

𝑃(𝐸𝑛)
)
→ 0.

by independence and as 1 − 𝑥 ≤ 𝑒−𝑥 whenever 𝑥 ≥ 0. Hence

𝑃
(
(lim sup 𝐸𝑛)𝑐

)
= 𝑃

(⋃
𝑚

⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
≤

∑︁
𝑚=0

𝑃

( ⋂
𝑛≥𝑚

𝐸𝑐𝑛

)
= 0,

from which the assertion follows. □

4.4 LAW OF THE ITERATED LOGARITHM

Let 𝑋𝑖 be iid. random variables with 𝑃(𝑋𝑖 = ±1) = 1
2 and set 𝑆𝑛 B 𝑋1 + 𝑋2 + · · · + 𝑋𝑛.

Lemma 4.6. For every 𝑎 > 0 and 𝑢 ≥ 0 it holds that

𝑃

(
sup
𝑘≤𝑛

𝑆𝑘 ≥ 𝑎
)
≤ E 𝑒

𝑢 𝑆𝑛

𝑒𝑢 𝑎
. (4.1)

Proof. Set

𝐸0 B {𝑆1 < 𝑎, . . . , 𝑆𝑛 < 𝑎} ,
𝐸1 B {𝑆1 ≥ 𝑎} and
𝐸𝑘 B {𝑆1 < 𝑎, . . . , 𝑆𝑘−1 < 𝑎, 𝑆𝑘 ≥ 𝑎} for 𝑘 = 2, . . . , 𝑛,
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so that Ω = ¤⋃𝑛

𝑘=0𝐸𝑘 . Note further that
∑𝑛
𝑘=1 1𝐸𝑘

=
{
sup𝑘≤𝑛 𝑆𝑘 ≥ 𝑎

}
and hence

E 𝑒𝑢 𝑆𝑛 ≥
𝑛∑︁
𝑘=1

∫
𝐸𝑘

𝑒𝑢 𝑆𝑛d𝑃 =

𝑛∑︁
𝑘=1

∫
Ω

𝑒𝑢 𝑆𝑘 1𝐸𝑘
·𝑒𝑢(𝑋𝑘+1+···+𝑋𝑛 )d𝑃.

Now recall that 𝑆𝑘 and 𝑋𝑘+1, . . . , 𝑋𝑛 are independent, hence∫
Ω

𝑒𝑢 𝑆𝑘 1𝐸𝑘
·𝑒𝑢(𝑋𝑘+1+···+𝑋𝑛 )d𝑃 ≥ 𝑒𝑢 𝑎 𝑃(𝐸𝑘) ·

(
E 𝑒𝑢 𝑋1

)𝑛−𝑘
≥ 𝑒𝑢 𝑎 𝑃(𝐸𝑘),

where we have employed Jensen’s inequality 1 = 𝑒𝑢 E𝑋 ≤ E 𝑒𝑢 𝑋. It follows that

E 𝑒𝑢 𝑆𝑛 ≥
𝑛∑︁
𝑘=1

𝑒𝑢 𝑎𝑃(𝐸𝑘) =
𝑛∑︁
𝑘=1

𝑒𝑢 𝑎𝑃
(
∪𝑛𝑘=1𝐸𝑘

)
= 𝑒𝑢 𝑎 · 𝑃

(
sup
𝑘≤𝑛

𝑆𝑘 ≥ 𝑎
)

and hence the assertion. □

Lemma 4.7. For every 𝑎 > 0 we have that

𝑃

(
sup
𝑘≤𝑛

𝑆𝑘 ≥ 𝑎
)
≤ 𝑒−𝑎2/(2𝑛) and 𝑃

(
sup
𝑘≤𝑛
|𝑆𝑘 | ≥ 𝑎

)
≤ 2𝑒−𝑎

2/(2𝑛) . (4.2)

Proof. The moment generating function is (cf. Exercise 4.1)

E 𝑒𝑢 𝑆𝑛 =
1
2
(𝑒𝑢 + 𝑒−𝑢) ≤ 𝑒𝑢2/2. (4.3)

It follows with (4.1) that 𝑃
(
sup𝑘≤𝑛 𝑆𝑘 ≥ 𝑎

)
≤ 𝑒𝑢

2/2−𝑢 𝑎. To obtain the assertion replace both, 𝑢
and 𝑎, by 𝑎√

𝑛
. □

Theorem 4.8 (Law of the iterated logarithm; Khintchin, 1924). It holds that

lim sup
𝑛→∞

𝑆𝑛√︁
2𝑛 log log 𝑛

= 1 almost surely and

lim inf
𝑛→∞

𝑆𝑛√︁
2𝑛 log log 𝑛

= −1 almost surely.

Proof. Assume that 𝑐 > 1 and choose 𝛾 with 1 < 𝛾 < 𝑐. Set 𝑛𝑟 B ⌈𝛾𝑟 ⌉ (the ceiling function) and
consider the events

𝐵𝑟 B

{
sup

𝑛𝑟<𝑛≤𝑛𝑟+1
|𝑆𝑛 | >

√︁
2𝑛𝑟 log log 𝑛𝑟

}
.

Applying (4.2) with 𝑎 = 𝑐
√︁

2𝑛𝑟 log log 𝑛𝑟 we have that

𝑃(𝐵𝑟 ) ≤ 2𝑒−𝑐
2 (𝑛𝑟 log log 𝑛𝑟 )/𝑛𝑟+1 = 2

(
1

log 𝑛𝑟

) 𝑐2𝑛𝑟
𝑛𝑟+1
∼ 2

(
1

𝑟 log 𝛾

) 𝑐2𝑛𝑟
𝑛𝑟+1

.

But 𝑛𝑟
𝑛𝑟+1

∼ 1
𝛾
> 1

𝑐
. It follows that

∑∞
𝑟=1 𝑃(𝐵𝑟 ) ≲

∑∞
𝑟=1 2

(
1

𝑟 log 𝛾

)𝑐
< ∞. We conclude with

Borel–Cantelli that 𝐵𝑟 can happen with finitely many indices only, and it follows that 𝐴𝑛 B{
|𝑆𝑛 | > 𝑐

√︁
2𝑛𝑟 log log 𝑛𝑟

}
happens for finitely many indices as well. Hence, lim sup𝑛→∞

𝑆𝑛√
2𝑛 log log 𝑛

≤
1, as 𝑐 > 1 was arbitrary.
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Next let 𝑐 < 1. Choose 𝜂 ∈ (𝑐, 1) so that 1 − 𝜂 <
( 𝜂−𝑐

2
)2, 𝛾 ≥ 2 so that 𝜂 <

𝛾−1
𝛾

< 1
and set 𝑛𝑟 B ⌈𝛾𝑟 ⌉. The random variables 𝑆𝑛𝑟−1 and 𝐷𝑟 B 𝑆𝑛𝑟 − 𝑆𝑛𝑟−1 are independent and
further, the variables 𝐷𝑟 , 𝑟 = 1, 2, . . . , are independent. Set 𝐵𝑟 B

{
𝐷𝑟 > 𝜂

√︁
2𝑛𝑟 log log 𝑛𝑟

}
and

𝐶𝑟 B
{
𝑆𝑛𝑟−1 > −(𝜂 − 𝑐)

√︁
2𝑛𝑟 log log 𝑛𝑟

}
so that 𝐵𝑟∩𝐶𝑟 ⊂ 𝐴𝑛𝑟 . Note, that 4𝑛𝑟−1 ≈ 4 𝑛𝑟

𝛾
< 4𝑛𝑟 (1−𝜂) <

𝑛𝑟 (𝜂 − 𝑐)2 and thus

𝐸𝑟 B
{
|𝑆𝑛𝑟−1 | < 2

√︁
2𝑛𝑟−1 log log 𝑛𝑟−1

}
⊂

{
|𝑆𝑛𝑟−1 | < (𝜂 − 𝑐)

√︁
2𝑛𝑟−1 log log 𝑛𝑟

}
⊂

{
𝑆𝑛𝑟−1 > −(𝜂 − 𝑐)

√︁
2𝑛𝑟−1 log log 𝑛𝑟

}
= 𝐶𝑟 .

Recall from above that 𝐸𝑟 finitely often, hence 𝐶𝑟 only finitely often.
With 𝐷∗𝑟 B

1𝐷𝑟√
𝑛𝑟−𝑛𝑟−1

it holds that 𝐵𝑟 =
{
𝐷∗𝑟 > 𝜂

√︃
2 𝑛𝑟
𝑛𝑟−𝑛𝑟−1

log log 𝑛𝑟
}

and, as 𝑛𝑟
𝑛𝑟−𝑛𝑟−1

≈ 𝛾

𝛾−1 <
1
𝜂

that
𝐵𝑟 ⊃

{
𝐷∗𝑟 >

√
𝜂
√︁

2 log log 𝑛𝑟
}
=

{
𝐷∗𝑟 >

√
𝜂
√︁

2 log(𝑟 log 𝛾)
}
.

But the CLT, 𝐷∗𝑟 → N(0, 1). It follows that
∑∞
𝑟=1 𝑃(𝐵𝑟 ) ≥

∑∞
𝑟=1 𝑃

(
𝐷∗𝑟 >

√
𝜂
√︁

2 log(𝑟 log 𝛾)
)
= ∞.

As the events 𝐵𝑟 are independent by construction, it follows, again with Borel–Cantelli, that 𝐵𝑟
infinitely often. The assertion follows, as 𝐵𝑟 ∩ 𝐶𝑟 ⊂ 𝐴𝑟 . □

4.5 PROBLEMS

Exercise 4.1. Verify the inequality in (4.3).
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5Important Distributions in Statistics

Es existiert keine objektive
Wahrscheinlichkeit.

Bruno de Finetti, 1906–1985

5.1 𝜒2-DISTRIBUTION

Definition 5.1 (𝜒2-distribution). The 𝜒2-distribution (chi-squared) with 𝑛 degrees of freedom has
density

𝑓𝜒2
𝑛
(𝑥) = 𝑥

𝑛
2 −1 𝑒−

𝑥
2

2 𝑛
2 Γ

(
𝑛
2
) (𝑥 > 0). (5.1)

Remark 5.2 (Gamma function). The function

Γ(𝑠) B
∫ ∞

0
𝑥𝑠−1 𝑒−𝑥d𝑥 (5.2)

is Euler’s Gamma function, aka. Euler integral of the second kind. It holds that Γ(𝑠 + 1) = 𝑠 · Γ(𝑠)
(thus Γ(𝑛) = (𝑛 − 1)!, 𝑛 ∈ {1, 2, . . . }) and, using Remark 3.2,

Γ (1/2) =
∫ ∞

0
𝑥−1/2 𝑒−𝑥 d𝑥 =

𝑥← 𝑥2
2

∫ ∞

0

√︂
2
𝑥2 𝑒

−𝑥2/2 2𝑥
2

d𝑥 =
√

2
∫ ∞

0
𝑒−𝑥

2/2 d𝑥 =
√

2
√

2𝜋
2

=
√
𝜋. (5.3)

Definition 5.3 (Gamma distribution). The pdf of the Gamma distribution with paramters 𝛼 > 0
(shape) and 𝛽 > 0 (rate) is

𝑓Γ𝛼,𝛽
(𝑥) = 𝛽𝛼

Γ(𝛼) 𝑥
𝛼−1𝑒−𝛽𝑥 (𝑥 > 0). (5.4)

Definition 5.4 (Erlang distribution). The pdf of the Erlang1 distribution with parameters 𝑘 ∈
{1, 2 . . . } (shape) and 𝜆 > 0 (rate, or inverse scale) is

𝑓𝐸𝑘,𝜆
(𝑥) = 𝜆𝑘

(𝑘 − 1)!𝑥
𝑘−1𝑒−𝜆𝑥 (𝑥 > 0).

Remark 5.5. The distribution 𝐸1,𝜆 =: 𝐸𝜆 is the exponential distribution.

Remark 5.6 (Relation between Gamma, Erlang and 𝜒2). Erlang’s distribution is a special case
of the Gamma distribution (cf. (5.4)) and it holds that

𝜒2
𝑛 ∼ Γ𝑛/2,1/2, 𝜒2

2𝑛 ∼ 𝐸𝑛,1/2, 𝜎 · Γ𝛼,𝛽 ∼ Γ
𝛼,

𝛽

𝜎

and 𝐸𝑛,𝛽 ∼ Γ𝑛,𝛽 . (5.5)

1Agner Krarup Erlang, 1878–1929, Danish
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In particular we have that

2𝜆 𝐸𝑘,𝜆 ∼ 𝜒2
2𝑘 and Γ𝑘,𝛽 ∼

1
2𝛽
𝜒2

2𝑘 (5.6)

(cf. Exercise 5.5).

Proposition 5.7. The moment generating function of the Gamma distribution is

𝑚Γ𝛼,𝛽
(𝑡) = E 𝑒𝑡 ·Γ𝛼,𝛽 =

∫ ∞

0
𝑒−(𝛽−𝑡 )𝑥

𝛽𝛼𝑥𝛼−1

Γ(𝛼) d𝑥 =
𝑥← 𝑥

𝛽−𝑡

(
𝛽

𝛽 − 𝑡

)𝛼
, 𝑡 < 𝛽. (5.7)

The moments of 𝑋 ∼ Γ𝛼,𝛽 are (cf. Exercise 5.1)

E 𝑋𝛾 =
Γ(𝛼 + 𝛾)
𝛽𝛾 Γ(𝛼) , in particular E 𝑋 =

𝛼

𝛽
and var 𝑋 =

𝛼

𝛽2 . (5.8)

Proposition 5.8. If 𝑋 ∼ Γ𝑘,𝛽 and 𝑌 ∼ Γℓ,𝛽 are independent, then 𝑋 + 𝑌 ∼ Γ𝑘+ℓ,𝛽 (cf. Exer-
cise 5.12).

Proof. As 𝑋 and 𝑌 are independent we have with (5.7) that

E 𝑒𝑡 (𝑋+𝑌 ) = E 𝑒𝑡𝑋 · 𝑒𝑡𝑌 = E 𝑒𝑡𝑋 · E 𝑒𝑡𝑌 = 𝑚Γ𝑘,𝛽 (𝑡) · 𝑚Γℓ,𝛽 (𝑡)

=

(
𝛽

𝛽 − 𝑡

) 𝑘
·
(
𝛽

𝛽 − 𝑡

)ℓ
=

(
𝛽

𝛽 − 𝑡

) 𝑘+ℓ
= 𝑚Γ𝑘+ℓ,𝛽 (𝑡)

for all 𝑡 ∈ (−∞, 𝛽) and thus the result. □

2nd, more explicit proof. The convolution is

𝑓𝑋+𝑌 (𝑥) =
∫ 𝑥

0
𝑓𝑘 (𝑦) 𝑓ℓ (𝑥 − 𝑦) d𝑦 =

∫ 𝑥

0

𝛽𝑘𝑦𝑘−1

Γ(𝑘) 𝑒
−𝛽𝑦 𝛽

ℓ (𝑥 − 𝑦)ℓ−1

Γ(ℓ) 𝑒−𝛽 (𝑥−𝑦) d𝑦

=
𝑦←𝑥𝑢

𝛽𝑘+ℓ𝑥𝑘+ℓ−1

Γ(𝑘 + ℓ) 𝑒
−𝛽𝑥 · Γ(𝑘 + ℓ)

Γ(𝑘) Γ(ℓ)

∫ 1

0
𝑢𝑘−1 (1 − 𝑢)ℓ−1 d𝑢︸                       ︷︷                       ︸

𝐵(𝑘,ℓ )

(5.9)

and thus the result. □

Remark 5.9. The function

𝐵(𝑠, 𝑡) B
∫ 1

0
𝑢𝑠−1 (1 − 𝑢)𝑡−1 d𝑢 =

Γ(𝑠) · Γ(𝑡)
Γ(𝑠 + 𝑡) (5.10)

is the Beta function, also called Euler integral of the first kind (cf. Exercise 5.10). Note that
𝑓𝑋+𝑌 (·) is a density and thus the identity (5.10) follows from (5.9).

Alternative proof of (5.10). Indeed,

Γ(𝑠) · Γ(𝑡) =
∫ ∞

0
𝑢𝑠−1𝑒−𝑢 d𝑢 ·

∫ ∞

0
𝑣𝑡−1𝑒−𝑣 d𝑣 =

∫ ∞

0

∫ ∞

0
𝑒−𝑢−𝑣𝑢𝑠−1𝑣𝑡−1 d𝑢d𝑣.
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The function
(
𝑢

𝑣

)
= 𝑔

(
𝑦

𝑧

)
B

(
𝑦𝑧

(1 − 𝑦)𝑧

)
has Jabobian determinant det

(
𝑧 𝑦

−𝑧 1 − 𝑦

)
= 𝑧(1−𝑦)+𝑧𝑦 = 𝑧.

Substituting 𝑔(·) thus gives

Γ(𝑠) Γ(𝑡) =
∫ ∞

0

∫ 1

0
𝑒−𝑦𝑧−(1−𝑦)𝑧 (𝑧𝑦)𝑠−1 ((1 − 𝑦)𝑧)𝑡−1 · 𝑧 d𝑦d𝑧

=

∫ ∞

0

∫ 1

0
𝑒−𝑧𝑧𝑠+𝑡−1 · 𝑦𝑠−1 (1 − 𝑦)𝑡−1 d𝑦d𝑧

=

∫ ∞

0
𝑧𝑠+𝑡−1𝑒−𝑧 d𝑧 ·

∫ 1

0
𝑦𝑠−1 (1 − 𝑦)𝑡−1 d𝑦 = Γ(𝑠 + 𝑡) · 𝐵(𝑠, 𝑡),

the assertion. □

Remark 5.10. Euler’s Beta function generalizes the binomial coefficient: for 𝑛, 𝑘 ∈ R, it holds
that

(𝑛
𝑘

)
= 1
(𝑛−1)𝐵(𝑛−𝑘+1,𝑘+1) .

Corollary 5.11. If 𝑋 ∼ 𝐸𝑘,𝜆 and 𝑌 ∼ 𝐸ℓ,𝜆 are independent, then 𝑋 + 𝑌 ∼ 𝐸𝑘+ℓ,𝜆.

Proposition 5.12. Let 𝑋𝑖, 𝑖 = 1, . . . 𝑛, be independent and standard normally distributed. Then

𝑋2
1 + · · · + 𝑋

2
𝑛 ∼ 𝜒2

𝑛

follows a 𝜒2
𝑛-distribution with 𝑛 degrees of freedom.

Proof. We demonstrate first that 𝑋2 ∼ 𝜒2
1 for 𝑋 ∼ N(0, 1). Indeed,

𝐹𝑋2 (𝑥) = 𝑃(𝑋2 ≤ 𝑥) = 𝑃
(
−
√
𝑥 ≤ 𝑋 ≤

√
𝑥
)
= Φ

(√
𝑥
)
−Φ

(
−
√
𝑥
)

= Φ
(√
𝑥
)
−

(
1 −Φ

(√
𝑥
) )

= 2Φ
(√
𝑥
)
− 1

and hence

𝑓𝑋2 (𝑥) = 𝐹′
𝑋2 (𝑥) =

2 𝜑
(√
𝑥
)

2
√
𝑥

=
1
√

2𝜋𝑥
𝑒−

𝑥
2 = 𝑓𝜒2

1
(𝑥)

and thus the assertion for 𝑛 = 1, cf. (5.3).
It follows from (5.5) and Proposition 5.8 that

𝜒2
𝑚 + 𝜒2

𝑛 ∼ Γ𝑚
2 ,

1
2
+ Γ𝑛

2 ,
1
2
∼ Γ𝑚+𝑛

2 , 1
2
∼ 𝜒2

𝑚+𝑛

for independent 𝜒2
𝑚 and 𝜒2

𝑛 random variables, thus the result. □

5.2 BOX–MULLER TRANSFORM AND THE POLAR METHOD

For two independent, normally distributed 𝑋, 𝑌 ∼ N(0, 1) it follows from Proposition 5.12 and (5.5)
that

𝑅2 B 𝑋2 + 𝑌2 ∼ 𝜒2
2 ∼ 𝐸1,1/2 ∼ 𝐸1/2 ∼ 2𝐸1 (5.11)

is exponentially distributed with rate 𝜆 = 1/2. This is the basis for the Box2–Muller3 transform

𝑈

(
[0, 1]2

)
∼

(
𝑈1
𝑈2

)
↦→

√︁
−2 log𝑈1︸        ︷︷        ︸

𝑅

(
cos

(
2𝜋𝑈2

)
sin

(
2𝜋𝑈2

) ) ∼ N ((
0
0

)
,

(
1 0
0 1

))
,
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Result: Realization of two independent, normally distributed random variables 𝑋 and 𝑌

generate independent uniforms 𝑈1 ∈ [0, 1] and 𝑈2 ∈ [0, 1];
set 𝑅 B

√︁
−2 log𝑈1; random radius 𝑅 with 𝑅2 ∼ 𝐸1/2 ∼ 𝜒2

2 by (5.11)
set 𝑋 B 𝑅 · cos(2𝜋𝑈2) and 𝑌 B 𝑅 · sin(2𝜋𝑈2); random angle 𝑈2
return (𝑋,𝑌 )

Algorithm 1: Box–Muller transform, 1958

which Algorithm 1 exploits to generate normally distributed random variables.
Marsaglia’s4 polar method (Algorithm 2) is a variant of Box–Muller transform which avoids

evaluating sin and cos, as these evaluations are numerically expensive. To this end note that
𝐶2 + 𝑆2 ∼ 𝑈 ( [0, 1]) is uniformly distributed, if (𝐶, 𝑆) ∼ 𝑈

(
[−1, 1]2

)
are independent uniforms and

𝐶2 + 𝑆2 ≤ 1. Indeed (cf. Exercise 5.13),

𝑃

(
𝐶2 + 𝑆2 ≤ 𝑢

��𝐶2 + 𝑆2 ≤ 1
)
= 𝑃

(√︁
𝐶2 + 𝑆2 ≤

√
𝑢

��� √︁𝐶2 + 𝑆2 ≤ 1
)
=

√
𝑢

2
𝜋

12 𝜋
= 𝑢. (5.12)

Result: Realization of two independent, normally distributed random variables 𝑋 and 𝑌

repeat
generate independent uniforms 𝐶 ∈ [−1, 1] and 𝑆 ∈ [−1, 1];

until 𝑈 B 𝐶2 + 𝑆2 ≤ 1;

set 𝑝 B
√︃
−2 log𝑈
𝑈

; note that 𝑝2𝑈 = −2 log𝑈 ∼ 𝐸1,1/2 ∼ 𝜒2
2 by (5.12) and (5.11)

return (𝑋 = 𝐶 · 𝑝, 𝑌 = 𝑆 · 𝑝) 𝑋 =
√︁
𝑝2𝑈 · 𝐶√

𝑈
, 𝑌 =

√︁
𝑝2𝑈 · 𝑆√

𝑈

Algorithm 2: Marsaglia polar method, 1964

The Ziggurat algorithm intends to reduce expensive evaluations as log(·) and
√· to a mini-

mum.

5.3 STUDENT’S T-DISTRIBUTION

The statistics 𝑋𝑛 and 𝑠2
𝑛 are dependent in general (well, 𝑠2

𝑛 explicitly involves 𝑋𝑛, cf. (2.3)), and
correlated (see Proposition 2.13). The next theorem discusses the situation for Gaussians.

Theorem 5.13 (Cochran’s theorem; Gosset5). Let 𝑋𝑖 ∼ N(𝜇, 𝜎2), 𝑖 = 1, . . . , 𝑛, be independent
normals. Then the statistics 𝑋𝑛 and 𝑠2

𝑛 are independent (sic!) and they follow the distributions

𝑋𝑛 ∼ N
(
𝜇,
𝜎2

𝑛

)
and

𝑛 − 1
𝜎2 𝑠2

𝑛 ∼ 𝜒2
𝑛−1. (5.13)

2George Box, 1919–2013
3Mervin E. Muller
4George Marsaglia, 1924–2011
5William Sealy Gosset, 1876–1937, was an employee of the brewery Guinness (Dublin) and published as Student.
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Proof. We shall assume first 𝜇 = 0 and 𝜎 = 1. The matrix

𝑈𝑛 B

©­­­­­­­­«

1/√𝑛 . . . . . . . . . 1/√𝑛
1/√2 −1/√2 0 . . . 0

1/√2·3 1/√2·3 −2/√2·3
. . .

...
...

...
. . .

. . . 0
1/√(𝑛−1)𝑛 1/√(𝑛−1)𝑛 . . . 1/√(𝑛−1)𝑛 − 𝑛−1√

(𝑛−1)𝑛

ª®®®®®®®®¬
(5.14)

is unitary, i.e., 𝑈⊤𝑛𝑈𝑛 = 1𝑛 (Exercise 5.6). Define the linear transform (rotation) 𝑌 B
©­­«
𝑌1
...

𝑌𝑛

ª®®¬ B
𝑈𝑛 ·

©­­«
𝑋1
...

𝑋𝑛

ª®®¬. By (3.6) the distribution is
©­­«
𝑌1
...

𝑌𝑛

ª®®¬ ∼ N
(
𝑈𝑛0, 𝑈⊤𝑛 1𝑛𝑈𝑛

)
= N

(
0,1𝑛

)
and by Theorem 3.15

the components 𝑌𝑖 are independent normals. Note, that

𝑌1 =
√
𝑛 · 𝑋𝑛

and

𝑌2
2 + 𝑌

2
3 + · · · + 𝑌

2
𝑛 =

(
𝑛∑︁
𝑖=1
𝑌2
𝑖

)
− 𝑌2

1 =

(
𝑛∑︁
𝑖=1

𝑋2
𝑖

)
− 𝑛 𝑋2

𝑛 =
(2.5)

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋𝑛

)2
= (𝑛 − 1) 𝑠2

𝑛,

as 𝑈𝑛 is unitary (and thus
∑𝑛
𝑖=1𝑌

2
𝑖

= ∥𝑌 ∥2 = ∥𝑈𝑛𝑋 ∥2 = ∥𝑋 ∥2 =
∑𝑛
𝑖=1 𝑋

2
𝑖
) and by (2.5). The

statistics (2.1) and (2.2) are independent as 𝑋𝑛 = 𝑓1 (𝑌1) and 𝑠2
𝑛 = 𝑓2 (𝑌2, . . . , 𝑌𝑛). Their distribu-

tions (5.13) are immediate as well, as 𝑌𝑖 are independent normals.
The assertion for general 𝜇 ∈ R and 𝜎 > 0 follows by employing the transformation 𝑋−𝜇

𝜎
, the

Z-transform. □

Remark 5.14. The statistics 𝑠𝑛 depends explicitly on 𝑋𝑛 by (2.2). However, for Gaussians, these
quantities are stochastically independent. This is not true for non-Gaussians and even more,
independence of 𝑋𝑛 and 𝑠𝑛 actually characterizes Gaussian random variables.

Definition 5.15. The density of Student’s t-distribution with 𝑛 degrees of freedom is

𝑓𝑡𝑛 (𝑡) =
Γ

(
𝑛+1

2

)
√
𝑛 𝜋 Γ

(
𝑛
2
) · 1(

1 + 𝑡2
𝑛

) 𝑛+1
2
, 𝑡 ∈ R.

Proposition 5.16 (Pointwise convergence). For every 𝑡 ∈ R it holds that 𝑓𝑡𝑛 (𝑡) → 𝜑(𝑡) (the
density of the normal distribution) as 𝑛→∞.

Proof. Use that
(
1 + 𝑡2

𝑛

)− 𝑛+1
2

= 1√︃
1+ 𝑡2

𝑛

· 1√︂(
1+ 𝑡2

𝑛

)𝑛 −−−−→𝑛→∞
1 · 1√

𝑒𝑡
2
= 𝑒−

1
2 𝑡

2
. □

For 𝑋𝑖 ∼ N
(
𝜇, 𝜎2) iid normally distributed random variables we have that

√
𝑛
𝑋𝑛−𝜇
𝜎
∼ N (0, 1);

even more, for 𝑋𝑖 iid not necessarily normal we have from CLT (Theorem 4.3) that

𝑋𝑛 − 𝜇√︁
𝜎2/𝑛

=
√
𝑛 · 1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇
𝜎

D−−→ N (0, 1) .
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The following theorem describes the corresponding distribution when 𝜎2 is not known explicitly
but replaced by its estimate 𝑠2

𝑛.

Theorem 5.17. Let 𝑋𝑖 be iid N
(
𝜇, 𝜎2) and 𝑛 > 1, then the statistic

𝑡 (𝑋1, . . . , 𝑋𝑛) B
√
𝑛
𝑋𝑛 − 𝜇
𝑠𝑛

=
√
𝑛
𝑋𝑛 − 𝜇√︁

𝑠2
𝑛

∼ 𝑡𝑛−1 (5.15)

follows a Student 𝑡 distribution with 𝑛 − 1 degrees of freedom.

Proof. The joint density of a random variable 𝑍 ∼ N(0, 1) and an independent variable 𝑌𝑛 ∼ 𝜒2
𝑛

is

𝑓𝑍,𝑌𝑛 (𝑧, 𝑦) =
𝑒−

1
2 𝑧

2

√
2𝜋
· 𝑦

𝑛
2 −1 𝑒−

𝑦

2

2 𝑛
2 Γ

(
𝑛
2
) .

The transformation
(
𝑡

𝑣

)
= 𝑔

(
𝑧

𝑦

)
B

(
𝑧/

√︁
𝑦/𝑛
𝑦

)
has inverse

(
𝑧

𝑦

)
= 𝑔−1

(
𝑡

𝑣

)
=

(
𝑡 ·

√︁
𝑣/𝑛
𝑣

)
and Jacobian

det(𝑔−1)′
(
𝑡

𝑣

)
= det

(√︁
𝑣
𝑛

. . .

0 1

)
=

√︁
𝑣
𝑛
. By (1.9), the density of the transformation 𝑔

(
𝑍

𝑌𝑛

)
=

(
𝑇𝑛
𝑌𝑛

)
with

𝑇𝑛 B
𝑍√
𝑌𝑛/𝑛

is

𝑓𝑇𝑛 ,𝑌𝑛 (𝑡, 𝑣) =
𝑒−

1
2
𝑡2𝑣
𝑛

√
2 𝜋
· 𝑣

𝑛
2 −1 𝑒−

𝑣
2

2 𝑛
2 Γ

(
𝑛
2
) ·√︂ 𝑣

𝑛
=
𝑣

𝑛+1
2 −1 𝑒−

𝑣
2 (1+𝑡2/𝑛)

√
𝑛 𝜋 2 𝑛+1

2 Γ
(
𝑛
2
) ,

its marginal density is

𝑓𝑇𝑛 (𝑡) =
∫ ∞

0
𝑓𝑇𝑛 ,𝑌𝑛 (𝑡, 𝑣) d𝑣 =

1
√
𝑛 𝜋 2 𝑛+1

2 Γ
(
𝑛
2
) ∫ ∞

0
𝑣

𝑛+1
2 −1 𝑒−𝑣

1
2 (1+𝑡2/𝑛) d𝑣

=

Γ

(
𝑛+1

2

)
√
𝑛 𝜋 Γ

(
𝑛
2
) (

1 + 𝑡
2

𝑛

)− 𝑛+1
2

= 𝑓𝑡𝑛 (𝑡),

i.e., 𝑇𝑛 ∼ 𝑡𝑛.
Recall finally from Theorem 5.13 that 𝑍 B

√
𝑛
𝑋𝑛−𝜇
𝜎
∼ N(0, 1) and 𝑌𝑛−1 B

𝑛−1
𝜎2 𝑠

2
𝑛 ∼ 𝜒2

𝑛−1 are
independent. It follows that

√
𝑛
𝑋𝑛 − 𝜇√︁

𝑠2
𝑛

=

√
𝑛
𝑋𝑛−𝜇
𝜎√︃
𝑠2
𝑛

𝜎2

=
𝑍√︃
𝑌𝑛−1
𝑛−1

= 𝑇𝑛−1 ∼ 𝑡𝑛−1,

the assertion. □

Proposition 5.18 (Cf. Proposition 2.21 and WolframMathWorld). If

(i)
(
𝑋𝑖
𝑌𝑖

)
∼

((
𝜇𝑋
𝜇𝑌

)
,

(
𝜎2
𝑋

𝜌 · 𝜎𝑋𝜎𝑌
𝜌 · 𝜎𝑋𝜎𝑌 𝜎2

𝑌

))
are bivariate normal, then the density of the correla-

tion coefficient 𝑟𝑛 (cf. (2.9)) is

𝑓𝑟𝑛 (𝑟) =
(𝑛 − 2) (𝑛 − 2)!

(
1 − 𝜌2) 𝑛−1

2
(
1 − 𝑟2) 𝑛−4

2

√
2𝜋Γ

(
𝑛 − 1

2

)
(1 − 𝜌𝑟)𝑛− 3

2
2𝐹1

(
1
2
,

1
2

; 𝑛 − 1
2

;
𝜌𝑟 + 1

2

)
,

where −1 ≤ 𝑟 ≤ 1 and 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) = ∑∞
𝑘=1

𝑎· (𝑎+1) ·· · (𝑎+𝑘−1) ·𝑏· (𝑏+1) ·· · (𝑏+𝑘−1)
𝑐· (𝑐+1) ·· · (𝑐+𝑘−1)

𝑧𝑘

𝑘! is the Gaus-

sian hypergeometric function. Particularly, E 𝑟𝑛 = 𝜌 − 𝜌 1−𝜌2

𝑛−1 and var 𝑟𝑛 = (1−𝜌
2 )2

𝑛−1 + O (1/𝑛).
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𝑛

√︃
𝑛−1

2
Γ( 𝑛−1

2 )
Γ( 𝑛2 )

∼ 1 + 1
4𝑛 +

9
32𝑛2

1 —
2 1.25331...
3 1.12838...
10 1.02811...

100 1.00253...

Table 5.1: The factor to correct the standard deviation (5.17)

(ii) If 𝑋𝑖 and 𝑌𝑖 are bivariate normal and independent (𝜌 = 0), then√︄
𝑛 − 2
1 − 𝑟2

𝑛

𝑟𝑛 ∼ 𝑡𝑛−2. (5.16)

The critical value for 𝑟𝑛 according (5.16) is 𝑟 = 𝑡√
𝑛−2+𝑡2

.

Theorem 5.19. Let 𝑋𝑖 ∼ N
(
𝜇, 𝜎2) be iid normals. Then (cf. Corollary 2.12 (iii) and Table 5.1)

E

√︂
𝑛 − 1

2

Γ

(
𝑛−1

2

)
Γ

(
𝑛
2
) √︃

𝑠2
𝑛 = 𝜎. (5.17)

Proof. The distribution 𝜒𝑛 B
√︁
𝜒2
𝑛 (𝑔(𝑥) =

√
𝑥 and 𝑔−1 (𝑥) = 𝑥2) has the density (cf. (5.1) and (1.9))

𝑓𝜒𝑛 (𝑥) B 𝑓𝜒2
𝑛
(𝑥2) · 2𝑥 = 𝑥𝑛−1𝑒−

𝑥2
2

2 𝑛
2 −1Γ

(
𝑛
2
) .

It follows from (5.13) that
√︁
(𝑛 − 1)𝑠2

𝑛 ∼ 𝜎 · 𝜒𝑛−1. Using (5.1) we have that

E 𝜒𝑛−1 =

∫ ∞

0
𝑥 · 𝑥𝑛−2𝑒−

𝑥2
2

2 𝑛−1
2 −1Γ

(
𝑛−1

2

) d𝑥 =
𝑥←
√

2𝑥

∫ ∞

0
2

𝑛−2
2

𝑥
𝑛−2

2 𝑒−𝑥

2 𝑛−1
2 −1Γ

(
𝑛−1

2

) d𝑥 =
√

2
Γ

(
𝑛
2
)

Γ

(
𝑛−1

2

) ,
from which the rest is immediate. □

5.4 FISHER’S F-DISTRIBUTION

Definition 5.20. Fisher’s F-distribution with 𝑚 and 𝑛 degrees of freedom has the density

𝑓𝑚,𝑛 (𝑥) =
(
𝑚
𝑛

)𝑚/2
𝐵 (𝑚/2, 𝑛/2) ·

𝑥
𝑚
2 −1(

1 + 𝑚
𝑛
𝑥
) 𝑚+𝑛

2
, 𝑥 ≥ 0,

where 𝐵 is Euler’s Beta function, cf. (5.10). We shall write 𝑋 ∼ 𝐹𝑚,𝑛 for such random variables.

Proposition 5.21. Let 𝑋 ∼ 𝜒2
𝑚 and 𝑌 ∼ 𝜒2

𝑛 be independent, then

𝑋/𝑚
𝑌/𝑛 ∼ 𝐹𝑚,𝑛.
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Proof. Define the transformation 𝑔
(
𝑥

𝑦

)
B

(
𝑥/𝑚
𝑦/𝑛
𝑦

)
and note that 𝑔−1

(
𝑧

𝑣

)
=

(
𝑚·𝑧 ·𝑣/𝑛
𝑣

)
and det(𝑔−1)′ =

det
(
𝑚𝑣/𝑛 · · ·

0 1

)
= 𝑚𝑣

𝑛
. Then, for independent 𝑋 ∼ 𝜒2

𝑚 and 𝑌 ∼ 𝜒2
𝑛 we find

𝑓𝑔 (𝑋,𝑌 ) (𝑧, 𝑣) = 𝑓𝑋

(𝑚 𝑧 𝑣
𝑛

)
𝑓𝑌 (𝑣) ·

𝑚 𝑣

𝑛
=

(
𝑚 𝑧 𝑣
𝑛

) 𝑚
2 −1

𝑒−
𝑚𝑧𝑣
2𝑛

2𝑚/2Γ (𝑚/2)
· 𝑣

𝑛
2 −1𝑒−

𝑣
2

2𝑛/2Γ (𝑛/2)
· 𝑚 𝑣
𝑛

=

(
𝑚
𝑛

) 𝑚
2 𝑧

𝑚
2 −1

2𝑚+𝑛
2 Γ (𝑚/2) Γ (𝑛/2)

𝑣
𝑚+𝑛

2 −1𝑒−
𝑣
2 (1+

𝑚
𝑛
𝑧)

with marginal distribution

𝑓 𝑋/𝑚
𝑌/𝑛
(𝑧) =

(
𝑚
𝑛

) 𝑚
2 𝑧

𝑚
2 −1

2𝑚+𝑛
2 Γ (𝑚/2) Γ (𝑛/2)

∫ ∞

0
𝑣

𝑚+𝑛
2 −1𝑒−

𝑣
2 (1+

𝑚
𝑛
𝑧) d𝑣.

Now substitute 𝑣 ← 𝑣 2
1+𝑚

𝑛
𝑧

to get

𝑓 𝑋/𝑚
𝑌/𝑛
(𝑧) =

(
𝑚
𝑛

) 𝑚
2 𝑧

𝑚
2 −1

2𝑚+𝑛
2 Γ (𝑚/2) Γ (𝑛/2)

·
(

2
1 + 𝑚

𝑛
𝑧

) 𝑚+𝑛
2

·
∫ ∞

0
𝑣

𝑚+𝑛
2 −1𝑒−𝑣 d𝑣

=

(
𝑚
𝑛

) 𝑚
2 Γ

(
𝑚+𝑛

2
)

Γ (𝑚/2) Γ (𝑛/2) ·
𝑧

𝑚
2 −1(

1 + 𝑚
𝑛
𝑧
) 𝑚+𝑛

2
,

which is the assertion. □

5.5 PROBLEMS

Exercise 5.1. Verify the moments of the Gamma distribution, Eq. (5.8).

