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Preface and Acknowledgment

The purpose of these lecture notes is to facilitate the content of the lecture and the
course. From experience it is helpful and recommended to attend and follow the lec-
tures in presence. The lecture notes do not cover the lectures completely.

Initial literature on the subject includes Box et al. (2013). Brockwell and Davis (1987)
properly describe the mathematics of time series.

Important references for this lecture include Brockwell and Davis (2002) and Shumway
and Stoffer (2000). Hardle et al. (1997) and Fan and Yao (2003) discuss nonparamet-
ric time series. Time series for financial applications can be found in Andersen et al.
(2009); Brooks (2014) and Franke et al. (2004). Some content (including problems)
follows these references very closely.

Please report mistakes, errors, violations of copyright, improvements or necessary
completions.

Further description of the course:
https://www.tu-chemnitz.de/mathematik/studium/module/2013/M22.pdf

Additional material: kick-starting time series in R by Salima Abdalla,
https://www.tu-chemnitz.de/mathematik/fima/public/ZeitreihenAbdalla.pdf


https://www.tu-chemnitz.de/mathematik/studium/module/2013/M22.pdf
https://www.tu-chemnitz.de/mathematik/fima/public/ZeitreihenAbdalla.pdf
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1.1

1.2

Preliminaries, Notations, ...

The fundamental cause of the trouble
is that in the modern world the stupid
are cocksure while the intelligent are
full of doubt.

Bertrand Russell, 1872—1970

NOTATION AND CONVENTION

Time series analysis is a subarea of (mathematical) statistics.

Definition 1.1. A stochastic process on a probability space (Q, A, P) is a family of
random variables (X;),cr-

Typical index sets for time series include T =N and T = Z.

By convention, the time-series X = (X;);cr is a row vector (mainly, because C/C++
and NumPy (Python) use row-major (lexicographical) order; Julia, Matlab and R are
column-major).

BOX—JENKINS MODELING

The Box—Jenkin modeling approach is a three-step ((ii)—(iv) below) modeling approach
(cf. Box et al. (2013)1):

(i) Data preparation

(i) Model identification and model selection

(i) Parameter estimation

(iv) Model checking

(v) Forecasting
The law of parsimony, aka. Occam’s razor.2

~— ~— — —

Example 1.2 (Classical decomposition). A typical result of the Box—Jenkins modeling
is the decomposition (the classical decomposition)

Xe= my + kq + 5+ f(uy) + Zy,
N—— N—— N—— N—— N——
trend  economic cycle Se€ason nonlinear control  residual, unexplained

1See also https://robjhyndman.com/papers/BoxJenkins.pdf for a nice overview.
2William of Ockham, 1287—1347
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Figure 1.1: Charles Minards map of Napoleon’s Russian campaign of 1812,
https://en.wikipedia.org/wiki/Charles_Joseph_Minard
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Figure 1.2: Dow Jones Insdustrial Average, historic chart. Source:
http://allstarcharts.com/110-years-of-the-dow-jones-industrial-average-volatility-is-
normal/
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Figure 1.3: Prices for electricity and natural gas

where m; is a trend component (k, another, short-term trend, regime), s, a seasonal
component (f(u;) a control) and Z, an unexplained error, or noise. For an example
consider Figure 1.4a.

TIMESTAMP

The timestamp is an index which can be identified with a float number. In Excel, e.g.,
Jan 15,1900 = 1,00 or 44000,35 = June 18", 2020, 8:24. The Astronomers’ time stamp
is 2018-05-27 22:50:55.338162 + 02:00 = 2458266.3686960433, for example.

Python’s datetime and panda’s timestamp start with 1900 as well. Unix time is the
number of seconds since Jan 1%t, 1970, 00:00 UTC, without leap seconds.

Note, that this approach allows algebra on dates. ¢ + 1 is the next instant of time
day (day, say, or second, year) based on the implementation; r, —¢; is the term between
different dates, measured in base time units (seconds, in Unix, e.g.).

Of course, including the time stamp #; in the time series X;, one can consider the
new time series (t;, X;,),,;» indexed by N, say.

As an example for a time series with non equidistant timestams see Figure 1.5.

Version: May 16, 2023
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bandwidth = 0.0012

(b) The periodogram of the nottem data exposes the frequency f = 1—12 ~ 0.083

Figure 1.4: The nottem data from R
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2.1

2.2

The trend

All shall be well and all shall be well
and all manner of thing shall be well.

Julian of Norwich, 1342—-1416

FILTERS
Filters are employed to increase the signal-to-noise ratio without greatly distorting the
signal.

Definition 2.1. A Filter is a map, mapping a time series to another time series

(Xt)rez = (M) ez, -

A general linear filter has the form

my ZZan,.,.j. (21)

JEZ

In what follows we discuss low-pass filters, aka. high-cut filter: a low-pass filter is
a filter that passes signals with a frequency lower than a certain cutoff frequency and
attenuates signals with frequencies higher than the cutoff frequency.

Note, that we may rewrite (2.1) formally as matrix product, m = AX, or

m_q ao aj X—l
mo | = a1 ap ai Xo
mi X1

on RZ.

THE LEAST SQUARES FILTER

Cf. linear models in math. statistics,
https://www.tu-chemnitz.de/mathematik/fima/public/mathematischeStatistik.pdf.

15
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16 THE TREND

POLYNOMIAL FITTING—SAVITZKY—GOLAY FILTER

The data points X; are observed at r + z with z € {z;: i = 1,...,m} c Z and approximat-
ed/ fitted with a function
mp(z) =P1-81(2) +Po-g2(2) + -+ Pr - gk(2) =g(2) "B (2.2)
with g(z) = (g0(2), - - ., 8x(2)) - For g;(z) = z/~", the function my is a polynomial.
The coefficients g = (B4, ..., Bir) are chosen to minimize
m k 2 m
Wi(Xt+zi - Z,BJ gj(Zi)) = Z Wi (Xt+zi - m,B(Zi))z-
i=1 j=1 i=1
Set

j=0:k
G = (gj(Zi))j c R+ xm

i=1:m

Differentiating with respectto 8, , ¢ =1, ..., k, gives the first order conditions

m k m m k
0=>" w,~2(Xz+zi -8 g_i(Zi))gf(Zi) =23 ge(z)wiXiz —2 ) ge(z)wi ) (i) ﬁj),
i=1 j=1 i=1 i=1 Jj=0
i.e., the normal equations
G"WX =G TWGg (2.3)

with solution 8= (GTWG)™ ' GTWX (or 8= (GTG) ' GTX, if W = 1). Note thatonly z = 0
is important to evaluate the polynomial (2.2), i.e., mg(0) = X,. That is,
X, ~g(0)"B=¢g(0)T (GTWG) ™' GTWX.