Exercise 5.2. Show that
E 𝑋 = 𝑛 and var 𝑋 = 2𝑛

for 𝑋 ∼ 𝜒2
𝑛.

Exercise 5.3. For every 𝑥 ∈ R it holds that
√

2𝑛 · 𝑓𝜒2
𝑛

(
𝑛 + 𝑥
√

2𝑛
)
−−−−→
𝑛→∞

𝜑(𝑥).

Exercise 5.4. Show that 𝑋𝑛 ∼ Γ𝑛𝛼,𝑛𝛽 for independent 𝑋𝑖 ∼ Γ𝛼,𝛽.

Exercise 5.5. Use 𝑔(𝑥) = 2𝜆𝑥 and (1.9) to verify Remark 5.6.

Exercise 5.6. Show that (5.14) is unitary.

Exercise 5.7. If 𝑋 ∼ 𝐹𝑛,𝑚, then 1/𝑋 ∼ 𝐹𝑚,𝑛.

Exercise 5.8. If 𝑋 ∼ 𝑡𝑛 is Student, then 𝑋2 ∼ 𝐹1,𝑛 and 𝑋−2 ∼ 𝐹𝑛,1.

Exercise 5.9. Show that var 𝑋 = 𝑛
𝑛−2 for 𝑋 ∼ 𝑡𝑛 and 𝑛 > 2.
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Beta distribution

Exercise 5.10 (Beta distribution). The density of the Beta distribution B𝛼,𝛽 with parameters
𝛼 > 0 and 𝛽 > 0 is

𝑓𝐵𝛼,𝛽
(𝑥) = 𝑥𝛼−1 (1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽) , 𝑥 ∈ (0, 1),

where 𝐵(𝛼, 𝛽) =
∫ 1

0 𝑢𝛼−1 (1 − 𝑢)𝛽−1 d𝑢 is the Beta function cf. (5.10).
Show that E 𝑋𝛾 =

𝐵(𝛼+𝛾,𝛽)
𝐵(𝛼,𝛽) for 𝑋 ∼ B𝛼,𝛽. In particular,

E 𝑋 =
𝛼

𝛼 + 𝛽 and var 𝑋 =
𝛼𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
.

Exercise 5.11. If 𝑋 ∼ B𝑚
2 ,

𝑛
2
, then 𝑛𝑋

𝑚(1−𝑋) ∼ 𝐹𝑚,𝑛 or equivalently: if 𝑌 ∼ 𝐹𝑚,𝑛, then 𝑚𝑌/𝑛
1+𝑚𝑌/𝑛 ∼ B𝑚

2 ,
𝑛
2
.

Exercise 5.12. If 𝑋 ∼ Γ𝑘,𝛽 and 𝑌 ∼ Γℓ,𝛽 are independent, then

𝑋

𝑋 + 𝑌 ∼ B𝑘,ℓ and 𝑋 + 𝑌 ∼ Γ𝑘+ℓ,𝛽

and they are independent as well.

Hint: the transform 𝑔

(
𝑥

𝑦

)
B

(
𝑥 + 𝑦
𝑥
𝑥+𝑦

)
has inverse 𝑔−1

(
𝑢

𝑣

)
=

(
𝑢 𝑣

𝑢(1 − 𝑣)

)
and Jacobian

����det
(
𝑔−1) ′ (𝑢

𝑣

)���� =
𝑢.

Exercise 5.13 (Cf. (5.12)). Let 𝑈1,𝑈2 ∼ 𝑈 [0, 1] be uniformly distributed and independent. Show
that

𝑃
(
𝑈2

1 +𝑈
2
2 ∈ d𝑢

)
=

{
𝜋
4 d𝑢 if 𝑢 ∈ [0, 1],(
𝜋
4 − arctan

√
𝑢 − 1

)
d𝑢 if 𝑢 ∈ [1, 2] .

Note particularly that 𝑃
(
𝑈2

1 +𝑈
2
2 ≤ 𝑢 | 𝑈

2
1 +𝑈

2
2 ≤ 1

)
= 𝑢, i.e., 𝑅2 B 𝑈2

1 +𝑈
2
2 is uniformly distributed

provided that 𝑅 ≤ 1.
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6Statistical Hypothesis Testing

Let the data speak for themselves.

attributed to John W. Tukey, 1915–2000

6.1 MATHEMATICAL SETTING AND DEFINITIONS

Definition 6.1. A statistical model 1 is

E B (X, Σ, (𝑃𝜗)𝜗∈Θ) ,

where
(i) X is the sample space (Stichprobenraum),
(ii) Σ is the sigma algebra,
(iii) 𝜗 ∈ Θ is a parameter in a set of parameters and
(iv) P B {𝑃𝜗 : 𝜗 ∈ Θ} is a family of probability measures, 𝑃𝜗 : Σ→ [0, 1].

A parametrization is said to be identifiable, if 𝜗1 ≠ 𝜗2 =⇒ 𝑃𝜗1 ≠ 𝑃𝜗2 (i.e., the mapping 𝜗 ↦→ 𝑃𝜗
is injective).

The model is said to be
⊲ discrete, if X is finite or countably finite;
⊲ parametric, if Θ ⊂ R𝑑 for some 𝑑 ∈ {1, 2, 3, . . . } and nonparametric else;
⊲ binary , if {𝑃𝜗 : 𝜗 ∈ Θ} = {𝑃0, 𝑃1} with 𝑃0 ≠ 𝑃1.

Remark 6.2. We shall typically write E𝜗 (var𝜗, resp.) for the expectation (variance, resp.) with
respect to the probability measure 𝑃𝜗; e.g., E𝜗 𝑋 =

∫
X 𝑋 d𝑃𝜗, etc.

The typical problem in statistics is to decide which distribution a sample (data) 𝑥 ∈ X is from.

Definition 6.3. A random variable 𝑡 : X → [0, 1] is a statistical test. The test is
(i) non-randomized , if X 𝑡−→ {0, 1},
(ii) a general test X 𝑡−→ [0, 1] is called randomized.

For a (non-randomized) test 𝑡 (·) we shall associate the sets

⊲ {𝑥 ∈ X : 𝑡 (𝑥) = 0} acceptance region,2 and
⊲ {𝑥 ∈ X : 𝑡 (𝑥) = 1} = 𝐶𝑡 is the rejection region or critical region.3

Remark 6.4 (Conservative test). Suppose that 𝑡 (·) is a randomized test, set 𝑝 B 𝑡 (𝑥). Then
reject 𝐻0 with probability 𝑝, i.e., the final decision depends on a further experiment which is
independent from the data 𝑥.

1statistisches Experiment, statistisches Modell
2Annahmebereich
3Ablehnbereich, auch kritischer Bereich
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58 STATISTICAL HYPOTHESIS TESTING

In practice, the (non-randomized) more conservative test

⌊𝑡⌋ (𝑥) B ⌊𝑡 (𝑥)⌋ =
{

1 if 𝑡 (𝑥) = 1,
0 if 𝑡 (𝑥) < 1

is employed instead of the randomized test 𝑡 (·) (i.e., ⌊𝑡⌋ ≤ 𝑡).
Remark 6.5. The set of randomized tests is convex: if 𝑡0 and 𝑡1 are (randomized) tests, then
(1 − 𝜆) 𝑡0 + 𝜆 𝑡1 is a randomized test as well.

6.2 HYPOTHESIS TESTING: TYPES OF ERRORS

A hypothesis is proposed, the null hypothesis 𝐻0 as opposed to the alternative hypothesis 𝐻1.
To investigate this setting we assume that

Θ = Θ0 ¤∪Θ1 (i.e., Θ0 ∩ Θ1 = ∅ and Θ = Θ0 ∪ Θ1)

and for an identifiable parametrization thus

P B {𝑃𝜗 : 𝜗 ∈ Θ0}︸            ︷︷            ︸
=:P0

¤∪ {𝑃𝜗 : 𝜗 ∈ Θ1}︸            ︷︷            ︸
=:P1

.

We shall consider binary tests with P = {𝑃 B 𝑃0, 𝑄 B 𝑃1} first and address composite hy-
potheses later.

The test setting. The test problem is usually formulated in terms of an hypothesis versus an
alternative. The

⊲ null hypothesis, 𝐻0 : the sample 𝑥 originates from 𝑃(·) = 𝑃0 (·) = 𝑃 (· | 𝐻0)
is tested against the

⊲ Alternative, 𝐻1 : the sample 𝑥 originates from 𝑄(·) = 𝑃1 (·) = 𝑃 (· | 𝐻1);
here we have implicitly introduced different notations in frequent use.

We shall attribute a sample 𝑥 ∈ X to 𝑃0 if 𝑡 (𝑥) = 0 and to 𝑃1 if 𝑡 (𝑥) = 1.

Definition 6.6. Power and types of errors, cf. Table 6.1.

⊲ Type I error :4 decision for 𝑄 = 𝑃1, i.e., 𝑡 (𝑥) = 1, although the sample 𝑥 is drawn from
𝑃 = 𝑃0. The probability of a type I error is

𝛼 B E𝑃 𝑡 =

∫
X
𝑡 d𝑃 =

∫
X
𝑡 (𝑥) 𝑃(d𝑥)

(i.e., 𝛼 = E𝑃 1{𝑡=1} = 𝑃(𝑡 = 1) = 𝑃(𝑡 > 0) if 𝑡 is non-randomized). 𝛼 is also called the
statistical significance of the test.

⊲ Type II error :5 decision for 𝑃 = 𝑃0, i.e., 𝑡 (𝑥) = 0, although the sample 𝑥 is drawn from
𝑃1 = 𝑄. The probability of this misclassification is

𝛽 B E𝑄 (1 − 𝑡) =
∫
X

(
1 − 𝑡 (𝑥)

)
𝑄(d𝑥)

(i.e., 𝛽 = E𝑄 1{𝑡=0} = 𝑄(𝑡 = 0) if 𝑡 is non-randomized).

4Fehler erster Art, Signifikanz des Testes, Niveau, Signifikanzniveau
5Fehler zweiter Art

rough draft: do not distribute



6.2 HYPOTHESIS TESTING: TYPES OF ERRORS 59

decision about null hypothesis
null hypothesis 𝐻0 accept the null hypothesis 𝐻0 reject the null hypothesis 𝐻0

is 𝑡 = 0 𝑡 = 1

true correct inference wrong decision
true negative false positive

type I error, 𝛼
𝑃(𝑡 = 0 | 𝐻0) ≥ 1 − 𝛼 𝑃(𝑡 = 1 | 𝐻0) ≤ 𝛼

false (i.e., 𝐻1) wrong decision correct inference
false negative true positive
type II error, 𝛽
𝑃(𝑡 = 0 | 𝐻1) ≤ 𝛽 𝑃(𝑡 = 1 | 𝐻1) ≥ 1 − 𝛽

Table 6.1: Error types for binary tests

⊲ The power 6 of a statistical test 𝑡 (·) is

𝜋𝑡 (𝑄) B E𝑄 𝑡 =
∫
X
𝑡 (𝑥)𝑄(d𝑥) = 1 − 𝛽. (6.1)

Desirably, the test 𝑡 (·) should be chosen so that∫
X
𝑡 (𝑥) 𝑃(d𝑥) is small and

∫
X
𝑡 (𝑥)𝑄(d𝑥) is large. (6.2)

Memory hook for (6.2):

⊲ The price
∫
X 𝑡 d𝑃 should be small, but

⊲ the quality
∫
X 𝑡 d𝑄 should be high.

There are two major paradigms to construct a statistical test:

6.2.1 Neyman–Pearson
The Neyman7–Pearson8 test specified as follows involves the statistical significance 𝛼 ∈ (0, 1),
which is chosen and fixed.

Problem: find the test statistics 𝑡 : X → [0, 1] so that

maximize
∫
X
𝑡 (𝑥)𝑄(d𝑥), (6.3)

subject to
∫
X
𝑡 (𝑥) 𝑃(d𝑥) ≤ 𝛼,

where the maximum is among all feasible test statistics 𝑡 (·).
Remark 6.7. Typical 𝛼-values often used in practice include 𝛼 = 10 %, 5 %, 1 %, 0.1 %. They are
small, as 𝛼 describes the type I error.

6Güte, Schärfe, Trennschärfe, Teststärke, Operationscharakteristik
7Jerzy Neyman, 1894–1981, Polish mathematisian
8Egon Pearson, 1895–1980, British statistician
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observation 𝐻 𝑑 decision

𝑋 < 𝑌 < 𝑍 1 1 correct
𝑋 < 𝑍 < 𝑌 1 1 correct
𝑌 < 𝑋 < 𝑍 0 1 wrong
𝑌 < 𝑍 < 𝑋 0 0 correct
𝑍 < 𝑋 < 𝑌 1 0 wrong
𝑍 < 𝑌 < 𝑋 0 0 correct

Table 6.2: Randomized decision rule

6.2.2 Bayes

To select a test 𝑡 (·) according a Bayes9 paradigm let 𝜆 ∈ (0, 1) be chosen. Find a test 𝑡 (·) which
minimizes

(1 − 𝜆)
∫
X
𝑡 (𝑥) 𝑃(d𝑥) + 𝜆

∫
X
(1 − 𝑡 (𝑥)

)
𝑄(d𝑥) → min! (6.4)

6.3 RANDOMIZED DECISION RULE

Consider a random variable (𝑋,𝑌 ) with 𝑃(𝑋 < 𝑌 ) = 𝑃(𝑌 < 𝑋) = 1
2 and the randomized decision

rule

𝑑 (𝑥) B
{

1 if 𝑥 ≤ 𝑍
0 else

for an independent random variable 𝑍 to decide on

𝐻0 : 𝑌 < 𝑋 versus
𝐻1 : 𝑋 ≤ 𝑌 .

The decision rule 𝑑 (𝑋) is successful (cf. Table 6.2) with probability

𝑃 (𝑋 < 𝑌 < 𝑍) + 𝑃(𝑋 < 𝑍 < 𝑌 ) + 𝑃(𝑌 < 𝑍 < 𝑋) + 𝑃(𝑍 < 𝑌 < 𝑋); (6.5)

it is not successful in the remaining cases {𝑌 < 𝑋 < 𝑍} or {𝑍 < 𝑋 < 𝑌 } for which we have that

𝑃 (𝑋 < 𝑌 < 𝑍) = 𝑃 (𝑌 < 𝑋 < 𝑍) = 1
2
𝑃(𝑋,𝑌 < 𝑍) and

𝑃 (𝑍 < 𝑌 < 𝑋) = 𝑃 (𝑍 < 𝑋 < 𝑌 ) = 1
2
𝑃(𝑍 < 𝑋,𝑌 ),

9Thomas Bayes, 1701–1761, English statistician and philosopher
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as 𝑍 is independent. It follows that

(6.5) =
1
2
(
𝑃 (𝑋 < 𝑌 < 𝑍) + 𝑃 (𝑌 < 𝑋 < 𝑍)

)
+ 𝑃(𝑋 < 𝑍 < 𝑌 ) + 𝑃(𝑌 < 𝑍 < 𝑋)

+ 1
2
(
𝑃 (𝑍 < 𝑋 < 𝑌 ) + 𝑃 (𝑍 < 𝑌 < 𝑋)

)
=

1
2
+ 1

2
(
𝑃(𝑋 < 𝑍 < 𝑌 ) + 𝑃(𝑌 < 𝑍 < 𝑋)

)
>

1
2
,

if 𝑍 has strictly positive density on R.

6.4 PROBLEMS

Exercise 6.1 (Coronavirus). A test for COVID-19 is designed along the hypothesis

𝐻0 : the person has corona.

Let 𝑡 be a test. The person with 𝑡 = 0 is tested positive (probably has corona) while a person
with result 𝑡 = 1 is tested negative (i.e., the person presumably does to not have corona). What
does the false positive decision describe?

Exercise 6.2 (Coronavirus, cntd.). The RT-PCR-test 𝑡 for COVID-19 has the reliable and con-
vincing properties (estimated by the British Medical Journal in 2020)

(i) 𝑃(𝑡 = 0 | 𝐻0) = 80 % (the sensitivity10 of the test) and

(ii) 𝑃(𝑡 = 1 | 𝐻1) = 98 % (the specificity11of the test).

Give the probability of the type I error (false positive) and the probability of the type II error (false
negative).

Suppose further that the prevalence12 of the population is 𝑃(𝐻0) = 1h, i.e., one out of 1000
randomly chosen persons has corona. Prove Bayes’ formula 𝑃(𝐵 | 𝐴) = 𝑃 (𝐴|𝐵) 𝑃 (𝐵)

𝑃 (𝐴|𝐵)𝑃 (𝐵)+𝑃 (𝐴|𝐵c )𝑃 (𝐵c )
and verify that

𝑃 (𝐻1 | 𝑡 = 1) ≈ 99.98 %, but 𝑃 (𝐻0 | 𝑡 = 0) ≈ 3.85 %.

What are your conclusions given this surprising, probably shocking result? How do the results
change, if the prevalence is 5% (as in an old people’s home, say)?

Exercise 6.3 (Coronavirus, cntd.). The test is apparently useless, unless

𝑃 (𝐻0 | 𝑡 = 0) > 𝑃(𝐻0) and 𝑃 (𝐻1 | 𝑡 = 1) > 𝑃(𝐻1). (6.6)

Show that (6.6), iff
𝑃(𝑡 = 0 | 𝐻0) + (𝑡 = 1 | 𝐻1) > 1.

Show that 𝑡 and 𝐻 are independent, iff 𝑃(𝑡 = 0 | 𝐻0) + (𝑡 = 1 | 𝐻1) = 1.

10Sensitivität, dt.
11Spezifität, dt.
12Prävalenz, dt.
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Exercise 6.4. John visits the doctor claiming some discomfort. The doctor is led to believe
that he may have some disease 𝐴. He then takes some standard procedures for this case: he
examines John, carefully observes the symptoms and runs routine laboratory examinations.

The doctor assumes that 𝑃 (𝐴| 𝐻) = 0.7, where 𝐻 (history) contains the information John
provided and all other relevant knowledge he has learned from former patients. To improve the
evidence about the illness, the doctor asks John to undertake an independent examination.

Examination 𝑡 provides an uncertain result of the positive negative type with probabilities{
𝑃 (𝑡 = 1| 𝐴c) = 0.40 (test positive, provided non-disease A) and
𝑃 (𝑡 = 1| 𝐴) = 0.95 (test positive, provided disease A).

John goes through the examination with result 𝑡 = 1.

(i) What should the doctor infer about John’s disease?

(ii) The doctor decides to ask John to undertake a second, more efficient, but also more
expensive test 𝑡 with probabilities{

𝑃 (𝑡 = 1| 𝐴c) = 0.04 and
𝑃 (𝑡 = 1| 𝐴) = 0.99.

Which result can the doctor predict for the second test 𝑡?

(iii) The result of the second test is 𝑡 = 0. What should the doctor infer about John’s disease?

rough draft: do not distribute



7The Neyman–Pearson test

Statistics is the grammar of science.

Karl Pearson, 1857–1936

Let 𝑃 (𝑄, resp.) have the density 𝑓 (𝑔, resp.), i.e., 𝑃(𝐶) =
∫
𝐶
𝑓 (𝑥) d𝑥 (𝑄(𝐶) =

∫
𝐶
𝑔(𝑥) d𝑥, resp.)

or
𝑃(d𝑥) = 𝑓 (𝑥) d𝑥, (𝑄(d𝑥) = 𝑔(𝑥) d𝑥, resp.).

Note that we have
𝑄(d𝑥) = 𝑔(𝑥) d𝑥 = 𝑔(𝑥)

𝑓 (𝑥) 𝑓 (𝑥) d𝑥 =
𝑔(𝑥)
𝑓 (𝑥) 𝑃(d𝑥) (7.1)

to change the measure.

Definition 7.1 (Likelihood ratio). The likelihood ratio1 is the statistic 𝑅(𝑥) B 𝑔 (𝑥 )
𝑓 (𝑥 ) .

Remark 7.2. With (7.1) we have that 𝑅(·) is the Radon–Nikodym derivative, d𝑄 = 𝑅 d𝑃. We
thus have 𝑄(𝐶) =

∫
X 1𝐶 d𝑄 =

∫
X 1𝐶 ·𝑅 d𝑃 or, by taking linear combinations, E𝑄 𝑌 = E𝑃 (𝑌 · 𝑅).

7.1 DEFINITION

Definition 7.3. A test 𝑡 : X → [0, 1] is a Neyman–Pearson test if

𝑡 (𝑥) = 1 iff
𝑔(𝑥)
𝑓 (𝑥) > 𝑐 or 𝑥 ∈ 𝐺 and

𝑡 (𝑥) = 0 iff
𝑔(𝑥)
𝑓 (𝑥) < 𝑐 or 𝑥 ∈ 𝐹.

1Dichtequotient, in German

𝑥 ∈ X

𝑃(d𝑥) = 𝑓 (𝑥)d𝑥

𝑄(d𝑥) = 𝑔(𝑥)d𝑥

• •
𝐹 𝐴 𝐺

𝑡 = 1𝑡 = 0

Figure 7.1: Neyman–Pearson test
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R

𝐹𝑅 (·)

𝑃(𝐹)

0

1

𝑐𝛼

1 − 𝛼

𝑡 = 0 𝑡 = 1

Figure 7.2: cdf of the likelihood ratio

where 𝑐 ≥ 0 and (cf. Figure 7.1)

𝐹 B {𝑥 : 𝑓 (𝑥) > 0, 𝑔(𝑥) = 0} ,
𝐴 B {𝑥 : 𝑓 (𝑥) > 0, 𝑔(𝑥) > 0} ,
𝐺 B {𝑥 : 𝑓 (𝑥) = 0, 𝑔(𝑥) > 0} .

We shall write 𝑡 ∈ N (𝑃,𝑄) for a Neyman–Pearson test of

𝐻0 : 𝑋 ∼ 𝑃 = 𝑃0 versus
𝐻1 : 𝑋 ∼ 𝑄 = 𝑃1.

7.2 EXISTENCE

The Neyman Pearson test satisfies

0 ≤
∫
X
𝑡 d𝑃 ≤ 1 − 𝑃(𝐹) and 𝑄(𝐺) ≤

∫
X
𝑡 d𝑄 ≤ 1.

Indeed, 0 ≤
∫
X 𝑡 d𝑃 ≤

∫
𝐹c 1 d𝑃 = 1 − 𝑃(𝐹) and 1 −

∫
X 𝑡 d𝑄 =

∫
X 1 − 𝑡 d𝑄 ≤

∫
𝐺c 1 d𝑄 = 1 −𝑄(𝐺).

Lemma 7.4. For every 𝛼 < 𝑃(𝐹c) there is a (possibly randomized) Neyman–Pearson test 𝑡𝛼 (·)
with type I error 𝛼, i.e.,

∫
X 𝑡𝛼 (𝑥)𝑃(d𝑥) = 𝛼.

Proof. Set

𝐹 (𝑐) B 𝐹𝑅 (𝑐) = 𝑃
({
𝑥 ∈ X :

𝑔(𝑥)
𝑓 (𝑥) ≤ 𝑐

})
, (7.2)

i.e., 𝐹 (·) is the cdf. of the likelihood ratio 𝑅(𝑥) = 𝑔 (𝑥 )
𝑓 (𝑥 ) under 𝑃. Define the quantile function

(inverse cdf) 𝐹−1 (𝑝) B inf {𝑐 : 𝐹 (𝑐) ≥ 𝑝} and set

𝑐𝛼 B 𝑐(𝛼) B 𝐹−1 (1 − 𝛼). (7.3)
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7.2 EXISTENCE 65

(i) If 𝐹
(
𝑐𝛼

)
> 1 − 𝛼, then 𝑐𝛼 is a point of discontinuity of 𝐹 (·) (cf. Figure 7.2) and the left limit

satisfies 𝐹
(
𝑐𝛼 − 0

)
≤ 1 − 𝛼 and 𝑃(𝑅 = 𝑐𝛼) = 𝐹 (𝑐𝛼) − 𝐹 (𝑐𝛼 − 0) > 0; set

𝑞𝛼 B
𝐹 (𝑐𝛼) − (1 − 𝛼)
𝐹 (𝑐𝛼) − 𝐹 (𝑐𝛼 − 0) .

Define the Neyman–Pearson test

𝑡𝛼 (𝑥) B


1 if 𝑥 ∈ 𝐺 or 𝑔 (𝑥 )

𝑓 (𝑥 ) > 𝑐𝛼,

𝑞𝛼 if 𝑔 (𝑥 )
𝑓 (𝑥 ) = 𝑐𝛼,

0 if 𝑥 ∈ 𝐹 or 𝑔 (𝑥 )
𝑓 (𝑥 ) < 𝑐𝛼 .

(7.4)

It holds that ∫
X
𝑡𝛼 (𝑥)𝑃(d𝑥) =

∫{
𝑔 (𝑥)
𝑓 (𝑥) >𝑐𝛼

} d𝑃 + 𝑞𝛼 ·
(
𝐹
(
𝑐𝛼

)
− 𝐹

(
𝑐𝛼 − 0

) )
= 1 − 𝐹 (𝑐𝛼) + 𝐹 (𝑐𝛼) − (1 − 𝛼) = 𝛼,

which is the desired level.

(ii) Otherwise, 𝐹 (𝑐𝛼) = 1 − 𝛼 (this is certainly the case if 𝑐𝛼 is a point of continuity of 𝐹 (·)).

It follows that the test (7.4) is Neyman–Pearson with the desired level. □

Remark 7.5. The Neyman–Pearson test 𝑡𝛼 is randomized, iff 𝑃(𝑅 = 𝑐𝛼) > 0 and then rejects
with probability 𝑞𝛼. The quantities are related by

𝑃(𝑅 > 𝑐𝛼) + 𝑞𝛼 · 𝑃(𝑅 = 𝑐𝛼) = 𝛼.

Remark 7.6. The decision of the Neyman–Pearson test is based on the likelihood ratio

𝑅(𝑥) = 𝑔(𝑥)
𝑓 (𝑥) (7.5)

and the more conservative test is

⌊𝑡𝛼⌋ (𝑥) =
{

1 if 𝑅(𝑥) > 𝑐𝛼,
0 if 𝑅(𝑥) ≤ 𝑐𝛼 .

Rejection. The rejection of 𝐻0 can be formulated in the following two ways:
(i) Randomized: reject 𝐻0, if

𝑅(𝑥) > 𝑐𝛼︸︷︷︸
critical value

(7.6)

and randomize if 𝑅(𝑥) = 𝑐𝛼.
(ii) Non-randomized: reject 𝐻0, if

1 − 𝐹𝑅
(
𝑅(𝑥)

)︸           ︷︷           ︸
𝑝-value

< 𝛼, (7.7)

where 𝐹𝑅 is the cdf of the test statistics 𝑅(·) under 𝑃.
This is how statistical program packages operate and 1 − 𝐹𝑅 (𝑅(𝑥)) is the 𝑝-value. Note
that the test (7.7) for given 𝛼 is automatically conservative in the sense of Remark 6.4 and
randomization is not necessary any longer.
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66 THE NEYMAN–PEARSON TEST

The critical region or rejection region of the test is

𝐶𝑡 B {𝑥 : 𝑅(𝑥) > 𝑐𝛼}

so that the test can be formulated as

𝑡 (𝑥) =
{

1 if 𝑥 ∈ 𝐶𝑡 ,
0 else

= 1𝐶𝑡
(𝑥) =

{
1 if 𝑅(𝑥) > 𝑐𝛼,
0 else.

The

⊲ acceptance region is the set of values of the test statistic for which the null hypothesis is
not rejected, i.e., 𝐶c

𝑡 .

⊲ The critical values of a statistical test 𝑅(·) are the boundary points of the acceptance
region of the test, i.e., 𝜕𝐶𝑡 , cf. (7.6). Depending on the shape of the acceptance region,
there can be one or more than one critical value.

Remark 7.7. Under 𝑃, the 𝑝-value (7.7) is uniformly distributed.

7.3 THE MOST POWERFUL TEST

Proposition 7.8. Let 𝑡 (·) be a Neyman–Pearson test with critical value 𝑐𝑡 for 𝑃 versus 𝑄 and
𝜓(·) be any test. Then

𝑐𝑡 ·
(∫
X
𝑡 d𝑃 −

∫
X
𝜓 d𝑃

)
≤

∫
X
𝑡 d𝑄 −

∫
X
𝜓 d𝑄. (7.8)

Proof. By definition of the Neyman–Pearson test we have that,

𝑡 (𝑥) = 1 ≥ 𝜓(𝑥) iff
𝑔(𝑥)
𝑓 (𝑥) > 𝑐𝑡 and

𝑡 (𝑥) = 0 ≤ 𝜓(𝑥) iff
𝑔(𝑥)
𝑓 (𝑥) < 𝑐𝑡

and thus

0 ≤
(
𝑡 (𝑥) − 𝜓(𝑥)

)
·
(
𝑔(𝑥)
𝑓 (𝑥) − 𝑐𝑡

)
(7.9)

whenever 𝑓 (𝑥) > 0, i.e., 𝑥 ∈ 𝐴 ∪ 𝐹. By taking 𝑃-expectations of (7.9) with (7.1),

𝑐𝑡 ·
∫
𝐴∪𝐹

𝑡 − 𝜓 d𝑃 ≤
∫
𝐴∪𝐹
(𝑡 − 𝜓) 𝑔

𝑓
d𝑃 =

∫
𝐴∪𝐹

𝑡 − 𝜓 d𝑄.

Note that 𝑃(𝐺) = 0 and 𝑡 |𝐺 = 1, thus

𝑐𝑡 ·
∫
𝐺

𝑡 − 𝜓 d𝑃 = 0 ≤
∫
𝐺

𝑡 − 𝜓︸︷︷︸
≥0

d𝑄.

Adding the latter displays gives

𝑐𝑡 ·
∫
X
𝑡 − 𝜓 d𝑃 ≤

∫
X
𝑡 − 𝜓 d𝑄,

which is the assertion. □
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𝛼 Φ−1 (𝛼)
90 % 1.282
95 % 1.645
99 % 2.326

99.5 % 2.576
99.9 % 3.090
99.95 % 3.291
99.99 % 3.719

(a) normal distribution

𝛼 𝐾𝛼, cf. (9.4) 𝑐(𝛼) =
√︃
− 1

2 log 1−𝛼
2

90 % 1.07 1.22
95 % 1.22 1.36
99 % 1.52 1.63

99.5 % 1.63 1.73
99.9 % 1.86 1.95

(b) Kolmogorov Smirnov

Table 7.1: Quantiles

Lemma 7.9 (Neyman–Pearson lemma). Let 𝑡 (·) be a Neyman–Pearson test and 𝜓(·) any other.

(i) If
∫
X 𝑡 d𝑃 ≥

∫
X 𝜓 d𝑃, then

∫
X 𝑡 d𝑄 ≥

∫
X 𝜓 d𝑄 and

(ii) if
∫
X 𝑡 d𝑄 ≤

∫
X 𝜓 d𝑄, then

∫
X 𝑡 d𝑃 ≤

∫
X 𝜓 d𝑃.

(iii) The Neyman–Pearson test 𝑡𝛼 (·) (cf. Lemma 7.4) solves problem (6.3) with type I error 𝛼,
i.e., ∫

X
𝑡𝛼 d𝑄 = sup

{∫
X
𝜓 d𝑄 : 𝜓 is a test with

∫
X
𝜓 d𝑃 ≤ 𝛼

}
. (7.10)

Proof. (i) and (ii) are direct consequences of (7.8).
As for (iii) assume that

∫
X 𝜓 d𝑃 ≤ 𝛼. By Lemma 7.4 there is a test 𝑡𝛼 with

∫
X 𝑡𝛼 d𝑃 = 𝛼 so that∫

X 𝑡𝛼 d𝑃 = 𝛼 ≥
∫
X 𝜓 d𝑃. We conclude from (i) that

∫
X 𝑡𝛼 d𝑄 ≥

∫
X 𝜓 d𝑄 and hence “≥” in (7.10).

Equality is obtained for 𝜓 = 𝑡𝛼. □

Example 7.10. For X = R consider the test problem

𝐻0 : 𝑃 ∼ 𝐸𝜆=1 (exponential with rate parameter 1, cf. Definition 5.4),
𝐻1 : 𝑄 ∼ 𝐸𝜆=2.

Note first that 𝑓 (𝑥) = 𝑒−𝑥 and 𝑔(𝑥) = 2𝑒−2𝑥 , the likelihood ratio is

𝑅(𝑥) = 𝑔(𝑥)
𝑓 (𝑥) = 2𝑒−𝑥 . (7.11)

The cdf of the likelihood ratio (7.2) is

𝐹𝑅 (𝑐) = 𝑃𝐸1 (2𝑒−𝑥 ≤ 𝑐) =
∫
{𝑥 : 2𝑒−𝑥≤𝑐}

𝑒−𝑥 d𝑥 =
∫
{𝑥≥− log 𝑐

2 }
𝑒−𝑥 d𝑥 = −𝑒−𝑥 |∞𝑥=− log 𝑐

2
=
𝑐

2
.

From (7.3) it follows that 𝑐𝛼 = 𝐹−1
𝑅
(1− 𝛼) = 2− 2𝛼. The Neyman–Pearson test (7.4) finally reads

𝑡𝛼 (𝑥) =
{

1 if 2𝑒−𝑥 > 2 − 2𝛼,
0 if 2𝑒−𝑥 ≤ 2 − 2𝛼

=

{
1 if 𝑥 < − log(1 − 𝛼),
0 if 𝑥 ≥ − log(1 − 𝛼).
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𝑡 = 0: fail to reject 𝐻0 𝑡 = 1: reject 𝐻0 (critical region)

𝜇0 𝜇1
𝑋𝑛

𝛽 𝛼

critical value 𝛾(𝛼) = 𝜇0 + 𝜎0 · 𝑧1−𝛼

Figure 7.3: Visualization of the upper tailed 𝑍-test (7.13), cf. Example 7.11: type I (𝛼) and type
II error (𝛽)

7.4 UPPER TAILED 𝑧-TEST, GAUSS TEST

The most prominent statistical test is probably the 𝑍-test (Gauss test; see Figure 7.3 for inter-
pretation); here X = R𝑛.

Theorem 7.11 (Upper tailed 𝑍-test2). Let 𝜇0 and 𝜎0 be fixed. For independent, normally dis-
tributed 𝑋𝑖 consider the test problem

𝐻0 : (𝑋1, . . . , 𝑋𝑛) ∼ N (𝜇0, 𝜎
2
0 )
(𝑛) versus (7.12)

𝐻1 : (𝑋1, . . . , 𝑋𝑛) ∼ N (𝜇1, 𝜎
2
0 )
(𝑛) ,

where 𝜇0 < 𝜇1. The Neyman–Pearson test is (cf. Table 7.1a)

𝑡𝛼 (𝑋) =
{

1 if
√
𝑛
𝑋𝑛−𝜇0
𝜎0

> 𝑧1−𝛼,

0 else
=

{
1 if 1 −Φ

(√
𝑛
𝑋𝑛−𝜇0
𝜎0

)
< 𝛼,

0 else,
(7.13)

where 𝑃N(0,1) ( [𝑧1−𝛼,∞)) = 𝛼, i.e., 𝑧1−𝛼 = Φ−1 (1 − 𝛼) is the (1 − 𝛼)-quantile of the normal

distribution. The quantity 𝑍 B
√
𝑛
𝑋𝑛−𝜇0
𝜎0

is called 𝑍-score. Note the 𝑝-value Φ(−𝑍), cf. (7.7).

Proof. Indeed, the likelihood ratio is

𝑅(𝑥1, . . . , 𝑥𝑛) =
𝑔(𝑥1, . . . , 𝑥𝑛)
𝑓 (𝑥1, . . . , 𝑥𝑛)

=

1√︃
2𝜋𝜎2

0

𝑛 exp
(
− 1

2𝜎2
0

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇1)2

)
1√︃

2𝜋𝜎2
0

𝑛 exp
(
− 1

2𝜎2
0

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇0)2

)
= exp

(
2(𝜇1 − 𝜇0)

2𝜎2
0

𝑛∑︁
𝑖=1

𝑥𝑖 −
𝑛

2𝜎2
0

(
𝜇2

1 − 𝜇
2
0

))
. (7.14)

2Gauß-Test
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The distribution of the likelihood ratio 𝑅(𝑋1, . . . , 𝑋𝑛) under 𝑃 ∼ N(𝜇0 1, 𝜎
2
0 1) is

𝐹 (𝑐) = 𝑃
(
exp

(
𝜇1 − 𝜇0

𝜎2
0

𝑛∑︁
𝑖=1

𝑋𝑖 −
𝑛

2𝜎2
0

(
𝜇2

1 − 𝜇
2
0

))
≤ 𝑐

)
= 𝑃

(
𝜇1 − 𝜇0

𝜎2
0

𝑛∑︁
𝑖=1

𝑋𝑖 ≤ log 𝑐 + 𝑛

2𝜎2
0

(
𝜇2

1 − 𝜇
2
0

))
= 𝑃

(
1
𝜎0
𝑋𝑛 ≤

1
𝑛

𝜎0 log 𝑐
𝜇1 − 𝜇0

+ 𝜇1 + 𝜇0
2𝜎0

)
(7.15)

= 𝑃

(
𝑋𝑛 − 𝜇0
𝜎0

≤ 1
𝑛

𝜎0 log 𝑐
𝜇1 − 𝜇0

+ 𝜇1 − 𝜇0
2𝜎0

)
= 𝑃

(
√
𝑛
𝑋𝑛 − 𝜇0
𝜎0

≤ 𝜎0 log 𝑐
√
𝑛(𝜇1 − 𝜇0)

+
√
𝑛

2𝜎0
(𝜇1 − 𝜇0)

)
= Φ

(
𝜎0 log 𝑐
√
𝑛(𝜇1 − 𝜇0)

+
√
𝑛

2𝜎0
(𝜇1 − 𝜇0)

)
,

where we have used that the distribution of the 𝑍-score is 1√
𝑛

∑𝑛
𝑖=1

𝑋𝑖−𝜇0
𝜎0

∼ N(0, 1) (cf. Exer-
cise 3.4). From (7.3) we get 1 − 𝛼 = 𝐹

(
𝑐𝛼

)
, i.e.,

𝑐𝛼 = exp

(
√
𝑛
𝜇1 − 𝜇0
𝜎0

Φ−1 (1 − 𝛼) − 𝑛

2𝜎2
0
(𝜇1 − 𝜇0)2

)
. (7.16)

The test (7.21) thus reads 𝑡𝛼 (𝑥) =
{

1 if (7.14) > 𝑐𝛼,
0 else.