Remark 2.2. The formula (2.2) can be employed to predict X; ~ mg(0) or to extrapolate
the smoothed data by simply evaluating X;.A = mg(A) at z = A appropriately.

Remark 2.3. The idea can be extended and used to higher dimensional data as well.
Example 2.4 (Savitzky—Golay filter). For m = 5 and polynomials of degree k =3 (g(z) =

1 -2 4 -8
1 -1 1 -1
(1,z,2% ..., 20) withz e {21, .,0,... 21} (m odd) we obtain G =[1 0 0 0
1 1 1 1
1 2 4 8
_3 12 1 1 _3
35 35 35 35 35
l L -z o 2z -1 : :
and (G'G)” GT =| 2 3 . 3 12| The regression polynomial, evaluated
/R
- s 0 -5 mn

12
at z =0, is the linear filter
1
ny; = E (_3 Xt—2 + 12 X[_l + 17 Xz + 12 X[+1 - 3X[+2) .
Example 2.5. For z; € {0,-1,-2,-3,-4} and k = 3, the filter is

1
my = o5 (09X +4 X1 =6 X2 +4Xi-3 = Xi—a) .

rough draft: do not distribute
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2.3.1 Spencer filter

The Spencer 15-point moving average (MA) filter has the weights
1
(a_7,...,a7) = 0 (=3,-6,-5,3,21,46,67,74,67,46,21,3, -5, -6, —3) .

Which polynomials are not distorted by the Spencer filter?

2.3.2 The moving average filter

1
The Savitzky—Golay filter with k = 0 is given by G = | : |and (GTG) ' GT = L.,
1
m-1
Here, the regression thus is m; = % > . Xior
=77
1 q
=5 j:z_q X (2.4)

the moving average filter.

Remark 2.6. The filter (2.4) is also optimal for k = 1.

Weights. The Savitzky—Golay filter with k£ = 0 and weights w = (wy, ..., w,,) (cf. (2.4))
is

DIFFERENCING
Definition 2.7. The (backward) difference operator is
VX =X, = X1 = (1-B)X;,

where B is the backshift,!
BX, = X,_,. (2.5)

Powers of this operator V° := 1 and V/*! := VV/ are obvious. For example, V2X, =
Xt - 2Xt—1 +Xl—2! etC

IThe backward shift operator is occasionally called lag operator and denoted L.

Version: May 16, 2023



aInquisIp Jou op :yelp ybno.

I

historic temperatures, Germany

25 . | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | L

regressio
20 - tempeara

: ilipiiig

- il LR ERE ‘w | It \ :‘ i | ‘ 1““’ il THAREER A " H‘Mmi‘
m_uwm 4W1WMH”IHHHH1WHHM““HMHMMMWWWHHMH““WWWWWIWHW”Wmlﬂ—
5 — ‘11 ‘[l‘ ‘ |||‘ )

) _
_5 - -
Ol el g "o "o "o "o "o "o "o ol ol
2z 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Z Z Z Z Z Z Z 2 2 2 Z e
= s 0> s R0 %y % e %% % g %
6 T | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | —
residual
4 — -
2 - -
2 - -
-4 - -
-6 - -
-8 - -
-10 + |0 [ T T |0 | | |0 | | |0 | | |0 | | |0 | | |0 | | |0 | | |0 | | |0 | | |0 | | |0 [
2. L. . . L. 2. 2. 2. . L. 2. 2.
Z Z Z Z Z Z Z 2 2 2 2 X
< g 0> ) 0 &y % 2 %5 0 9 s
B
Figure 2.1: Time series of historic temperatures, Germany: temperature increases by 0.546° per century o
(W)


https://de.wikipedia.org/wiki/Zeitreihe_der_Lufttemperatur_in_Deutschland

2.5

2.6
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Remark 2.8. As a matrix, mapping (X;),.z € RZ to itself, the backshift is

0 0 0
B = 1 0 0
0O 1 0

Definition 2.9. The (forward) difference is
AX; = Xt+1 - Xt = (S - ]].)Xt, (26)
where S := B~! = B* is the (forward) shift.

Remark 2.10. The operators S and B are adjoint (S = B* and B = §*) with respect to the
inner product (X | Y) = X,cz X;Y;,as (X | SY) = X, X; Y1 = 2, X1V = (BX | V).
Example 2.11 (Polynomial trend). Suppose that X, =a+br+ Z; ,thenVX,=b+VZ

—— ~—
trend m;  noise

has constant trend and V2X, = V?Z,. More generally, for X, = ¥* a;t/ + 7, then
VEX, = klay + V¥Z; and VKX, = V1 Z, completely removes the polynomial trend.

Definition 2.12. The operator
Ve :=1-B¢ (2.7)

is called lag-¢ difference operator.

Remark 2.13. Note that V, = 1 -Bf # (1 -B)* = V! (£ > 1).

LOG AND DIFFERENCING THE LOG

Consider and differentiate the transformed time series log X;. Note, that this filter is not
linear.

THE SEASONAL COMPONENT

2.6.1 Lag-¢ difference

To deseasonalize, one may also consider the filter V, := 1 -B¢, cf. (2.7). For period d,
applying V. to the model X; = m; + s; + Z; gives the new series VyX; = m; —m;_q+0 +
Z; — Z,_4 with seasonal component s, removed.
A further option is
1

1
m; = 5 (Xt + Xt—d/Z) = ) (1 +Bd/2) X; = (]1 —1/2Vd/2) X:; (2.8)

Version: May 16, 2023
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20 THE TREND

indeed, 1 (L+BY?) X = L (m; + mi_ap) + 3 (50 + 51—ap) +3 (Z + Z,_a,) has the seasonal
————
0
component with period d removed as well.