The conditions simplify further to

2(𝜇1 − 𝜇0)
2𝜎2

0

𝑛∑︁
𝑖=1

𝑥𝑖 −
𝑛

2𝜎2
0

(
𝜇2

1 − 𝜇
2
0

)
>
√
𝑛
𝜇1 − 𝜇0
𝜎0

Φ−1 (1 − 𝛼) − 𝑛

2𝜎2
0
(𝜇1 − 𝜇0)2

or equivalently (divide by 𝜇1 − 𝜇0, etc.)

1
𝜎2

0

𝑛∑︁
𝑖=1

𝑥𝑖 −
𝑛

2𝜎2
0
(𝜇1 + 𝜇0) >

√
𝑛

1
𝜎0

Φ−1 (1 − 𝛼) − 𝑛

2𝜎2
0
(𝜇1 − 𝜇0) ,

or

1
√
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝜇0
𝜎0

> Φ−1 (1 − 𝛼).

Hence the most powerful test 𝑡𝛼, i.e., (7.13). □

7.5 COMPOSITE HYPOTHESES AND CLASSIFICATION OF TESTS

The Neyman–Pearson lemma (Lemma 7.9) gives rise for the following definition.
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Definition 7.12. A binary test 𝑡 (·) is most powerful 3if there is no other test 𝜓 with∫
X
𝑡 d𝑃 ≥

∫
X
𝜓 d𝑃 and∫

X
𝑡 d𝑄 <

∫
X
𝜓 d𝑄.

Remark 7.13. By the Neyman–Pearson lemma (Lemma 7.9) the Neyman–Pearson test 𝑡𝛼 (cf.
Lemma 7.4) is most powerful.

In what follows we shall consider composite hypotheses, that is, Θ consists of more than two
points.

Definition 7.14. For a test 𝑡 (·), the function 𝜋𝑡 : 𝜗 ↦→ E𝜗 𝑡 is the power function (cf. (6.1))

Remark 7.15. If the test is non-randomized, then 𝜋𝑡 (𝜗) = 𝑃𝜗 (𝑡 > 0).

Definition 7.16 (Unbiased test). The test 𝑡 (·) is unbiased,4 if its power 𝜋𝑡 (𝜗) = E𝜗 𝑡 satisfies

E𝜗0 𝑡 ≤ 𝛼 for all 𝜗0 ∈ Θ0 and 𝛼 ≤ E𝜗1 𝑡 for all 𝜗1 ∈ Θ1.

Recall that the Gauß-test (Theorem 7.11) does not depend on 𝜇1 and hence the test is
independent of another 𝜇1 > 𝜇0.

Definition 7.17 (UMP and UMPU tests). A test 𝑡 (·) is a uniformly most powerful test (UMP) at
significance level 𝛼 if it is most powerfuly and in addition, for any other test 𝜓(·)

E𝑄 𝜓 ≤ E𝑄 𝑡, for all 𝑄 ∈ PΘ1 .

An unbiased, uniformly most powerful test is UMPU.

7.6 MONOTONE LIKELIHOOD RATIOS

In this subsection we assume that Θ ⊂ R.

Definition 7.18 (Monotone likelihood ratio). The class 𝑓𝜗 (·), 𝜗 ∈ Θ ⊂ R, is said to possess a
monotone likelihood ratio in the statistic 𝑇 (·) if

𝑓𝜗1 (𝑥)
𝑓𝜗0 (𝑥)

= 𝑅(𝑥) = 𝑔𝜗0 ,𝜗1

(
𝑇 (𝑥)

)
,

for some function 𝑔𝜗0 ,𝜗1 (·), where all functions 𝑡 ↦→ 𝑔𝜗0 ,𝜗1 (𝑡) (𝜗0, 𝜗1 ∈ Θ) are monotone increas-
ing (decreasing, resp.). jk

Remark 7.19. The likelihood ratios (7.11) and (7.14) are monotone. Table 7.2 collects further
examples.

Lemma 7.20. Suppose that 𝑓𝜗 (·) has an increasing monotone likelihood ratio in the statistic
𝑇 (·) and let ℎ(·) be nondecreasing, then 𝜋 : 𝜗 ↦→ E𝜗 ℎ

(
𝑇 (𝑋)

)
is nondecreasing.

3trennschärfster, bester oder mächtigster Test, dt.
4unverfälscht
5Here, ∼ means up to a constant not depending on 𝑡.
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distribution statistic 𝑇 𝑔(𝑡) 5

binomial 𝑏𝑖𝑛(𝑛, 𝑝), 0 < 𝑝 < 1
∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛 ∼

(
𝜗1 (1−𝜗0 )
𝜗0 (1−𝜗1 )

) 𝑡
negative binomial 𝑁𝐵𝑛0 , 𝑝, 0 < 𝑝 < 1

∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛 ∼

(
1−𝜗0
1−𝜗1

) 𝑡
Poisson 𝑃𝛼, 𝛼 > 0

∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛 ∼ 𝑒𝑛(𝜗1−𝜗0 )

(
𝜗1
𝜗0

) 𝑡
exponential 𝐸𝜆, 𝜆 > 0

∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛 ∼ 𝑒𝑡 (𝜗1−𝜗0 )

normal N(𝜇, 𝜎2
0 ), −∞ < 𝜇 < ∞ ∑𝑛

𝑖=1 𝑋𝑖 and thus 𝑋𝑛 ∼ 𝑒
𝜗1−𝜗0
𝜎2

0
𝑡

, cf. (7.14)

normal N(𝜇0, 𝜎
2), 𝜎 > 0 1

𝑛

∑𝑛
𝑖=1 (𝑋𝑖 − 𝜇0)2 ∼ 𝑒

𝑡
2

(
1
𝜗2

0
− 1

𝜗2
1

)
uniform 𝑈 [0, 𝜗), 𝜗 > 0 max (𝑋1, . . . , 𝑋𝑛) ∼ 1[−∞,𝜗0 ] (𝑡)

Table 7.2: Distributions with monotone likelihood ratio

Proof. Without loss of generality we may assume ℎ(·) ≥ 0. Let 𝜗0 < 𝜗1 be chosen. Define

𝐴 B
{
𝑥 : 𝑓𝜗0 (𝑥) > 𝑓𝜗1 (𝑥)

}
, 𝑎 B sup

𝑥∈𝐴
ℎ
(
𝑇 (𝑥)

)
and

𝐵 B
{
𝑥 : 𝑓𝜗0 (𝑥) < 𝑓𝜗1 (𝑥)

}
, 𝑏 B inf

𝑥∈𝐵
ℎ
(
𝑇 (𝑥)

)
.

For 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 we have that 𝑔𝜗0 ,𝜗1

(
𝑇 (𝑥)

)
=

𝑓𝜗1 (𝑥 )
𝑓𝜗0 (𝑥 )

< 1 <
𝑓𝜗1 (𝑦)
𝑓𝜗0 (𝑦)

= 𝑔𝜗0 ,𝜗1

(
𝑇 (𝑦)

)
and, as

𝑔𝜗0 ,𝜗1 (·) is increasing thus 𝑇 (𝑥) < 𝑇 (𝑦) and ℎ (𝑇 (𝑥)) ≤ ℎ (𝑇 (𝑦)); it follows that 𝑎 ≤ 𝑏.
Now note that 0 =

∫
X 𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥 =

(∫
𝐴
+
∫
𝐵

)
𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥 and thus

∫
𝐵
𝑓𝜗1 (𝑥) −

𝑓𝜗0 (𝑥) d𝑥 = −
∫
𝐴
𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥. Hence

𝜋(𝜗1) − 𝜋(𝜗0) =
∫
X
ℎ
(
𝑇 (𝑥)

) (
𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥)

)
d𝑥

=

∫
𝐵

ℎ
(
𝑇 (𝑥)

) (
𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥)

)︸                 ︷︷                 ︸
>0 on 𝐵

d𝑥 +
∫
𝐴

ℎ
(
𝑇 (𝑥)

) (
𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥)

)︸                 ︷︷                 ︸
<0 on 𝐴

d𝑥

≥ 𝑏 ·
∫
𝐵

𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥 + 𝑎 ·
∫
𝐴

𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥

= (𝑏 − 𝑎) ·
∫
𝐵

𝑓𝜗1 (𝑥) − 𝑓𝜗0 (𝑥) d𝑥 ≥ 0,

the assertion □

Theorem 7.21 (Karlin–Rubin theorem). Suppose that 𝑓𝜗 (·) has an increasing monotone likeli-
hood ratio for the statistic 𝑇 . Let 𝛼 and 𝑐𝛼 be chosen so that the test 𝑡 has level 𝛼 at 𝜗0, i.e.,
𝜋𝑡 (𝜗0) = 𝑃𝜗0 (𝑇 (·) ≥ 𝑐𝛼) = 𝛼. Then 𝐶 B {𝑥 : 𝑇 (𝑥) ≥ 𝑐𝛼} is the critical region for a uniformly most
powerful test at level 𝛼 for the one-sided, composite hypotheses

𝐻0 : 𝜗 ≤ 𝜗0 versus
𝐻1 : 𝜗 > 𝜗0.

Further, the power 𝜋𝑡 : 𝜗 ↦→ E𝜗 𝑡 is nondecreasing.
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Proof. The case 𝜗 < 𝜗0: Set ℎ(·) B 1(𝑐𝛼 ,∞) (·). The power function 𝜋𝑡 : 𝜗 ↦→ E𝜗 𝑡 = 𝑃𝜗 (𝑇 > 𝑐𝛼) =
E ℎ(𝑇) is nondecreasing by the previous lemma, as ℎ(·) is nondecreasing. Thus 𝛼 = 𝜋𝑡 (𝜗0) =
sup {𝜋𝑡 (𝜗) : 𝜗 ≤ 𝜗0} and 𝑡 (·) is a test at level 𝛼.

Conversely, pick 𝜗1 > 𝜗0 and consider the simple hypothesis 𝐻0 : 𝜗 = 𝜗0 versus 𝐻1 : 𝜗 = 𝜗1.
By the Neyman–Pearson lemma (Lemma 7.9), the best choice for the critical region is to choose
𝑘𝛼 so that 𝐶 =

{
𝑥 : 𝑓𝜗1 (𝑥 )

𝑓𝜗0 (𝑥 )
≥ 𝑘𝛼

}
. Because 𝑓𝜗 (·) has in increasing likelihood ratio for the statistics

𝑇 (·), this is equivalent to 𝐶 = {𝑥 : 𝑇 (𝑥) ≥ 𝑐𝛼} for some 𝑐𝛼. □

7.7 LIKELIHOOD RATIO TEST

Definition 7.22. The likelihood ratio test statistic is Λ(𝑥) B 1/𝑅 (𝑥 ), where 𝑅(𝑥) B
sup𝜗∈Θ0∪Θ1 𝑓𝜗 (𝑥 )

sup𝜗∈Θ0 𝑓𝜗 (𝑥 )
.

The test is

𝑡 (𝑥) =
{

0 if Λ(𝑥) > 𝑐,
1 if Λ(𝑥) < 𝑐,

where 𝑐 is appropriate.

Remark 7.23. It holds that 0 ≤ Λ(𝑥) ≤ 1.

Remark 7.24. It holds that the functions
𝑓𝜗0 (𝑥 )

max{ 𝑓𝜗 (𝑥 ) : 𝜗∈{𝜗0∪𝜗1 }} = min
{
1, 𝑓𝜗0 (𝑥 )

𝑓𝜗1 (𝑥 )

}
are monotone

functions of each other and thus equivalent for present purposes.

Example 7.25 (Student’s 𝑡-test). Consider the family N(𝜇, 𝜎2) with (𝜇, 𝜎2) ∈ R × R>0. The
UMPU test for the problem

𝐻0 : 𝜇 = 𝜇0 versus
𝐻1 : 𝜇 ≠ 𝜇0

(𝜇0 known) is

𝑡 (𝑋) B
{

1 if
√
𝑛

���𝑋𝑛−𝜇0
𝑠𝑛

��� > 𝑡𝑛−1,1− 𝛼
2
,

0 else,
(7.17)

where 𝑡𝑛−1,1− 𝛼
2

is the
(
1 − 𝛼

2
)
-quantile of the Student 𝑡𝑛−1 distribution with 𝑛 − 1 degrees of free-

dom, 𝑃𝑡𝑛−1

( [
−𝑡𝑛−1,1− 𝛼

2
, 𝑡𝑛−1,1− 𝛼

2

] )
= 𝛼.

Remark 7.26. Compare the Gauß test (7.13) and the Student test (7.17).

Proof. The regions for (𝜇, 𝜎2) are Θ0 = {𝜇0} × R>0 and Θ B R × R>0. With 𝜗 = (𝜇, 𝜎2) ∈ Θ we
have that 𝑓𝜗 (𝑥) = 1√

2𝜋𝜎2𝑛
exp

(
− 1

2𝜎2
∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2

)
and thus

sup
𝜗∈Θ0

𝑓𝜗 (𝑥) =
1
√

2𝜋
𝑛

(
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇0)2

)−𝑛/2
· 𝑒−𝑛/2

(the maximum is attained at 𝜎∗2 = 1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇0)2) and

sup
𝜗∈Θ

𝑓𝜗 (𝑥) =
1
√

2𝜋
𝑛

(
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝑥𝑛)2

)−𝑛/2
· 𝑒−𝑛/2,
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(the maximum at 𝜇∗ = 𝑥𝑛 and 𝜎∗2 = 1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)

2. Hence

𝑅(𝑥) =
(

1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇0)2

1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)2

)𝑛/2

.

Now recall from Remark 2.5 (Steiner) that 1
𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇0)2 = 1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)2 + (𝑥𝑛 − 𝜇0)2 and

thus

𝑅(𝑥) =
(
1 + 1

𝑛 − 1
· 𝑛 (𝑥𝑛 − 𝜇0)2

1
𝑛−1

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑛)2

)𝑛/2

,

a monotone function in
√
𝑛

��� 𝑥𝑛−𝜇0
𝑠𝑛

���. By the Karlin–Rubin theorem (Theorem 7.21), the optimal
test is a Neyman–Pearson test. Its critical value follows with Theorem 5.17. □

Example 7.27 (Student’s 𝑡-test). Consider the family N(𝜇, 𝜎2) with (𝜇, 𝜎2) ∈ R × R>0. The
UMPU test for the problem

𝐻0 : 𝜇 ≤ 𝜇0 versus
𝐻1 : 𝜇 > 𝜇0

(𝜇0 known) is

𝑡 (𝑋) B
{

1 if
√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

> 𝑡𝑛−1,1−𝛼,

0 if
√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛
≤ 𝑡𝑛−1,1−𝛼

=

{
1 if 𝑋𝑛 > 𝜇0 + 𝑠𝑛√

𝑛
𝑡𝑛−1,1−𝛼,

0 if 𝑋𝑛 ≤ 𝜇0 + 𝑠𝑛√
𝑛
𝑡𝑛−1,1−𝛼,

(7.18)

where 𝑡𝑛−1,1−𝛼 is the 1−𝛼-quantile of the Student 𝑡𝑛−1 distribution with 𝑛− 1 degrees of freedom,
𝑃𝑡𝑛−1

(
[𝑡𝑛−1,1−𝛼,∞)

)
= 𝛼.

7.8 THE LIKELIHOOD RATIO FOR THE ALTERNATIVE

In what follows we shall assume that 𝑃(𝐹) = 0 and 𝑄(𝐺) = 0. The likelihood ratio 𝑅(𝑥) = 𝑔 (𝑥 )
𝑓 (𝑥 )

under 𝑃 is 𝐹𝑅 (cf. (7.2)), but here we investigate the ratio under 𝑄,

𝐺 (𝑢) B 𝑄 (𝑅 ≤ 𝑢) =
∫{

𝑔 ( ·)
𝑓 ( ·) ≤𝑢

} 𝑔(𝑥) d𝑥 = ∫{
𝑔 ( ·)
𝑓 ( ·) ≤𝑢

} 𝑔(𝑥)
𝑓 (𝑥) 𝑓 (𝑥) d𝑥. (7.19)

Lemma 7.28. It holds that
𝑄(𝑅 ≤ 𝑢) ≤ 𝑃(𝑅 ≤ 𝑢), 𝑢 ∈ R,

i.e., 𝑅 is smaller under 𝑃 than under 𝑄: first–order stochastic dominance (FSD).

Proof. Note that 𝑃(𝑅 ∈ d𝑐) = d𝐹𝑅 (𝑐) by definition of 𝐹𝑅 (·), thus

𝐺 (𝑢) B
∫
{𝑅≤𝑢}

𝑅(𝑥) 𝑓 (𝑥) d𝑥 = E𝑃 1{𝑅≤𝑢} 𝑅 =

∫ 𝑢

0
𝑐 𝑃(𝑅 ∈ d𝑐) =

∫ 𝑢

0
𝑐 d𝐹𝑅 (𝑐).

Now note that

𝑢 ↦→ E (𝑅 | 𝑅 ≤ 𝑢) =
∫ 𝑢

0 𝑐 d𝐹 (𝑐)∫ 𝑢
0 d𝐹 (𝑐)

(7.20)
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is nondecreasing in 𝑢 (Exercise 7.7). It follows that

𝐺 (𝑢)
𝐹𝑅 (𝑢)

=

∫ 𝑢
0 𝑐 d𝐹𝑅 (𝑐)∫ 𝑢
0 d𝐹𝑅 (𝑐)

≤
∫ ∞

0 𝑐 d𝐹𝑅 (𝑐)∫ ∞
0 d𝐹𝑅 (𝑐)

=
𝐺 (∞)
𝐹𝑅 (∞)

=
1
1
= 1

and thus
𝑄(𝑅 ≤ 𝑢) = 𝐺 (𝑢) ≤ 𝐹𝑅 (𝑢) = 𝑃(𝑅 ≤ 𝑢),

i.e, the statistics 𝑅 is stochastically smaller under 𝑃 than under 𝑄. □

Definition 7.29. The probability of a type II error of the Neyman–Pearson test (cf. (7.19)) is

𝑄
(
𝑅 ≤ 𝑐𝛼

)
= 𝐺

(
𝑐𝛼

)
, (7.21)

its power is 1 − 𝐺
(
𝑐𝛼

)
, cf. (6.1).

Definition 7.30. The function

ℎ(𝛼) B sup
{∫
X
𝜓 d𝑄 :

∫
X
𝜓 d𝑃 ≤ 𝛼

}
is the type II error function.

Remark 7.31. The most powerful test is 𝑡𝛼. If 𝑃 ≈ 𝑄, then it holds that

ℎ(𝛼) = 1 −
∫
X

1 − 𝑡𝛼 d𝑄 = 1 − 𝐺 (𝑐𝛼) = 1 − 𝐺
(
𝐹−1
𝑅 (1 − 𝛼)

)
.

Proposition 7.32. The type ii error function ℎ(𝛼) for the Gauß test (7.13) is ℎ(𝛼) = 1−Φ
(
Φ−1 (1 − 𝛼) −

√
𝑛
𝜇1−𝜇0
𝜎

)
.

Proof. Observe from (7.15) that

𝐺 (𝑢) = 𝑄
(

1
𝜎0

𝑛∑︁
𝑖=1

𝑋𝑖 ≤
𝜎0 log 𝑢
𝜇1 − 𝜇0

+ 𝑛

2𝜎0
(𝜇1 + 𝜇0)

)
= 𝑄

(
1
√
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇1
𝜎0

≤ 1
√
𝑛

𝜎0 log 𝑢
𝜇1 − 𝜇0

−
√
𝑛

2𝜎0
(𝜇1 − 𝜇0)

)
= Φ

(
1
√
𝑛

𝜎0 log 𝑢
𝜇1 − 𝜇0

−
√
𝑛

2𝜎0
(𝜇1 − 𝜇0)

)
,

thus, cf. (7.16),

ℎ(𝛼) = 1 − 𝐺
(
𝐹−1 (1 − 𝛼)

)
= 1 − 𝐺 (𝑐𝛼)

= 1 −Φ
(
Φ−1 (1 − 𝛼) −

√
𝑛
𝜇1 − 𝜇0
𝜎0

)
,

the assertion. □
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7.9 PROBLEMS

Exercise 7.1 (Continuation of Example 7.10). The likelihood under 𝑄 is 𝐺 (𝑢) =
∫ 𝑢

0 𝑐 d𝐹𝑅 (𝑐) =∫ 𝑢
0 𝑐 d 𝑐2 = 𝑐2

4

���𝑢
𝑐=0

= 𝑢2

4 , thus

ℎ(𝛼) = 1 − 𝐺
(
𝐹−1
𝑅 (1 − 𝛼)

)
= 1 − 𝐺 (𝑐𝛼) = 1 − 𝐺 (2 − 2𝛼) = 2𝛼 − 𝛼2.

Exercise 7.2 (Cf. Example 7.10). Give the Neyman–Pearson test 𝑡𝛼 for the exponential distri-
butions

𝐻0 : 𝑃 ∼ 𝐸 (𝑛)1 versus

𝐻1 : 𝑄 ∼ 𝐸 (𝑛)
𝜆
,

where 𝜆 < 1. Express the result in terms of the incomplete Gamma function.

Exercise 7.3. Find the best test for the problem

𝐻0 : (𝑋1, . . . , 𝑋𝑛) ∼ N (𝜇0, 𝜎
2
0 )
(𝑛) versus

𝐻1 : (𝑋1, . . . , 𝑋𝑛) ∼ N (𝜇0, 𝜎
2
1 )
(𝑛) ,

where 𝜇0 ∈ R is known and 𝜎0 < 𝜎1.

Exercise 7.4. Show that the most powerful test for the problem

𝐻0 : 𝜎2 ≤ 𝜎2
0 versus

𝐻1 : 𝜎2 > 𝜎2
0

for the family N
(
𝜇0, 𝜎

2) (𝜇0 known) has the critical region 𝐶 =

{
𝑥 :

∑𝑛
𝑖=1 (

𝑥𝑖−𝜇0
𝜎0
)2 ≥ 𝑐𝛼

}
, where 𝑐𝛼

is the 𝛼-quantile of the 𝜒2
𝑛 distribution, i.e., 𝑃𝜒2

𝑛,𝛼
( [𝑐𝛼,∞)) = 𝛼 (cf. Table 7.2).

Exercise 7.5. Verify the functions 𝑔(·) for the distributions in Table 7.2.

Exercise 7.6. Show that the family of Cauchy random variables with density 𝑓𝜗 (𝑥) = 1
𝜋

1
1+(𝑥−𝜗)2

does not possess a monotone likelihood ratio.

Exercise 7.7. Show that (7.20) is nondecreasing.
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8Bayes’ tests

Non-Bayesians have more fun.

Thomas Mikosch’ maxim

Recall from (6.4) that we are interested in the test 𝑡 (·) minimizing

(1 − 𝜆) ·
∫
X
𝑡 (𝑥) 𝑃(d𝑥) + 𝜆 ·

∫
X

1 − 𝑡 (𝑥)𝑄(d𝑥) → min! (8.1)

Proposition 8.1. The Neyman–Pearson test

𝑡 (𝑥) B
{

1 if 𝑔 (𝑥 )
𝑓 (𝑥 ) >

1−𝜆
𝜆
,

0 if 𝑔 (𝑥 )
𝑓 (𝑥 ) ≤

1−𝜆
𝜆

(8.2)

is the Bayes’ test minimizing (8.1).

Proof. It follows from Lemma 7.9 (Neyman–Pearson lemma) that it is enough to consider Ney-
man–Pearson tests. Let

𝛼 B 1 − 𝐹
(

1 − 𝜆
𝜆

)
(8.3)

so that 𝑐𝛼 = 1−𝜆
𝜆

and 𝑡𝛼 be the associated Neyman–Pearson test. By (7.8),

1 − 𝜆
𝜆

(∫
X
𝑡𝛼 d𝑃 −

∫
X
𝜓 d𝑃

)
≤

∫
X
𝑡𝛼 d𝑄 −

∫
X
𝜓 d𝑄,

where 𝜓 is any other test. Hence

(1 − 𝜆)
∫
X
𝑡𝛼 d𝑃 − 𝜆

∫
X
𝑡𝛼 d𝑄 ≤ (1 − 𝜆)

∫
X
𝜓 d𝑃 − 𝜆

∫
X
𝜓 d𝑄

and thus
(1 − 𝜆)

∫
X
𝑡𝛼 d𝑃 + 𝜆

∫
X

1 − 𝑡𝛼 d𝑄 ≤ (1 − 𝜆)
∫
X
𝜓 d𝑃 + 𝜆

∫
X

1 − 𝜓 d𝑄,

the assertion. □

Remark 8.2. It follows from (8.3) that 𝑐𝛼 = 𝐹−1 (1 − 𝛼) ≥ 1−𝜆
𝜆

and thus Bayes tests are always
non-randomized and conservative.

Definition 8.3. The average error probability of a Bayes test is

𝑘 (𝜆) B inf
𝑡 ( ·) ∈ [0,1]

(1 − 𝜆)
∫
X
𝑡 (𝑥)𝑃(d𝑥) + 𝜆

∫
X
(1 − 𝑡 (𝑥)

)
𝑄(d𝑥).

In view of Proposition 8.1 we have 𝑘 (𝜆) = (1 − 𝜆)
(
1 − 𝐹

(
1−𝜆
𝜆

))
+ 𝜆 𝐺

(
1−𝜆
𝜆

)
.
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(a) Ronald Aylmer Fisher, 1890–1962 (b) Dennis Lindley, 1923–2013; interesting obituary

Figure 8.1: Frequentist (Ronald Fisher, Egon Pearson, Jerzy Neyman) versus Bayesian (Jim-
mie Savage, Bruno de Finetti (’probability does not exist’), Jack Good, Harold Jeffreys, Robert
Schlaifer) approaches in statistics
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Remark 8.4. The average error probability of problem (7.12) (Example 7.11) is

𝑘 (𝜆) =(1 − 𝜆)
(
1 −Φ

(
1
√
𝑛

𝜎

𝜇1 − 𝜇0
log

1 − 𝜆
𝜆
+
√
𝑛
𝜇1 − 𝜇0
𝜎

))
+ 𝜆Φ

(
1
√
𝑛

𝜎

𝜇1 − 𝜇0
log

1 − 𝜆
𝜆
−
√
𝑛
𝜇1 − 𝜇0
𝜎

)
.

MAXIMUM A POSTERIORI INTERPRETATION

The equation (8.1) suggests to consider the combined measure

𝜋 B (1 − 𝜆)𝑃 + 𝜆𝑄

for 𝜆 ∈ [0, 1] fixed. The distributions 𝐻0 : 𝑃 ∼ 𝑓 and 𝐻1 : 𝑄 ∼ 𝑔 are called sampling distributions
or likelihood.

The Bayesian setting assumes/ pretends to know a prior distribution1

𝜋(𝐻1) = 𝜆, i.e., 𝜋(𝐻0) = 1 − 𝜆,

selecting the model itself, independently of the data. The density of the measure 𝜋 is

ℎ(𝑥) = (1 − 𝜆) · 𝑓 (𝑥)︸︷︷︸
ℎ (𝑥 |𝐻0 )

+𝜆 · 𝑔(𝑥)︸︷︷︸
ℎ (𝑥 |𝐻1 )

,

called marginal likelihood, sometimes also termed the model evidence. In this setting we have
that 𝑃(𝐴) =

∫
𝐴
ℎ(𝑥 | 𝐻0) d𝑥 and 𝑄(𝐵) =

∫
𝐵
ℎ(𝑥 | 𝐻1) d𝑥.

Let 𝑋 have density ℎ(·). From Bayes’ theorem, the posterior probabilities2 are

𝜋(𝐻0 | 𝑋 = 𝑥) = ℎ(𝑥 | 𝐻0) · 𝜋(𝐻0)
ℎ(𝑥) =

𝑓 (𝑥) · (1 − 𝜆)
ℎ(𝑥)

and
𝜋(𝐻1 | 𝑋 = 𝑥) = ℎ(𝑥 | 𝐻1) · 𝜋(𝐻1)

ℎ(𝑥) =
𝑔(𝑥) · 𝜆
ℎ(𝑥) .

We accept 𝐻0 (i.e., 𝑡 (𝑥) = 0) by comparing the likelihood of the posterior distribution (i.e., after
observing the data 𝑥), iff

𝜋(𝐻0 | 𝑋 = 𝑥) ≥ 𝜋(𝐻1 | 𝑋 = 𝑥),
i.e.,

𝑓 (𝑥) · (1 − 𝜆)
ℎ(𝑥) ≥ 𝑔(𝑥) · 𝜆

ℎ(𝑥) .

This is precisely the test (8.2),

𝑡 (𝑥) B
{

1 if 𝑔 (𝑥 )
𝑓 (𝑥 ) >

1−𝜆
𝜆
,

0 if 𝑔 (𝑥 )
𝑓 (𝑥 ) ≤

1−𝜆
𝜆
,

which is also called the maximum a posteriori (MAP) test.

8.1 PROBLEMS

Exercise 8.1. Verify Remark 8.2.

1a priori (lat.): from the earlier, i.e., before knowing the data
2a posteriori (lat.): from the later, i.e., after having seen the data

Version: October 19, 2023



80 BAYES’ TESTS

rough draft: do not distribute



9Selected tests

If I have seen further it is by standing on
the shoulders of giants.

Isaac Newton, 1642–1726

9.1 FISHER’S EXACT TEST OF INDEPENDENCE

The test is useful for categorical data that result from classifying objects in two different ways.
Fisher’s exact test is exact because it guarantees an 𝛼 rate regardless of the sample size. Fisher
devised the test in the lady tasting tea experiment.

Problem 9.1. Based on Table 9.1a, is it fair to say that it is equally probable for men and woman
to study? The test setting addresses the hypothesis 𝐻0 : 𝑝men = 𝑝women versus 𝐻1 : 𝑝men ≠

𝑝women.

men woman row total

studying 4 6 10
not studying 9 5 14

column total 13 11 24

(a) Data

A not A row total

B 𝑥 𝑦 𝑧 = 𝑥 + 𝑦
not B 𝑛1 − 𝑥 𝑛2 − 𝑦 𝑛 − 𝑧

column total 𝑛1 𝑛2 𝑛 B 𝑛1 + 𝑛2

(b) Data, schematic

Table 9.1: Contingency table

Remark 9.2. Note that the contingency table is fully determined by the marginals 𝑛1, 𝑛2, 𝑧 of the
table, and a single entry of the table, for example 𝑥.

Lemma 9.3. Suppose that 𝑋 ∼ bin(𝑛1, 𝑝) and 𝑌 ∼ bin(𝑛2, 𝑝) are independent, then

𝑃(𝑋 = 𝑥 | 𝑋 + 𝑌 = 𝑧) =
(𝑛1
𝑥

)
·
( 𝑛2
𝑧−𝑥

)(𝑛1+𝑛2
𝑧

)
follows a hypergeometric distribution, which is not dependent on 𝑝(!). The parameters are the
population size 𝑛1 + 𝑛2, the number of success states in the population 𝑛1 and the draws 𝑧.
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Figure 9.1: Screenshot from the freeware GeoGebra: the claim in Problem 9.1 cannot be re-
jected at 𝛼 = 10 %.

Proof. By independence, 𝑋 + 𝑌 ∼ bin(𝑛1 + 𝑛2, 𝑝). It holds that

𝑃(𝑋 = 𝑥 | 𝑋 + 𝑌 = 𝑧) = 𝑃(𝑋 = 𝑥, 𝑋 + 𝑌 = 𝑧)
𝑃(𝑋 + 𝑌 = 𝑧)

=
𝑃(𝑋 = 𝑥, 𝑌 = 𝑧 − 𝑥)

𝑃(𝑋 + 𝑌 = 𝑧)

=
𝑃(𝑋 = 𝑥) · 𝑃(𝑌 = 𝑧 − 𝑥)

𝑃(𝑋 + 𝑌 = 𝑧)

=

(𝑛1
𝑥

)
𝑝𝑥 (1 − 𝑝)𝑛1−𝑥 ·

( 𝑛2
𝑧−𝑥

)
𝑝𝑧−𝑥 (1 − 𝑝)𝑛2−𝑧+𝑥(𝑛1+𝑛2

𝑧

)
𝑝𝑧 (1 − 𝑝)𝑛1+𝑛2−𝑧

=

(𝑛1
𝑥

)
·
( 𝑛2
𝑧−𝑥

)(𝑛1+𝑛2
𝑧

) ,

the assertion. □

Figure 9.1 clarifies that the Hypothesis 𝐻0 in Problem 9.1 (perhaps surprisingly) cannot be
rejected at 𝛼 = 10 %. That is, it is equally likely for men and women to study. Note further, that
the test does not involve any estimate for 𝑝men or 𝑝women.

9.2 GOODNESS OF FIT

9.2.1 Pearson’s chi-squared test
Example 9.4. During a visit in a casino, the pattern displayed in Table 9.2 has been observed on
a roulette table. Is the table biased? (See the table https://en.wikipedia.org/wiki/Chi-squared_distribution)
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observations 𝑂𝑖 𝑝𝑖 𝐸𝑖 Pearson 𝑇

red 18 18/ 37 26.76 2.87
black 35 18/ 37 26.76 2.54
zero 2 1/ 37 1.49 0.18

total 55 1 55 𝑇 = 5.58

Table 9.2: Is this roulette table biased or fair?

Proposition 9.5. Suppose that the observed counts (𝑂1, . . . , 𝑂𝑘) follow a multinomial distribu-
tion correspond to the expected counts (𝐸1, . . . , 𝐸𝑘), where 𝑛 B

∑𝑘
𝑖=1𝑂𝑖 =

∑𝑘
𝑖=1 𝐸𝑖. Then the

Pearson statistics

𝑇 B
𝑘∑︁
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2
𝐸𝑖

∼ 𝜒2
𝑘−1 (9.1)

follows asymptotically, for 𝑛→∞, a 𝜒2 distribution with 𝑘 − 1 degrees of freedom.

Remark 9.6 (Bayesian method). In many situations, 𝐸𝑖 = 𝑝𝑖 · 𝑛, with
∑𝑘
𝑖=1 𝑝𝑖 = 1.

Proof. We illustrate the proof for 𝑘 = 2 first. In this case, 𝑂 B 𝑂1 ∼ bin(𝑛, 𝑝) for some 𝑝 ∈ (0, 1),
𝑂2 = 𝑛−𝑂1, 𝐸1 = E𝑂1 = 𝑛𝑝, 𝐸2 = E𝑂2 = 𝑛− 𝑛𝑝 and var𝑂 = 𝑛𝑝(1− 𝑝). The test statistics (9.1) is

𝑇 =
(𝑂 − 𝑛𝑝)2

𝑛𝑝
+

(
𝑛 −𝑂 − (𝑛 − 𝑛𝑝)

)2

𝑛 − 𝑛𝑝

=
(𝑂 − 𝑛𝑝)2

𝑛𝑝
+ (𝑂 − 𝑛𝑝)

2

𝑛(1 − 𝑝)

=
(𝑂 − 𝑛𝑝)2
𝑛𝑝(1 − 𝑝) .

Now note that 𝑍 B 𝑂−𝑛𝑝√
𝑛𝑝 (1−𝑝)

∼ N(0, 1) by the central limit theorem (Theorem 4.3) so the

assertion follows with 𝑇 = 𝑍2 ∼ 𝜒2
1 by Proposition 5.12.

The proof for 𝑘 > 2 is technically more involved, but we can proceed as above. From
Exercise 1.15 recall the covariance matrix

Σ =

©­­­­­«
𝑝1 (1 − 𝑝1) −𝑝1𝑝2 . . . −𝑝1𝑝𝑘

−𝑝1𝑝2 𝑝2 (1 − 𝑝2)
...

...
. . . −𝑝𝑘−1𝑝𝑘

−𝑝1𝑝𝑘 · · · −𝑝𝑘−1𝑝𝑘 𝑝𝑘 (1 − 𝑝𝑘)

ª®®®®®¬
=

©­­­­­«
𝑝1 0 . . . 0

0 𝑝2
. . .

...
...

. . .
. . . 0

0 · · · 0 𝑝𝑘

ª®®®®®¬
−

©­­­­«
𝑝1
𝑝2
...

𝑝𝑘

ª®®®®¬
©­­­­«
𝑝1
𝑝2
...

𝑝𝑘

ª®®®®¬
⊤

.

The matrix Σ is singular, as every column (row, resp.) sums to 0. The truncated matrix

Σ∗ =

©­­­­­­«

𝑝1 0 . . . 0

0 𝑝2
...

...
. . . 0

0
. . . 0 𝑝𝑘−1

ª®®®®®®¬
−

©­­­­«
𝑝1
𝑝2
...

𝑝𝑘−1

ª®®®®¬
©­­­­«
𝑝1
𝑝2
...

𝑝𝑘−1

ª®®®®¬
⊤
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is regular with explicit inverse Σ∗−1 =

©­­­­«
1
𝑝1

0 0

0
. . .

. . .

0
. . . 1

𝑝𝑘−1

ª®®®®¬
+ 1
𝑝𝑘

©­­«
1 . . . 1
...

. . .
...

1 . . . 1

ª®®¬. With
∑𝑘
𝑖=1𝑂𝑖 = 𝑛 =

𝑛 ·∑𝑘
𝑖=1 𝑝𝑖, the Pearson statistics (9.1) is

𝑇 =

𝑘∑︁
𝑖=1

(𝑂𝑖 − 𝑛 𝑝𝑖)2
𝑛 𝑝𝑖

=

𝑘−1∑︁
𝑖=1

(𝑂𝑖 − 𝑛 𝑝𝑖)2
𝑛 𝑝𝑖

+ (𝑂𝑘 − 𝑛 𝑝𝑘)
2

𝑛 𝑝𝑘

=

𝑘−1∑︁
𝑖=1

(𝑂𝑖 − 𝑛 𝑝𝑖)2
𝑛 𝑝𝑖

+

(∑𝑘−1
𝑖=1 (𝑂𝑖 − 𝑛𝑝𝑖)

)2

𝑛 𝑝𝑘

=
1
𝑛
(𝑂∗ − 𝑛𝑝∗)Σ∗−1 (𝑂∗ − 𝑛𝑝∗),

where 𝑂∗ B (𝑂1, . . . , 𝑂𝑘−1) and 𝑝∗ B (𝑝1, . . . , 𝑝𝑘−1). By the central limit theorem, 𝑍 B
1√
𝑛
Σ∗−1/2 (𝑂∗ − 𝑛𝑝∗) 𝑑−→ N(0, 𝐼𝑘−1). Hence 𝑇 = 𝑍⊤𝑍 converges to the sum of 𝑘 − 1 independent

squared normals, that is 𝑇 ∼ 𝜒2
𝑘−1, the assertion. □

9.2.2 G-test

The G-test employs the statistics 𝐺 B 2
∑𝑘
𝑖=1𝑂𝑖 ln 𝑂𝑖

𝐸𝑖
instead of 𝑇 (cf. (9.1)), but is considered to

be more robust. We show that
𝐺 ∼ 𝜒2

𝑘−1

asymptotically, for 𝑛 =
∑𝑘
𝑖=1𝑂𝑖 =

∑𝑘
𝑖=1 𝐸𝑖 →∞.

Indeed, for 𝑛 → ∞ we have that
���𝑂𝑖−𝐸𝑖

𝐸𝑖

��� ≪ 1 (small) for 𝑖 = 1, . . . , 𝑘. With ln(1 + 𝑥) =

𝑥 − 1
2𝑥

2 + O(𝑥3),

𝐺 = 2
𝑘∑︁
𝑖=1

𝑂𝑖 ln
𝑂𝑖

𝐸𝑖
= 2

𝑘∑︁
𝑖=1
(𝐸𝑖 +𝑂𝑖 − 𝐸𝑖) ln

(
1 + 𝑂𝑖 − 𝐸𝑖

𝐸𝑖

)
≈ 2

𝑘∑︁
𝑖=1

(
𝐸𝑖 + (𝑂𝑖 − 𝐸𝑖)

) (
𝑂𝑖 − 𝐸𝑖
𝐸𝑖

− 1
2

(
𝑂𝑖 − 𝐸𝑖
𝐸𝑖

)2
)

≈ 2
𝑘∑︁
𝑖=1

𝑂𝑖 − 𝐸𝑖 +
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
− 1

2
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

=

𝑘∑︁
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2
𝐸𝑖

,

which is Pearson’s chi-squared test statistics 𝑇 . It follows that

𝐺 ≈ 𝑇 ∼ 𝜒2
𝑘−1

with (9.1) above.
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9.3 CONFIDENCE INTERVALS

Definition 9.7. Let 𝑡 : X → [0, 1] be a test. The confidence1 interval 𝐶 (𝑋) satisfies

𝑃𝜗 ({𝑥 ∈ X : 𝜗 ∈ 𝐶 (𝑋)}) ≥ 1 − 𝛼 (𝜗 ∈ Θ).

Remark 9.8. For some fixed 𝜗0 ∈ Θ it holds that

𝑃𝜗0 ({𝑥 ∈ X : 𝜗0 ∉ 𝐶 (𝑋)}) ≤ 𝛼

and
𝑃𝜗 ({𝑥 ∈ X : 𝜗 ∈ 𝐶 (𝑋)}) ≥ 1 − 𝛼 (𝜗 ∈ Θ\ {𝜗0}).

So
𝑡𝐶 (𝑋) B 1{𝑥∈X : 𝜗0∉𝐶 (𝑋) } (𝑋)

is a test for the problem

𝐻0 : 𝜗 = 𝜗0,

𝐻1 : 𝜗 ∈ Θ\ {𝜗0} .

Example 9.9. The confidence interval in Example 7.11 (cf. Figure 7.3) is𝐶 (𝑋) =
[
𝑋𝑛 − 𝜎0√

𝑛
· 𝑧1−𝛼,∞

)
.

Indeed, by (7.13),

𝜇0 ∉ 𝐶 (𝑋) ⇐⇒ 𝜇0 < 𝑋𝑛 −
𝜎0√
𝑛
· 𝑧1−𝛼 ⇐⇒

√
𝑛
𝑋𝑛 − 𝜇0
𝜎0

> 𝑧1−𝛼;

here, 𝑧𝛼 is the 𝛼-quantile of the standard normal distribution,

𝑧𝛼 = Φ−1 (𝛼), or Φ(𝑧𝛼) = 𝛼, i.e., 𝛼 =

∫ 𝑧𝛼

∞
𝜑(𝑢) d𝑢.

Example 9.10 (Cf. Weiß [21]). A company produces balls which are supposed to have diameter
𝜇0. The variance 𝜎0 of their diameter is known, due to observations over years. During a working
shift, the diameter of randomly picked balls is 𝑋1, . . . , 𝑋𝑛. Do they deviate significantly from 𝜇0?

We choose P B
{
N(𝜇, 𝜎2

0 )
(𝑛) : 𝜇 ∈ R

}
and 𝐻0 : 𝑃 ∼ N(𝜇0, 𝜎

2
0 )
(𝑛) . Apparently,

𝑡 (𝑋1, . . . 𝑋𝑛) B
{

1 if
���𝑋𝑛 − 𝜇0

��� ≥ 𝑐,
0 else

is a reasonable test, where we still need to determine 𝑐. But

𝛼 = 𝑃(𝑡 = 1) = 𝑃
(���𝑋𝑛 − 𝜇0

��� ≥ 𝑐 | N (𝜇0, 𝜎
2
0 )

)
= 𝑃

(���𝑋𝑛 − 𝜇0

��� ≥ 𝑐 | N (𝜇0, 𝜎
2
0 )

)
= 𝑃

([
− 𝑐

𝜎2
0

√
𝑛,

𝑐

𝜎2
0

√
𝑛

]
| N (0, 1)

)
,

so that 𝑐 = 𝜎0√
𝑛
𝑧1− 𝛼

2
.

1confiteor, lat., deutlich zeigen, offenbaren, beichten
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Example 9.11 (Cf. Weiß [21]). A person is said to have supernatural skills. So, she is asked to
predict a sequence of randomly chosen numbers from {1, 2, 3, 4}. The person correctly predicts
42 out of 115 numbers. Does the person have supernatural skills, provided the statistician does
not want to make a fool of himself with probability 99%?

We choose Bernoulli random variables and the model P B
{
𝐵(1, 𝑝) (𝑛) : 𝑝 ≥ 1

4
}

and 𝐻0 :
𝐵(1, 1/4) (𝑛) . For this we consider the test

𝑡 (𝑋1, . . . 𝑋𝑛) B
{

1 if 𝑋𝑛 − 1
4 ≥ 𝑐,

0 else.

To achieve significance 𝛼,

𝛼 = 𝑃(𝑡 = 1) = 𝑃
(
𝑋𝑛 −

1
4
≥ 𝑐 | 𝐵(1, 1/4) (𝑛)

)
= 𝑃

(
𝑋1 + . . . 𝑋𝑛 ≥ 𝑛

(
𝑐 + 1

4

)
| 𝐵(1, 1/4) (𝑛)

)
= 𝑃

( [
𝑛

(
𝑐 + 1

4

)
,∞

)
| 𝐵(𝑛, 1/4)

)
∼ 𝑃

( [
𝑛

(
𝑐 + 1

4

)
,∞

)
| N ( 𝑛

4
,

3𝑛
16
)
)

= 𝑃

( [
4𝑐
√

3
√
𝑛,∞

)
| N (0, 1)

)
,

so that 𝑐 =
√

3
4
√
𝑛
𝑧1−𝛼. But 𝑋𝑛 − 1

4 = 42
115 −

1
4 = 0.115 ≥ 0.0939 =

√
3

4
√

115
𝑧99%, so that we have to reject

𝐻0 and the person has supernatural skills, indeed.

Example 9.12 (Cf. Weiß [21]). A worker produces 600 items in a working shift. On average, 2.8
are faulty. To supervise the quality the number of faulty items is recorded for every worker. How
can one check if a particular worker produces significantly more (𝛼 = 0.05) faulty items than
𝜆0 = 2.8?

To model the situation we choose Poisson random variables (cf. (12.3) below) and the model
P B

{
𝑃
(𝑛)
𝜆

: 𝜆 ≥ 𝜆0

}
the hypothesis 𝐻0 : 𝑃(1, 𝜆0) (𝑛) and the test

𝑡 (𝑋1, . . . 𝑋𝑛) B
{

1 if 𝑋𝑛 − 𝜆0 ≥ 𝑐,
0 else.

We have

𝛼 = 𝑃(𝑡 = 1) = 𝑃
(
𝑋𝑛 − 𝜆0 ≥ 𝑐 | 𝑃 (𝑛)𝜆0

)
= 𝑃

(
𝑋1 + . . . 𝑋𝑛 − 𝑛𝜆0√

𝑛𝜆0
≥

√︂
𝑛

𝜆0
𝑐 | 𝑃 (𝑛)

𝜆0

)
∼ 𝑃

(
𝑋1 + . . . 𝑋𝑛 − 𝑛𝜆0√

𝑛𝜆0
≥

√︂
𝑛

𝜆0
𝑐 | N (0, 1)

)
,

thus 𝑐 =
√︃
𝜆0
𝑛
𝑧1−𝛼.

Example 9.13 (Cf. Weiß [21, Bsp. 7.7]). A company produces items which are known to have
diameter 𝜇0. The client expects the items to be very similar. The diameters of a sample are
𝑋1, . . . , 𝑋𝑛. Can we ensure the client that the items deviate less than 𝜎2

0 ?
We choose P B

{
N(𝜇0, 𝜎

2) (𝑛) : 𝜎 ≥ 𝜎0
}

and 𝐻0 : 𝑃 ∼ N(𝜇0, 𝜎
2
0 )
(𝑛) . Apparently,

𝑡 (𝑋1, . . . 𝑋𝑛) B


1 if
1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖−𝜇)2

𝜎2
0

≥ 𝑐,
0 else
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is a reasonable test. For this test,

𝛼 = 𝑃(𝑡 = 1) = 𝑃 ©­«
𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜇
𝜎2

0

)2

≥ 𝑛𝑐 | N (𝜇0, 𝜎
2
0 )

ª®¬ = 𝜒2
𝑛 [𝑛𝑐,∞) ,

so that 𝑐 = 1
𝑛
𝑞𝜒2

𝑛
(1 − 𝛼) is the critical value.

Example 9.14 (Cf. Weiß [21]). The interarrival times of a Poisson process are 𝑋1, . . . , 𝑋𝑛. Check,
if 𝜆 > 𝜆0?

We choose P B
{
𝐸
(𝑛)
𝜆

: 𝜆 > 0
}
, the hypothesis 𝐻0 : 𝐸 (𝑛)

𝜆
: 𝜆 ≤ 𝜆0 and the alternative 𝐻1 :

𝐸
(𝑛)
𝜆

: 𝜆 > 𝜆0. Based on (5.8) and (5.5) we have that E 𝑋 = 𝑛
𝜆

for 𝑋 ∼ 𝐸𝑛,𝜆, so we choose the test

𝑡 (𝑋1, . . . 𝑋𝑛) B
{

1 if 𝑛
𝑋1+···+𝑋𝑛

≥ 𝜆0𝑐,

0 else.

We want

𝛼 = 𝑃(𝑡 = 1) = 𝑃
(

𝑛

𝑋1 + . . . 𝑋𝑛
≥ 𝜆0𝑐 | 𝐸𝜆

)
= 𝑃

(
2𝜆0 (𝑋1 + . . . 𝑋𝑛) ≤ 2

𝑛

𝑐
| 𝐸𝜆

)
≤ 𝑃

©­­­­«
2𝜆(𝑋1 + . . . 𝑋𝑛)︸              ︷︷              ︸

𝜒2
2𝑛 , cf. (5.6)

≤ 2𝑛
𝑐
| 𝐸𝜆

ª®®®®¬
= 𝜒2

2𝑛

( [
0,

2𝑛
𝑐

] )
.

It follows that 𝑐 = 2𝑛
𝑧𝛼 (𝜒2

2𝑛 )
, where 𝑧𝛼 (𝜒2

2𝑛) is the 𝛼-quantile of the 𝜒2
2𝑛 distribution.

9.4 STUDENT’S T-TEST

9.4.1 One sample location test

For the distribution see page 50 and the footnote 5.
In this section the statistics is

𝑇 B
√
𝑛
𝑋𝑛 − 𝜇0
𝑠𝑛

(cf. (5.15)) and 𝑡𝑛−1 (𝑡−1
𝑛−1, resp.) is the cdf (quantile, resp.) of Student’s t-distribution.

(i) One tailed test, upper tailed test:2 consider the test problem

𝐻0 : 𝜇 = 𝜇0,

𝐻1 : 𝜇 > 𝜇0.

2rechtsseitiger Test
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If 𝑋𝑖 ∼ N(𝜇, 𝜎2), then (compare with (7.13))

𝑡𝛼 (𝑋) =
{

1 if
√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

= 𝑇 > 𝑡−1
𝑛−1 (1 − 𝛼),

0 else.
=

{
1 if 1 − 𝑡𝑛−1

(√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

)
< 𝛼,

0 else.

Note the 𝑝-value 𝑡𝑛−1 (−𝑇), cf. (7.7).

(ii) One tailed test, lower tailed test: the test for the problem

𝐻0 : 𝜇 = 𝜇0,

𝐻1 : 𝜇 < 𝜇0,

reads

𝑡𝛼 (𝑋) =
{

1 if
√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

< 𝑡−1
𝑛−1 (𝛼),

0 else.
=

{
1 if 𝑡𝑛−1

(√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

)
< 𝛼,

0 else.

The 𝑝-value is 𝑡𝑛−1 (𝑇).

(iii) For two-tailed tests: for the problem

𝐻0 : 𝜇 = 𝜇0,

𝐻1 : 𝜇 ≠ 𝜇0,

the test

𝑡𝛼 (𝑋) =
{

1 else,

0 if
√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛
∈

[
𝑡−1
𝑛−1

(
𝛼
2
)
, 𝑡−1
𝑛−1

(
1 − 𝛼

2
) ]
.

=

{
1 else,

0 if 𝑡𝑛−1

(√
𝑛
𝑋𝑛−𝜇0
𝑠𝑛

)
∈

[
𝛼
2 , 1 −

𝛼
2
]
.

can be considered. Its 𝑝-value is 2𝑡𝑛−1 (|𝑇 |).

9.4.2 Two sample location test
Let 𝑋1, . . . 𝑋𝑛 and 𝑌1, . . . 𝑌𝑚 be independent samples with unknown, but equal (!) 𝜎 and consider
the problem

𝐻0 : 𝜇𝑋 = 𝜇𝑌 ,

𝐻1 : 𝜇𝑋 ≠ 𝜇𝑌 .

Consider the statistics

𝑇 B
𝑋𝑛 − 𝑌𝑚
𝑆

√︃
1
𝑛
+ 1
𝑚

=

√︂
𝑛𝑚

𝑛 + 𝑚
𝑋𝑛 − 𝑌𝑚

𝑆
∼ 𝑡𝑛+𝑚−2,

where 𝑆2 =
(𝑛−1)𝑠2

𝑋
+(𝑚−1)𝑠2

𝑌

𝑛+𝑚−2 is the pooled variance. A possible test is

𝑡𝛼 (𝑋) =
{

1 if |𝑇 | > 𝑡−1
𝑛+𝑚−2

(
1 − 𝛼

2
)
,

0 else.
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9.5 WELCH’S T-TEST

Let 𝑋1, . . . 𝑋𝑛 and 𝑌1, . . . 𝑌𝑚 be independent samples with unknown, but possibly unequal (!) 𝜎
and consider the problem

𝐻0 : 𝜇𝑋 = 𝜇𝑌 ,

𝐻1 : 𝜇𝑋 ≠ 𝜇𝑌 .

Welch’s t-test considers the statistics

𝑇 B
𝑋𝑛 − 𝑌𝑚√︃
𝑠2
𝑋

𝑛
+ 𝑠

2
𝑌

𝑚

∼ 𝑡𝜈 ,

where 𝜈 ≈

(
𝑠2
𝑋
𝑛
+
𝑠2
𝑌
𝑚

)2

𝑠4
𝑋

𝑛(𝑛−1) +
𝑠4
𝑌

𝑚(𝑚−1)

(the Welch–Satterthwaite equation) is an approximation for the degrees

of freedom.

9.6 FISHER’S F-TEST

The tests have been developed by Fisher.3

Recall from (5.13) that 𝑠2
𝑛 (𝑋) ∼ 𝜎2 𝜒

2
𝑛−1
𝑛−1 which we compare with 𝑠2

𝑚 (𝑌 ) ∼ 𝜎2 𝜒
2
𝑚−1
𝑚−1 .

9.6.1 ANOVA
The hypothesis that the means of a given set of normally distributed populations, all having the
same standard deviation, are equal. It follows from Proposition 5.21 that

𝐹 B
𝑠2
𝑚 (𝑌 )
𝑠2
𝑛 (𝑋)

∼
𝜒2
𝑚−1/(𝑚 − 1)
𝜒2
𝑛−1/(𝑛 − 1)

∼ 𝐹𝑚−1,𝑛−1.

Fisher hence proposes 𝐹 for the test

𝐻0 : 𝜎2
2 = 𝜎2

1 ,

𝐻1 : 𝜎2
2 > 𝜎

2
1 .

9.6.2 Lack-of-fit sum of squares
The hypothesis that a proposed regression model fits the data well.

9.7 KOLMOGOROV–SMIRNOV TEST

Recall the empirical distribution function

𝐹𝑛 (𝑥) B
1
𝑛

𝑛∑︁
𝑖=1
1(−∞,𝑥 ] (𝑋𝑖). (9.2)

3Ronald A. Fisher, 1890–1962, statistician and geneticist
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9.7.1 One-sample Kolmogorov–Smirnov test

Definition 9.15. The Kolmogorov–Smirnov statistic for a given distribution function 𝐹 is (cf.
(12.4))

𝐷𝑛 B ∥𝐹𝑛 − 𝐹∥∞ B sup
𝑥∈R
|𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥) | .

Theorem 9.16 (Kolmogorov). Let 𝑋𝑖 ∼ 𝑋 be iid with continuous distribution function 𝐹. Then (cf.
Table 7.1b)

lim
𝑛→∞

𝑃

(√
𝑛 sup
𝑥∈R
|𝐹𝑛 (𝑥) − 𝐹𝑋 (𝑥) |︸                    ︷︷                    ︸

𝐷𝑛

≤ 𝑧
)
= 1 − 2

∞∑︁
𝑘=1
(−1)𝑘−1𝑒−2𝑘2𝑧2

. (9.3)

For the problem

𝐻0 : 𝑋𝑖 ∼ 𝐹,
𝐻1 : 𝑋𝑖 ≁ 𝐹.

the Kolmogorov–Smirnov test is

𝑡𝛼 (𝑋1, . . . , 𝑋𝑛) =
{

1 if
√
𝑛 𝐷𝑛 > 𝐾𝛼,

0 else,

where
𝑃(𝐾 > 𝐾𝛼) = 𝛼 (9.4)

and 𝑃(𝐾 ≤ 𝑧) = 1 + 2
∑∞
𝑘=1 (−1)𝑘𝑒−2𝑘2𝑧2

, cf. (9.3). Table 7.1b lists these value.
To wit, consider 𝐾 B sup𝑡∈[0,1] |𝐵𝑡 | for a Brownian bridge 𝐵𝑡 . Then

√
𝑛 𝐷𝑛 −−−−→

𝑛→∞
sup𝑥∈R

��𝐵𝐹 (𝑥 ) ��
in distribution and thus the result.

9.7.2 Two-sample Kolmogorov–Smirnov test

The Kolmogorov4–Smirnov5 test may also be used to test whether two underlying one-dimensional
probability distributions differ. In this case, the Kolmogorov–Smirnov statistic is

𝐷𝑛,𝑚 B sup
𝑥∈R

������������
1
𝑛

𝑛∑︁
𝑖=1
1(−∞,𝑥 ] (𝑋𝑖)︸                 ︷︷                 ︸
𝐹𝑋,𝑛 (𝑥 )

− 1
𝑚

𝑚∑︁
𝑗=1
1(−∞,𝑥 ] (𝑌 𝑗 )︸                  ︷︷                  ︸
𝐹𝑌,𝑚 (𝑥 )

������������
Theorem 9.17 (Kolmogorov Smirnov). For 𝑋𝑖 ∼ 𝐹 and 𝑌𝑖 ∼ 𝐹, all iid it holds that

(i) 𝑃
(√︁

𝑛𝑚
𝑛+𝑚𝐷𝑛,𝑚 ≤ 𝑧

)
−−−−−−→
𝑛,𝑚→∞

1 − 2𝑒−2𝑧2
and

(ii) 𝑃
(√︁

𝑛𝑚
𝑛+𝑚 sup𝑥∈R

{
𝐹𝑋,𝑛 (𝑥) − 𝐹𝑌,𝑚 (𝑥)

}
≤ 𝑧

)
−−−−−−→
𝑛,𝑚→∞

1 − 𝑒−2𝑧2
.

4Andrey Kolmogorov, 1903–1987
5Nikolai Smirnov, 1900-1960
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For the problem

𝐻0 : 𝐹𝑋𝑖
∼ 𝐹𝑋,

𝐻1 : 𝑋𝑖 ≁ 𝐹.

The Kolmogorov–Smirnov test is

𝑡𝛼 (𝑋1, . . . , 𝑋𝑛) =
{

1 if 𝐷𝑛 > 𝑐(𝛼)
√︃
𝑛+𝑚
𝑛𝑚

,

0 else,

where

𝑐(𝛼) =
√︂
−1

2
log

1 − 𝛼
2

. (9.5)

Table 7.1b lists these values.

9.8 KUIPER’S TEST

is closely related to the Kolmogorov–Smirnov test, it uses the test statistics

𝐷+ B max
𝑖=1,...,𝑛

{
𝑖

𝑛
− 𝐹 (𝑋(𝑖) )

}
+ max
𝑖=1,...,𝑛

{
𝐹 (𝑋(𝑖) ) −

𝑖 − 1
𝑛

}
.

9.9 CRAMÉR-VON MISES TEST

The test statistics is 𝜔2
𝑛 B

1
12𝑛 +

∑𝑛
𝑗=1

(
𝐹

(
𝑋( 𝑗 )

)
− 2 𝑗−1

2𝑛

)2
(cf. (12.5)). In the limit, this statistics

follows an 𝜔2 distribution with 𝜔2 ∼
∫ 1

0 𝐵2
𝑡 d𝑡 ∼ ∑∞

𝑘=1
𝜉 2
𝑘

𝑘2 𝜋2 , where 𝐵𝑡 is a Brownian bridge and 𝜉𝑘
are independent normals.

9.10 WALD TEST

The maximum likelihood is asymptotically normal, i.e., lim𝑛→∞ 𝜗̂→ N(𝜗, Σ𝜗̂) where 𝜗 = (𝜗1 . . . 𝜗𝑘)
and Σ𝜗̂ is the asymptotic non-singular covariance matrix of the Likelihood estimator.

Wald6 thus proposes to employ the statistics

𝑇2
𝑊 B (𝜗 − 𝜗0)⊤ Σ−1

𝜗̂
(𝜗 − 𝜗0) ∼ 𝜒2

𝑘

to test

𝐻0 : 𝜗 = 𝜗0,

𝐻1 : 𝜗 ≠ 𝜗0.

9.11 SHAPIRO–WILK TEST

https://math.mit.edu/∼rmd/465/shapiro.pdf

6Abraham Wald, 1902–1950
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𝛼 Reject 𝐻0 if
0.10 𝐽𝐵 > 4.6
0.05 𝐽𝐵 > 6.0
0.02 𝐽𝐵 > 7.8
0.01 𝐽𝐵 > 9.2

Table 9.3: Jarque–Bera

1 2 3 4 5 6 total

74 107 99 98 103 119 600

Table 9.4: Dice

9.12 JARQUE–BERA-TEST

The skewness7 is 𝑆 =
𝜇3
𝜎3 =

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖−𝑋𝑛)3(

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖−𝑋𝑛)2

)3/2 and kurtosis8 is 𝐾 =
𝜇4
𝜎4 =

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖−𝑋𝑛)4(

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖−𝑋𝑛)2

)2 . Then

𝐽𝐵 B
𝑛

6

(
𝑆2 + 1

4
(𝐾 − 3)2

)
∼ 𝜒2

2

and the test is (cf. Table 9.3)

𝐻0 : 𝑋𝑖 ∼ N(𝜇, 𝜎2) (𝑛) are normally distributed,
𝐻1 : 𝑋𝑖 are not normally distributed.

9.13 PROBLEMS

Exercise 9.1. Based on Table 9.1a, is it fair to say that it is more likely for women to study than
for men? Test the hypothesis 𝐻0 : 𝑝men ≤ 𝑝women versus the alternative 𝐻1 : 𝑝men > 𝑝women.

Exercise 9.2 (Coin flipping). Suppose a coins shows 532 heads and 468 tails. Is the coin fair?
Give the 𝑝-value of the corresponding 𝜒2

1 distribution for 𝛼 = 5%.

Exercise 9.3. Suppose a dice shows the counts displayed in Table 9.4 after 600 throws. With,
𝛼 = 5%, is the dice fair?

7Schiefe, cf. Footnote 6 (page 23)
8Wölbung, cf. Footnote 5 (page 21)
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10Descriptive Statistics

Also lautet ein Beschluß,
daß der Mensch was lernen muß.

Wilhelm Busch, 1832–1908

Definition 10.1. The empirical measure1 of a set 𝐴 is the counting measure2

𝑃𝑛 (𝐴) B
1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑋𝑖
(𝐴) = 1

𝑛

𝑛∑︁
𝑖=1
1𝐴(𝑋𝑖).

The empirical distribution function is

𝐹𝑛 (𝑥) B 𝑃𝑛
(
(−∞, 𝑥]

)
=

1
𝑛

𝑛∑︁
𝑖=1
1𝑋𝑖≤𝑥 ,

where (−∞, 𝑥] B (−∞, 𝑥1] × · · · × (−∞, 𝑥𝑑] ⊂ R𝑑 is a hypercube for 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and

1𝑋≤𝑥 =

{
1 if 𝑋1 ≤ 𝑥1, . . . , 𝑋𝑑 ≤ 𝑥𝑑 ,
0 else

.

Proposition 10.2. Let 𝐴 be fixed and 𝑋𝑖 independent and identically distributed (iid.). Then
(𝑋1, . . . , 𝑋𝑛) ↦→ 𝑛 · 𝑃𝑛 (𝐴) ∈ {0, 1, . . . , 𝑛} is a binomial random variable with mean 𝑛 · 𝑃(𝐴) and
variance 𝑛 𝑃(𝐴)

(
1 − 𝑃(𝐴)

)
. In particular, 𝑃𝑛 (𝐴) is an unbiased estimator for 𝑃(𝐴). Further,

𝑛 𝑃𝑛 (𝐴) ∼ bin
(
𝑛, 𝑃(𝐴)

)
.

Proof. We have that E 𝑛𝑃𝑛 (𝐴) =
∑𝑛
𝑖=1E1𝐴(𝑋𝑖) = 𝑛 ·𝑃(𝐴) and it is evident that 𝑃(𝑋1 ∈ 𝐴, . . . , 𝑋𝑛 ∈

𝐴 exactly 𝑘 times) =
(𝑛
𝑘

)
𝑃(𝐴)𝑘

(
1 − 𝑃(𝐴)

)𝑛−𝑘 and hence the distribution.
For the variance observe that

E 𝑛2𝑃𝑛 (𝐴)2 = E

𝑛∑︁
𝑖, 𝑗=1

1𝐴(𝑋𝑖) · 1𝐴(𝑋 𝑗 ) =
∑︁
𝑖≠ 𝑗

𝑃(𝑋𝑖 ∈ 𝐴, 𝑋 𝑗 ∈ 𝐴) +
𝑛∑︁
𝑖=1

𝑃(𝑋𝑖 ∈ 𝐴)

= (𝑛2 − 𝑛)𝑃(𝐴)2 + 𝑛𝑃(𝐴) = 𝑛𝑃(𝐴)
(
1 − 𝑃(𝐴)

)
+ 𝑛2𝑃(𝐴)2,

so that var
(
𝑛 · 𝑃𝑛 (𝐴)

)
= 𝑛 𝑃(𝐴)

(
1 − 𝑃(𝐴)

)
. □

Proposition 10.3. Let 𝑋𝑖 be iid with common cdf 𝐹. It holds that

E 𝐹𝑛 (𝑥) = 𝐹 (𝑥)

and (with 𝑥 ∧ 𝑦 = min(𝑥, 𝑦))

cov
(
𝐹𝑛 (𝑥), 𝐹𝑛 (𝑦)

)
=

1
𝑛

(
𝐹 (𝑥 ∧ 𝑦) − 𝐹 (𝑥) · 𝐹 (𝑦)

)
.

1Paul Dirac, 1902–1984, English theoretical physicist

2The Dirac measure is 𝛿𝑥 (𝐴) B 1𝐴 (𝑥 ) B
{

1 if 𝑥 ∈ 𝐴,
0 else.
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Proof. From the preceding proposition we have that

𝑃

(
𝐹𝑛 (𝑦) =

𝑖

𝑛

)
=

(
𝑛

𝑖

)
𝐹 (𝑦)𝑖

(
1 − 𝐹 (𝑦)

)𝑛−𝑖
and, for 𝑥 ≤ 𝑦,

𝑃

(
𝐹𝑛 (𝑥) =

𝑗

𝑛

���� 𝐹𝑛 (𝑦) = 𝑖

𝑛

)
=

(
𝑖

𝑗

) (
𝐹 (𝑥)
𝐹 (𝑦)

) 𝑗 (
1 − 𝐹 (𝑥)

𝐹 (𝑦)

) 𝑖− 𝑗
, 𝑗 = 0, . . . , 𝑖.

It follows that

E 𝐹𝑛 (𝑥)𝐹𝑛 (𝑦) = EE
(
𝐹𝑛 (𝑥)𝐹𝑛 (𝑦) | 𝐹𝑛 (𝑦)

)
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝐹 (𝑦)𝑖

(
1 − 𝐹 (𝑦)

)𝑛−𝑖 · 𝑖∑︁
𝑗=0

(
𝑖

𝑗

) (
𝐹 (𝑥)
𝐹 (𝑦)

) 𝑗 (
1 − 𝐹 (𝑥)

𝐹 (𝑦)

) 𝑖− 𝑗
· 𝑖
𝑛

𝑗

𝑛

=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝐹 (𝑦)𝑖

(
1 − 𝐹 (𝑦)

)𝑛−𝑖 𝑖
𝑛2 · 𝑖

𝐹 (𝑥)
𝐹 (𝑦) (10.1)

=
1
𝑛2
𝐹 (𝑥)
𝐹 (𝑦)

(
𝑛𝐹 (𝑦)

(
1 − 𝐹 (𝑦)

)
+

(
𝑛 𝐹 (𝑦)

)2
)

(10.2)

=
1
𝑛
𝐹 (𝑥)

(
1 − 𝐹 (𝑦)

)
+ 𝐹 (𝑥)𝐹 (𝑦),

where we have used that E 𝑋 = 𝑖
𝐹 (𝑥 )
𝐹 (𝑦) in (10.1) for 𝑋 ∼ bin

(
𝑖,
𝐹 (𝑥 )
𝐹 (𝑦)

)
and E 𝑋2 = 𝑛 𝐹 (𝑦)

(
1−𝐹 (𝑦)

)
+(

𝑛 𝐹 (𝑦)
)2 for 𝑋 ∼ bin

(
𝑛, 𝐹 (𝑦)

)
in (10.2). Hence the assertion. □

10.1 BOX-AND-WHISKER PLOT

A method for graphically depicting groups of numerical data through their quartiles (cf. Fig-
ure 10.1) introduced by Tuckey.3 Box plots may also have lines extending vertically from the
boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms
box-and-whisker plot and box-and-whisker diagram. Outliers may be plotted as individual points.
Box plots are non-parametric.

10.2 HISTOGRAM, Q–Q AND P–P PLOTS

For two random variables 𝑋 (𝑌 , resp.) with cdf. 𝐹𝑋 (𝐹𝑌 , resp.), the Q–Q plot (for Quantile–Quantile
plot, cf. Figure 10.2b)

[0, 1] ∋ 𝑝 ↦→
(
𝐹−1
𝑋 (𝑝), 𝐹−1

𝑌 (𝑝)
)
∈ R2 (10.3)

plots their quantiles against each other. The P–P plot (for Probability–Probability, or Percentage–Per-
centage plot) is

R ∋ 𝑞 ↦→
(
𝐹𝑋 (𝑞), 𝐹𝑌 (𝑞)

)
∈ [0, 1]2. (10.4)

The Q–Q plot is more widely used, but they are both referred to as probability plot, and are
potentially confused.

3John W. Tukey, 1915–2000, American mathematician
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−1 0 1 2

Variable 3

Variable 2

Variable 1

Figure 10.1: Box plot

The usual combinations in probability plots are 𝐹𝑋 and the empirical distribution function 𝐹𝑛.
Denote the realizations by 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, and set

𝐹−1
𝑛

(
𝑖

𝑛 + 1

)
=: 𝑋(𝑖) , 𝑖 = 1, . . . , 𝑛. (10.5)

A usual Q–Q plot displays (following Van der Waerden, put 𝑝 ∈
{
𝑖
𝑛+1 : 𝑖 = 1, . . . , 𝑛

}
in (10.3))

𝑖 ↦→
(
𝐹−1
𝑋

(
𝑖

𝑛 + 1

)
, 𝑋(𝑖)

)
, 𝑖 = 1, . . . , 𝑛

and the P–P plot (choose 𝑞 ∈ {𝑋𝑖 : 𝑖 = 1, . . . , 𝑛} in (10.4), cf. Figure 10.2c)

𝑖 ↦→
(

𝑖

𝑛 + 1
, 𝐹𝑋

(
𝑋(𝑖)

) )
, 𝑖 = 1, . . . , 𝑛. (10.6)

Remark 10.4. Q–Q and P–P plots are also used to plot two samples against each other.

10.3 PROBLEMS

Exercise 10.1. Consider the probability measure (Dirac measure) 𝑃𝜔0 (𝐴) B
{

1 if 𝜔0 ∈ 𝐴,
0 else

with 𝐴 ⊂ R (cf. Footnote 2 on page 93). Give E 𝑋2.

Exercise 10.2. For 𝜆 ∈ (0, 1) set 𝑃 B (1 − 𝜆)𝑃𝜔0 + 𝜆𝑃𝜔1 . Compute E 𝑋 using (1.2) and (1.15).

Version: October 19, 2023
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Figure 10.2: Histogram, Q–Q and P–P plot of the same 50 samples, distributed according
N(4, 1)
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11Order Statistics

Nichts gibt so sehr das Gefühl der
Unendlichkeit als wie die Dummheit.

Ödön von Horváth, 1901–1938

Definition 11.1 (Order statistics, rank, cf. (2.11)). We shall write (·) for the permutation on
{1, 2, . . . , 𝑛} so that

𝑋(1) ≤ · · · ≤ 𝑋(𝑛)
and {𝑋1, . . . , 𝑋𝑛} =

{
𝑋(1) , . . . , 𝑋(𝑛)

}
. 𝑋(𝑖) is the 𝑖th order statistic of the sample, i.e., its rank is (𝑖)

(cf. also (2.11)). Occasionally, the notations 𝑋1:𝑛 ≤ · · · ≤ 𝑋𝑛:𝑛 or 𝑋𝑛(1) ≤ · · · ≤ 𝑋𝑛(𝑛) are used as
well to denote the order statistics.

Remark 11.2. Sometimes it is convenient to include the observations 𝑋(0) B −∞ and 𝑋(𝑛+1) B
+∞ in the sample. By convention, 𝐹

(
𝑋(0)

)
= 0 and 𝐹

(
𝑋(𝑛+1)

)
= 1.

Remark 11.3. Note that 𝐹𝑛 (𝑥) = 𝑖
𝑛

for 𝑥 ∈ [𝑋(𝑖) , 𝑋(𝑖+1) ) and 𝐹−1
𝑛 (𝑥) = 𝑋(𝑖) whenever 𝑥 ∈

(
𝑖−1
𝑛
, 𝑖
𝑛

]
,

in particular 𝑋(𝑖) = 𝐹−1
𝑛 (𝑖/𝑛), 𝑖 = 0, . . . , 𝑛 + 1. As well, 𝑋(𝑖) = 𝐹−1

𝑛

(
𝑖
𝑛+1

)
, cf. (9.2).

11.1 DENSITIES

For order statistics, the following hold true.

Proposition 11.4 (Density of order statistics). Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, be iid with common density
𝑓 (·) (cdf 𝐹 (·), resp.). It holds that

𝑓𝑋(𝑘) (𝑥) =
𝑛!

(𝑘 − 1)!(𝑛 − 𝑘)!𝐹 (𝑥)
𝑘−1 𝑓 (𝑥)

(
1 − 𝐹 (𝑥)

)𝑛−𝑘
,

𝑓𝑋( 𝑗) ,𝑋(𝑘) (𝑥, 𝑦) =
𝑛!

( 𝑗 − 1)!(𝑘 − 𝑗 − 1)!(𝑛 − 𝑘)! , 𝑗 < 𝑘, 𝑥 ≤ 𝑦,

· 𝐹 (𝑥) 𝑗−1 𝑓 (𝑥)
(
𝐹 (𝑦) − 𝐹 (𝑥)

)
𝑘−1− 𝑗 𝑓 (𝑦)

(
1 − 𝐹 (𝑦)

)𝑛−𝑘
,

𝑓𝑋(1) ,...,𝑋(𝑛) (𝑥1, . . . , 𝑥𝑛) = 𝑛! 𝑓 (𝑥1) · · · 𝑓 (𝑥𝑛), 𝑥1 ≤ · · · ≤ 𝑥𝑛.

Proposition 11.5 (cdf of order statistics). Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, be iid. It holds that

𝑃
(
𝑋(𝑘 ) ∈ d𝑥

)
=

𝑛!
(𝑘 − 1)!(𝑛 − 𝑘)!𝐹 (𝑥)

𝑘−1 (1 − 𝐹 (𝑥))𝑛−𝑘 d𝐹 (𝑥),

𝑃
(
𝑋( 𝑗 ) ∈ d𝑥, 𝑋(𝑘 ) ∈ d𝑦

)
=

𝑛!
( 𝑗 − 1)!(𝑘 − 𝑗 − 1)!(𝑛 − 𝑘)! · 𝑗 < 𝑘, 𝑥 ≤ 𝑦,

· 𝐹 (𝑥) 𝑗−1 (𝐹 (𝑦) − 𝐹 (𝑥)) 𝑘−1− 𝑗 (1 − 𝐹 (𝑦))𝑛−𝑘 d𝐹 (𝑥) d𝐹 (𝑦),
𝑃

(
𝑋(1) ∈ d𝑥1, . . . , 𝑋(𝑛) ∈ d𝑥𝑛

)
= 𝑛! d𝐹 (𝑥1) · · · d𝐹 (𝑥𝑛), 𝑥1 ≤ · · · ≤ 𝑥𝑛.
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Corollary 11.6 (cdf and pdf of min and max). In particular we have that

𝑃

(
min

𝑖=1,...,𝑛
𝑋𝑖 ∈ d𝑥

)
= 𝑛

(
1 − 𝐹 (𝑥)

)𝑛−1
𝑃(𝑋 ∈ d𝑥),

𝑃

(
max
𝑖=1,...,𝑛

𝑋𝑖 ∈ d𝑥
)
= 𝑛 𝐹𝑋 (𝑥)𝑛−1 𝑃(𝑋 ∈ d𝑥)

and

𝑃

(
min

𝑖=1,...,𝑛
𝑋𝑖 ≤ 𝑥

)
= 1 −

(
1 − 𝐹 (𝑥)

)𝑛
,

𝑃

(
max
𝑖=1,...,𝑛

𝑋𝑖 ≤ 𝑥
)
= 𝐹 (𝑥)𝑛.

11.2 FIRST MOMENTS

Recall that 𝑈𝑘 B 𝐹 (𝑋𝑘) ∼ 𝑈 [0, 1] is uniformly distributed and 𝑈𝑘 ∈ [0, 1]. In what follows we
assume that all 𝑋𝑖 are independent and we study 𝑈(𝑘 ) = 𝐹 (𝑋(𝑘 ) ). Note, that 𝑈( 𝑗 ) and 𝑈(𝑘 ) are
dependent, although 𝑈 𝑗 and 𝑈𝑘 are independent.