2.6.2 Non-integer periods

A generalization for periods d € R which are not necessarily integers is the operator
Vi = (1 - (d - LdJ))VLdJX + (d - LdJ)Vl_dJH’ (29)
so that the formula (2.8) remains applicable (cf. (2.11)); equivalently,

B = (1-d+|d]) B\ + (d - |d]) BY*. (2.10)

2.6.3 Moving average

The seasonal component can be removed by averaging. If the period is d = 2¢ + 1, then
the moving average filter (2.4) can do the job; for d = 24, a useful filter to deseasonalize
is

1 (1
me = Z 3 t-qg T Xt—gs1 + -+ Xpsg-1 +§ t+q | -
Another variant is
1
my = — (Xt + X1+ X gy t (d-1d])- Xt—l_dj) (2.11)

d

for a non-integer period d > 0.

EXPONENTIAL MOVING AVERAGE (EMA)
A.k.a. exponential smoothing. The smoothing operation is given recursively by

m; = aX, + (1 —a)ym,_; (2.12)

=my_1+a (X, —my_y)

and mo = Xy, where a € [0, 1] is a model parameter called exponential weight. The
parameter is often a = g or a = ﬁ, where d is a sample period comparable to the
period of the moving average. An explicit formula is

m, :Za/(l — o)X + (1 - ) Xo. (2.13)

i=1
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PROBLEMS

Exercise 2.1. Show that a linear filter (a ;) passes every polynomial of degree k without
distortion, i.e., m; = %, ;a;m;—y for all m;, = Zf.‘:o citt, iff 2ja;=1landy;j"a; =0 for
r=1,...,k.

Exercise 2.2. Show that the Spencer filter does not distort polynomials up to degree 3.

Exercise 2.3. The filter with binomial weights isa; = Zlq(ij o)y J ==%..... 3. Investigate
its properties.

Exercise 2.4. Show that the backward difference operator satisfies V' X, = 2{20(—1)" ({ ) X
Give the corresponding formula for the forward difference operator?

Exercise 2.5. Show that (2.9) and (2.10) are equivalent.
Exercise 2.6 (Newton’s backward difference formula). Show that

tit+1)
2!

t(t+1)(t+2)
3!

t
Xt:X0+TV(1)+ Vi + Vi +

and compare the formula with the Taylor series expansion.

Exercise 2.7 (Newton’s forward difference formula). Show that

t(t - I)A(z) N tt—1)(t-2)
2! 3!

t
Xt:X0+TA(1)+ A8+
and compare the formula with the Taylor series expansion.

Exercise 2.8. Implement and visualize the filters (2.8) and (2.11) for the time series
Example (3.7).

Exercise 2.9. Implement the exponential smoothing filter (2.12) in Exercise 3.3.

Exercise 2.10. Argue why the filter 1 (1 +B%+*?) X, removes seasonality of period d as
well.

Exercise 2.11. Remove the seasonality of the time series X, = sin(2réot + ¢) + Z; (&9
and ¢ deterministic), where Z, are iid.

Exercise 2.12. Remove all seasonalities of the time series X, = A;sin(2néit + ¢1) +
Ay Sin(ZJT.fzt + SDZ) +7Z;.

Exercise 2.13. Verify the exponential moving average (2.13); show as well that the
weights sum to 1.
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Stationarity

Things never happen the same way
twice.

C. S. Lewis, 1889-1936

In what follows we assume that the trend and seasonalities are already removed.

Definition 3.1. Let X, € R? be a stochastic process.
(i) mean function of a stochastic process is u(t) = EX, (u: T — R9).
(i) The variance function is o2(¢) = var X; = I (X, — u(t)) (X, — (1)) " (07%: T — RI*9);
(i) The autocovariance function is the Pearson covariance y(,1') = cov (X;, Xy')
(y: TxT — RI*9d),
cov (X,,X,/)

4/var X; -var X,/

(iv) The autocorrelation function is the Pearson correlation p(z,1") =

Proposition 3.2. We have that
2y(t,1') = (u(t) = u(t'))* + var X; + var X, — E (X, — X,)?.

Proof. Indeed,

E (X - X" = B(Xe — u() ~ (X~ p(0) + (u(t) - (1))
=E(Xy — u(1")* +B(X, — pu(1)* + (u(t") = p(2))?
— 2 B(Xy - u()) (X — u(0))
+2+ (B(Xy = (1) = B(X, = p(0))) - (1) = ()
= var X, +var X, + (u(t) — u(1'))* = 2y(1.1),
from which the assertion follows. O

Definition 3.3. A stochastic process X, is weakly or wide-sense stationary or covari-
ance stationary if
() EX, = ux(t) = ux(t+7) == pforall r € T (ux: T — RY),
(i) varX; < oo forall r € T and
(iii) cov(X;, Xi) = E(X; — ux(0)) (X — ux(t')) = yx(t,1') = yx(It = ¢'|) for yx: Z - R.

Proposition 3.4. Suppose the process is weakly stationary. Then
1
y(h) =var X, = S B (Xeen = X0)*.

23



24 STATIONARITY

Proof. The assertion is immediate from Proposition 3.2. ]

Remark 3.5 (Variogram). A spatial analogue of the (temporal) covariance used in geo-
statistics is the variogram (semivariogram; not to be confused with covariance; kriging).
It is defined as y(x,y) = 1 E (Z(x) - Z(y))*, where Z(-) is a random field.

Definition 3.6 (Strict stationarity). A stochastic process X; is stationary (strictly station-
ary), if the cumulative distribution functions satisfy

FX(-xt1+T’ LI 9xtk+T) = FX(-xtla LR ’xl‘k)
foralltyy <---<freTand T > 0.
A process is a Gaussian process if (X,,,...X;,) is multivariate normal for every n-

tuple (t1,...1,).

Remark 3.7. The augmented Dickey—Fuller test (ADF test) is the most prominent test
to test stationarity.

Definition 3.8. Let X; be a weakly stationary process. The covariance function is the
even function
y(7) = cov (Xt+r, Xt).

The autocorrelation function (aka. serial correlation or lagged correlation) is

y(7)
Vvar X; - Vvar X, 1

p(7) =

Remark 3.9. Note, that y(r) = y(—7), that y(0) = var X; and p(0) = 1.

Remark 3.10 (Z-transform). For a weakly stationary process X, with ux = EX, set
0% = yx(0) = varX;. Then the time series X; = 2LX is zero mean (EX; = 0) and
variance 0)2(, = var X; = 1. The covariance is yx(#) = 0-,2( - px(t) so that is enough to
consider the correlation p in what follows.

Proposition 3.11. The covariance function is non-negative definite, i.e.,

> aiyli-j)a; =0 (3.1)
i,j=1

foralln>1andalla,...,a,.

Proof. Consider the random vector Z := (X; - EX;,...,X, - EX,). It holds that

O<var(@'2)=E(a"Z) (a"2) =Ea"Z2ZTa=a"E(ZZ ) a = Z aiy(i—j)a;
i,J

and thus (3.1). |
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STATIONARITY 25

Definition 3.12 (White noise or white independent noise). The time series X, with un-
correlated (but not necessarily independent) components is called white noise and often
denoted w,. We shall write
Wr ~ (,uW,O'&,).
The autocovariance function of the white noise is the covariance function of iid noise
is
o2 ifr=0,

W 3.2
0 else. (3-2)

y(t+7,0) =y(1) = {

Definition 3.13 (iid noise). The time series Xi, X5, ... for X; iid with mean EX; = 0 is
called iid noise.

It holds that P(X; < xi,...Xn, < x,) = P(X; < x1) -...- P(X, < x,) and thus

P(Xn+e < x | X1,...Xn) = P(Xnse < x) and thus has no value for predicting the time
series. The autocovariance function (provided that var X; < o) is (3.2).

Definition 3.14 (Gaussian). Terms as Gaussian white noise or Gaussian iid noise are
evident.

Example 3.15 (Periodic time series). Consider the periodic time series
X, = Acos(2n&ot) + Bsin(2rér) (3.3)
for A, B uncorrelated, mean zero, variance o> and angular frequency &, fixed. Then!

y(1) = cov( Xy, Xi10) = E Xp12 X;
= E(A cos 2rnéot + B sin 2n&ot) (A cos 2n&o (1 + 7) + Bsin 2x&o (1 + 7))
=IE A? cos 2n&ot - cos 2n&o(t + ) + B2 sin 2n&ot - sin 21&o(t + 1)
= 0 cos 2méo(t — (1 + 7)) = 0% cos 2n&oT.

Example 3.16 (Cf. Proposition 4.6 below). Consider X, = Z, + 6 Z,_, with Z, uncorre-
lated, zero-mean and variance 2. Then

(1+6%) 02 ife=0,
y(6) =1002 if £ =1,
0 else

and X; is weakly stationary, as m, = 0.

1Recall the trigonometric identities

sin(a = B) =sinacos B +cosasinf and

cos(a + B) = cosa cos B F sina sin B.
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Example 3.17 (Random walk). For X;, t = 1,2,... uncorrelated, zero-mean and vari-
ance o2 define S, = X;+Xo +---+ X,. Then

t+h t t+h t t
cov(Siin, Sy) = COV(Z X,,Z ): ZZCOV Xi, X;) Z cov (X;, X;) =t o2,

i=1 j=1 i,j=1

which depends on ¢ but not on &. S; thus is not stationary.

LINEAR PROCESS WITH GIVEN AUTOCOVARIANCE

We are interested in a weakly stationary time series Xy, Xi, ... so that var X, = o> and
cov(Xy, X¢) = Yi—e¢-

Proposition 3.18 (Yule—Walker). Suppose that Z,, t = 0,..., are uncorrelated, zero
mean IE Z, = 0 with variance var Z, = 1 (not necessatrily iid, white noise, e.g.). Then, for
y(-) positive (cf. (3.1)), the time series

t—1

Xe =¢u-Xo+t-+dn - Xe1+Y: - 24 :Z¢zt—iXi+‘J/tZt (3.4)
i=0

has the acf cov (Xi, X¢) = vi_¢, Where the coefficients satisfy

’)/0 71 e Vt—l ¢t1 ’yl

|92 Y2
e =1 (3.5)

: . - : :

Yi-1 -+ Y1 Y0 Pt Vi

I, @, Tt

and

Y =0’ —r®, > 0. (3.6)

Remark 3.19. The matrix I'; is a Toeplitz matrix. Note the reverse order in (3.4).
Corollary 3.20. The function y(-) is the acf of a time series iff y(-) is positive.

Corollary 3.21 (Cf. Proposition 3.11). The matrix

Yo Y1 ... Vil 1 p1 ... pro
Ft = ’y.l Yo = 0—2 . p‘l
R 2 : R
Y-t - Y1 Y0 pr-1 ... pr 1

is positive definite.
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3.1 LINEAR PROCESS WITH GIVEN AUTOCOVARIANCE 27

Definition 3.22 (Yule—Walker). Equations (3.5) are the Yule—Walker equations.

Proof of Proposition 3.18. By construction, Z, is independent from X;, i = 0,...,t -1,
so we deduce from (3.4) that

Ye=EX; X =1 - Xtk

t
Z G1i X i + i Zs
i=1

3
:Z’)/k—iqbtﬁ kzl’t’
i=1

i.e., r; = I'; @,. It follows that X; has the desired covariance structure if the coefficients
in(3.4)are ®, =T, ' r,.
Further,

t t
varX, = 3 i b BXeiXe j U7 = Y buiVioj b+ U
i,j=1 i,j=1
and we thus find ®; T',®,+y? = o to obtain var X, = o2, i.e., (3.6) by employing (3.5). O

Proposition 3.23 (Durbin, cf. the Levinson Algorithm in Golub and Van Loan (2013)).
The solution of the Yule—Walker equations can be updated recursively as

Ye+1 — r;r-]zq)t

Ayl = 5 (37)
+ w%
@, = (‘Df ‘“’“qu’f) and (3.8)
Ar+]
Ui, =u7 (1 - a,2+1), (3.9)
0 1
where J, .= .~ .-~ 0]is the t-by-t exchange matrix.
1
Remark 3.24. The initial conditions and first solutions are
e t=0: Dy =rp:=(), Yo = 0'2, a) = % = p1 (cf. (3.7)) and thus X, = o Zy;
ct=1.01=r = (pl),lﬁ]zIO'Z(l _p12) and thus X1 = pP1 'X0+O"[1 —p%-Zl;
cr=210y= L (m _p“;z) and thus
P\ P2~ P
_ 2 _ 1=2 2+ 2
x, = 22 '021)(0+p1 PP2% +o #2'022 (3.10)
1 - pj 1 - pj 1 - pj
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28 STATIONARITY

Note that the necessary memory allocation for the update is r + O(1) and the time to
compute the update is ¢ + O(1). So the total cost to compute ®, and «; are 1>/2 + O(t)
instead of O(¢*) when inverting (3.5) directly.