Corollary 11.7. It holds that

(i) 𝑓𝐹 (𝑋(𝑘) ) (𝑝) = 𝑛!
(𝑘−1)!(𝑛−𝑘 )! 𝑝

𝑘−1 (1 − 𝑝)𝑛−𝑘 , i.e, 𝑈(𝑘 ) ∼ Beta(𝑘, 𝑛 − 𝑘 + 1) and

(ii) 𝑓𝐹 (𝑋( 𝑗) ) ,𝐹 (𝑋(𝑘) ) (𝑝, 𝑞) =
𝑛!𝑝 𝑗−1

(
𝑞−𝑝

)
𝑘−1− 𝑗

(
1−𝑞

)𝑛−𝑘
( 𝑗−1)!(𝑘− 𝑗−1)!(𝑛−𝑘 )! , 0 ≤ 𝑝 ≤ 𝑞 ≤ 1.

Corollary 11.8. It holds that (cf. Propositions 10.3)

(i) E 𝐹 (𝑋(𝑘 ) ) = 𝑘
𝑛+1 ,

(ii) var 𝐹 (𝑋(𝑘 ) ) = 1
𝑛+2 ·

𝑘
𝑛+1

(
1 − 𝑘

𝑛+1

)
and

(iii) cov
(
𝐹 (𝑋( 𝑗 ) ), 𝐹 (𝑋(𝑘 ) )

)
= 1
𝑛+2 ·

𝑗

𝑛+1
(
1 − 𝑘

𝑛+1
)
, 𝑗 ≤ 𝑘.

Remark 11.9. Cf. the P–P plot.

Remark 11.10. Note, that 𝐹 (𝑋(𝑘 ) ) ∼ Beta𝑘,𝑛+1−𝑘 ≈ N
(
𝑘
𝑛+1 ,

1
𝑛+2

𝑘
𝑛+1

(
1 − 𝑘

𝑛+1

))
, where Beta is the

Beta distribution, cf. Exercise 5.10.

Proof. Use the formula (5.10) for Euler’s Beta function to get

E 𝐹 (𝑋(𝑘 ) ) =
∫ ∞

−∞
𝐹 (𝑥) 𝑓𝑋(𝑘) (𝑥) d𝑥 =

∫ ∞

−∞

𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)!𝐹 (𝑥)

𝑘 𝑓 (𝑥) (1 − 𝐹 (𝑥))𝑛−𝑘 d𝑥

=

∫ 1

0

𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)! 𝑝

𝑘 (1 − 𝑝)𝑛−𝑘 d𝑝 =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)! ·
𝑘!(𝑛 − 𝑘)!
(𝑛 + 1)! =

𝑘

𝑛 + 1
,
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and

E 𝐹 (𝑋( 𝑗 ) ) · 𝐹 (𝑋(𝑘 ) )

=
𝑛!

( 𝑗 − 1)! (𝑘 − 𝑗 − 1)! (𝑛 − 𝑘)!

∫ 1

0

∫ 1

𝑝

𝑝𝑞 · 𝑝 𝑗−1 (𝑞 − 𝑝)𝑘−1− 𝑗 (1 − 𝑞)𝑛−𝑘 d𝑞d𝑝

= · · ·
∫ 1

0

∫ 𝑞

0
𝑝 𝑗 (𝑞 − 𝑝)𝑘−1− 𝑗𝑞(1 − 𝑞)𝑛−𝑘 d𝑝d𝑞

=
𝑝←𝑞𝑝

· · ·
∫ 1

0

∫ 1

0
(𝑞𝑝) 𝑗𝑞𝑘−1− 𝑗 (1 − 𝑝)𝑘−1− 𝑗𝑞2 (1 − 𝑞)𝑛−𝑘 d𝑝d𝑞

= · · ·
∫ 1

0
𝑝 𝑗 (1 − 𝑝)𝑘−1− 𝑗 d𝑝 ·

∫ 1

0
𝑞𝑘+1 (1 − 𝑞)𝑛−𝑘 d𝑞

=
𝑛!

( 𝑗 − 1)! (𝑘 − 𝑗 − 1)! (𝑛 − 𝑘)! ·
𝑗!(𝑘 − 𝑗 − 1)!

𝑘!
· (𝑘 + 1)!(𝑛 − 𝑘)!

(𝑛 + 2)!

=
𝑗 (𝑘 + 1)

(𝑛 + 1) (𝑛 + 2) .

For the varicance,

E 𝐹 (𝑋(𝑘 ) )2 =

∫ ∞

−∞
𝐹 (𝑥)2 𝑓𝑋(𝑘) (𝑥) d𝑥 =

∫ ∞

−∞

𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)!𝐹 (𝑥)

𝑘+1 𝑓 (𝑥) (1 − 𝐹 (𝑥))𝑛−𝑘 d𝑥

=

∫ 1

0

𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)! 𝑝

𝑘+1 (1 − 𝑝)𝑛−𝑘 d𝑝

=
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)! ·
(𝑘 + 1)!(𝑛 − 𝑘)!
(𝑛 + 2)! =

𝑘 (𝑘 + 1)
(𝑛 + 1) (𝑛 + 2) ;

together with (i) it follows that var 𝐹 (𝑋(𝑘 ) ) = 𝑘 (𝑛+1−𝑘 )
(𝑛+1)2 (𝑛+2) and hence the assertion. □

11.3 DERIVED ORDER STATISTICS

Definition 11.11 (Range). We define the following derived statistics.

(i) The sample median is 𝑚𝑋 B

𝑋( 𝑛+12 ) if 𝑛 is odd,
1
2

(
𝑋( 𝑛2 ) + 𝑋( 𝑛2 +1)

)
if 𝑛 is even;

(ii) the range1 of a set of data is the difference between the largest and smallest values,

Δ𝑛 B max
𝑖=1,...𝑛

𝑋𝑖 − min
𝑖=1,...𝑛

𝑋𝑖 = 𝑋(𝑛) − 𝑋(1) ;

(iii) the midrange is 1
2
(
max𝑖=1,...𝑛 𝑋𝑖 −min𝑖=1,...𝑛 𝑋𝑖

)
= 1

2
(
𝑋(𝑛) − 𝑋(1)

)
;

(iv) the L-estimator 1
2
(
𝐹−1 (1/4) + 𝐹−1 (3/4)

)
is called midhinge (the interquartile range is 𝐹−1 (3/4)−

𝐹−1 (1/4));

(v) the pseudomedian or Hodges-Lehmann2 estimator of a population is the median of all
1
2
(
𝑋𝑖 + 𝑋 𝑗

)
, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, i.e, the median of the averages of all 𝑛(𝑛+1)2 pairs.

1Spannweite, dt.
2Cf. Footnote 7 on page 12.
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Proposition 11.12. Let 𝑋1, . . . , 𝑋𝑛 be iid. Then the range has pdf

𝑓Δ𝑛
(𝑡) = 𝑛(𝑛 − 1)

∫ ∞

−∞
𝑓𝑋 (𝑥)

(
𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑥)

)𝑛−2
𝑓𝑋 (𝑥 + 𝑡) d𝑥, 𝑡 ≥ 0,

and cdf
𝑃 (Δ𝑛 ≤ 𝑡) = 𝐹Δ𝑛

(𝑡) = 𝑛
∫ ∞

−∞
𝑓𝑋 (𝑥)

(
𝐹𝑋 (𝑥 + 𝑡) − 𝐹𝑋 (𝑥)

)𝑛−1 d𝑥, 𝑡 ≥ 0.

Remark 11.13. Note that 𝐹Δ𝑛
(𝑡) is a cdf, as 𝐹Δ𝑛

(0) = 0 and, for 𝑡 →∞,

𝐹Δ𝑛
(𝑡) −−−−→

𝑡→∞
𝑛

∫ ∞

−∞
𝑓𝑋 (𝑥)

(
1 − 𝐹𝑋 (𝑥)

)𝑛−1 d𝑥 = −
(
1 − 𝐹𝑋 (𝑥)

)𝑛��∞
𝑥=−∞ = 1.

Theorem 11.14. For 𝑝 ∈ (0, 1) and 𝑛→∞ we have that

(i) 𝐹 (𝑋( [𝑛𝑝] ) ) ∼ N
(
𝑝,

𝑝 (1−𝑝)
𝑛

)
and

(ii) 𝑋( [𝑛𝑝] ) ∼ N
(
𝐹−1 (𝑝), 1

𝑛

𝑝 (1−𝑝)

𝑓
(
𝐹−1 (𝑝)

)2

)
.

Remark 11.15 (Brownian Bridge). For 𝑡 ∈ [0, 1] define the process

𝐵𝑛𝑡 B
√
𝑛 + 2 ·

(
𝐹 (𝑋(𝑡 (𝑛+1) )

)
− 𝑡

)
, 𝑡 ∈ [0, 1],

with linear interpolation of adjacent samples and the convention mentioned in Remark 11.2 (i.e.,
𝐹 (𝑋(0) ) = 0 and 𝐹 (𝑋(𝑛+1) ) = 1). Then 𝐵𝑛𝑡 ≈ N

(
0, 𝑡 (1 − 𝑡)

)
and

cov
(
𝐵𝑛𝑠 , 𝐵

𝑛
𝑡 ) = 𝑠𝑡 − 𝑠 ∧ 𝑡, 𝑠, 𝑡 ∈

{
𝑘

𝑛 + 1
: 𝑘 = 0, . . . 𝑛 + 1

}
,

which is the covariance structure of a Brownian bridge. Hence, 𝐵𝑛𝑡 −−−−→
𝑛→∞

𝐵𝑡 in distribution, where
𝐵𝑡 is a Brownian bridge.

Remark 11.16. Note as well that (cf. (5.10))

E 𝑋(𝑘 ) =

∫ ∞

−∞
𝑥 · 𝑓𝑋(𝑘) (𝑥) d𝑥 =

∫ ∞

−∞
𝑥 · 𝑛!
(𝑘 − 1)! (𝑛 − 𝑘)!𝐹 (𝑥)

𝑘−1 𝑓 (𝑥) (1 − 𝐹 (𝑥))𝑛−𝑘 d𝑥

=

∫ 1

0
𝐹−1 (𝑝) 𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)! 𝑝
𝑘−1 (1 − 𝑝)𝑛−𝑘 d𝑝 → 𝐹−1

(
𝑘

𝑛 + 1

)
.

11.4 PROBLEMS

Exercise 11.1. Show that the sample median of the sample 𝑋 = (2, 2, 3, 5) is 𝑚𝑋 = 2.5, the
pseudomedian is 𝑚∗

𝑋
= 2.75.

Exercise 11.2. Show that for independent 𝑋𝑖 ∼ 𝐸𝜆 we have that 𝑋(1) = min𝑖=1,...,𝑛 𝑋𝑖 ∼ 𝐸𝑛𝜆. Give
the expectation and variance of 𝑋(1) .

Exercise 11.3. Let 𝑋𝑖 ∼ 𝑈 [0, 1], 𝑖 = 1, . . . , 𝑛, be independent.

(i) Show that the range Δ𝑛 has the density 𝑃(Δ𝑛 ∈ d𝑡) = 𝑛(𝑛 − 1)𝑡𝑛−2 (1 − 𝑡) d𝑡;
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11.4 PROBLEMS 101

(ii) show that the moments are given by EΔ𝑘𝑛 =
𝑛(𝑛−1)

(𝑛+𝑘 ) (𝑛+𝑘−1) and deduce that EΔ𝑛 = 1 − 2
𝑛+1

and varΔ𝑛 = 2(𝑛−1)
(𝑛+1)2 (𝑛+2) = O (1/𝑛2).

Exercise 11.4. Let 0 ≤ 𝑗 < 𝑘 ≤ 𝑛 and 𝑢0 be fixed. Compute the density of 𝑓𝑈( 𝑗)
(
· | 𝑈(𝑘 ) = 𝑢0

)
and give the distribution of 𝑈( 𝑗 ) | 𝑈(𝑘 ) = 𝑢0, i.e., the distribution of 𝑈( 𝑗 ) provided that 𝑈(𝑘 ) = 𝑢0.
Hint: see (1.11).

Estimating the location parameter

Exercise 11.5. Let 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 (𝑛 odd, 𝑛 = 2𝑘 − 1), be iid. The sample median is 𝑚 = 𝑋(𝑘 ) , cf.
Definition 11.11(i).

(i) Show that the sample median has density 𝑃 (𝑚 ∈ d𝑣) = (2𝑘−1)!
(𝑘−1)!2 (𝐹 (𝑣) (1 − 𝐹 (𝑣))

) 𝑘−1 d𝐹 (𝑣);

(ii) show for 𝑋𝑖 ∼ 𝑈 [0, 1] that E𝑚 = 1
2 and var𝑚 = 1

8+4𝑛 = O (1/𝑛).

Exercise 11.6. Let 𝑈𝑖 ∼ 𝑈 [0, 1], 𝑖 = 1, . . . , 𝑛. Show that

E
1
2

(
𝑈(1) +𝑈(𝑛)

)
=

1
2

and var
(

1
2
(
𝑈(1) +𝑈(𝑛)

) )
=

1
2(𝑛 + 1) (𝑛 + 2) = O (

1/𝑛2) .

Exercise 11.7. Define 𝐹−1
𝑔 (𝑝) B

∑𝑛
𝑖=0

(𝑛
𝑘

)
(1−𝑝)𝑛−𝑘 𝑝𝑘 ·𝑔

(
𝑋(𝑘 )

)
. Verify that

∫ 1
0 𝐹−1

𝑔 (𝑝) d𝑝 is an esti-
mator for E 𝑔(𝑋) and 𝐹−1

𝑔 (𝑝) an estimator for 𝐹−1
𝑔 (𝑋) (𝑝). Show that 𝑝 ↦→ 𝐹−1

𝑔 (𝑝) is nondecreasing,
provided that 𝑔(·) is nondecreasing. What does that mean for 𝑔(𝑥) = 𝑥?

Exercise 11.8. Let 𝑈1 and 𝑈2 be uniformly distributed on [0, 1] and set 𝑋 B min(𝑈1,𝑈2) and
𝑌 B max(𝑈1,𝑈2). Show that 𝑃 (𝑋 > 𝛼/2 and 𝑌 > 𝛼) = 1 − 𝛼.

Version: October 19, 2023



102 ORDER STATISTICS

rough draft: do not distribute



12Theory of Estimation

All models are wrong, but some are
useful.

attributed to George Box, 1919–2013

Given a statistical model
E = (X, Σ, (𝑃𝜗)𝜗∈Θ)

(in its original formulation due to Blackwell [2], cf. also Le Cam [8]), the theory of estimation is
interested in estimators (a decision rule)

𝜗̂ : X → Θ

based on observed data 𝑋 ∈ X. Note, that 𝜗̂(𝑋) is a random variable.

12.1 LOSS AND EXPECTED LOSS

Definition 12.1. The risk function (aka. frequentist expected loss) of an estimator 𝜗̂ : X → Θ

with respect to the loss function (regret function) ℓ : Θ × Θ→ R is

𝑟ℓ
(
𝜗̂(·), 𝜗

)
B E𝜗 ℓ

(
𝜗̂(·), 𝜗

)
=

∫
X
ℓ

(
𝜗̂(𝑥), 𝜗

)
𝑃𝜗 (d𝑥). (12.1)

Examples of frequently used loss functions include the Minkowski loss

ℓ𝑝 (𝜗′, 𝜗) = ∥𝜗 − 𝜗′∥ 𝑝𝑝 or ℓ𝜖 (𝜗, 𝜗′) =
{

0 if ∥𝜗 − 𝜗′∥ ≤ 𝜖,
1 else.

(12.2)

Here, ℓ1 is called Laplace or modular loss (𝑝 = 1), ℓ2 Gauß loss (𝑝 = 2) and ℓ𝜀 is the 0 − 1 loss
(𝜖 = 0 is only a useful idea for discrete distributions). See Definition 1.29 for the Huber loss
function.

Example 12.2. Consider the Gauß loss function ℓ(𝜗′, 𝜗) = (𝜗′−𝜗)2. For the binomial model 𝑆𝑛 ∼
𝑏𝑖𝑛(𝑛, 𝑝) built of independent Bernoulli observations 𝑋1, . . . , 𝑋𝑛 consider the following estimators
for the parameter 𝑝 = 𝜗 ∈ Θ = [0, 1] (𝑆𝑛 B 𝑋1 + · · · + 𝑋𝑛):

(i) 𝑝1 B
𝑆𝑛
𝑛

, its risk is 𝑟ℓ (𝑝1, 𝑝) = E𝑝 (𝑝1 − 𝑝)2 = 1
𝑛2 E𝑝 (𝑆𝑛 − 𝑛 𝑝)2 = 1

𝑛2 var 𝑆𝑛 =
𝑛𝑝 (1−𝑝)

𝑛2 =
𝑝 (1−𝑝)
𝑛

;

(ii) 𝑝2 B
𝑆𝑛+1
𝑛+2 has the risk 𝑟ℓ (𝑝2, 𝑝) = E𝑝 (𝑝2−𝑝)2 = 1

(𝑛+2)2 E𝑝
(
𝑆𝑛 + 1 − (𝑛 + 2)𝑝︸                ︷︷                ︸

𝑆𝑛−𝑛𝑝+1−2𝑝

)2
=
𝑛𝑝 (1−𝑝)+(1−2𝑝)2

(𝑛+2)2 ;

(iii) The risk for the estimator 𝑝3 B 2.20/65 is 𝑟ℓ (𝑝3, 𝑝) = (𝑝 − 2.20/65)2;
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Figure 12.1: The risk in Example 12.2

(iv) The risk for the estimator 𝑝4 B
𝑆𝑛+

√
𝑛/2

𝑛+
√
𝑛

is

𝑟ℓ (𝑝4, 𝑝) = E𝑝
(
𝑆𝑛 +

√
𝑛/2

𝑛 +
√
𝑛
− 𝑝

)2
= E𝑝

(
𝑆𝑛 − 𝑛𝑝 +

√
𝑛(1/2 − 𝑝)

𝑛 +
√
𝑛

)2

=
𝑛𝑝(1 − 𝑝) + 𝑛4 − 𝑛𝑝 + 𝑛𝑝

2

(𝑛 +
√
𝑛)2

=
𝑛

4(𝑛 +
√
𝑛)2

,

which does not depend on 𝑝.1

Figure 12.1 visualizes the risk.
Note, that 𝑟ℓ −−−−→

𝑛→∞
0 for all estimators above except for 𝑝3 (indeed, 𝑟ℓ = O (1/𝑛)).

12.2 METHOD OF MOMENTS

Suppose that Θ ⊂ R𝑑. The 𝑗 th-generalized moment is E𝜗 𝜑 𝑗 (𝑋), where 𝜑 𝑗 are measurable
functions; the classical method of moments involves the monomials 𝜑 𝑗 (𝑥) B 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑑.
Further, let ℎ : R𝑑 → R𝑑 be an (invertible) function (the identity, e.g.). The moment estimator
𝜗̂ = 𝜗̂(𝑋) ∈ Θ is chosen so that

ℎ

(
1
𝑛

𝑛∑︁
𝑖=1

𝜑1 (𝑋𝑖), . . . ,
1
𝑛

𝑛∑︁
𝑖=1

𝜑𝑑 (𝑋𝑖)
)
= ℎ

(
E𝜗̂ 𝜑1 (𝑋), . . . ,E𝜗̂ 𝜑𝑑 (𝑋)

)
.

Example 12.3 (Binomial). Choose 𝜑(𝑥) = 𝑥, ℎ(𝑥) = 𝑥 and 𝑋𝑖 ∼ 𝐵(𝑝) independent Bernoulli
variables. Then the moment estimator 𝑝 is 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 = E 𝑝̂ 𝑋𝑖 = 𝑝.

Example 12.4 (Cf. Exercise 12.3). To estimate the parameters 𝛼 and 𝛽 of the Gamma distribu-
tion Γ𝛼,𝛽 one may use (5.8), the resulting moment estimators are

𝛼̂(𝑋) = 𝑋
2
𝑛

𝑠2
𝑛

and 𝛽(𝑋) = 𝑋𝑛

𝑠2
𝑛

.

1A decision rule with constant risk is called an equalizer rule.
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Example 12.5 (Poisson). The Poisson distribution 𝑃𝜆 with parameter 𝜆 > 0 (rate) has the prob-
ability mass function (pmf)

𝑋 ∼ 𝑃𝜆 : 𝑃(𝑋 = 𝑘) = 𝜆𝑘

𝑘!
𝑒−𝜆. (12.3)

For 𝑋 ∼ 𝑃𝜆 it holds that E𝜆 𝑋 = var𝜆 𝑋 = 𝜆 (cf. Exercise 12.1). Apparently, 𝜆̂ B 𝑋𝑛 is the
moment estimator (for the first moment), but 𝜆̂ B 𝑠2

𝑛 is an estimator (a different estimator) for
the parameter 𝜆 too.

Example 12.6. Consider the Gauß loss function ℓ(𝑥, 𝑦) = (𝑥 − 𝑦)2. Then the expected loss
of 𝜗̂(𝑋) = 𝜆̂ = 𝑋𝑛 for the Poisson distribution (Example 12.5) is 𝑟ℓ

(
𝜗̂, 𝜗

)
= E𝜗

(
𝑋𝑛 − 𝜆

)2
=

var 𝑋𝑛 = 𝜆
𝑛

(cf. Proposition 2.8). The risk for the estimator 𝜗̂ B 𝑠2
𝑛 satisfies E 𝑠2

𝑛 = 𝜆, but

var 𝑠2
𝑛 = 1

𝑛

(
𝜆 +

(
3 − 𝑛−3

𝑛−1

)
𝜆2

)
(cf. Corollary 2.12). Note, that var 𝑋𝑛 < var 𝑠2

𝑛 and for this reason

one would likely prefer the estimator 𝑋𝑛 over 𝑠2
𝑛.

12.3 MINIMUM DISTANCE ESTIMATION

Let 𝑋𝑖 be iid random sample from the population with cdf 𝐹𝜗 (·), 𝜗 ∈ Θ. Recall the empirical
distribution function of the observations 𝑋1, . . . , 𝑋𝑛, 𝐹𝑛 (𝑥) = 1

𝑛

∑𝑛
𝑖=1 1(−∞,𝑥 ] (𝑋𝑖) (cf. (9.2)).

Definition 12.7. The minimum distance estimator 𝜗̂ is

𝜗̂ ∈ arg min
𝜗∈Θ

𝑑
(
𝐹𝑛 (·), 𝐹𝜗 (·)

)
.

Distances 𝑑 (·, ·) for distribution functions include:

(i) Kolmogorov–Smirnov:
𝑑
(
𝐹 (·), 𝐹∗ (·)

)
B sup

𝑥∈R𝑑
|𝐹 (𝑥) − 𝐹∗ (𝑥) | ; (12.4)

(ii) Cramér2–von Mises3:

𝑑
(
𝐹 (·), 𝐹∗ (·)

)
B 𝜔2 B

∫
R𝑑

(
𝐹 (𝑥) − 𝐹∗ (𝑥)

)2 d𝐹∗ (𝑥); (12.5)

(iii) Anderson4–Darling5:

𝑑
(
𝐹 (·), 𝐹∗ (·)

)
B

∫
R𝑑

(
𝐹 (𝑥) − 𝐹∗ (𝑥)

)2

𝐹∗ (𝑥)
(
1 − 𝐹∗ (𝑥)

) d𝐹∗ (𝑥). (12.6)

12.4 MAXIMUM LIKELIHOOD

For a parametrization 𝜗 ∈ Θ let 𝑓𝜗 (·) be the pmf (if the distributions is discrete, 𝑃𝜗 ({𝑥}) = 𝑓𝜗 (𝑥))
or the density of 𝑃𝜗 (if the distribution is continuous, i.e., 𝑃𝜗 (d𝑥) = 𝑓𝜗 (𝑥) d𝑥).

2Harald Cramér, 1893–1985, Swedish mathematician and actuary
3Richard von Mises, 1881–1973, Austrian-American mathematician
4Theodore Wilbur Anderson, 1918–2016, American statistician
5Donald Allan Darling, 1915–2014, American statistician
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(a) Probability mass function for 𝑝 = 16/20 = 0.80 with likelihood 0.2182 and the likelihood function (red)

(b) pmf for 𝑝 = 0.79 with likelihood 0.2169 at 𝑋 = 16 (c) pmf for 𝑝 = 0.81 with likelihood 0.2168 at 𝑋 = 16

Figure 12.2: Screenshots from the freeware GeoGebra.
The likelihood attains its maximum at 𝑝 = 80 % with 𝑃 𝑝̂ (𝑆20 = 16) = 0.2182

rough draft: do not distribute
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Definition 12.8. The likelihood function (cf. Ferguson [4, 5]) is

Θ ∋ 𝜗 ↦→ 𝐿 (𝜗 | 𝑥) B 𝑓𝜗 (𝑥) ∈ R,

the function
ℓ(𝜗 | 𝑥) B log 𝑓𝜗 (𝑥) = log 𝐿 (𝜗 | 𝑥)

is the log likelihood function.6 Here, 𝑓𝜗 (·) is the pdf for continuous, the pmf for discrete distribu-
tions.

Remark 12.9. Many notational variants are used in the literature for these functions, for example
𝑓 (𝑥, 𝜗), 𝑓 (𝑥 | 𝜗), 𝐿 (𝜗 | 𝑥), ℓ(𝑥 | 𝜗) or L(𝜗; 𝑥), etc., and the parameters are often interchanged
as well.

Definition 12.10 (Maximum likelihood). The maximum likelihood estimator (MLE) 𝜗̂(·) satisfies

𝜗̂(𝑋) ∈ arg max
𝜗∈Θ

𝑓𝜗 (𝑋) = arg max
𝜗∈Θ

𝐿 (𝜗 | 𝑋) = arg max
𝜗∈Θ

ℓ(𝜗 | 𝑋).

Remark 12.11. The maximum likelikhood method was popularized by Ronald A. Fisher (1912,
1929), but it has been employed by Gauss, Laplace and Edgeworth earlier.

Definition 12.12 (Score). The gradient of the log-likelihood function

𝑉 B 𝑉 (𝜗, 𝑥) B ∇𝜗 ℓ(𝜗 | 𝑥) = ∇𝜗 log 𝑓𝜗 (𝑥) =
1

𝑓𝜗 (𝑥)
· 𝜕
𝜕𝜗

𝑓𝜗 (𝑥) (12.7)

is called score or informant. The score 𝑉 indicates the sensitivity of 𝜗 ↦→ ℓ(𝜗 | 𝑥).

Remark 12.13 (Relation to maximum likelihood). For independent data 𝑋 = (𝑋1, . . . , 𝑋𝑛), the
maximum likelihood estimator 𝜗̂ maximizes 𝜗 ↦→ log

∏𝑛
𝑖=1 𝑓𝜗 (𝑋𝑖) =

∑𝑛
𝑖=1 log 𝑓𝜗 (𝑋𝑖). Provided

sufficient smoothness, the maximum likelihood estimator 𝜗̂ satisfies the first order condition

0 =
1
𝑛

𝑛∑︁
𝑖=1
𝑉 (𝜗̂, 𝑋𝑖). (12.8)

Remark 12.14 (M-estimator). An estimator of the form

𝜗̂ ∈ arg min
𝜗∈Θ

1
𝑛

𝑛∑︁
𝑖=1

𝜌(𝑋𝑖; 𝜗)

is called M-estimator (“M” for “maximum likelihood” type). For independent data, the maximum
likelihood estimator is an M estimator. This classification was introduced by Peter J. Huber (cf.
Footnote 9 on page 16).

Remark 12.15 (𝜓-type estmator). An estimator is 𝜓 type, if

(i) E𝜓(𝑋; 𝜗) = 0 and

(ii) 1
𝑛

∑𝑛
𝑖=1 𝜓(𝑋𝑖; 𝜗) = 0.

Note the relation 𝜓(𝑥; 𝜗) = 𝜕
𝜕𝜗
𝜌(𝑥; 𝜗) to M-estimators.

6Not to be confused with the loss function (regret function) in (12.1).
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12.4.1 Discrete distributions

Example 12.16 (Binomial distribution, cf. Example 12.3 and Figure 12.2). 𝑋1, . . . , 𝑋𝑛 ∼ 𝐵(𝑝) are
independent Bernoulli observations. What is 𝑝 (𝜗 = 𝑝)?

The likelihood functions for 𝑆𝑛 B 𝑋1 + · · · + 𝑋𝑛 ∼ bin(𝑛, 𝑝) is 𝐿 (𝑝 | 𝑋1, . . . , 𝑋𝑛) =
( 𝑛
𝑆𝑛

)
𝑝𝑆𝑛 (1 −

𝑝)𝑛−𝑆𝑛 . To find 𝑝 maximizing the likelihood differentiate with respect to 𝑝 and set 0 = 𝜕
𝜕𝑝
𝐿 (𝑝 |

𝑋1, . . . , 𝑋𝑛), i.e.,

0 =

(
𝑛

𝑆𝑛

)
𝑝𝑆𝑛−1 (1 − 𝑝)𝑛−𝑆𝑛−1 ·

(
𝑆𝑛 (1 − 𝑝) − (𝑛 − 𝑆𝑛)𝑝︸                       ︷︷                       ︸

=𝑆𝑛−𝑛𝑝̂

)
and thus 𝑝 =

𝑆𝑛
𝑛

= 𝑋𝑛.

Example 12.17 (Poisson distribution). The values 𝑋1, . . . , 𝑋𝑛 from independent observations of
a Poisson distribution 𝑃𝜆 have been observed. What is a qualified guess for 𝜆?

The likelihood function for the parameter 𝜗 = 𝜆 is 𝐿 (𝜆 | 𝑋) = 𝜆𝑋1𝑒−𝜆

𝑋1! · . . .
𝜆𝑋𝑛 𝑒−𝜆

𝑋𝑛! = 𝜆𝑋1+···+𝑋𝑛 𝑒−𝑛𝜆

𝑋1!·...𝑋𝑛!
and

ℓ(𝜆 |𝑋) = (𝑋1 + · · · + 𝑋𝑛) log𝜆 − 𝑛𝜆 − log (𝑋1! · · · 𝑋𝑛!)

The maximum likelihood function satisfies (differentiating with respect to 𝜆)

(𝑋1 + · · · + 𝑋𝑛)
1
𝜆̂
− 𝑛 = 0, i.e., 𝜆̂ = 𝑋𝑛.

12.4.2 Continuous distributions

Example 12.18. We are interested in estimating the parameter 𝜃 for the distribution with den-
sity 𝑓𝜃 (𝑥) = 1

𝜃
1[0, 𝜃 ] (𝑥). The maximum likelihood estimator 𝜃 for independent observations

𝑋1, . . . , 𝑋𝑛 maximizes

𝜃 ↦→ 1
𝜃𝑛

𝑛∏
𝑖=1
1[0, 𝜃 ] (𝑋𝑖);

the maximum is attained at 𝜃 (𝑋) = 𝑋(𝑛) B max𝑖=1,...𝑛 𝑋𝑖. Apparently it holds that 𝜃 ≤ 𝜃 (𝜃 being
the true parameter).

Example 12.19 (Normal distribution, variance known). The likelihood function of 𝑛 independent
normal observations 𝑋𝑖 ∼ N(𝜇, 𝜎2

0 ) for the unknown 𝜇 is (cf. (2.5), Steiner)

𝐿 (𝜇 | 𝑋) = 1√︃
2𝜋𝜎2

0

𝑛 𝑒
− 1

2𝜎2
0

∑𝑛
𝑖=1 (𝑋𝑖−𝜇)2

=
1√︃

2𝜋𝜎2
0

𝑛 𝑒
− 𝑛

2𝜎2
0
(𝑉𝑛+(𝑋𝑛−𝜇)2)

(see Figure 12.3). The likelihood 𝜇→ 𝐿 (𝜇 | 𝑋) attains its maximum at 𝜇̂ = 𝑋𝑛.

Example 12.20 (Normal distribution). Given some independent observations with common dis-
tribution 𝑋𝑖 ∼ N(𝜇, 𝜎2), what are useful estimators for 𝜇 and 𝜎2?

The likelihood is

𝐿 (𝜇, 𝜎2 | 𝑋) =
(
2𝜋𝜎2

)− 𝑛
2 exp

(
− 1

2𝜎2

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)2

)
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8 9 10 11 12 13

0.5

1.0

1.5

Figure 12.3: Samples (blue), three candidate pdfs (𝑥 ↦→ 𝑓𝜇𝑖 (𝑥) for 𝜇 ∈ {9, 10, 11}) and the
likelihood function 𝜇 ↦→ 𝑓𝜇 (𝑥1, . . . , 𝑥𝑛) (bold, red; cf. Example 12.19)

and thus

ℓ(𝜇, 𝜎2 | 𝑋) = −𝑛
2

log(2𝜋𝜎2) − 1
2𝜎2

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)2

= −𝑛
2

log(2𝜋) − 𝑛
2

log𝜎2 − 1
2𝜎2

(
𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛)2 + 𝑛(𝑋𝑛 − 𝜇)2

)
.

Apparently, the maximum with respect to 𝜇 is attained at 𝜇̂ = 𝑋𝑛. Differentiating with respect to
the parameter 𝜎2 gives

0 = − 𝑛

2𝜎2 +
1

2𝜎4

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛)2, or 𝜎̂2 =

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛)2 = 𝑉𝑛 =

𝑛 − 1
𝑛

𝑠2
𝑛.

Example 12.21 (Censored data). Independent observations of an exponential distribution 𝐸𝜆
are 𝑋𝑖, 𝑖 = 1, . . . 𝑛, but only the censored data 𝑋̃𝑖 B min(𝑇, 𝑋𝑖) are accessible. We are interested
in the average lifespan E 𝑋𝑖 = 1/𝜆.

The maximum likelihood estimator considers the likelihood function

𝐿 (𝜆 | 𝑋) =
∏
𝑖∈𝑛𝑇

𝜆𝑒−𝜆𝑋𝑖 ·
∏
𝑖∉𝑛𝑇

𝑒−𝜆𝑇 or ℓ(𝜆 | 𝑋) =
∑︁
𝑖∈𝑛𝑇
(log𝜆 − 𝜆𝑋𝑖) −

∑︁
𝑖∉𝑛𝑇

𝜆𝑇,

where 𝑛𝑇 B
{
𝑖 : 𝑋̃𝑖 < 𝑇

}
. Differentiating with respect to the parameter 𝜆 gives 0 =

∑
𝑖∈𝑛𝑇

(
1
𝜆
− 𝑋𝑖

)
−∑

𝑖∉𝑛𝑇
𝑇 and thus

1
𝜆̂
=

∑𝑛
𝑖=1 min(𝑋𝑖 , 𝑇)
|𝑛𝑇 |

=

1
𝑛

∑𝑛
𝑖=1 𝑋̃𝑖
|𝑛𝑇 |/𝑛 =

𝑛

|𝑛𝑇 |
· 𝑋̃𝑛.

Note, that the estimator which results from removing all observations {𝑖 : 𝑋𝑖 ≥ 𝑇} satisfies
∑

𝑖∈𝑛𝑇 𝑋𝑖

|𝑛𝑇 | ≤
𝑇 and is therefore rather useless.
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12.5 GENERAL PROPERTIES OF ESTIMATORS

12.5.1 Bias

Definition 12.22. Let 𝜗̂(·) be an estimator for 𝜗 and 𝛾 : Θ → R𝑑 a function. We consider the
estimator 𝛾̂(·) for 𝛾(𝜗).

(i) The bias7 of 𝛾̂ at 𝜗 is
bias𝜗 𝛾̂ B E𝜗 𝛾̂ − 𝛾(𝜗).

The estimator 𝜗̂(·) (𝛾̂(·), resp.) is an unbiased estimator 8 for 𝜗 (𝛾(𝜗), resp.), if

𝜗 = E𝜗 𝜗̂ (E𝜗 𝛾̂ = 𝛾(𝜗), resp.).

(ii) The estimator 𝛾̂(·) is the minimum-variance unbiased estimator (MVUE) if

var𝜗 𝛾̂ ≤ var𝜗 𝛾̂′

for every unbiased estimator 𝛾̂′ (·).

(iii) The mean squared error (MSE)9 is (cf. (12.1) and Exercise 12.11)

mse𝜗 𝛾̂ B E𝜗
(
𝛾̂ − 𝛾(𝜗)

)2
= var𝜗 𝛾̂ + (bias𝜗 𝛾̂)2. (12.9)

Remark 12.23 (Bias–variance tradeoff). The bias–variance tradeoff is the property of a model
that the variance of the parameter estimated across samples can be reduced by increasing the
bias in the estimated parameters.

12.5.2 Comparison of estimators
Definition 12.24 (Cf. Rüschendorf [17, Section 2.2], Pflug [13]). Let 𝑟 be a risk function and
𝜗̂(·) an estimator for 𝜗.

(i) 𝜗̂1 is at least as good as 𝜗̂2 (𝜗̂1 ≤ 𝜗̂2), if 𝑟
(
𝜗̂1, 𝜗

)
≤ 𝑟

(
𝜗̂2, 𝜗

)
for all 𝜗 ∈ Θ.

(ii) 𝜗̂1 is better than 𝜗̂2 (𝜗̂1 < 𝜗̂2), if 𝜗̂1 ≤ 𝜗̂2 and there exists at least one 𝜗0 ∈ Θ so that
𝑟

(
𝜗̂1, 𝜗0

)
< 𝑟

(
𝜗̂2, 𝜗0

)
.

(iii) The estimator 𝜗̂∗ is admissible,10 if there is no better estimator.

(iv) The estimator 𝜗̂∗ is optimal with respect to the class C, if 𝜗̂∗ ≤ 𝜗̂ for all 𝜗̂ ∈ C .

(v) The estimator 𝜗̂+ is minimax, if sup𝜗∈Θ 𝑟
(
𝜗̂, 𝜗

)
≥ sup𝜗∈Θ 𝑟

(
𝜗̂+, 𝜗

)
for every other estima-

tor 𝜗̂.

Remark 12.25. The minimax estimator 𝜗̂+ satisfies sup𝜗∈Θ 𝑟
(
𝜗̂+ (·), 𝜗

)
= inf 𝜗̂ sup𝜗∈Θ 𝑟

(
𝜗̂(·), 𝜗

)
and thus takes precaution against the worst.

7Verzerrung
8erwartungstreu, unverzerrt
9mittlere quadratische Abweichung
10zulässig
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Lemma 12.26. If 𝜗̂+ is admissible with constant risk, then 𝜗̂+ is minimax.

Proof. Denote the constant risk by 𝑐 B 𝑟

(
𝜗̂+, 𝜗

)
. If 𝜗̂+ were not minimax, then, by Remark 12.25,

there is an estimator 𝜗̂ so that sup𝜗∈Θ 𝑟
(
𝜗̂, 𝜗

)
< sup𝜗∈Θ 𝑟

(
𝜗̂+, 𝜗

)
= 𝑐. Hence, 𝜗̂+ is not admissible,

a contradiction. □

12.6 BAYES ESTIMATOR

Bayesian statistics involves the following steps:

(i) Define the prior distribution (measure 𝜋(·)) that incorporates your subjective beliefs about
a parameter 𝜗. The prior represents the initial believe about 𝜗. The prior can be informa-
tive or uninformative.11 The prior 𝜋 is a measure, not necessarily a probability measure,
though.