Proof of Proposition 3.23. Note that J.T; = T',J; (cf. Exercise 3.12). The Yule—Walker
equations (3.5) for r + 1 read ( 5’ J’r{) ( & ) = ( 't ) and it follows that
ry Ji o (o7 Yt+1

~—_— ———
r}+1

-1 -1
2 =1 (re — a1 Jire) = @ - a1 Ly 1 = ®p — a1 J; Oy
and
2 T T
O A+l = Vi+l — ”;rJtZt =Y+l — ”zTJt (D — 4141 D) = Vi1 — ry J; @y + 417y D,

and thus a,,; = M, so (3.7) and (3.8) with (3.6). Next,

2-r @,

It ' D; — @141 J:D;
) Ye+1 Qi
2

T T 2 T
=0 =1, Oy + a1, 1P — @1 Vi41 = Y7 — Ay (7t+1 - qu)t)

2 2 2 2
(;7) Ui — Qe ; =4 (1 - %4.1)

2 _ 2 T _ 2
Vi (3_6 o =1 P =0 (

and thus (3.9).

Finally recall that the matrix I';,; is positive definite. It follows for (_Jiqj’) that

T
i N [ B A [ B
t

a 0'2—rt
————
| PS]

and thus ¢, > 0 is well defined. O

Definition 3.25 (Partial autocorrelation). The partial autocorrelation at lag ¢ (or order ¢)
of the stationary time series X; is

a(l) = corr (Xpye, Xo | Xew1s oo Xove—1) = corr (Xe, Xi ¢ | Xi—p415 .- Xi—1)

(conditioning on the intervening variables).
The partial autocorrelations are often called reflection coefficients (particularly in
signal processing).

Remark 3.26. Apparently, a(1) = p;.
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Proposition 3.27. For a time series with mean 0 it holds that
a () = @ = ay,
where ®, = R, 'r; (the solution of the Yule—Walker equation).

Proof. Indeed, this follows with (3.4) from

Xe=¢e1 - Xec1+- -+ dee1 - Xe—es1 +pe - Xe—¢ + e - Zg.

conditioned

O

From Remark 3.24 it follows that «(0) = 1, a(1) = p;, @(2) = pzl‘_% and a(3) =
1

P} =P1P3=p1P2(2=p2)+p3
(1-p2) (1-2p%+p2)

, etc.

PROBLEMS

Exercise 3.1. Simulate and visualize the time series (3.3).
Exercise 3.2. Visualize samples of the time series from Example 3.16.

Exercise 3.3 (Constant acf). Let Z; be independent with EZ; = 0 and varZ; =: o2,
i=0,1,.... Define Xy .= Zy and recursively

11—1
Xi :=Pi';ZOXj+ l—pi-p-Z
J:

with p; = #‘_’UP Simulate and visualize the time series X;,i=0,1,....

Exercise 3.4. Consider the time series X; given in Exercise 3.3. Show that E X; = 0,
varX; = o foralli € {0, 1,...} and corr(X;, X;) = p wheneveri # j (Hint: show the result

fori =0, i =1 first and use induction on i; as a side result, var (% i Xj) = Hli-Dp <§2—‘>P )

Exercise 3.5. Suppose that corr(X;,X;) < p for0 <i,j < n,i # j. Show thatn > —[l).
Discuss the consequences for the time series in Example 3.3 and show as well that

po=0<p=p1<pi<pist——> 1

Exercise 3.6. Discuss Exercise 3.3 for Gaussian random variables.

1 if¢=0,
Exercise 3.7. Simulate a time series with autocovariance functiont — 0.9 if¢ =+1,?
0.7 ift=+2
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30 STATIONARITY

1 ift =0,
Exercise 3.8. Is there a time series with autocovariance function € — 0.9 if{ ==+1,?
0.6 ift==+2
1 ift=0,
Exercise 3.9. Show that ¢ — {p ift=<+1, is an autocovariance function of a time
0 else

series iff |p| < 3. (Hint: choose a = (1,-1,1,-1,...) in (3.1).
Exercise 3.10. Verify (3.10) explicitly.
Exercise 3.11. Verify the Woodbury matrix identity.

Exercise 3.12. Verify the update (3.6) (use that R, and R;,' are persymmetric matrices,
ie., R\, =J.R;!).

Exercise 3.13. Implement the algorithm (3.4) and run tests for your choice of p,, where
Yeez lpel < oo (ie., (pe), € €1, the space of absolutely summable sequencs)
pe == 0 but Yrez lpel = 00 and

lim infg_m pe > 0.

pr O
pl z .« ..
0 1

(rTOJ (1)) , then R;41 = R, + U - V. By employing the Woodbury matrix identity (rank two
t Jit

update, aka. Sherman—Morrison—Woodbury formula, Exercise 3.11)

-1
R =R _E;IU((}) ‘1’) +VE,‘1U) VR

: =1 (R7'r, O\ (1@, O 1. (0 1
We have (use Exercise 3.12) R, U_( 0 =10 l,thusVRt U= Td, 0

and 10 +VR 'U _l—+ ! -1 It follows that
01 ' ST T, 1)

O =Ry = (ON B Jd, 0 1 1 -1 0 1 (ON
t+1 = Bpphe+l = Oril 0 1 —1 — r;—q)t _r;—q)t 1 r;rjz 0 Oril
D, _ 1 Ji®;  —J D Pr+1

Pr+1 1- rth)t _,,;F(Dt 1 ’”;Tqu)t

_ D, _ 1 (Pt+1 - r;TJt(Dt) th)z)
Pr+1 1—1”;—(1% ”tTth)z_PHl”qu)z ’

a restatement of (3.8).
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3.2 PROBLEMS 31

Exercise 3.15. In the setting of Example 3.16 set m(1) = Eexp(1Z;). Express the joint
moment generating function E exp (X", 2;X;) in terms of the function m(-). Deduce that
(X,) is stationary.

Exercise 3.16. Which of the following processes is weakly, which is strictly stationary
foriid. Z;,,t € Z?

e X, =a+bZ,+cZ,_q,

* X;=a+ bZ(),

* X; = Zcos(ct) + Z sin(ct),

* X; = Zycos(ct),

* X, =Z;cos(ct) + Z,_ sin(ct),

* X, =27,7;1.

Exercise 3.17. ForY; iid define X, = a + bt +Y, and W, = ﬁ Z?:_q Xisj. Is W,
starionary? Compute cov(W;.p, W;).

Exercise 3.18. Suppose that (X;) and (Y;) are each stationary and independent. Com-
pute the acf. of the process X; +Y;.
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4.1

Parametric models

ARMA

ARMA (Autoregressive-Moving Average) provide a parsimonious description of a (weakly)
stationary stochastic process in terms of two polynomials, one for the autoregression
and the second for the moving average. The general ARMA model was described in
the 1951 thesis of Whittle,! Hypothesis testing in time series analysis, and it was popu-
larized in the 1970 book by Box? and Jenkins.? (Wikipedia)

Definition 4.1 (ARMA). The process X; is an ARMA(p, ¢) process if the recursion

Xe =1 Xe1 4+ +0pXe p+Zi + 1 Zi 1+ -+ 0,7, (4.1)

auto regressive, AR moving average, MA

is valid for the innovation Z, ~ N'(0, o2), a white noise process. The parameters are ¢;,
i=1,...,p,and 6;, j = 1,...q. For convenience, we set 6, := 1. The lag orders are p
and gq.

Definition 4.2. With an ARMA(p, ¢) model we associate the polynomials

¢(z) =1—-¢p1z—---— ¢, z" (AR polynomial) and
0(z) =140 z+---+0,z7 (MA polynomial).
Employing the backshift operator B (cf. (2.5)) the ARMA(p, q) time series X, solves

the equation
¢(B)X; = 0(B)Z,.

Remark 4.3 (Expectation). Taking expectations in (4.1) reveals that
(1)

—EZ.

p(1) "

Remark 4.4 (Normalizing, standardizing). Suppose that the stationary time series X,
satisfies the more general equations

]EXt:

Xe=¢h Xeoi++¢p Xeptv+00Z,+01 Ziy+ -+ 0,24y, (4.2)

¢ (B)X, 6(B)Z,

1Peter Whittle, 1927—2021
2George E. P. Box, 1919-2013
3Gwilym Jenkins, 1932—1982
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4.1 ARMA 35

ARMA( [-0.9], [1.7, 1.4, 0.2, 1.0])

15
realization 1 —
realization 2 ——
10 realization 3 —— -

-10
-15
time t
autocovariance
15
10 ]
5 —

. ; Tﬂﬁﬁﬁ%%ﬁaﬁga ;
M R

-10
lag ¢
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36 PARAMETRIC MODELS

i.e., #(B)X = v +6(B)Z. Then the expectation is (with uz = EX, and u; = EZ,)

Hg = Gifg + -+ Gpug +v+ 0oz +- - +04uz,

that is
. v+0(1)-EZ
T (D)

Remark 4.5 (Transformation4). The transformed time series X, = X‘(;% and 7, =

Zi=67 qati
=4 satisfy

Ox +oxX; = p1(0x +oxXe—1) ++ -+ ¢p(ox + oxXi—p)
+v
+ éo(éz + O'Zzt) +--+ éq(éz + O'Zzt_q),

or
Xe=¢1Xp1+-+9pXi—p
v ) 07 ~ -
b X mm )+ LBy +0y)
ox O0Ox 0x
+ 2(%2: o+ 0,Z,),
Ox
that is
—Sxp(1) +620(1 .
o(B)x = Y= 0x0W) *020() 025 p)
Ox Ox
[ —
=c =:6(B)

The special choices

* 67 = uy = EZ; and oz = var Z, to obtain Z; ~ (0,1) (a standard white noise, cf.
Definition 3.12),

v+676(1)

30 to have ¢ = 0;

* O0x =
* Ox = éoO‘z to have 65 =1

reveal the standard ARMA(p, ¢) representation (4.1).

4In German also Z-Transformation
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MOVING AVERAGE, MA

The moving average process MA(q) is a special ARMA process MA(g) = ARMA(O0, q)
with ¢(-) =1 (i.e., p=0,0r¢; =---=¢, =0in (4.1)).

Proposition 4.6. The covariance function of an MA(q) process is

o230 7] < q,
COV(X“XHT):{ DS i+ 1Tl < ¢ 4.3)
0 T>q.
Proof. For the expected value we have
q
EX, = 0;EZ_;=0.
j=0
The covariance is
cov (X;, Xpsr) = (Ze Z- ,)(Z Ok Zisr- k) = Z 0,6k BZ_iZivei
j k=0 —
(r% Oj-k+r
from which the assertion is immediate. m]

Remark 4.7. Estimating the MA parameters is a nontrivial task which can be accom-
plished by nonlinear curve fitting.

Remark 4.8. Note that the autocovariance function y(r) stops abruptly, as y(r) = 0 for
T>q.

Example 4.9. Cf. Example 3.16.