(ii) Gather data.

(iii) Update your prior distribution with the data using Bayes’ theorem to obtain a posterior
distribution. The posterior distribution is a probability distribution that represents your
updated beliefs about the parameter after having seen the data.

Prior distribution The prior distribution is a measure on the parameters, 𝜋(d𝜗).

Definition 12.27 (Bayes estimator). Let 𝜗 follow a prior distribution with measure 𝜋(d𝜗) and
𝜗̂ : X → Θ be a decision rule. The Bayes risk is

𝑟
(
𝜗̂(·), 𝜋

)
B

∫
Θ

𝑟ℓ
(
𝜗̂(·), 𝜗

)
𝜋(d𝜗) =

∫
Θ

∫
X
ℓ

(
𝜗̂(𝑥), 𝜗

)
𝑃𝜗 (d𝑥)︸                       ︷︷                       ︸

E𝜗 ℓ( 𝜗̂ ( ·) ,𝜗)

𝜋(d𝜗). (12.10)

Remark 12.28. Note that 𝑟
(
𝜗̂(·), 𝜋

)
= 𝑟ℓ

(
𝜗̂(·), 𝜗

)
for the prior measure 𝜋 = 𝛿𝜗.

Definition 12.29. The Bayes rule or Bayes estimator with respect to the prior 𝜋 is the decision
rule 𝜗̂𝜋 (·) that minimizes the Bayes risk (12.10), i.e.,

𝑟
(
𝜗̂𝜋 (·), 𝜋

)
≤ 𝑟

(
𝜗̂(·), 𝜋

)
(12.11)

for every decision rule 𝜗̂(·).

Remark 12.30. Different notations for the Bayes estimator in frequent use include 𝜗̂(·) = 𝜗̂𝜋 (·) =
𝛿(·); the second relates to the prior 𝜋.

Lemma 12.31. Suppose that 𝜗̂𝜋 (·) is a Bayes decision rule with respect to the prior distribu-
tion 𝜋. If the risk function of 𝜗̂𝜋 (·) satisfies

𝑟
(
𝜗̂𝜋 (·), 𝜗

)
≤ 𝑟

(
𝜗̂𝜋 (·), 𝜋

)
for all 𝜗 ∈ Θ, (12.12)

then 𝜗̂𝜋 (·) is a minimax decision rule.

11Vorbewertung
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Proof. Suppose that 𝜗̂𝜋 (·) is not minimax. Then there is a decision rule 𝜗̂(·) such that sup𝜗∈Θ 𝑟
(
𝜗̂, 𝜗

)
<

sup𝜗∈Θ 𝑟
(
𝜗̂𝜋 , 𝜗

)
. It follows that

𝑟

(
𝜗̂(·), 𝜋

)
≤ sup
𝜗∈Θ

𝑟

(
𝜗̂, 𝜗

)
< sup
𝜗∈Θ

𝑟

(
𝜗̂𝜋 , 𝜗

)
≤

(12.12)
𝑟

(
𝜗̂𝜋 (·), 𝜋

)
,

contradicting the statement that 𝜗̂𝜋 is Bayes with respect to 𝜋, cf. (12.11). Hence 𝜗̂𝜋 is minimax.
□

Posterior distributions and disintegration. Assume that the prior 𝜋 has a density (which we
denote again as 𝜋), i.e., 𝜋(d𝜗) = 𝜋(𝜗) d𝜗. Then the Bayes risk is

𝑟

(
𝜗̂(·), 𝜋

)
=

∬
Θ×X

ℓ

(
𝜗̂(𝑥), 𝜗

)
𝑃𝜗 (d𝑥) 𝜋(d𝜗) =

∬
Θ×X

ℓ

(
𝜗̂(𝑥), 𝜗

)
𝑓𝜗 (𝑥) 𝜋(𝜗)︸       ︷︷       ︸
𝜋 (𝑥,𝜗)

d𝑥 d𝜗.

Note, that 𝜋(𝑥, 𝜗) B 𝑓𝜗 (𝑥) 𝜋(𝜗) is a density, as
∬
Θ×X 𝜋(𝑥, 𝜗) d𝑥 d𝜗 = 1. By Fubini’s theorem we

thus have

𝑟

(
𝜗̂(·), 𝜋

)
=

∫
X

(∫
Θ

ℓ

(
𝜗̂(𝑥), 𝜗

)
𝜋(𝜗 | 𝑥) d𝜗

)
𝑓 (𝑥) d𝑥 (12.13)

where 𝜋(𝜗 | 𝑥) = 𝜋(𝑥, 𝜗)/ 𝑓 (𝑥) and the marginal density 𝑓𝜋 (𝑥) B
∫
Θ
𝜋(𝑥, 𝜗′) d𝜗′, cf. (1.11).

Definition 12.32. The distribution with density

𝜋(𝜗 | 𝑥) B 𝜋(𝑥, 𝜗)∫
Θ
𝜋(𝑥, 𝜗′) d𝜗′

=
𝑓𝜗 (𝑥) 𝜋(𝜗)∫

Θ
𝑓𝜗′ (𝑥) 𝜋(𝜗′) d𝜗′

(12.14)

is the posterior distribution.

𝜋(𝜗 | 𝑥) represents the most up-to-date belief in 𝜗 and is all that is needed for inference.
Note, that (12.14) is

𝜋(𝜗 | 𝑥) ∝ 𝑓𝜗 (𝑥) × 𝜋(𝜗),

often stated as
posterior ∝ likelihood × prior.

Remark 12.33 (Disintegration). In view of (12.13) we have that

min
𝜗̂ ( ·)

∫
X

∫
Θ

ℓ

(
𝜗̂(𝑥), 𝜗′

)
𝜋(d𝜗′ | 𝑥) 𝑓𝜋 (𝑥) d𝑥

=

∫
X

(
min
𝜗

∫
Θ

ℓ (𝜗, 𝜗′) 𝜋(d𝜗′ | 𝑥)
)
𝑓𝜋 (𝑥) d𝑥,

i.e., the Bayes estimator 𝜗̂(𝑥) (cf. Definition 12.27) is a (the) minimizer

𝜗̂(𝑥) ∈ arg min
𝜗∈Θ

∫
Θ

ℓ(𝜗, 𝜗′) 𝜋(d𝜗′ | 𝑥)

= arg min
𝜗∈Θ

∫
Θ

ℓ(𝜗, 𝜗′) 𝑓𝜗′ (𝑥) 𝜋(d𝜗′). (12.15)

rough draft: do not distribute



12.6 BAYES ESTIMATOR 113

Note, that in (12.15) the density 𝜋(· | 𝑥) is replaced by 𝑓𝜗 (𝑥) 𝜋(·), the denominator 𝑓 (𝑥)
in (12.14) does not depend on 𝜗. The replacement does not integrate to 1, but this does not
change the minimizer in (12.10). This measure, which does not integrate to 1, is called an
improper prior.

Definition 12.34. The quantity ∫
Θ

ℓ(𝜗, 𝜗′) 𝜋(d𝜗′ | 𝑥)

is the Bayesian expected loss or posterior expected loss.

Example 12.35 (Posterior mean, cf. the Laplace approximation, Section 12.7 below). Suppose
that ℓ(𝜗, 𝜗′) = (𝜗−𝜗′)2. Following (12.15) we minimize 𝜗 ↦→

∫
Θ
(𝜗−𝜗′)2 𝜋(d𝜗′ | 𝑋). Differentiating

with respect to 𝜗 gives 2
∫
Θ
(𝜗−𝜗′) 𝜋(d𝜗′ | 𝑋) = 0, the Bayes estimator thus is the posterior mean

𝜗̂(𝑋) =
∫
Θ

𝜗′ 𝜋(d𝜗′ | 𝑋). (12.16)

Example 12.36 (Posterior median). The median of 𝜋(· | 𝑋) is the Bayes estimate with respect
to the modular loss (i.e., absolute value loss), cf. Proposition 1.24.

Example 12.37 (Posterior mode). The mode of 𝜋(· | 𝑋) is the Bayes estimate with respect to the
zero-one loss, cf. (12.2); this is, however, only a useful idea for a discrete distribution. Indeed,

the loss function is ℓ𝜖=0
(
𝜗̂(𝑋), 𝜗

)
=

{
1 if 𝜗̂(𝑋) ≠ 𝜗,
0 if 𝜗̂(𝑋) = 𝜗.

Assume that 𝜗̂(𝑋) = 𝜗∗. Then

∑︁
𝜗∈Θ

ℓ𝜖=0
(
𝜗̂(𝑋), 𝜗

)
𝜋(𝜗 | 𝑋) =

∑︁
𝜗≠𝜗∗

𝜋(𝜗 | 𝑋) = 1 − 𝜋(𝜗∗ | 𝑋).

Minimizing means maximizing 𝜋(𝜗∗ | 𝑋), so 𝜗̂(𝑋) = 𝜗∗ is taken to be the most likely value, the
mode of 𝜋(· | 𝑋).

Example 12.38. We want to estimate 𝑝 of a distribution bin(𝑛, 𝑝). Assume the prior is 𝜗 =

𝑝 ∼ Beta(𝛼, 𝛽) (Beta distribution; cf. Exercise 5.10 for the distribution and (5.10) for the Beta
function). The Bayes estimator 𝑝(·) for the Binomial bin(𝑛, 𝑝) distribution minimizes∫ 1

0

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

(
𝑝(𝑘) − 𝑝

)2

︸                                      ︷︷                                      ︸
E𝑝 ( 𝑝̂−𝑝)2

· 𝑝
𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽) d𝑝︸                    ︷︷                    ︸
prior 𝜋 (d𝑝)

=

𝑛∑︁
𝑘=0

1
𝐵(𝛼, 𝛽)

(
𝑛

𝑘

) ∫ 1

0
𝑝𝑘+𝛼−1 (1 − 𝑝)𝑛−𝑘+𝛽−1

(
𝑝(𝑘)2 − 2𝑝 · 𝑝(𝑘) + 𝑝2

)
d𝑝 (12.17)

=

𝑛∑︁
𝑘=0

1
𝐵(𝛼, 𝛽)

(
𝑛

𝑘

) ©­«
𝑝(𝑘)2 · 𝐵(𝑘 + 𝛼, 𝑛 − 𝑘 + 𝛽)

−2𝑝(𝑘) · 𝐵(𝑘 + 𝛼 + 1, 𝑛 − 𝑘 + 𝛽)
+𝐵(𝑘 + 𝛼 + 2, 𝑛 − 𝑘 + 𝛽)

ª®¬ . (12.18)

Computing 𝑝(𝑘) for every 𝑘 individually in (12.18) and (12.19) gives rise to disintegrating (12.10).
To identify the optimal estimator 𝑝(·) we take the derivative and get the equations (for every 𝑘
individually!)

0 = 2𝑝(𝑘) · 𝐵(𝑘 + 𝛼, 𝑛 − 𝑘 + 𝛽) − 2𝐵(𝑘 + 𝛼 + 1, 𝑛 − 𝑘 + 𝛽), (12.19)
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i.e. (use (5.10) again),

𝑝(𝑘) = 𝐵(𝑘 + 𝛼 + 1, 𝑛 − 𝑘 + 𝛽)
𝐵(𝑘 + 𝛼, 𝑛 − 𝑘 + 𝛽) =

Γ (𝑘+𝛼+1)Γ (𝑛−𝑘+𝛽)
Γ (𝑛+𝛼+𝛽+1)

Γ (𝑘+𝛼)Γ (𝑛−𝑘+𝛽)
Γ (𝑛+𝛼+𝛽)

=
𝑘 + 𝛼

𝑛 + 𝛼 + 𝛽 .

Note, that the estimator (ii) (estimator (iv), resp.) of Example 12.2 is a special cases with partic-
ular prior 𝛼 = 𝛽 = 1 (i.e., a uniform prior) (𝛼 = 𝛽 =

√
𝑛/2, resp.).

Example 12.39 (Continuation of Example 12.38). The posterior distribution in Example 12.38
for 𝑆𝑛 ∼ bin(𝑛, 𝑝) with prior 𝑝 ∼ Beta(𝛼, 𝛽) is

𝜋(𝑝 | 𝑘) =
𝑓𝑝 (𝑘)𝜋(𝑝)∫
𝑓𝑝′ (𝑘)𝜋(𝑝′) d𝑝′

=
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 𝑝𝛼−1 (1 − 𝑝)𝛽−1∫ 1

0 𝑝′𝑘 (1 − 𝑝′)𝑛−𝑘 𝑝′𝛼−1 (1 − 𝑝′)𝛽−1 d𝑝′

=
𝑝𝑘+𝛼−1 (1 − 𝑝)𝑛−𝑘+𝛽−1

𝐵(𝑘 + 𝛼, 𝑛 − 𝑘 + 𝛽) ∼ 𝐵(𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘).

Now the objective (12.15) with improper prior is
∫ 1

0 (𝑝(𝑘)−𝑝)
2 · 𝑝𝑘+𝛼−1 (1−𝑝)𝑛−𝑘+𝛽−1 d𝑝. Compare

with (12.17) and (12.19) to see that the Bayes estimator is 𝑝(𝑘) = 𝑘+𝛼
𝑛+𝛼+𝛽 .

12.7 LAPLACE APPROXIMATION

Let ℎ(𝜗) B log 𝑝(𝜗) with maximum at 𝜗0, then 𝑝′ (𝜗0) = 0, ℎ′ (𝜗0) = 𝑝′ (𝜗0 )
𝑝 (𝜗0 ) = 0 and ℎ′′ (𝜗0) < 0

and the Taylor series expansion is ℎ(𝜗) ≈ ℎ(𝜗0) + 1
2 (𝜗 − 𝜗0)⊤ℎ′′ (𝜗0) (𝜗 − 𝜗0). It follows that

𝑝(𝜗) = exp
(
ℎ(𝜗)

)
≈ exp

(
ℎ(𝜗0)

)
· exp

(
− 1

2 (𝜗 − 𝜗0)⊤
(
− ℎ′′ (𝜗0)

)
(𝜗 − 𝜗0)

)
so that a random variable

with density 𝑝 is locally well approximated by 𝑌 ∼ N
(
𝜗0, −ℎ′′ (𝜗0)−1).

Now let 𝜗 be the posterior mode of the density 𝜗 ↦→ 𝑝(𝜗 | 𝑋) and consider the estima-
tor (12.16). Then 𝜗̂ =

∫
Θ
𝜗′ · 𝑝(𝜗′ | 𝑋) d𝜗′ ≈ E𝑌 = 𝜗0 so that the posterior mode is a good

approximation of the posterior mean.

12.8 FISHER INFORMATION

Recall the notational convenience discussed in Definition 12.8. In this section we assume that
every 𝑓𝜗 is regular enough, for example differentiable with respect to the parameters 𝜗, etc.

Recall the definition of the score function 𝑉 (𝜗, 𝑥) = ∇𝜗 log 𝑓𝜗 (𝑥) (Definition 12.12).

Proposition 12.40 (Properties of the score). It holds that

E𝜗 𝑉 (𝜗, ·) = 0. (12.20)

Proof. Indeed,

E𝜗 𝑉 =

∫
X

(
𝜕

𝜕𝜗
log 𝑓𝜗 (𝑥)

)
𝑓𝜗 (𝑥) d𝑥 =

∫
X

1
𝑓𝜗 (𝑥)

𝜕 𝑓𝜗 (𝑥)
𝜕𝜗

· 𝑓𝜗 (𝑥) d𝑥

=

∫
X

𝜕 𝑓𝜗 (𝑥)
𝜕𝜗

d𝑥 =
𝜕

𝜕𝜗

∫
X
𝑓𝜗 (𝑥) d𝑥 =

𝜕

𝜕𝜗
1 = 0.

□
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Remark 12.41 (Relation to maximum likelihood). Note, that (12.8) is the empirical version of the
property (12.20). The maximum likelihood estimator thus is a moment estimator for the score
function 𝑉 .

Definition 12.42. The Fisher information is the variance of the score,

𝐼 (𝜗) B var𝜗 𝑉. (12.21)

Proposition 12.43 (Properties of the Fisher information). It holds that

𝐼 (𝜗) = E𝜗
(
𝜕

𝜕𝜗
log 𝑓𝜗 (𝑋)

)2
= −E𝜗

𝜕2

𝜕𝜗2 log 𝑓𝜗 (𝑋). (12.22)

Proof. It follows from (12.20) and (12.7) that

𝐼 (𝜗) = var𝜗 𝑉 = E𝜗 𝑉
2 = E𝜗

(
𝜕

𝜕𝜗
log 𝑓𝜗 (𝑋)

)2
. (12.23)

By the quotient rule we have

𝜕2

𝜕𝜗2 log 𝑓𝜗 (𝑥) =
𝜕

𝜕𝜗

𝜕
𝜕𝜗
𝑓𝜗 (𝑥)
𝑓𝜗 (𝑥)

=

𝜕2

𝜕𝜗2 𝑓𝜗 (𝑥)
𝑓𝜗 (𝑥)

−
(
𝜕
𝜕𝜗
𝑓𝜗 (𝑥)
𝑓𝜗 (𝑥)

)2

=

𝜕2

𝜕𝜗2 𝑓𝜗 (𝑥)
𝑓𝜗 (𝑥)

−
(
𝜕

𝜕𝜗
log 𝑓𝜗 (𝑥)

)2
.

Now note that E𝜗
𝜕2
𝜕𝜗2 𝑓𝜗 (𝑋)
𝑓𝜗 (𝑋) =

∫
X

𝜕2

𝜕𝜗2 𝑓𝜗 (𝑥) d𝑥 = 𝜕2

𝜕𝜗2

∫
X 𝑓𝜗 (𝑥) d𝑥 =

𝜕2

𝜕𝜗2 1 = 0 as above, so the result
follows by taking expectations with (12.23). □

Example 12.44. The Fisher information of a binomial bin(𝑛, 𝑝) trial for the unknown 𝑝 ∈ (0, 1) is
𝐼 (𝑝) = 𝑛

𝑝 (1−𝑝) .
Indeed, by (12.22),

𝐼 (𝑝) = −E𝑝
𝜕2

𝜕𝑝2 log
((
𝑛

𝑋

)
𝑝𝑋 (1 − 𝑝)𝑛−𝑋

)
= −E𝑝

𝜕2

𝜕𝑝2

(
log

(
𝑛

𝑋

)
+ 𝑋 log 𝑝 + (𝑛 − 𝑋) log(1 − 𝑝)

)
= E𝑝

𝑋

𝑝2 +
𝑛 − 𝑋
(1 − 𝑝)2

=
𝑛𝑝

𝑝2 +
𝑛 − 𝑛𝑝
(1 − 𝑝)2

=
𝑛

𝑝(1 − 𝑝) . (12.24)

Remark 12.45. It follows from (12.22) that the Fisher information scales with the number of
independent observations (cf. (12.24)).

12.9 INFORMATION INEQUALITIES

Theorem 12.46 (Cramér–Rao12 inequality). Let 𝛾̂(·) be an unbiased estimator for 𝛾(𝜗), i.e.,
E𝜗 𝛾̂ = 𝛾(𝜗), then

var𝜗 𝛾̂ ≥
𝛾′ (𝜗)2
𝐼 (𝜗) .

Proof. As 𝛾̂(·) is unbiased it holds that

0 = E𝜗 𝛾̂ − 𝛾(𝜗) =
∫
X

(
𝛾̂(𝑥) − 𝛾(𝜗)

)
𝑓𝜗 (𝑥) d𝑥.

12Calyampudi Radhakrishna Rao, 1920, Indian-American mathematician and statistician
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Differentiate the latter to get

0 =
𝜕

𝜕𝜗

∫
X

(
𝛾̂(𝑥) − 𝛾(𝜗)

)
𝑓𝜗 (𝑥) d𝑥 = −

∫
X
𝛾′ (𝜗) 𝑓𝜗 (𝑥) d𝑥 +

∫
X
(𝛾̂(𝑥) − 𝛾(𝜗)) 𝜕

𝜕𝜗
𝑓𝜗 (𝑥) d𝑥

= −𝛾′ (𝜗) +
∫
X

(
𝛾̂(𝑥) − 𝛾(𝜗)

)
𝑓𝜗 (𝑥)

𝜕

𝜕𝜗
log 𝑓𝜗 (𝑥) d𝑥.

By the Cauchy–Schwarz inequality, thus

𝛾′ (𝜗) =
∫
X

(
𝛾̂(𝑥) − 𝛾(𝜗)

)√︁
𝑓𝜗 (𝑥) ·

√︁
𝑓𝜗 (𝑥)

𝜕

𝜕𝜗
log 𝑓𝜗 (𝑥) d𝑥

≤

√︄∫
X

(
𝛾̂(𝑥) − 𝛾(𝜗)

)2
𝑓𝜗 (𝑥) d𝑥 ·

√︄∫
X
𝑓𝜗 (𝑥)

(
𝜕

𝜕𝜗
log 𝑓𝜗 (𝑥)

)2
d𝑥

=
√︁

var𝜗 𝛾̂ ·
√︁
𝐼 (𝜗),

where we have used that 𝛾(𝜗) = E𝜗 𝛾̂ and (12.22). This completes the proof. □

The Cramér–Rao inequality is of particular importance to estimate the parameter itself,
𝛾(𝜗) B 𝜗.

Corollary 12.47 (Cramér–Rao bound). Let 𝜗̂(·) be an unbiased estimator for 𝜗, i.e. E𝜗 𝜗̂ = 𝜗,
then

var𝜗 𝜗̂ ≥
1
𝐼 (𝜗) .

Corollary 12.48. Let 𝛾̂(·) be a statistic and set 𝛾(𝜗) B E𝜗 𝛾̂. Then

cov𝜗 𝛾̂ ≥ ∇𝜗𝛾(𝜗) · 𝐼 (𝜗)−1 ·
(
∇𝜗𝛾(𝜗)

)⊤
,

where 𝐼 (𝜗) 𝑗 ,𝑘 = E𝜗
𝜕
𝜕𝜗 𝑗

log 𝑓𝜗 (𝑋) · 𝜕
𝜕𝜗𝑘

log 𝑓𝜗 (𝑋) = −E𝜗 𝜕2

𝜕𝜗 𝑗 𝜕𝜗𝑘
log 𝑓𝜗 (𝑋) is the Fisher informa-

tion matrix.
Here, 𝐴 ≥ 𝐵 is the Loewner order and understood to mean that 𝐴−𝐵 is positive semidefinite.

12.10 SEQUENCES OF ESTIMATORS

Definition 12.49. Let 𝑛 denote the sample size and let 𝜗̂𝑛 (·) (𝛾̂𝑛 (·), resp.) be a sequence of
estimators for 𝜗 (𝛾(𝜗), resp.).

(i) The sequence of estimators 𝜗̂𝑛 is a (weakly) consistent estimator for 𝜗 if 𝜗̂𝑛 → 𝜗 in
probability, i.e., 𝑃𝜗

(��𝜗̂𝑛 − 𝜗�� > 𝜀) −−−−→
𝑛→∞

0 for every 𝜀 > 0;

(ii) 𝛾̂𝑛
a.s.−−−→ 𝛾(𝜗), if 𝑃𝜗

(
lim𝑛→∞

��𝛾̂𝑛 − 𝛾(𝜗)�� = 0
)
= 1;

(iii) The estimator 𝜗̂𝑛 is asymptotically normal, if
√
𝑛

(
𝜗̂𝑛 − 𝜗

)
𝑑−→ N(0, 𝑉) for some variance 𝑉 .

Remark 12.50. Consistency can often be insured by employing the Markov inequality 𝑃𝜗 (ℎ(𝜗𝑛 − 𝜗) ≥ 𝜀) ≤
E𝜗 ℎ (𝜗𝑛−𝜗)

𝜀
, for example ℎ(·) =| · | or ℎ(·) =| · |2.

rough draft: do not distribute



12.11 ASYMPTOTIC NORMALITY AND OPTIMALITY OF THE MAXIMUM LIKELIHOOD ESTIMATOR117

12.11 ASYMPTOTIC NORMALITY AND OPTIMALITY OF THE MAXIMUM LIKE-
LIHOOD ESTIMATOR

The following theorem demonstrates that the Cramér–Rao bound is (asymptotically) sharp for
the maximum likelihood estimator.

Theorem 12.51 (Asymptotic normality of the maximum likelihood estimator). Suppose that

(i) 𝜗 ∈ int Θ,

(ii) 𝑓𝜗 (𝑥) > 0 and is twice continuously differentiable in 𝜗 in a neighborhood 𝑁 ∋ 𝜗,

(iii)
∫

sup𝜗∈𝑁 ∥∇𝜗 𝑓𝜗 (𝑥)∥ d𝑥 < ∞ and
∫

sup𝜗∈𝑁 ∥∇𝜗𝜗 𝑓𝜗 (𝑥)∥ d𝑥 < ∞,

(iv) The Fisher information matrix 𝐼 (𝜗) B E (∇𝜗 log 𝑓𝜗 (𝑥)) (∇𝜗 log 𝑓𝜗 (𝑥))⊤ exists and is non-
singular,

(v) E sup𝜗∈𝑁 ∥∇𝜗 log 𝑓𝜗 (𝑥)∥ < ∞.

Then the maximum likelihood estimator 𝜗̂𝑛 satisfies

√
𝑛

(
𝜗̂𝑛 − 𝜗

)
−−−−→
𝑛→∞

N
(
0, 𝐼 (𝜗)−1

)
,

where 𝐼 (𝜗) is the Fisher information.

Sketch of the proof. The first order conditions for the maximum likelihood estimator for 𝜗 ∈ int Θ
(the interior of Θ) reads

∇𝜗ℓ(𝜗̂𝑛 | 𝑋) =
1
𝑛

𝑛∑︁
𝑖=1

𝜕

𝜕𝜗
log 𝑓𝜗 (𝑋𝑖)

����
𝜗=𝜗̂𝑛

= 0.

The Taylor series expansion of the (sufficiently smooth) score function 𝜗 ↦→ 𝑉 (𝜗; 𝑋) around the
true parameter 𝜗 for the maximum likelihood estimator 𝜗̂ is 𝑉 (𝜗̂) = 𝑉 (𝜗) +𝑉 ′ (𝜗̃) (𝜗̂ − 𝜗), i.e.,

0 =
1
𝑛

𝑛∑︁
𝑖=1

𝜕

𝜕𝜗
log 𝑓𝜗 (𝑋𝑖) +

1
𝑛

𝑛∑︁
𝑖=1

𝜕2

𝜕𝜗2 log 𝑓𝜗 (𝑋𝑖)
����
𝜗=𝜗̃𝑛

·
(
𝜗̂𝑛 − 𝜗

)
,

where 𝜗̃𝑛 is a point intermediate between 𝜗 and 𝜗̂𝑛 and thus

√
𝑛

(
𝜗̂𝑛 − 𝜗

)
=

(
−1
𝑛

𝑛∑︁
𝑖=1

𝜕2

𝜕𝜗2 log 𝑓𝜗 (𝑋𝑖)
����
𝜗=𝜗̃𝑛

)−1

︸                                       ︷︷                                       ︸
→𝐼 (𝜗)−1

· 1
√
𝑛

𝑛∑︁
𝑖=1

𝜕

𝜕𝜗
log 𝑓𝜗 (𝑋𝑖)︸                       ︷︷                       ︸

∼N(0,𝐼 (𝜗) )

.

By the law of large numbers (LLN) we have that − 1
𝑛

∑𝑛
𝑖=1

𝜕2

𝜕𝜗2 log 𝑓𝜗 (𝑋𝑖)
���
𝜗=𝜗̃𝑛

→ 𝐼 (𝜗), cf. (12.22);

further, by the CLT (Theorem 4.3), (12.7) and (12.21), the second sum converges in distribution
to N (0, 𝐼 (𝜗)). Hence, by (3.6),

√
𝑛

(
𝜗̂𝑛 − 𝜗

)
𝑑−→ N

(
0, 𝐼 (𝜗)−1

)
,

the assertion. □
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12.12 PROBLEMS

Exercise 12.1 (Poisson distribution, cf. (12.3) in Example 12.5). Verify that the moment gener-
ating function of a Poisson random variable 𝑋 ∼ 𝑃𝜆 is

E 𝑒𝑡𝑋 = exp
(
𝜆(𝑒𝑡 − 1)

)
= 1 + 𝜆𝑡 + 𝑡

2

2

(
𝜆 + 𝜆2

)
+ 𝑡

3

6

(
𝜆 + 3𝜆2 + 𝜆3

)
+ 𝑡

3

6

(
𝜆 + 7𝜆2 + 6𝜆3 + 𝜆4

)
+ O(𝑡5).

Derive that E 𝑋 = 𝜆 = var 𝑋 = 𝜇3 (skewness) and 𝜇4 = 𝜆 + 3𝜆2 (kurtosis).

Exercise 12.2. Verify that 𝑋 + 𝑌 ∼ 𝑃𝜆+𝜆′ , if 𝑋 ∼ 𝑃𝜆 and 𝑌 ∼ 𝑃𝜆′ are independent.

Exercise 12.3. Verify the moment estimator for the Gamma distribution given in Example 12.4.

Moments

Exercise 12.4. The density of a distribution is 𝑓𝜃 (𝑥) =
{
𝑐(𝜃) (𝜃 − 𝑥) if 𝑥 ∈ (0, 𝜃)
0 else.

. What is 𝑐(𝜃)?

Give a moment estimator 𝜃 for 𝜃. Find a sample, so that the estimator 𝜃 is not reasonable.

Exponential Distribution

Exercise 12.5. Verify that the moment estimator (cf. Section 12.2) for the parameter 𝜆 of an
exponential distribution 𝐸𝜆 with 𝜑(𝑥) B 𝑥 is 𝜆̂(𝑋) = 1/𝑋𝑛.

Exercise 12.6. For 𝑋𝑖 ∼ 𝐸𝜆, show that E 𝑋𝛼
𝑖
=

Γ (1+𝛼)
𝜆𝛼

. Show that

𝜆̂𝛼 (𝑋) B
(
Γ(1 + 𝛼)
𝑋𝛼𝑛

)1/𝛼

is a moment estimator for 𝜆, where 𝑋𝛼𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑋

𝛼
𝑖

. Compare with Exercise 12.5.

Exercise 12.7 (Exponential random variables, cf. Exercise 12.5 and Exercise 5.4). Show that
the maximum likelihood estimator to estimate the rate 𝜆 given independent observations 𝑋𝑖 ∼ 𝐸𝜆
is 𝜆̂(𝑋1, . . . , 𝑋𝑛) = 1/𝑋𝑛. This estimator 𝜆̂ is biased, but

𝜆∗ (𝑋1, . . . , 𝑋𝑛) B
1

𝑛
𝑛−1 · 𝑋𝑛

is unbiased (cf. Exercise 5.4).

Exercise 12.8. Recall from Exercise 11.2 that min𝑖=1,...,𝑛 𝑋𝑖 ∼ 𝐸𝑛𝜆 for independent 𝑋𝑖 ∼ 𝐸𝜆. It
follows that Emin𝑖=1,...𝑛 𝑋𝑖 =

1
𝑛𝜆

and 𝜆̆ B 1
𝑛min𝑖=1,...𝑛 𝑋𝑖

seem to be a useful estimator to estimate
𝜆. Show that E 𝜆̆ = ∞.

Exercise 12.9. Consider the estimator 𝜇́(𝑋) B 𝑋𝑛 and 𝜇̀(𝑋) B 𝑛 · min𝑖=1,...𝑛 𝑋𝑖 of independent,
exponentially distributed random variables.

Show that E 𝜇́ = E 𝜇̀ = 1
𝜆

and compare their variance.
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Exercise 12.10 (Beta distribution). Verify the moment estimator

𝛼̂(𝑋) B 𝑋𝑛

(
𝑋𝑛 (1 − 𝑋𝑛)

𝑠2
𝑛

− 1

)
and 𝛽(𝑋) B

(
1 − 𝑋𝑛

) (
𝑋𝑛 (1 − 𝑋𝑛)

𝑠2
𝑛

− 1

)
for the parameters (𝛼, 𝛽) of the Beta distribution (see Exercise 5.10).

Exercise 12.11. Demonstrate the bias/ variance decomposition of MSE, Eq. (12.9).

Exercise 12.12. Let 𝑋𝑖 be independent N(𝜇0, 𝜎
2) observations (𝜇0 known). Give the MLE for

the variance 𝜎2.
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13Linear models

Uncertainty is not the same as probability.

A. Shapiro, 1943

13.1 GENERAL LINEAR MODEL

The general linear model or multivariate regression model is

𝑌𝑖 = 𝑥
⊤
𝑖 𝛽 + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛. (13.1)

Definition 13.1 (Nomenclature).

⊲ The variables 𝑥⊤
𝑖
= (𝑥𝑖,1, . . . 𝑥𝑖,𝐾 ) are observable and called explanatory variables;

⊲ The vector 𝛽 = (𝛽1, . . . 𝛽𝐾 )⊤ is the unobservable regression parameter ;
⊲ The error 𝜀 is called disturbance, noise or simply error ;
⊲ The vector 𝑌 is the dependent variable;
⊲ The matrix

𝑋 B
©­«
𝑥1,1 . . . 𝑥1,𝐾

. . .

𝑥𝑛,1 . . . 𝑥𝑛,𝐾

ª®¬ =
©­«
𝑥⊤1
. . .

𝑥⊤𝑛

ª®¬
is the design matrix.

The matrix form of (13.1) is 𝑌 = 𝑋𝛽 + 𝜀, its expanded form is 𝑌𝑖 =
∑𝐾
𝑗=1 𝑥𝑖 𝑗 𝛽 𝑗 + 𝜀𝑖.

It is evident that the problem setting (13.1) includes the more general linear problem (affine
linear problem)

𝑌𝑖 = 𝛽0 + 𝑥⊤𝑖 𝛽 + 𝜀𝑖 (13.2)

by replacing 𝛽 by (𝛽0, 𝛽) and 𝑥⊤
𝑖

by (1, 𝑥𝑖,1, . . . , 𝑥𝑖,𝐾 ), resp.

13.2 GENERALIZED LEAST SQUARES ESTIMATOR

The generalized least squares estimator (LS) for 𝛽 is found by minimizing the mean squared
error

∥𝑌 − 𝑋 𝛽∥Σ → min
𝛽

(13.3)

with respect to 𝛽; here, we have incorporated a positive definite matrix Σ as additional parameter,
where ∥𝑥∥2Σ B 𝑥⊤Σ−1𝑥 is the norm corresponding to the inner product ⟨𝑥, 𝑦⟩Σ B 𝑥⊤Σ−1𝑦. The
matrix Σ is the variogram, for independent data Σ ∼ 1. (Cf. Remark 3.22 and the Mahalanobis1

1Prasanta Chandra Mahalanobis, 1893–1972, Indian applied statistician
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122 LINEAR MODELS

distance, which is unitless and scale invariant). We arrive at

𝛽 ∈ arg min
𝛽

∥𝑌 − 𝑋𝛽∥2Σ = arg min
𝛽

(𝑌 − 𝑋𝛽)⊤ Σ−1 (𝑌 − 𝑋𝛽) (13.4)

= arg min
𝛽

𝑌⊤Σ−1𝑌 − 𝛽⊤𝑋⊤Σ−1𝑌 − 𝑌⊤Σ−1𝑋𝛽 + 𝛽⊤𝑋⊤Σ−1𝑋𝛽.

Differentiating the latter with respect to 𝛽 gives the normal equations2 𝑋⊤Σ−1𝑋𝛽 = 𝑋⊤Σ−1𝑌 and
the generalized least squares estimator is the linear estimator

𝛽 B
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1𝑌 ∈ R𝐾 . (13.5)

Remark 13.2. The operator (
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 ∈ R𝐾×𝑛

is a generalized Moore–Penrose pseudoinverse for linearly independent columns of 𝑋. So if
𝑋⊤Σ−1𝑋 is not invertible, then 𝛽 is still well-defined by (13.4) via the generalized pseudoinverse.

Lemma 13.3. The matrix3

𝑃 B 𝑋
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 ∈ R𝑛×𝑛 (13.6)

has the following properties:

(i) 𝑃 is a projection onto 𝑋, i.e., 𝑃2 = 𝑃 and 𝑃𝑋 = 𝑋;

(ii) 𝑃⊤ = Σ−1𝑃Σ is a projection onto Σ−1𝑋, i.e., 𝑃⊤Σ−1𝑋 = Σ−1𝑋.

The matrix Σ−1/2𝑃Σ1/2 = Σ−1/2𝑋
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1/2 ∈ R𝑛×𝑛 is an orthonormal projection.

Remark 13.4. It is convenient to set 𝑌 B 𝑋𝛽, cf. (13.3). Note, that

𝑌 = 𝑋𝛽 = 𝑃𝑌

and

𝜀 B 𝑌 − 𝑋𝛽 = 𝑌 − 𝑌 = (1 − 𝑃)𝑌 (13.7)

is the residual vector, cf. (13.1). The error 𝜀 and 𝑌 are orthogonal (uncorrelated), as〈
𝑌 | 𝜀

〉
Σ
= 𝑌⊤𝑃⊤Σ−1𝜀 = 𝑌⊤ · Σ−1 𝑃Σ · Σ−1 (1 − 𝑃)︸               ︷︷               ︸

=0

𝑌 = 0;

in addition, the error 𝜀 is orthogonal to 𝑋 (use (i)),

⟨𝑋 | 𝜀⟩Σ = (𝑃𝑋)⊤︸ ︷︷ ︸
𝑋=𝑃𝑋

Σ−1 (1 − 𝑃)𝑌 = 𝑋⊤ · Σ−1 𝑃Σ · Σ−1 (1 − 𝑃)︸               ︷︷               ︸
=0

𝑌 = 0.

2Normalgleichungen, dt.
3Note that 𝑃 is the formal inverse of (3.21) provided that 𝑋 = 𝐴−1.
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13.3 GAUSS–MARKOV THEOREM

The reasoning in the preceding section (Section 13.2) does not involve stochastic. One may
restate the problem (13.1) as 𝑌 (𝜔) = 𝑥⊤𝛽 + 𝜀(𝜔) to emphasize that 𝑥 and 𝛽 are deterministic
while 𝜀 (and thus 𝑌 ) are random. Now note that var𝑌𝑖 = var 𝜀𝑖; note as well that E(𝑌𝑖 | 𝑥𝑖) = 𝑥⊤𝑖 𝛽,
assuming that E 𝜀𝑖 = 0. A typical assumption for the error in (13.1) is 𝑌𝑖 ∼ N(𝑥⊤𝑖 𝛽, 𝜎2) or

𝑌 (𝑥) ∼ N
(
𝑥⊤𝛽, Σ

)
,

for example.
For dependent errors, the quantity 2𝛾(𝑥𝑖 , 𝑥 𝑗 ) = cov

(
𝑌𝑖 , 𝑌 𝑗

)
is the variogram. The semivari-

ogram is based on the distance only, 𝛾(


𝑥𝑖 − 𝑥 𝑗

) = 𝛾(𝑥𝑖 , 𝑥 𝑗 ).