AUTOREGRESSIVE AR

The autoregressive process is the special AR(p) = ARMA(p,0) process (i.e., g = 0 or
0p=---=0,=0in(4.1)),

Xt =¢1Xt_1+"'+¢pXt_p+Zt. (44)

Proposition 4.10 (Yule-Walker equations). The covariance function of an AR(p) pro-
cess satisfies the recursive equations

P
y(0) = Z¢j7(j)+0%, fort =0, (4.5)

p
y(1) = Z ¢, y(t—)) fort > 0. (4.6)
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38 PARAMETRIC MODELS

ie., yo= Zj.’zl y;¢;+varZ and (cf. (3.5))

Yo Yio oo Yp-1\{¢; Y
yiooyo - ¢ | @)
: . . ’)/1 :
Yp1 oo v1 o J\Pp Yp
Proof. With (4.4) we have
p
y(7) = cov (Xt’ Xisr) =EX; - Z GiXtsr—j+Zisr
j=1
p
=216, 7(x = ) +cov (X, Zivr).
Jj=1
Z, ifr=0,
Now note that X, depends on ...,Z_,Z, and thus cov (Z/1., X;) = {gar ! ifT 0
T>0.
Hence the result. O

Example 4.11. Consider the AR(1) process X; = ¢1X,_1 +Z,. The equations (4.5)—(4.6)
with ¢ = (¢1,0,0,...)" read

Yo=7y1-¢1+0%, (4.8)
Y1 =%0" $1,

v2 =71 ¢, etc.

o ¢

It follows that vy, = yq - ¢f and with (4.8) thus the general solution vy, = et
1

Remark 4.12. Suppose that z is a root of the polynomial ¢(-), i.e., ¢(z) = 0. Then
L=3" ¢/ orz7 =30 ¢;z- 77D ie., y(£) = z7¢ solves (4.6). By linearity, the
autocovariance function of an AR(p) process has the general form

Y=y (4.9)

|T
k

p
=1 3

for some constants cx, where z; are the roots (zeros) of the polynomial ¢(-), ¢(zx) = 0,
k=1,...,p. The constants c; are determined by the initial conditions (4.6).

Proposition 4.13. The general form of the autocovariance function is given by (4.9).

Remark 4.14. In contrast to the MA process, the autocovariance function y(-) does not
terminate abruptly (cf. Remark 4.8).

Remark 4.15. If X is an AR(p) process, then the autocorrelation is a(¢) = 0 for ¢ > p.
Table 4.1 outlines the behavior further. Notice also that a(p) = ¢,,.

rough draft: do not distribute



4.4

4.4 STATIONARY ARMA PROCESSES 39

Remark 4.16. Generalized Yule—Walker equations

(i) The roots zx determine decay of the covariance function. Note, that X, cannot
explode if |zx| > 1 forallk =1,...,p,i.e., ¢(z) #0for|z| < 1.

(ii) The roots z; and thus the decay do not depend on the moving average operator,
01,...0,.

(iii) The constants ¢, need to be determined by the initial conditions in (4.6).

Remark 4.17. It ¢1,...,¢, and 0'% = var Z; are known (p+1 parameters), then y(0),...,y(p)

can be computed from (4.6). For t > p, the correlations can be computed recursively
from (4.6).

Alternatively, if y(0),...,v(p) are known or estimated, then (4.6) can be used to
compute ¢,...,¢, and var Z.

Remark 4.18. The Yule—Walker equations provide a way to estimate the parameters
é1,...,¢, by replacing yo, ..., v, by their estimates 7, ..., 7.

STATIONARY ARMA PROCESSES

Proposition 4.19 (Linear transformation). Suppose thatY, is stationary (but not neces-
sarily iid.) and ¥ ;cz | j| < co. Then X; = ¥ ;cz ¥ ; Y, is well-defined, stationary and

yx(0) = > Wiy (- j+k).
J.keZ

Proof. The expectationis EX; = ¥ ;cz¢;EY;—; = puy - ¥ ;¢; < oo. For the autocovari-
ance, we have that

Yx(€) =E Xt - X; —EXpye - EX;
n

n n
= lim Z Ey;Yive-j Z UiY—k — Z Vi EY ek EY;

n—oo A

j==n K=n Jok==n

= Z l/’jlr//k (EYHl’—j Yk — EYt+€—j : EYt—k)
i k=—c0

D wityy (C—j+k)

Jok=eo

and thus the assertion. O

Definition 4.20 (Causal process). The ARMA(p, q) process X; is causal if there are
constants y; such that ¥ [y < e and

Xe= YW Zi . (4.10)
=0
As above, we shall also associate the function y/(z) = Z;O:o 7/ and write X; = y/(B)Z;.
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Example 4.21. Recall the process X; = ¢1X,_1 + Z,; from Example 4.11. It holds that
Xe=Zi+ 91X
=Zi+01Zi + 1 X

=) 417
j=0
so that this AR(1) can be seen as a MA(w) process.
Theorem 4.22. The covariance function of a causal time series X; is

yx(h) =05 > Wi (4.11)
j=0
Proof. This is a consequence of (4.10) and (4.3). |

Definition 4.23. The function G(z) = y(z) - ¥ (z7!) is the covariance generating func-
tion.

Theorem 4.24. It holds that 3, yx(h) 2" = 02 G(2).
Proof. Indeed,

G@ =y () w@ =3, Y u T =3 Y

j=0 k=0 heZ  k-j=h
= Z 7" Z ihlj = Z yx(h)
heZ Jj=0 heZ
with (4.11), hence the assertion. O

Theorem 4.25. For a causal ARMA(p, q) process it holds that

p q
(1) = Y ¥ (T =) g+ > O~ forr<g, (4.12)
j=1 k=1
p
y(@) =D (=) ¢; fort > q. (4.13)
j=1

Proof. Indeed,
p q
¥(7) = cov (Xt—‘ry Xz) =EX;+- Z ¢ Xe-j+ Z OkZi—k
=1 k=0

q
6, EXi X j+ ) O EX, 17 4
1 k=0

M

J

q
67—+ Y O EX Zi k.
k=0

M=

~
Il
—_
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Now note that X,_, dependson...,Z,_._1,Z,—.. Hence (4.13) for r > q.
Recall next the causal representation (4.10) so that further

p

y(7) = Z¢J7(T ])+ZekZ‘rl/1EZt v Zi-k
k=0 Jj=0

]:

Il
DM T
s
~.
\<
2
’~|
\
N~
+
.
HMQ
)
S
&
e
~

and thus (4.12). |
Remark 4.26. By (4.13), Remark 4.12 applies to ARMA(p, ¢) as well.

Theorem 4.27. Let X; be an ARMA(p, q) process (where 6(-) and ¢(-) do not have
common zeros).