Theorem 13.5 (Gauß–Markov4 theorem). Suppose that Σ is a positive semi-definite matrix and
𝜀 ∼ (0, Σ), i.e.,

(i) E 𝜀𝑖 = 0 (𝑖 = 1, . . . , 𝑛) and
(ii) cov(𝜀𝑖 , 𝜀 𝑗 ) = Σ𝑖 𝑗 for 𝑖, 𝑗 = 1, . . . 𝑛.

Then the ordinary least squares estimator (13.5) is unbiased, has variance var 𝛽 =
(
𝑋⊤Σ−1𝑋

)−1

and is the best linear unbiased estimator (BLUE), i.e., has smallest variance.

Remark 13.6. Note, that the Gauß–Markov theorem (in the form presented above) does not
make any assumption on the distribution, nor on independence of the observations; it just in-
volves the first two moments.

Proof of Theorem 13.5. 𝛽 is unbiased, as

E 𝛽 = E
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 · 𝑌 = E

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 (𝑋𝛽 + 𝜀)

= 𝛽 +
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 · E 𝜀︸︷︷︸

=0 by (i)

= 𝛽;

the variance is

var 𝛽 = var
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 (𝑋𝛽 + 𝜀) = var

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1𝜀

=

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 · var 𝜀︸︷︷︸

=Σ by (ii)

·Σ−1𝑋
(
𝑋⊤Σ−1𝑋

)−1
=

(
𝑋⊤Σ−1𝑋

)−1
.

Now suppose that 𝛽 = 𝐶𝑌 is another linear estimator, then 𝐶 =
(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 + 𝐷 for

some matrix 𝐷 ∈ R𝐾×𝑛. It holds that

E 𝛽 = E𝐶𝑌 = E

((
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 + 𝐷

)
(𝑋𝛽 + 𝜀)

=

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1𝑋𝛽 + 𝐷𝑋𝛽 +

((
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 + 𝐷

)
E 𝜀︸︷︷︸

=0 by (i)

= 𝛽 + 𝐷𝑋𝛽.

4Andrey Andreyewich Markov, 1856–1922
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Therefore, 𝛽 is unbiased iff 𝐷𝑋 = 0. Now

var 𝛽 = var(𝐶𝑌 ) = 𝐶 var(𝑌 )𝐶⊤ = 𝐶 Σ𝐶⊤

=

((
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 + 𝐷

)
Σ

((
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1 + 𝐷

)⊤
=

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1ΣΣ−1𝑋

(
𝑋⊤Σ−1𝑋

)−1

+ 𝐷ΣΣ−1𝑋︸     ︷︷     ︸
𝐷𝑋=0

(
𝑋⊤Σ−1𝑋

)−1
+

(
𝑋⊤Σ−1𝑋

)−1
𝑋⊤Σ−1Σ𝐷⊤︸         ︷︷         ︸

𝐷𝑋=0

+𝐷 Σ 𝐷⊤

=

(
𝑋⊤Σ−1𝑋

)−1
+ 𝐷 Σ 𝐷⊤ = var 𝛽 + 𝐷 Σ 𝐷⊤.

Hence, 𝛽 has smaller variance than 𝛽, as 𝐷 Σ 𝐷⊤ is positive semidefinite and thus the assertion.
□

In the typical and usual setting the observations in (13.10) are independent (and thus Σ𝑖 𝑗 =

E 𝜀𝑖𝜀 𝑗 = 0 if 𝑖 ≠ 𝑗). In this case the minimization (13.10) reads

∥𝑌 − 𝑋𝛽∥2Σ =

𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝑥⊤𝑖 𝛽
𝜎𝑖

)2

=

𝑛∑︁
𝑖=1

𝑤𝑖
(
𝑦𝑖 − 𝑥⊤𝑖 𝛽

)2 → min,

where 𝜀𝑖 ∼ (0, 𝜎2
𝑖
) and the weights 𝑤𝑖 = 1

𝜎2
𝑖

. Recall that 1
𝜎2 is the precision (and Σ−1 the

precision matrix). For independent, identically distributed random variables 𝜀 ∼ (0, 𝜎2 1) thus
particularly

𝜎2 ∥𝑌 − 𝑋𝛽∥2Σ = ∥𝑌 − 𝑋𝛽∥2
ℓ2
𝑛
=

𝑛∑︁
𝑖=1

(
𝑦𝑖 − 𝑥⊤𝑖 𝛽

)2 → min .

Corollary 13.7 (Gauß–Markov theorem, the classical formulation for homoscedastic data). Sup-
pose that

⊲ E 𝜀𝑖 = 0,
⊲ var 𝜀𝑖 = 𝜎2 < ∞, i.e., the errors are homoscedastic,5
⊲ cov(𝜀𝑖 , 𝜀 𝑗 ) = 0 (𝑖 ≠ 𝑗), i.e., distinct error terms are uncorrelated.

Then the ordinary least squares (OLS) estimator

𝛽 =
(
𝑋⊤𝑋

)−1
𝑋⊤𝑌

(cf. (13.5)) is the best linear unbiased estimator (BLUE) (i.e., with smallest variance), its variance
is var 𝛽 = 𝜎2 · (𝑋⊤𝑋)−1.

13.4 NONLINEAR REGRESSION

For the general, nonlinear problem

𝑌𝑖 = 𝑔(𝑥𝑖; 𝛽) + 𝜀𝑖 , 𝑖 = 1, . . . , 𝑛, (13.8)

it is occasionally written that
E(𝑌 | 𝑥) = 𝑔(𝑥; 𝛽). (13.9)

5Scedasticity (dispersion, Greek). Heteroscedasticity (Varianzheterogenität, dt.) is the absence of homoscedasticity
(Varianzhomogenität, dt.).
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As in (13.3) one may consider the least squares estimator

𝛽 ∈ arg min
𝛽



(𝑌𝑖 − 𝑔(𝑥𝑖; 𝛽))𝑛𝑖=1



Σ
, or 𝛽 ∈ arg min

𝛽

1
𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑔(𝑥𝑖; 𝛽)

)2

to extract an estimator 𝛽 for 𝛽 from observations (𝑥𝑖 , 𝑌𝑖).
A typical example of (13.8) is the linear model 𝑔(𝑥; 𝛽) = 𝛽⊤𝑔(𝑥), i.e.,

𝑌𝑖 =

𝐽∑︁
𝑗=1

𝛽 𝑗𝑔 𝑗 (𝑥𝑖) + 𝜀𝑖 = 𝛽⊤𝑔(𝑥𝑖) + 𝜀𝑖 (13.10)

(the model is linear, as the regression coefficients 𝛽 𝑗 appear linearly in the relationship (13.10)
although 𝑔 𝑗 (·) are possibly nonlinear). Note, that including the constant function 𝑔0 (·) B 1 again
(cf. (13.2)) gives the problem

𝑌𝑖 = 𝛽0 +
𝐽∑︁
𝑗=1

𝛽 𝑗 𝑔 𝑗 (𝑥𝑖) + 𝜀𝑖 .

Remark 13.8. Exercise 13.6 below states the normal equations and the BLUE estimator for (13.10)
explicitly.

Example 13.9. Recall the angle addition theorem 𝐴 sin(𝜔 · 𝑥 + 𝜑) = 𝛽𝑐 sin(𝜔 · 𝑥) + 𝛽𝑠 cos(𝜔 · 𝑥)
with 𝛽𝑐 = 𝐴 cos 𝜑 and 𝛽𝑠 = 𝐴 sin 𝜑; as well, 𝐴2 = 𝛽2

𝑠 + 𝛽2
𝑐 and 𝜑 = arctan 𝛽𝑠

𝛽𝑐
.

13.5 COEFFICIENT OF DETERMINATION

Proposition 13.10. The best prediction of order 0 (i.e., without involving a model) is the weighted
mean,

𝛽0 = 𝑌 B
1⊤ Σ−1𝑌

1Σ−1 1
. (13.11)

Proof. Consider the objective 𝛽0 ↦→ ∥𝑌 − 𝛽0 · 1∥2Σ = (𝑌 − 𝛽0 · 1)⊤ Σ−1 (𝑌 − 𝛽0 · 1). The first order
conditions for the minimum are (𝑌 − 𝛽0 · 1)⊤ Σ−1 1 = 0 and thus the assertion. □

Definition 13.11. The coefficient of determination is a quantity to quantify the quality of a re-
gression. The following terms are involved:

(i) The total sum of squares (proportional to the variance of the data) is TSS B



(𝑌𝑖 − 𝑌 )𝑛

𝑖=1




2

Σ
,

where 𝑌 ∈ range 𝑔(𝑋).

(ii) The explained sum of squares (also regression sum of squares, SSmodel) is ESS B



(𝑔(𝑥𝑖; 𝛽) − 𝑌 )𝑛

𝑖=1




2

Σ
.

(iii) The residual sum of squares (also sum of squares of residuals, SSerror) is RSS B


(𝑌𝑖 − 𝑔(𝑥𝑖; 𝛽))𝑛𝑖=1



2
Σ
.

(iv) The coefficient of determination6 is 𝑅2 B 1 − RSS
TSS . The minuend FVU B RSS

TSS is also called
fraction of variance unexplained.

If the model explains everything, then 𝑅2 = 1, while 𝑅2 = 0 identifies a useless model.

6Bestimmtheitsmaß, dt.
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Lemma 13.12. It holds that TSS = ESS + RSS and

𝑅2 = 1 − RSS
TSS

=
ESS
TSS

∈ [0, 1] .

Proof. Note, that 𝑌 · 1 ∈ range(𝑋) provided that 𝑋 = (1, . . . ), cf. (13.2). The statement thus is a
consequence of the following more general proposition. □

Proposition 13.13. Let 𝑥 ∈ range(𝑋). Then ∥𝑌 − 𝑥∥2Σ =


𝑌 − 𝑌

2

Σ
+



𝑌 − 𝑥

2
Σ
.

Proof. It holds that ∥𝑌 − 𝑥∥2Σ =


𝑌 − 𝑌 + 𝑌 − 𝑥

2

Σ
=



𝑌 − 𝑌

2
Σ
+



𝑌 − 𝑥

2
Σ
+ 2

〈
𝑌 − 𝑌 | 𝑌 − 𝑥

〉
Σ
. But (cf.

Remark 13.4) 〈
𝑌 − 𝑌 | 𝑌 − 𝑥

〉
Σ
= ⟨(1 − 𝑃)𝑌 | 𝑃𝑌 − 𝑥⟩Σ
= 𝑌⊤ (1 − 𝑃)⊤Σ−1 (𝑃𝑌 − 𝑥)
= 𝑌⊤Σ−1 (1 − 𝑃)ΣΣ−1 (𝑃𝑌 − 𝑥)
= 𝑌⊤Σ−1 (1 − 𝑃)𝑃︸     ︷︷     ︸

=0

𝑌 − 𝑌⊤Σ−1 (1 − 𝑃)𝑥︸    ︷︷    ︸
=0

= 0,

as 𝑃𝑋 = 𝑋 and thus 𝑃𝑥 = 𝑥 for 𝑥 ∈ range(𝑋). □

13.6 NUMERICAL SOLUTION

Computing the inverse explicitly in (13.5) is numerically not stable. For numerically stable com-
putations one may apply the QR algorithm, one of the top 10 algorithms from the 20th century.
Here, we outline the rank-deficient complete orthogonal decomposition.

13.6.1 QR

Consider the inner product ⟨𝑥 | 𝑦⟩Σ B 𝑥⊤Σ−1𝑦 and set 𝐻𝑣 B 1−2 𝑣 𝑣⊤Σ−1

𝑣⊤Σ−1𝑣
. Then

∥𝐻𝑣𝑥∥2Σ = 𝑥⊤𝐻⊤𝑣 Σ
−1𝐻𝑣𝑥

= 𝑥⊤
(
1−2

Σ−1𝑣 𝑣⊤

𝑣⊤Σ−1𝑣

)
Σ−1

(
1−2

𝑣 𝑣⊤Σ−1

𝑣⊤Σ−1𝑣

)
𝑥

= 𝑥⊤

(
Σ−1 − 2

Σ−1𝑣 𝑣⊤Σ−1

𝑣⊤Σ−1𝑣
− 2

Σ−1𝑣 𝑣⊤Σ−1

𝑣⊤Σ−1𝑣
+ 4

Σ−1𝑣
(
𝑣⊤Σ−1𝑣

)
𝑣⊤Σ−1𝑣

𝑣⊤Σ−1

𝑣⊤Σ−1𝑣

)
𝑥

= 𝑥⊤Σ−1𝑥 = ∥𝑥∥2Σ ,

i.e., 𝑥 → 𝐻𝑣𝑥 is an isometry.
Given 𝑎 and 𝑒 with ∥𝑒∥Σ = 1, set 𝜆 B ± ∥𝑎∥Σ and choose 𝑣 ∝ 𝑎 − 𝜆𝑒, then

𝐻𝑣𝑎 = 𝑎 − 2
(𝑎 − 𝜆𝑒) (𝑎 − 𝜆𝑒)⊤Σ−1

(𝑎 − 𝜆𝑒)⊤Σ−1 (𝑎 − 𝜆𝑒)
𝑎

= 𝑎 − 2(𝑎 − 𝜆𝑒) 𝑎⊤Σ−1𝑎 − 𝜆𝑒⊤Σ−1𝑎

𝑎⊤Σ−1𝑎 − 2𝜆𝑒⊤Σ−1𝑎 + 𝜆2𝑒⊤Σ−1𝑒

= 𝑎 − 2(𝑎 − 𝜆𝑒) 1
2
= 𝜆 𝑒.
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For 𝑎 =

(
𝑎1
𝑎2:

)
, we may particularly choose 𝑣 ∝

(
𝑎1
𝑎2:

)
− 𝜆 𝑒1, where sign𝜆 = − sign 𝑎1 to avoid loss

of significance in the first component. While 𝑣2: = 𝑎2:, 𝑣’s first component 𝑣1 is

𝑣1 = 𝑎1 + ∥𝑎∥Σ sign 𝑎1 = ( |𝑎1 | + ∥𝑎∥Σ) sign 𝑎1

(alternatively, set 𝑣2: B (sign 𝑎1) 𝑎2: and 𝑣1 = |𝑎1 | + ∥𝑎∥Σ). Further we find ∥𝑣∥2Σ = ∥𝑎∥2Σ −
2𝜆 𝑎⊤Σ−1𝑒 + 𝜆2 = 2 ∥𝑎∥2Σ − 2𝜆 𝑎Σ−1𝑒. With Σ = 1,

∥𝑣∥2 = 2 ∥𝑎∥2 − 2𝜆 𝑎1 = 2 ∥𝑎∥ (|𝑎1 | + ∥𝑎∥) .

13.6.2 Rank-revealing/ rank-deficient complete orthogonal decomposition

Proposition 13.14. Let 𝐴 = 𝑄1

(
0 𝑅

0 0

)
𝑄⊤2 with𝑄1,𝑄2 unitary, 𝑅 regular and 𝐴+ B 𝑄2

(
0 0
𝑅−1 0

)
𝑄⊤1 .

Then 𝑥 = 𝐴+𝑏 has smallest norm among all minimizers of 𝑥 ↦→ ∥𝑏 − 𝐴 𝑥∥.

Proof. It holds that (0 𝑅)𝑄⊤2 𝐴
+𝑏 = (1 0)𝑄⊤1 𝑏 and, as 𝑄1 is unitary,

∥𝑏 − 𝐴 𝑥∥ =




𝑏 −𝑄1

(
0 𝑅

0 0

)
𝑄⊤2 𝑥






=





((1 0)𝑄⊤1 𝑏
(0 1)𝑄⊤1 𝑏

)
−

(
(0 𝑅)𝑄⊤2 𝑥

0

)




≥





( 0
(0 1)𝑄⊤1 𝑏

)



 (13.12)

=





((1 0)𝑄⊤1 𝑏
(0 1)𝑄⊤1 𝑏

)
−

(
(0 𝑅)𝑄⊤2 𝐴

+𝑏
0

)




=



𝑄⊤1 𝑏 −𝑄⊤1 𝐴 𝐴+𝑏


=



𝑏 − 𝐴 𝐴+𝑏

 .
It follows that 𝐴+𝑏 minimizes ∥𝑏 − 𝐴 ·∥.

Finally suppose that 𝑥 is another minimizer, then equality holds in (13.12), i.e., (1 0)𝑄⊤1 𝑏 =

(0 𝑅)𝑄⊤2 𝑥. Multiply with𝑄2

(
0
𝑅−1

)
to get𝑄2

(
0 0
𝑅−1 0

)
𝑄⊤1 𝑏 = 𝑄2

(
0 0
0 1

)
𝑄⊤2 𝑥, i.e., 𝐴+𝑏 = 𝑄2

(
0 0
0 1

)
𝑄⊤2 𝑥.

As 𝑄2 is unitary it follows that ∥𝐴+𝑏∥ =




(0 0

0 1

)
𝑄⊤2 𝑥





 ≤ 

𝑄⊤2 𝑥

 = ∥𝑥∥ and thus the assertion. □

Remark 13.15. The norm is strictly convex, thus the generalized inverse 𝐴+ is uniquely defined
by the characterization in Proposition 13.14 (i.e., 𝐴+ is independent of the particular choice of
𝑄1, 𝑄2 and 𝑅).

In what follows we construct the generalized inverse explicitly for the standard inner product

with Σ = 1. For 𝐴 ∈ R𝑚×𝑛, suppose that 𝐴 = 𝑃
(
𝐿 0

)
𝑄1 (i.e., 𝐴⊤ = 𝑄1

(
𝐿⊤

0

)
𝑃) for an orthogonal
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projection 𝑄1 and a permutation 𝑃, where

(
𝐿 0

)
=

©­­­­­­­­­­«

ℓ11 0 · · · 0 · · · 0
... ℓ22

. . .
...

. . .
. . . 0

...

ℓ𝑘1 ℓ𝑘𝑘 0 · · ·
...

...
...

ℓ𝑚1 · · · ℓ𝑚𝑘 0 · · ·

ª®®®®®®®®®®¬
is an extended lower triangular rank 𝑘 matrix; the permutation 𝑃 is found by pivoting the rows.

Define the exchange matrix 𝑃𝑚 B
©­­«
0 0 1

0 . .
.

0
1 0 0

ª®®¬ ∈ R𝑚×𝑚, then

𝑃𝑚
(
𝐿 0

)
𝑃𝑛 =

©­­­­­­­«

· · · 0 ℓ𝑚𝑘 · · · ℓ𝑚1
...

...
...

· · · 0 ℓ𝑘𝑘 · · · ℓ𝑘1
... 0

. . .
...

0 · · · · · · 0 ℓ11

ª®®®®®®®¬
= 𝑄2

©­­­­­­­­­«

· · · 0 ℓ′
𝑚𝑘

· · · ℓ′
𝑚1

0
. . .

...
...

. . . ℓ′
𝑚−𝑘+1,1

. . . 0

0 · · · 0 · · ·
...

ª®®®®®®®®®¬
= 𝑄2

(
0 𝐿′

0 0

)

(13.13)
by employing a usual QR decomposition again, where 𝐿′ is regular upper triangular matrix; note
that the exchange matrices allow exploiting the sparse structure in (13.13). It follows that

𝐴 = 𝑃
(
𝐿 0

)
𝑄1 = 𝑃 · 𝑃𝑚𝑄2

(
0 𝐿′

0 0

)
𝑃𝑛 · 𝑄1

and the generalized inverse (Moore–Penrose inverse) 𝐴+ of the rank-𝑘 matrix 𝐴 is

𝐴+ = 𝑄1𝑃𝑛

(
0 0
𝐿′−1 0

)
𝑄2𝑃𝑚𝑃.

Finally 𝐴+𝑏 = 𝑄1

(
𝑥

0

)
, where

©­­­­­­­­­«

... 0 . . . 0

0 0 0
...

ℓ′
𝑚−𝑘+1,1

. . .
...

...
. . .

. . .

ℓ′
𝑚1 · · · ℓ′

𝑚𝑘
0 · · ·

ª®®®®®®®®®¬
·
(
𝑥

0

)
= 𝑃𝑚

(
0 𝐿′

0 0

)
𝑃𝑛 ·

(
𝑥

0

)
=

(
𝑏̃

. . .

)
B 𝑃𝑚𝑄2𝑃𝑚 𝑃 𝑏.

For an efficient implementation of a rank revealing generalized inverse see https://github.com/aloispichler/Matrix-
Class/.
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13.7 PROBLEMS

Exercise 13.1. Verify Footnote 3 on page 122.

Exercise 13.2 (Linear regression). Consider the problem 𝑌𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖, 𝜀𝑖 ∼ (0, 𝜎2) and show
that the slope is

𝛽 =

1
𝑛

∑
𝑖 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)
1
𝑛

∑
𝑖 (𝑥𝑖 − 𝑥)2

with intercept 𝛼̂ = 𝑦 − 𝛽 · 𝑥. The regression line passes the point (𝑥, 𝑦) and it follows that
𝛼̂ + 𝛽𝑥 = 𝑦 + 𝛽(𝑥 − 𝑥).

Hint: Exercise 2.5.

Exercise 13.3. Show that 𝛽 =
cov(𝑥,𝑦)

var(𝑥 ) = 𝑟𝑥,𝑦
𝑠𝑦

𝑠𝑥
(cf. (2.9)).

Exercise 13.4. Verify the famous parameters for the linear regression 𝑌𝑖 = 𝛼 + 𝛽 𝑥 (with inde-
pendent 𝜀𝑖 ∼ (0, 𝜎2

𝑖
))

𝛽 =
𝑥 · 𝑦 − 𝑥 · 𝑦
𝑥2 − 𝑥2

=

∑
𝑖 𝑤𝑖 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

𝑥2 − 𝑥2
=
(∑𝑖 𝑤𝑖𝑥𝑖𝑦𝑖) − (

∑
𝑖 𝑤𝑖𝑥𝑖) (

∑
𝑖 𝑤𝑖𝑦𝑖)(∑

𝑖 𝑤𝑖𝑥
2
𝑖

)
− (∑𝑖 𝑤𝑖𝑥𝑖)2

,

𝛼̂ = 𝑦 − 𝛽𝑥,

where the weights are 𝑤𝑖 = 1
𝜎2
𝑖

/ ∑
𝑗

1
𝜎2

𝑗

(cf. (13.11)) and

𝑥 B
∑︁
𝑖

𝑤𝑖𝑥𝑖 , 𝑥
2 B

∑︁
𝑖

𝑤𝑖𝑥
2
𝑖 , 𝑦 B

∑︁
𝑖

𝑤𝑖𝑦𝑖 , 𝑦
2 B

∑︁
𝑖

𝑤𝑖𝑦
2
𝑖 and 𝑥 · 𝑦 B

∑︁
𝑖

𝑤𝑖𝑥𝑖𝑦𝑖

the weighted means.

Exercise 13.5. Show that the residual 𝜀𝑖 = 𝑦𝑖 − 𝑥⊤𝑖 𝛽 (cf. (13.7)) satisfy 𝜀 =
∑𝑛
𝑖=1 𝑤𝑖𝜀𝑖 = 0 and

further, the residuals 𝜀𝑖 and 𝑥𝑖 are uncorrelated. Hint: show first that 𝜀 · 𝑥 = 𝜀 · 𝑥.

Exercise 13.6. Given the same conditions as in the Gauß–Markov theorem, Theorem 13.5.
Show that the optimal parameter for the linear regression (13.10) with respect to general func-
tions 𝑔 𝑗 (𝑥1, . . . 𝑥𝐾 ), 𝑗 = 1, . . . 𝐽, is

𝛽 =

(
𝑔(𝑋)⊤Σ−1𝑔(𝑋)

)−1
𝑔(𝑋)⊤Σ−1𝑌 ∈ R𝐽 ,

where

𝑔(𝑋) B ©­«
𝑔1 (𝑥1,1, . . . 𝑥1,𝐾 ) . . . 𝑔𝐽 (𝑥1,1, . . . 𝑥1,𝐾 )

. . .

𝑔1 (𝑥𝑛,1, . . . 𝑥𝑛,𝐾 ) . . . 𝑔𝐽 (𝑥𝑛,1, . . . 𝑥𝑛,𝐾 )
ª®¬ ∈ R𝑛×𝐽

is the design matrix. Note, that 𝐾 and 𝐽 may differ here (although there are usually not more
variables than functions, 𝐽 ≤ 𝐾).

Exercise 13.7. Consider the problem of approximating the data 𝑌𝑖 by a simple constant, i.e.,

𝑔(𝑥) = 1 in (13.3). Show that 𝛽0 = 𝑌
Σ

𝑛 B
∑𝑛
𝑗=1

∑𝑛
𝑖=1 Σ

−1
𝑖 𝑗∑𝑛

𝑘,ℓ=1 Σ
−1
𝑘ℓ

𝑌 𝑗 = 𝑤
⊤𝑌 with weights 𝑤 𝑗 =

∑𝑛
𝑖=1

Σ−1
𝑖 𝑗∑𝑛

𝑘,ℓ=1 Σ
−1
𝑘ℓ

,

𝑤⊤ = 1⊤ Σ−1

1⊤ Σ−1 1
.

Show in particular that the best approximation is 𝛽 = 𝑌𝑛 =
1
𝑛

∑𝑛
𝑖=1𝑌𝑖 whenever Σ = 𝜎2 1.

Exercise 13.8. Show that 𝐴𝐴+𝐴 = 𝐴, 𝐴+𝐴𝐴+ = 𝐴+, (𝐴𝐴+)⊤ = 𝐴𝐴+ and (𝐴+𝐴)⊤ = 𝐴+𝐴.
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14Logistic Regression

Ah! C’est une belle hypothèse; ça
explique beaucoup de choses.

Pierre-Simon Laplace, 1749–1827

14.1 THE LOGIT AND LOGISTIC FUNCTIONS

Definition 14.1 (Sigmoid1). The standard logistic (also sigmoid) function is2

𝑆(𝑡) = 1
1 + 𝑒−𝑡 =

𝑒𝑡

𝑒𝑡 + 1
=

1
2
+ 1

2
tanh

𝑡

2
,

cf. Figure 14.1.

𝑆(·) is strictly monotonically increasing with 𝑆(𝑥) −−−−−→
𝑥→−∞

0 and 𝑆(𝑥) −−−−→
𝑥→∞

1. It holds that
𝑆(−𝑡) = 1 − 𝑆(𝑡) and thus 𝑆′ (𝑡) = 𝑆′ (−𝑡). The derivative

𝑆′ (𝑡) = 𝑒−𝑡

(1 + 𝑒−𝑡 )2
=

1
𝑒𝑡 + 2 + 𝑒−𝑡 =

1(
𝑒𝑡/2 + 𝑒−𝑡/2

)2

is the logistic kernel. All derivatives of 𝑆 can be expressed by 𝑆, as

𝑆′ (𝑡) = 𝑆(𝑡)
(
1 − 𝑆(𝑡)

)
(14.1)

(or 𝑆′′ (𝑡) = 𝑆(𝑡)
(
1 − 𝑆(𝑡)

) (
1 − 2𝑆(𝑡)

)
, etc.). The function

logit(𝑝) B 𝑆−1 (𝑝) = log
𝑝

1 − 𝑝 , 𝑝 ∈ (0, 1), (14.2)

(i.e., 𝑡 = log 𝑆 (𝑡 )
1−𝑆 (𝑡 ) ) gives the log-odds, or the logarithm of the odds 𝑝

1−𝑝 and is called logit
function.

The antiderivative of the logit function is
∫ 𝑡
−∞ 𝑆(𝑢) d𝑢 = log (1 + 𝑒𝑡 ) = − log

(
1 − 𝑆(𝑡)

)
. Note as

well that lim𝛽→∞,
𝛽>0

𝑆(𝛽 𝑡) =


0 if 𝑡 < 0,
1/2 if 𝑡 = 0,
1 if 𝑡 > 0.

14.2 THE LOGISTIC DISTRIBUTION

Definition 14.2 (Logistic distribution). The logistic distribution has cdf 𝑆( · −𝑚
𝑠
) for some 𝑚 ∈ R

and 𝑠 > 0. We shall write 𝑆𝑚,𝑠 for a logistic distribution with parameters 𝑚 and 𝑠.
1S-shaped; the function smashes R to [0, 1].
2Recall that tanh 𝑡 = 𝑒𝑡−𝑒−𝑡

𝑒𝑡+𝑒−𝑡 .
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132 LOGISTIC REGRESSION

0 𝑡 (𝑥)

𝑆(𝑡)

𝑌 = 0

𝑌 = 1

𝑃(𝑌 = 0) = 1 − 𝑆
(
𝑡 (𝑥)

)
𝑃(𝑌 = 1) = 𝑆

(
𝑡 (𝑥)

)

Figure 14.1: Logistic regression and the sigmoid function

Remark 14.3. If 𝑈 ∈ [0, 1] is uniformly distributed, then, by (14.2), 𝑚 + 𝑠 log 1−𝑈
𝑈

follows a logistic
distribution.

Remark 14.4. For a 𝑋 ∼ 𝑆𝑚,𝑠 random variable we have E 𝑋 = 𝑚 (by symmetry) and var 𝑋 = 𝜋2

3 𝑠
2.

Indeed, the variance of 𝑋 ∼ 𝑆0,1 is

var 𝑋 = E 𝑋2 =

∫ ∞

−∞
𝑡2

𝑒𝑡

(𝑒𝑡 + 1)2
d𝑡 = 2

∫ ∞

0
𝑡2
∞∑︁
𝑘=1
(−1)𝑘−1𝑘 𝑒−𝑘𝑡 d𝑡

=
𝑡←𝑡/𝑘

2
∞∑︁
𝑘=1
(−1)𝑘−1 𝑘

𝑘2 𝑘

∫ ∞

0
𝑡2𝑒−𝑡 d𝑡 = 4

∞∑︁
𝑘=1

(−1)𝑘−1

𝑘2 = 4
𝜋2

12
=
𝜋2

3
≈ 1.81382.

14.3 REGRESSION

Assume that the dependent variable 𝑡 (·) is a function of the explanatory variables 𝑥 = (𝑥1, . . . , 𝑥𝑑),
𝑡 : R𝑑 → R. Define the random variable (cf. Figure 14.1)

𝑌 (𝑥) B
{

1 if 𝑡 (𝑥) ≥ 𝜀,
0 else,

(14.3)

where 𝜀 ∈ R is random with cdf 𝐹𝜀, i.e.,

𝑃(𝜀 ≤ 𝑡′) = 𝐹𝜀 (𝑡′). (14.4)

Note, that 𝑌 (𝑥) is a latent variable, as 𝜀 is not observed. We have

𝑃
(
𝑌 (𝑥) = 1

)
= 𝑃

(
𝜀 ≤ 𝑡 (𝑥)

)
= 𝐹𝜀

(
𝑡 (𝑥)

)
, (14.5)

which is occasionally also stated as

E
(
𝑌 | 𝑥

)
= 𝐹𝜀

(
𝑡 (𝑥)

)
(cf. linear regression and (13.1)).

Logistic regression finally assumes that 𝜀 ∼ 𝑆 follows a logistic distribution, i.e., 𝐹𝜀 = 𝑆.

Remark 14.5. Compare with linear regression and (13.9).
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14.4 MAXIMUM LIKELIHOOD METHOD 133

variable categorical variable (result)
observation 𝑖 𝑥1 . . . 𝑥𝑑 𝑌 (𝑥1, . . . 𝑥𝑑)

1 . . . . . . 0
. . . . . . . . . . . .
𝑖 𝑥𝑖,1 𝑥𝑖,𝑑 𝑌𝑖 ∈ {0, 1}
𝑛 . . . . . . 1

Table 14.1: Problem description logistic regression

14.4 MAXIMUM LIKELIHOOD METHOD

To specify a model, the function 𝑡 (·) is often assumed to depend on some parameters 𝛽 and we
shall write 𝑡𝛽 (·). The likelihood function of the observations (𝑥𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛, is

𝐿 (𝛽 | 𝑥) B
∏

{𝑖 : 𝑌𝑖=0}

(
1 − 𝐹𝜀 (𝑡𝛽 (𝑥𝑖))

)
·

∏
{𝑖 : 𝑌𝑖=1}

𝐹𝜀
(
𝑡𝛽 (𝑥𝑖)

)
,

the log-likelihood function is

ℓ(𝛽 | 𝑥) = log 𝐿 (𝛽 | 𝑥) =
∑︁

{𝑖 : 𝑌𝑖=0}
log

(
1 − 𝐹𝜀 (𝑡𝛽 (𝑥𝑖))

)
+

∑︁
{𝑖 : 𝑌𝑖=1}

log 𝐹𝜀 (𝑡𝛽 (𝑥𝑖)) (14.6)

with observations 𝑌𝑖 B 𝑌 (𝑥𝑖)+𝜀𝑖 corresponding to the explanatory variables 𝑥𝑖 = (𝑥𝑖,1, . . . 𝑥𝑖,𝑑), as
Table 14.1 indicates. The best fitting parameters can be determined by the maximum likelihood
method,

𝛽 ∈ arg max
𝛽

𝐿 (𝛽 | 𝑥) = arg max
𝛽

ℓ(𝛽 | 𝑥).

The first-order conditions to be solved are the nonlinear equations∑︁
{𝑖 : 𝑌𝑖=0}

𝐹′𝜀 (𝑡𝛽 (𝑥𝑖))
1 − 𝐹𝜀 (𝑡𝛽 (𝑥𝑖))

𝜕

𝜕𝛽 𝑗
𝑡𝛽 (𝑥𝑖) =

∑︁
{𝑖 : 𝑌𝑖=1}

𝐹′𝜀 (𝑡𝛽 (𝑥𝑖))
𝐹𝜀 (𝑡𝛽 (𝑥𝑖))

𝜕

𝜕𝛽 𝑗
𝑡𝛽 (𝑥𝑖), 𝑗 = 0, . . . , 𝑑. (14.7)

These equations can be solved by employing Newton’s method, e.g.

14.5 LOGISTIC REGRESSION

For a logistic regression with 𝐹𝜀 = 𝑆 we have with (14.1) that 𝐹′𝜀 (𝑡) = 𝑆′ (𝑡) = 𝑆(𝑡)
(
1 − 𝑆(𝑡)

)
and

thus ∑︁
{𝑖 : 𝑌𝑖=0}

𝑆(𝑡𝛽 (𝑥𝑖))
𝜕

𝜕𝛽 𝑗
𝑡𝛽 (𝑥𝑖) =

∑︁
{𝑖 : 𝑌𝑖=1}

(
1 − 𝑆(𝑡𝛽 (𝑥𝑖))

) 𝜕

𝜕𝛽 𝑗
𝑡𝛽 (𝑥𝑖), 𝑗 = 0, . . . , 𝑑. (14.8)

A particular choice in practice for 𝑡𝛽 (·) is the linear ansatz

𝑡𝛽 (𝑥) B 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑑𝑥𝑑 . (14.9)

For the linear model (14.9) we have 𝜕
𝜕𝛽0
𝑡𝛽 (𝑥𝑖) = 1 and 𝜕

𝜕𝛽 𝑗
𝑡𝛽 (𝑥𝑖) = 𝑥𝑖 𝑗 , 𝑗 = 1, . . . 𝑑 in (14.7).

The logistic regression can be understood in finding the parameters 𝛽 = (𝛽0, . . . , 𝛽𝑑) that
best fit the problem (14.3), i.e.,

𝑌 (𝑥) =
{

1 if 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑑𝑥𝑑 ≥ 𝜀,
0 else.
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134 LOGISTIC REGRESSION

14.6 THE PROBIT MODEL AND PROBIT REGRESSION

The probit function is the quantile function of the standard normal distribution, i.e.,

probit(𝑝) B Φ−1 (𝑝), 𝑝 ∈ (0, 1),

where

Φ(𝑡) = 1
√

2𝜋

∫ 𝑡

−∞
exp

(
−1

2
𝑧2

)
d𝑧

is the cdf of the standard normal distribution.
If 𝜀 ∼ N(0, 1) follows a standard normal distribution in (14.3) and (14.4) (instead of 𝜀 ∼ 𝑆0,1),

then all formulae above modify with Φ instead of 𝑆. However, the equations corresponding
to (14.7) are not so pleasant any longer. Further, the logit tails are heavier than probit tails and
for this logistic regression is often more robust compared to probit.

14.7 PROBLEMS

Exercise 14.1 (The binomial model). Suppose that 𝑥𝑖 are irrelevant parameters and the problem
specification is 𝑡 (𝑥) = 𝛽0. The observations are 𝑘 B |{𝑖 : 𝑌𝑖 = 1}| and 𝑛− 𝑘 B |{𝑖 : 𝑌𝑖 = 0}|. Derive
from (14.6) that 𝑆(𝛽) = 𝑘

𝑛
and 𝛽0 = 𝑆−1 (𝑘/𝑛) and thus 𝑃(𝑌 = 1) = 𝑘

𝑛
.
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15Distances

To be deep in history is to cease to be a
Protestant.

John Henry Newman, Introduction p. 5

Consider the measure space (X, F ).

Definition 15.1. Let 𝑃 and 𝑄 be probability measures.

(i) The total variation is

𝑇𝑉 (𝑃,𝑄) B ∥𝑃 −𝑄∥∞ B sup
𝐴∈F
|𝑃(𝐴) −𝑄(𝐴) | .

(ii) Suppose that 𝑄 ≪ 𝜇 and 𝑃 ≪ 𝜇 with Radon–Nikodym derivatives d𝑃 = 𝑓 d𝜇 and Q = 𝑔 d𝜇.
For 𝑟 ≥ 1, the metric 𝑑𝑟 is

𝑑𝑟 (𝑃,𝑄) B
(∫
X

��� 𝑓 1/𝑟 − 𝑔1/𝑟
���𝑟 d𝜇

)1/𝑟
=




 𝑓 1/𝑟 − 𝑔1/𝑟




𝑟
.

(iii) The Hellinger1 distance is

𝐻 (𝑃,𝑄) B 1
√

2
𝑑2 (𝑃,𝑄).

Lemma 15.2. It holds that

𝑇𝑉 (𝑃,𝑄) = sup
𝜑∈Φ

����∫
X
𝜑 d𝑃 −

∫
X
𝜑 d𝑄

���� = 1
2
𝑑1 (𝑃,𝑄), (15.1)

where 𝜑 ∈ Φ is a random variable with 𝜑 ∈ [0, 1] (i.e., a statistical test).

Proof. Note first that 𝑃(𝐴) − 𝑄(𝐴) = 𝑄 (𝐴c) − 𝑃 (𝐴c) and thus ∥𝑃 −𝑄∥ = sup𝐴∈F 𝑃(𝐴) − 𝑄(𝐴) =
∥𝑄 − 𝑃∥. Further 𝑃(𝐴)−𝑄(𝐴) =

∫
𝐴
𝑓 −𝑔 d𝜇 ≤

∫
{ 𝑓 >𝑔} 𝑓 −𝑔 d𝜇 = sup𝜑∈ΦE𝑃 𝜑−E𝑄 𝜑, the supremum

is thus attained for 𝐴∗ = { 𝑓 > 𝑔} and 𝜑 = 1𝐴∗ and hence ∥𝑃 −𝑄∥ = 𝑃 ({ 𝑓 > 𝑔}) − 𝑄 ({ 𝑓 > 𝑔}).
Further we have that

𝑑1 (𝑃,𝑄) =
∫
X
| 𝑓 − 𝑔 | d𝜇 =

∫
{ 𝑓 >𝑔}

𝑓 − 𝑔 d𝜇 +
∫
{𝑔> 𝑓 }

𝑔 − 𝑓 d𝜇

=
(
𝑃 ({ 𝑓 > 𝑔}) −𝑄 ({ 𝑓 > 𝑔})

)
+

(
𝑄 ({𝑔 > 𝑓 }) − 𝑃 ({𝑔 > 𝑓 })

)
= ∥𝑃 −𝑄∥ + ∥𝑄 − 𝑃∥ = 2 ∥𝑄 − 𝑃∥

and thus the result. □

1Ernst Hellinger, 1883–1950, German mathematician
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136 DISTANCES

Corollary 15.3. It holds that

2𝑇𝑉 (𝑃,𝑄) = sup
𝜑∈[−1,1]

����∫
X
𝜑 d𝑃 −

∫
X
𝜑 d𝑄

���� = 𝑑1 (𝑃,𝑄),

where the supremum is among random variables 𝜑 with range 𝜑 ∈ [−1, 1]: the supremum is
attained for 𝜑 = 1{ 𝑓 >𝑔} −1{ 𝑓 <𝑔} .

Lemma 15.4. It holds that 𝑑𝑟 (𝑃,𝑄) ≤ 21/𝑟 and thus 0 ≤ 𝑇𝑉 (𝑃,𝑄) ≤ 1 and 0 ≤ 𝐻 (𝑃,𝑄) ≤ 1.

Proof. Indeed,
��𝑎 − 𝑏��𝑟 ≤ 𝑎𝑟 + 𝑏𝑟 and thus 𝑑𝑟 (𝑃,𝑄) =

(∫
X

�� 𝑓 1/𝑟 − 𝑔1/𝑟 ��𝑟 d𝜇
)1/𝑟
≤

(∫
X 𝑓 + 𝑔 d𝜇

)1/𝑟
=

21/𝑟 . □

The distances 𝑇𝑉 and 𝐻 are topologically equivalent.

Proposition 15.5. It holds that 𝐻 (𝑃,𝑄)2 ≤


𝑃 −𝑄

 ≤ √2𝐻 (𝑃,𝑄).

Proof. By the inequality of the arithmetic and geometric means we have that
√︁
𝑓 𝑔 ≤ 1

2 ( 𝑓 + 𝑔).
Hence, by Cauchy–Schwarz,

𝑃 −𝑄

 = 1

2

∫
X
| 𝑓 − 𝑔 | d𝜇

=
1
2

∫
X

(√︁
𝑓 + √𝑔

)
·
���√︁ 𝑓 − √𝑔��� d𝜇

≤ 1
2

(∫
X

(√︁
𝑓 + √𝑔

)2
d𝜇

)1/2
·
(∫
X

(√︁
𝑓 − √𝑔

)2
d𝜇

)1/2

=

√
2

2

(∫
X
𝑓 + 𝑔 + 2

√︁
𝑓 𝑔 d𝜇

)1/2
· 1
√

2

(∫
X

(√︁
𝑓 − √𝑔

)2
d𝜇

)1/2

≤
√

2𝐻 (𝑃,𝑄).

Further note that 𝑓 ∧ 𝑔 ≤
√︁
𝑓 𝑔 and thus 𝑓 + 𝑔 − 2

√︁
𝑓 𝑔 ≤ 𝑓 + 𝑔 − 2 𝑓 ∧ 𝑔 = | 𝑓 − 𝑔 | and

𝐻 (𝑃,𝑄)2 =
1
2

∫
X

(√︁
𝑓 − √𝑔

)2
d𝜇

=
1
2

∫
X
𝑓 + 𝑔 − 2

√︁
𝑓 𝑔 d𝜇

≤ 1
2

∫
X
| 𝑓 − 𝑔 | d𝜇

= ∥𝑃 −𝑄∥ ,

by (15.1), thus the assertion. □

Definition 15.6. The Kullback2–Leibler3 divergence between 𝑃 and 𝑄 is

𝐷𝐾𝐿 (𝑃,𝑄) B
{∫
X

(
log 𝑓

𝑔

)
𝑓 d𝜇 if 𝑃 ≪ 𝑄,

+∞ else.
2Solomon Kullback, 1907–1994, US
3Richard Leibler, 1914–2003, US
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Lemma 15.7 (First Pinsker’s inequality). It holds that ∥𝑃 −𝑄∥2 ≤ 1
2𝐷𝐾𝐿 (𝑃,𝑄).

Proof. (The proof follows Tsybakov [19, Lemma 2.5]). Consider the function 𝜓(𝑥) = 𝑥 log 𝑥−𝑥+1
and observe that 𝜓(1) = 0, 𝜓′ (1) = 0 and 𝜓′′ (𝑥) = 1

𝑥
≥ 0, hence 𝜓(𝑥) ≥ 0 for all 𝑥 ≥ 0 by Taylor’s

theorem.
Define 𝑔(𝑥) B (𝑥 − 1)2 −

(
4
3 +

2
3𝑥

)
𝜓(𝑥) and observe that 𝑔(1) = 0, 𝑔′ (1) = 0 and 𝑔′′ (𝑥) =

− 4𝜓 (𝑥 )
3𝑥 ≤ 0 and thus (again by Taylor’s theorem) 𝑔(𝑥) ≤ 0, i.e., (𝑥 − 1)2 ≤

(
4
3 +

2
3𝑥

)
𝜓(𝑥). It follows

that

∥𝑃 −𝑄∥ = 1
2

∫
X
| 𝑓 − 𝑔 | d𝜇 =

1
2

∫
{𝑔>0}

���� 𝑓𝑔 − 1
���� 𝑔 d𝜇

≤ 1
2

∫
{𝑔>0}

𝑔

√︄(
4
3
+ 2

3
𝑓

𝑔

)
𝜓

(
𝑓

𝑔

)
d𝜇 =

1
2

∫
{𝑔>0}

√︂
4
3
𝑔 + 2

3
𝑓 ·

√︄
𝑔 𝜓

(
𝑓

𝑔

)
d𝜇

≤ 1
2

√︄∫
X

4
3
𝑔 + 2

3
𝑓 d𝜇 ·

√︄∫
{𝑔>0}

𝑔 𝜓

(
𝑓

𝑔

)
d𝜇 (15.2)

=
1
2
√

2

√︄∫
X
𝑓 log

𝑓

𝑔
d𝜇 =

√︂
1
2
𝐷𝐾𝐿 (𝑃,𝑄),

where we have used Cauchy–Schwarz in (15.2). Thus the assertion. □

Theorem 15.8 (Villani [20]). It holds that ∥𝑃 −𝑄∥ = inf 𝜋 E𝜋 1𝑥≠𝑦, where 𝜋 is a bivariate proba-
bility measure on X × X with marginals 𝑃 and 𝑄, i.e., 𝜋(𝐴 × X) = 𝑃(𝐴) and 𝜋(X × 𝐵) = 𝑄(𝐵).

Lemma 15.9 (Scheffé’s lemma4). Suppose that 𝑓𝑛 → 𝑓 𝜇-a.e., then∫
X
| 𝑓𝑛 − 𝑓 | d𝜇 −−−−→

𝑛→∞
0 iff

∫
X
| 𝑓𝑛 | d𝜇 −−−−→

𝑛→∞

∫
X
| 𝑓𝑛 | d𝜇.

Proof. Indeed, by Fatou’s lemma,

2
∫
X
𝑓 d𝜇 =

∫
X

lim inf
𝑛→∞

𝑓𝑛 + 𝑓 − | 𝑓𝑛 − 𝑓 | d𝜇

≤ lim inf
𝑛→∞

∫
X
𝑓𝑛 + 𝑓 − | 𝑓𝑛 − 𝑓 | d𝜇

= 2
∫
X
𝑓 d𝜇 − lim sup

𝑛→∞

∫
X
| 𝑓𝑛 − 𝑓 | d𝜇;

it follows that 0 ≤ lim sup𝑛→∞
∫
X | 𝑓𝑛 − 𝑓 | d𝜇 ≤ 0 and thus the result. □

15.1 PROBLEMS

Exercise 15.1. Show that 𝑑𝑟 and 𝐻 are distances.

Exercise 15.2. Verify Corollary 15.3.

4Henry Scheffé, 1907–1977. The result, however, is based on a result by Frigyes Riesz, 1880–1956
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16Families

Les questions les plus importantes de la
vie ne sont en effet, pour la plupart, que
des problèmes de probabilité.

Pierre-Simon Laplace, 1749–1827

16.1 MONOTONE LIKELIHOOD RATIOS

16.2 EXPONENTIAL FAMILIES

Definition 16.1. The density of an exponential family is

𝑓 (𝑥 |𝜗) = 𝑐(𝜗)ℎ(𝑥)𝑒𝜗⊤𝑡 (𝑥 ) .

Equivalent forms include 𝑓 (𝑥 |𝜗) = ℎ(𝑥) exp (𝜂(𝜗) · 𝑇 (𝑥) − 𝐴(𝜗)) or 𝑓 (𝑥 |𝜗) = exp (𝜂(𝜗) · 𝑇 (𝑥) − 𝐴(𝜗) + 𝐵(𝑥)).

Example 16.2 (Poisson Distribution). The pmf is 𝑓 (𝑥 |𝛼) = 𝑒−𝛼 · 1
𝑥! · 𝑒

log 𝛼·𝑥 , thus 𝑡 (𝑥) = 𝑥.

Example 16.3 (Exponential distribution). The pmf is 𝑓 (𝑥 |𝛼) = 𝑒−𝛼 · 1
𝑥! · 𝑒

log 𝛼·𝑥 , thus 𝑡 (𝑥) = 𝑥.

Example 16.4 (Normal distribution: unknown mean, known variance). The density is 𝑓𝜎 (𝑥 |𝜇) =
1√

2𝜋𝜎2 𝑒
− (𝑥−𝜇)

2

2𝜎2 : it is easily seen that 𝑇𝜎 (𝑥) B 𝑥
𝜎

, ℎ𝜎 (𝑥) = 1√
2𝜋𝜎2 𝑒

− 𝑥2
2𝜎2 , 𝐴(𝜇) = 𝜇2

2𝜎2 and 𝜂𝜎 (𝜇) =
𝜇

𝜎2 .

For a vector of independent variables, 𝑓𝜎 (𝑥 |𝜇) = 1√
2𝜋𝜎2𝑛

𝑒
−∑𝑛

𝑖=1
(𝑥−𝜇)2

2𝜎2 = 1√
2𝜋𝜎2𝑛

𝑒
− 1

2𝜎2 (
∑
𝑥2
𝑖
−2𝜇

∑
𝑥𝑖+𝑛𝜇2)

thus 𝑡 (𝑥) = 1
𝜎

∑𝑛
𝑖=1 𝑥𝑖.

16.3 SUFFICIENT FAMILIES

» Sufficiency.

Definition 16.5. A satsitic 𝑡 = 𝑇 (𝑥) is sufficient for the underlying parameter 𝜗, if

𝑃(𝑥 | 𝑡, 𝜗) = 𝑃(𝑥 | 𝑡),

i.e., the probability of 𝑥 given 𝑇 (𝑥) does not independent on 𝜗.

Theorem 16.6 (Fisher–Neyman factorization theorem). The statistics 𝑡 is sufficient for 𝜗 if and
only if nonnegative functions 𝑔 and ℎ can be found such that (importantly, ℎ does not depend on
𝜗)

𝑓 (𝑥 |𝜗) = ℎ(𝑥) · 𝑔𝜗
(
𝑡 (𝑥)

)
.

Remark 16.7. If 𝑓 is an exponential family, then 𝑡 is sufficient.
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distribution minimal sufficient statistics

Binomial, bin(𝑛, 𝑝), 𝑛 fixed
∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛

Poisson, 𝑃𝛼
∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛

𝐿𝑎,𝑏, −∞ < 𝑎 < 𝑏 < ∞ 𝑋(1) , 𝑋(𝑛)
Exponential 𝐸𝜆

∑𝑛
𝑖=1 𝑋𝑖 and thus 𝑋𝑛

Erlang, 𝐸𝑛,𝜆
∑𝑛
𝑖=1 𝑋𝑖 and

∑𝑛
𝑖=1 log 𝑋𝑖

Normal N(𝜇, 𝜎2) ∑𝑛
𝑖=1 𝑋𝑖 and

∑𝑛
𝑖=1 𝑋

2
𝑖
, and thus 𝑋𝑛 and 𝑉𝑛

Table 16.1: Minimal sufficient statistics
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17Nonparametric Statistics — Density Estimation

Wer nichts weiß muss alles glauben.

Marie von Ebner-Eschenbach,
1830–1916

We address essential convergence theorems from multivariate kernel density estimation first.
The general assumption for a kernel 𝑘 : R𝑑 → R is that

(i) 𝑘 (·) ≥ 0,
(ii)

∫
R𝑑
𝑘 (𝑢) d𝑢 = 1 and

(iii) ∫
R𝑑
𝑢𝑖 · 𝑘 (𝑢) 𝑑𝑢 = 0 (17.1)

for all 𝑖 = 1, . . . , 𝑑.

Rescaling: note that 𝑘ℎ (𝑢) B 1
ℎ𝑑
𝑘

(
𝑢
ℎ

)
, ℎ > 0 (more generally, 1

ℎ1 · · ·ℎ𝑑 𝑘
(
𝑢1
ℎ1
, . . . ,

𝑢𝑑
ℎ𝑑

)
) is a kernel,

provided that 𝑘 (·) is a kernel.

Definition 17.1 (Kernel density estimaton (KDE)). The kernel density estimator for data 𝑋𝑖 ∈ R𝑑,
𝑖 = 1, . . . , 𝑛, is

𝑓𝑛 (𝑥) B
1
𝑛

𝑛∑︁
𝑖=1

𝑘ℎ (𝑥 − 𝑋𝑖) ,

where ℎ > 0 is the bandwidth. In some fields such as signal processing and econometrics it is
also termed the Parzen–Rosenblatt window method.1

Remark 17.2. Note, that 𝑥 ↦→ 𝑓𝑛 (𝑥) is a density on R𝑑 for every 𝑛 ∈ {1, 2, . . . }.
Compare with the histogram.

17.1 THE BIAS TERM

The bias of the density estimator 𝑓𝑛 (·) can be expressed as

E 𝑓𝑛 (𝑥) =
1
𝑛

𝑛∑︁
𝑖=1

∫
R𝑑
𝑘ℎ (𝑥 − 𝑦) 𝑓 (𝑦) d𝑦 = ( 𝑓 ∗ 𝑘ℎ) (𝑥), (17.2)

where ∗ denotes the usual convolution of densities. It follows from (17.2) that 𝑓𝑛 (𝑥) is biased in
general. The bias can be stated as

bias 𝑓𝑛 (𝑥) B E 𝑓𝑛 (𝑥) − 𝑓 (𝑥) =
1
𝑛 ℎ𝑑

𝑛∑︁
𝑖=1

∫
R𝑑
𝑘

( 𝑥 − 𝑦
ℎ

) (
𝑓 (𝑦) − 𝑓 (𝑥)

)
d𝑦

=
𝑦←𝑥−ℎ 𝑢

∫
R𝑑
𝑘 (𝑢)

(
𝑓 (𝑥 − ℎ � 𝑢) − 𝑓 (𝑥)

)
d𝑢, (17.3)

1Emanuel Parzen, 1929–2016, Murray Rosenblatt, 1926
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where we denote the entrywise product (Hadamard product) by ℎ � 𝑢 = (ℎ · 𝑢𝑖)𝑑𝑖=1 (similarly for
matrices).

It is evident that E 𝑓𝑛 (𝑥) → 𝑓 (𝑥) whenever ℎ𝑛 → 0 and if 𝑥 is a point of continuity of 𝑓 . Indeed,
by assuming that 𝑓 is smooth and employing a Taylor series expansion (17.3) reduces to

bias 𝑓𝑛 (𝑥) =
∫
R𝑑
𝑘 (𝑢)

(
𝑓 (𝑥) − 𝑓 ′ (𝑥)⊤ℎ � 𝑢 + 1

2
(ℎ � 𝑢)⊤ 𝑓 ′′ (𝑥) (ℎ � 𝑢) − 𝑓 (𝑥) + 𝑜(ℎ2)

)
d𝑢

=
1
2
ℎ⊤

(
𝑓 ′′ (𝑥) � 𝜅

)
ℎ + 𝑜(ℎ2

𝑚𝑎𝑥), (17.4)

whenever (17.1) holds and where 𝜅 is the matrix with entries 𝜅𝑖 𝑗 =
∬
𝑢𝑖𝑢 𝑗 𝑘 (𝑢) d𝑢. Note that

the expression (17.3), as well as the approximation (17.4) are deterministic quantities, they
do not involve any random component. Instead, the bias depends on the density function 𝑓

and its smoothness, or (local) differentiability. Moreover it should be noted that the bias tends
asymptotically to 0 in (17.3) and (17.4), provided that ℎ𝑚𝑎𝑥 = max {ℎ1, . . . ℎ𝑑} → 0.

17.2 MEAN SQUARED ERROR

The variance of the multivariate kernel statistics is

var 𝑓𝑛 (𝑥) = var
1

𝑛 · ℎ1 . . . ℎ𝑑

𝑛∑︁
𝑖=1

𝑘

(
𝑥 − 𝑋𝑖
ℎ

)
=
𝑛

𝑛2 var
1

ℎ1 . . . ℎ𝑑
𝑘

(
𝑥 − 𝑋1
ℎ

)
=

1
𝑛

∫
R𝑑

1
ℎ2

1 . . . ℎ
2
𝑑

𝑘

( 𝑥 − 𝑦
ℎ

)2
𝑓 (𝑦) d𝑦 − 1

𝑛

(
1

ℎ1 . . . ℎ𝑑

∫
𝑘

( 𝑥 − 𝑦
ℎ

)
𝑓 (𝑦) d𝑦

)2

=
1

𝑛 · ℎ1 . . . ℎ𝑑

∫
R𝑑
𝑘 (𝑢)2 𝑓 (𝑥 − ℎ � 𝑢) d𝑢 − 1

𝑛

(∫
𝑘 (𝑢) 𝑓 (𝑥 − ℎ𝑢) d𝑢

)2

=
𝑓 (𝑥)

𝑛 · ℎ1 . . . ℎ𝑑

∫
R𝑑
𝑘 (𝑢)2 d𝑢 + 𝑓 (𝑥)

2

𝑛
+ 𝑜

(
1

𝑛 · ℎ1 . . . ℎ𝑑

)
, (17.5)

and the mean squared error is given by (cf. (12.9)) is

mse 𝑓𝑛 (𝑥) B E
(
𝑓𝑛 (𝑥) − 𝑓 (𝑥)

)2
=

(
bias 𝑓𝑛 (𝑥)

)2
+ var 𝑓𝑛 (𝑥). (17.6)

=

(
1
2
ℎ⊤

(
𝑓 ′′ (𝑥) � 𝜅

)
ℎ

)2
+ 𝑓 (𝑥)
𝑛 · ℎ1 . . . ℎ𝑑

∫
R𝑑
𝑘 (𝑢)2 d𝑢 + 𝑜(· · · ) (17.7)

To minimize the mean squared error with respect to a particular direction ℎ𝑖 it is advantageous
to get rid of the mixed terms ℎ𝑖ℎ 𝑗 (𝑖 ≠ 𝑗) in (17.4) for the bias. This can be accomplished by
assuming that

𝜅𝑖 𝑗 =

∫
R𝑑
𝑢𝑖 𝑢 𝑗 𝑘 (𝑢) d𝑢 = 0 whenever 𝑖 ≠ 𝑗 . (17.8)

minimized for

ℎ𝑑+4𝑛 ≃ 𝑑
𝑛
·
𝑓 (𝑥) ·

∫
R𝑑
𝑘 (𝑢)2 d𝑢(∑𝑑

𝑖=1 𝜅𝑖,𝑖 · 𝜕
2

𝜕𝑥2
𝑖

𝑓

)2 , i.e., ℎ𝑛 ≃
©­­­«
𝑑

𝑛
·
𝑓 (𝑥) ·

∫
R𝑑
𝑘 (𝑢)2 d𝑢(∑𝑑

𝑖=1 𝜅𝑖,𝑖 · 𝜕
2

𝜕𝑥2
𝑖

𝑓

)2

ª®®®¬
1

𝑑+4

, (17.9)
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which is

ℎ𝑛 = 𝑛
− 1

5 ·
(
𝑓 (𝑥)
𝑓 ′′ (𝑥)2

)1/5
·
©­­«

∫ ∞
−∞ 𝑘 (𝑢)

2 d𝑢(∫ ∞
−∞ 𝑢

2 𝑘 (𝑢) d𝑢
)2

ª®®¬
1/5

in dimension 𝑑 = 1.

Minimizing the mean squared error. Minimizing the mean squared error includes minimiz-
ing (17.5) over all potential candidates of kernels. The following result provides an answer.

Proposition 17.3 (Epanechnikov). On R1, consider kernels with the properties
(i) 𝑘 (·) ≥ 0,
(ii)

∫ ∞
−∞ 𝑘 (𝑢) d𝑢 = 1 and

(iii)
∫ ∞
−∞ 𝑢

2 𝑘 (𝑢) d𝑢 = 1 (scaling).

The Epanechnikov kernel2 𝑘𝐸 (𝑢) B 3
√

5
20

(
1 − 𝑢2

5

)
· 1[−√5,

√
5] (𝑢) satisfies these properties and

minimizes ∫ ∞

−∞
𝑘 (𝑢)2 d𝑢

among all kernels with the above properties (i)–(iii). We have
∫ ∞
−∞ 𝑘𝐸 (𝑢)

2 d𝑢 = 3
√

5
25 = 0.268 . . . .

Proof. Note first that 1 − 𝑢2

5 < 0 and 𝑘 (𝑢) ≥ 0 = 𝑘𝐸 (𝑢) whenever |𝑢 | >
√

5. We thus have∫ ∞

−∞

(
𝑘 (𝑢)−𝑘𝐸 (𝑢)

)
· 𝑘𝐸 (𝑢) d𝑢 ≥

3
√

5
20

∫ ∞

−∞

(
𝑘 (𝑢) − 𝑘𝐸 (𝑢)

)
·
(
1 − 𝑢

2

5

)
d𝑢

=
3
√

5
20

∫ ∞

−∞
𝑘 (𝑢) − 𝑘𝐸 (𝑢) d𝑢 −

3
√

5
100

∫ ∞

−∞
𝑢2𝑘 (𝑢) − 𝑢2𝑘𝐸 (𝑢) d𝑢 = 0

by (ii) and (iii). Hence∫ ∞

−∞
𝑘 (𝑢)2 d𝑢 =

∫ ∞

−∞
(𝑘 (𝑢) − 𝑘𝐸 (𝑢) + 𝑘𝐸 (𝑢))2 d𝑢

=

∫ ∞

−∞
(𝑘 (𝑢) − 𝑘𝐸 (𝑢))2 d𝑢 + 2 ·

∫ ∞

−∞
(𝑘 (𝑢) − 𝑘𝐸 (𝑢)) 𝑘𝐸 (𝑢) d𝑢 +

∫ ∞

−∞
𝑘𝐸 (𝑢)2 d𝑢

≥ 0 + 2 · 0 +
∫ ∞

−∞
𝑘𝐸 (𝑢)2 d𝑢 =

3
√

5
25

and thus the assertion. □

Fact 17.4 (Silverman’s rule of thumb). In practice, Silverman’s rule of thumb is often used, i.e.,

ℎ𝑛 =
1.06
𝑛1/5 𝑠𝑛.

2Occasionally, with a different scaling than (iii), the kernel is defined on the support |𝑢 | ≤ 1 by 𝑘𝐸 (𝑢) = 3
4

(
1 − 𝑢2

)
.
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17.3 INTEGRATED MEAN SQUARED ERROR

If, instead of the mean squared error at a specific point 𝑥 in (17.6), the mean integrated square
error (compare with (12.5) for the distribution function)

mise 𝑓𝑛 B

∫
R𝑑

mse
(
𝑓𝑛 (𝑥)

)
𝑓 (𝑥) d𝑥 = E

∫
R𝑑

(
𝑓𝑛 (𝑥) − 𝑓 (𝑥)

)2 d𝑥

is to be minimized, then the optimal bandwidth is

ℎ𝑑+4𝑛 ≃ 𝑑
𝑛
·

∫
R𝑑
𝑘 (𝑢)2 d𝑢(∑𝑚

𝑖=1 𝜅𝑖,𝑖
∫
R𝑑
𝑓𝑥𝑖 𝑥𝑖 d𝑥

)2 , (17.10)

which is the same order as in (17.9).3
Remark 17.5. Assumption (17.8) is an assumption on the kernel 𝑘. Any kernel exhibiting the
product form

𝑘 (𝑢) = 𝑘1 (𝑢1) · 𝑘2 (𝑢2) · . . . 𝑘𝑑 (𝑢𝑑)
satisfies this assumption. The bias (17.4) of a product kernel of the particular form 𝑘 (𝑢) =

𝑘 (𝑢1) · 𝑘 (𝑢2) · . . . 𝑘 (𝑢𝑑) reduces to

bias 𝑓𝑛 (𝑥) =
𝜅2
2

𝑑∑︁
𝑠=1

ℎ2
𝑠 𝑓𝑥𝑠 𝑥𝑠 (𝑥) + 𝑜

(
max
𝑠=1,...𝑑

ℎ2
𝑠

)
,

where
𝜅 (2) B

∫
R𝑑
𝑢2 𝑘 (𝑢) d𝑢 (17.11)

is the second moment (or variance) of the distribution associated with the kernel.
Remark 17.6. Both formulae ((17.9) and (17.10)) for the asymptotic optimal bandwidth involve
𝑓 ′′, the Hessian of the density function 𝑓 . As the function 𝑓 is unknown (this is what kernel
density estimation intends to estimate) the formulae provide the correct asymptotic order, but
the optimal constant remains an oracle (cf. Tsybakov [19]). Different methods to obtain an
optimal bandwidth as cross-validation are designed to overcome this difficulty and outlined in
Racine et al. [16], e.g., or plug-in rules of Sheather [18].

Asymptotic normality. The kernel density estimator (2.9) is a sum of independent, identically
distributed random variables. Evoking the central limit theorem (CLT, Theorem 4.3) for indepen-
dent identically distributed random variables, it is expected that after correcting the bias (17.4),
the estimator 𝑓𝑛 (𝑥) satisfies the CLT√︁

𝑛 ℎ1 . . . ℎ𝑑

(
𝑓𝑛 (𝑥) − 𝑓 (𝑥) −

𝜅 (2)
2

𝑑∑︁
𝑠=1

ℎ2
𝑠

𝜕2

𝜕𝑥2
𝑖

𝑓

)
𝑑−−→ N

(
0, 𝑓 (𝑥) · 𝜅𝑑(2)

)
, (17.12)

where
𝜅 (2) B

∫
𝑘 (𝑢)2 d𝑢

(notice the difference to 17.11). This is indeed the case, as is shown in Li and Racine [10,
Theorem 1.3] under mild regularity conditions by employing Liapunov’s central limit theorem for
triangular arrays.

3Note, that
∑𝑚

𝑖=1 𝜅𝑖,𝑖 𝑓𝑥𝑖 𝑥𝑖 = div (𝜅 � ∇ 𝑓 ), and
∑𝑚

𝑖=1 𝜅𝑖,𝑖 𝑓𝑥𝑖 𝑥𝑖 = 𝜅 Δ 𝑓 (the Laplace operator) for constant 𝜅𝑖,𝑖 = 𝜅.
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17.3 INTEGRATED MEAN SQUARED ERROR 145

Remark 17.7 (Over- and undersmoothing). Notice that the bias term in (17.12) cannot be
dropped if the bandwidth is chosen as proposed in (17.9) or (17.10), because

√
𝑛 ℎ1 . . . ℎ𝑑 ·ℎ2

𝑛 ∼ 1
whenever ℎ𝑛 ∼ 𝑛−1/(𝑑+4) . By choosing ℎ𝑛 ∼ 𝑛−𝛼 for some 𝛼 > 1/(𝑑+4), the bias is asymptotically
negligible relative to 𝑓𝑛 − 𝑓 . This is known as undersmoothing.

In case of oversmoothing (for example if ℎ𝑛 ∼ 𝑛−𝛼 and 𝛼 < 1/(𝑑+4)) the normalized term
√
𝑛 ℎ1 . . . ℎ𝑑 ·

(
𝑓𝑛 − 𝑓

)
in (17.12) diverges, but 𝑓𝑛 − 𝑓 still converges.
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18Analysis of variance — ANOVA

I have nothing to say,
I am saying it,
and that is poetry
as I need it.

John Cage, 1912–1992

By Dana. See https://www.tu-chemnitz.de/mathematik/fima/public/anova.pdf
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19Principal Component Analysis

Erfunden. Alles erfunden.

Johann Wolfgang von Goethe,
1749–1832, in Faust II

19.1 LINEAR MODEL WITH NORMAL ERRORS

Consider the linear model with observations 𝑋𝑖 = 𝜇 + 𝐿 𝜀𝑖 , where 𝜀𝑖 ∼ N(0,1) are independent
multivariate normals. Recall, that

𝑋 ∼ N (𝜇, Σ) , (19.1)

where Σ = 𝐿 𝐿⊤ = cov 𝑋.
Let 𝑊 be the orthonormal matrix (𝑊𝑊⊤ = 1𝑑) providing the factorization (eigendecomposi-

tion) of the covariance matrix, cov(𝑋) = 𝑊 Λ𝑊⊤, or

cov(𝑋) ·𝑊 = 𝑊 · Λ and Λ B

©­­­­«
𝜆1 0

. . .

0
. . . 0

. . . 0 𝜆𝑑

ª®®®®¬
.

The matrix 𝑊 = (𝑤1 | · · · | 𝑤𝑑), with columns 𝑤 𝑗 , does not change lengths.

Remark 19.1. Note, that 𝐿′ B 𝑊Λ
1/2 and 𝐿′′ B 𝑊Λ

1/2𝑊⊤ satisfy 𝐿′ 𝐿′⊤ = 𝐿′′ 𝐿′′⊤ = 𝐿 𝐿⊤ = Σ.

19.2 REDUCING THE DIMENSIONALITY OF THE PROBLEM

Definition 19.2. The transformed variable 𝑋̃ B 𝑊⊤𝑋 is called principal component. Note, that
𝑋 = 𝑊 𝑋̃.

Without loss of generality we assume that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑. The eigenvalue 𝜆 𝑗 is the
variance of the 𝑗-th principal component (the first principal component has the largest possible
variance).

Remark 19.3 (Truncated transform). For 𝑑′ ≤ 𝑑, the first 𝑑′ principal components are

(𝑤1 | · · · | 𝑤𝑑′ )⊤ · 𝑋 = ( 𝑋̃1, . . . , 𝑋̃𝑑′ ) ∈ R𝑑
′
.

The fraction of the total variance explained by the first 𝑑′ principal components is
∑𝑑′

𝑗=1 𝜆 𝑗∑
𝑗=1 𝜆 𝑗

.

Proposition 19.4. The principal component follows the distribution

𝑋̃ ∼ N
(
𝑊⊤𝑏 +𝑊⊤𝐴 𝜇, Λ

)
(19.2)
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and its coordinates are independent (cf. Theorem 3.15).
Further, it holds that

𝑋 ∼ 𝜇 +𝑊 · Λ1/2 · N (0, 1𝑑) . (19.3)

Proof. Using (3.6) it holds that

𝑋̃ = 𝑊⊤𝑋 ∼ N
(
𝑊⊤𝜇, 𝑊⊤Σ𝑊

)
∼ N

(
𝑊⊤𝜇, Λ

)
.

The coordinates or 𝑋̃ are independent, as Λ in (19.2) is a diagonal matrix.
Eq. (19.3) follows from (19.2) by shifting the mean and the fact that N(0, 𝜆) ∼

√
𝜆N(0, 1) for

univariate normals, i.e.,
𝑋 ∼ 𝑊𝑋̃ ∼ 𝑊𝑊⊤𝜇 +𝑊 · Λ1/2 · N (0, 1𝑑) .

□

Remark 19.5. Useful approximations including only the first, most important principal compo-
nents are

𝑋 ′𝑖 ≈ 𝑋𝑛 +
𝑑′∑︁
𝑗=1
𝜉𝑖𝑗 ·

√︁
𝜆 𝑗 · 𝑤 𝑗

where 𝑑′ < 𝑑 and 𝑤 𝑗 are the columns of 𝑊 = (𝑤1 | · · · | 𝑤𝑑). Note, that 𝑋𝑛 is an estimator for
𝑏 + 𝐴𝜇 and cov(𝑋) has to be estimated as well from the empirical observations.

19.3 KARHUNEN–LOÈVE

Theorem 19.6 (Karhunen–Loève). The linear model (19.1) has the expansion

𝑋𝑖 ∼ E 𝑋 +
𝑑∑︁
𝑗=1

√︁
𝜆 𝑗 · 𝜉𝑖𝑗 · 𝑤 𝑗 , (19.4)

where 𝜉𝑖
𝑗

are all independent standard normals, 𝜉𝑖
𝑗
∼ N(0, 1) and 𝑤 𝑗 are the columns of 𝑊 =

(𝑤1, . . . , 𝑤𝑑).

Definition 19.7. The (Fourier series) expansion (19.4) is called Karhunen–Loève expansion
of 𝑋.

Proposition 19.8. The models (19.1) and (19.4) cannot be distinguished in distribution.

Proof. Evident from (19.3). □

Examples

Figure 19.1a visualizes a 3-dimensional stochastic model, 𝑋 ∈ R3; the scatter plot displays the
pairs (𝑋𝑖,1, 𝑋𝑖,2), (𝑋𝑖,1, 𝑋𝑖,3) and (𝑋𝑖,2, 𝑋𝑖,3). Included in the display as well are realizations of
approximations using only the first (green) and the first two (purple) components.

Figure 19.1b displays realizations of non-normally distributed data 𝑋 ∈ R3. However, the
principal components are notably useful linear approximations of the non-normal and non-linear
model: indeed, the data and PCA3 (includes all 3 components) are almost indistinguishable,
but also PCA2 (includes only the first two components) explains a lot.

Lemma 19.9. For the Euclidean norm it holds that var ∥𝑋 ∥ ≤ E ∥𝑋 − E 𝑋 ∥2 =
∑𝑑
𝑗=1 𝜆 𝑗 = traceΣ.
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Figure 19.1: Principal component analysis
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Proof. From Jensen’s inequality we have that ∥E 𝑋 ∥ ≤ E ∥𝑋 ∥, hence

var ∥𝑋 ∥ = E ∥𝑋 ∥2 − (E ∥𝑋 ∥)2 ≤ E ∥𝑋 ∥2 − ∥E 𝑋 ∥2 = E ∥𝑋 − E 𝑋 ∥2 .

Further,

E ∥𝑋 − E 𝑋 ∥2 = E


𝑋̃ − E 𝑋̃

2

= E

𝑑∑︁
𝑗=1

(
𝑋̃ 𝑗 − E 𝑋̃ 𝑗

)2

=

𝑑∑︁
𝑗=1
E

(
𝑋̃ 𝑗 − E 𝑋̃ 𝑗

)2
=

∑︁
𝑗=1

var 𝑋̃ 𝑗 =
∑︁
𝑗=1
𝜆 𝑗 = traceΣ,

as 𝑊 is unitary and the coordinates of 𝑋̃ are independent. □

19.4 RELATION TO SINGULAR VALUE DECOMPOSITION AND THE SCORE

Assume that the model has 0 mean (𝑏 = 𝜇 = 0) and let X ∈ R𝑁×𝑑 denote the matrix collecting
all 𝑁 observations (repetitions). Then the estimated covariance is 1

𝑁
X⊤X and we have the

singular value decomposition of the data by X = 𝑈Λ
1/2𝑊⊤ (here, 𝑈 ∈ R𝑁×𝑁 and 𝑊 ∈ R𝑑×𝑑 are

orthonormal and

Λ̂ =

©­­­­­­«
𝜆̂1 0

. . .

0
. . . 0

...
. . . 𝜆̂𝑑

0 . . . 0

ª®®®®®®¬
∈ R𝑁×𝑑

is a rectangular diagonal matrix carrying the squared singular values).

Definition 19.10. The score matrix is 𝑇 B 𝑋𝑊 .

Remark 19.11. The score 𝑇𝑖 𝑗 provides the relative importance of the 𝑗-th principal component
of the datum 𝑋𝑖. It holds that 𝑇 = 𝑈Λ

1/2.
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20Extreme Value Statistics

Dimidium facti, qui coepit, habet:
sapere aude, incipe.

Quintus Horatius Flaccus, 65 – 8 a. d.

http://www.math.nus.edu.sg/∼matsr/ProbI/Lecture12.pdf
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A
a posteriori, 79
a priori, 79

B
Bayes estimator, 111
Beta function, 48
bias, 110
Brownian bridge, 100

C
Central limit theorem, 42
coefficient

correlation, 25
rank, 25

coefficient of determination, 125
confidence interval, 85
correlation

Kendall, 25
Pearson, 25
Spearman, 27

D
decision rule, 103
density function, 11
design matrix, 121
distribution

Beta, 55
binomial, 17
𝜒, 53
𝜒2, 47
Erlang, 47
exponential, 47
Fisher 𝐹, 53
Gamma, 47
logistic, 131
multinomial, 17
normal, 31

multivariate, 34
posterior, 112
prior, 111
Student 𝑡, 51

distribution function, 11

E
empirical distribution function, 93
empirical measure, 93
equalizer rule, 104
error

type I, 58
type II, 58

estimator, 103
asymptotically normal, 116
consistent, 116
unbiased, 110

expectile, 15
exponential family, 139

F
Fisher information, 115

G
Gamma function, 47
generalized inverse, 14

I
iid, 13
interquartile range, 14

K
kurtosis, 21

L
law of a random variable, 10
law of total expectation, 14
least squares estimator, 122
likelihood function, 107
likelihood ratio, 63
logistic function, 131
logistic kernel, 131
logit function, 131

M
Mahalanobis distance, 122
mean squared error, 110
median, 14
midhinge, 99
midrange, 99
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N
normal equations, 122

O
Order statistics, 97

P
power, 59
power function, 70
precision matrix, 11
principal component, 149
prior

improper, 113
probit function, 134
pseudomedian, 99

Q
quantile, 85
quantile function, 14
quartile, 14

R
range, 99
region

acceptance, 57
critical, 57
rejection, 57

regression
linear, 121
logistic, 131

residual, 122

S
sample

covariance, 23
mean, 19
variance, 19

scedasticity, 124
heteroscedasticity, 124
homoscedasticity, 124

score, 107
sigmoid function, 131
significance

statistical, 58
skewness, 23
statistic

sufficient, 139

T
test

most powerful, 66
uniformly most powerful test, UMP, 70

V
value

critical, 66
p-value, 65

variogram, 121
semivariogram, 123
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