X, is causal iff ¢(z) # 0 for |z| < 1. The coefficients are given by the generating
function
0(z)

U(z) = )

= > ud =y (). (4.14)
j=0

Proof. It holds that ¢(z) # 0 for |z| < 1 and ¢ is a polynomial. There is hence £ > 0 so
that £(z) = ﬁ = N7 €;2! for 2] < 1+¢. Consequently, £; (1+ %)’ — 0 and there
J—)OO

exists K > 0 so that |¢;| < ﬁ In particular, ¥;-[¢;] < co and (£,)%, € &1. By
Proposition 4.19 we may apply £(B) to ¢(B)X,; = 0(B)Z, and get X, = £(B)0(B) Z, with
N———
¥(B)

Yy asin (4.14).

As for the contrary, assume that the ARMA(p, ¢) process X; is causal, then X; =
2j=0¥;Z,-; for some y; with 2_710 lj| < oco. It holds 0(B)Z; = ¢(B)X; = ¢(B)Y(B) Z,

N————
n(B)

with n(z) := ¢(2)¥(z), which converges for |z| < 1, that is

q (e
Z Qth_j = Z T]jZ[_j.
Jj=0 j=0

Take the inner product with Z,_, on each side gives 6, = n and thus 6(z) = n(z) =
é(2)y(z) for |z| < 1. It follows that ¢(z) # 0 for |z| < 1, as 6(z) and ¢(z) have no common
zeros and as ¥(z) < oo for all |z] < 1. O

Corollary 4.28 (Corollary to Theorem 4.27 and Theorem 4.24). The covariance gener-
ating function of the general ARMA(p, q) is

n) ot = 2.9(1)9([1).
;/X( STy
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AR(p) ARMA(p, q) MA(q)

autocorrelation y(h) geometric decay geometric after ¢ cuts off at ¢
partial autocorrelation a(h) cuts off at p geometric after p geometric decay

Table 4.1: Autocorrelation and partial autocorrelation
Definition 4.29. A ARMA(p, q) process X; is invertible, if there are constants r; so that
Z,=Z7Tth_j, te’Z.
j=0

Theorem 4.30. X, is invertible, iff 6(z) # 0 for |z| < 1, cf. Theorem 4.27 with n(z) =

i _ 9(2)
2j=07jz! = -

Remark 4.31. Since an invertible moving average can be represented as infinite regres-
sion, the partial autocorrelations of a moving average process decay geometrically (cf.
Table 4.1).

SEASONAL ARMA
These models are often given by

¢5(B*)¢(B)X; = ¢ +05(B*)0(B)Z,,
where the polynomials ¢ and 6, model the seasonal components (cf. (4.2)).
ARMAX
ARMAX models have an additional exogenous variable,

¢(B)X; = c+6(B)Z; + e(B)Yy,

where Y, is an exogenous time series.
ARIMA

A time series X; is ARIMA(p,d, q) if A?X, is ARMA(p, q) (for the forward difference
operator A see (2.6)).
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4.7 ARIMA

CBOE Volatility Index, VIX, 2004 to July 2020
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4.8 GARCH

ARCH (autoregressive conditional heteroscedasticity) models have been developed by
Engle.> The ARCH(p) series satisfy the recursive equations

Xt = 016,

2 _ 2 2
Oy =@otaix;_ +-+apx_,

with parameters aj, ... o).
GARCH(p,q) (generalized ARCH) follow the recursion

Xt = 016,
2 _ 2 2
oy =aotaix;_ +-tapx;_,

2 2
+P1o,_ e+ Byoiy,

with additional parameters g, ... 8,.
Remark 4.32. Note, that y(r) =0 for = > 0.

4.9 VAR
The vector autoregression (VAR) is
Xe=¢po+ 01 Xi1+- -+, X p+ 74, (4.15)
where ¢y € R? and ¢; € R?¥*4 (j > 0). Further, the error is assumed to satisfy
() EZ =0,
(i) EZZ =% and

(iii) BZ,Z], =0.
410 MODEL SELECTION

Occam’s razor.

Which parametric model should one choose to characterize a time series? ARMA(1,2)
or ARMA(2,1)? Or is ARMA(3,0) a better choice? Will ARMA(3,1) be better compared
to ARMA(2,1)?

To select a model among others, the following criteria can be employed.

In what follows, k is the number of parameters, L is the likelihood function and » is
the number of observations.

5Robert F. Engle (1942), Nobel Memorial Price in Economic Sciences 2003
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Figure 4.2: Robert Engle, 1942. Nobel Memorial Price 1942 in Economic Sciences
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Figure 4.3: Hirotugu Akaike, 1927-2009, Japanese

4.10.1 Ordinary least squares

For the AR(p) model with X; = c+¢1X,—1+---+¢,X,_,, + Z, we consider the regression
model, where X, is the endogenous variable, X;_,..., X;_,, are the regressors and Z;
is the error term. In matrix representation (and notation),

Xpa\ (1 Xp Xpor oo X0\ (Zpa
Xp+2 1 XP+1 XP “ e X2 ¢2 ZP+2
.= . . . . .|
xr) \1 Xro Xro ... Xrop)\ ) Zr
Pp
e, X =XpB+Z.

The ordinary least squares estimator for 8 = (c, ¢1, . .. ¢p)T is given by 8 = (XTX) ' XX
(cf. the normal equations (2.3)). We may estimate o> via the OLS residuals & = X — XA

~2 _ &Té
by 6 = =t

4.10.2 Maximum likelihood

4.10.3 Akaike information criterion

Hirotugu Akaike

AIC(p.q) =logd2 ,+ (p+q)7
Schwarz information criterion:

rough draft: do not distribute



4.11 PROBLEMS 47

_ A2 logT
SIC(p’ Q) - log O—p,q + (p + 6]) T

Hannan-Quinn information criterion:
= 52 2loglog T
SIC(p’ Q) - log 0—p,q + (p + Q) T

4.10.4 Bayesian information criterion

Bayesian information (BIC) criterion or Schwarz criterion is a criterion for model selec-
tion among a finite set of models; the model with the lowest BIC is preferred. It is based,
in part, on the likelihood function and it is closely related to the Akaike information crite-
rion (AIC).

BIC = kInn —21n L, where n is the number of data points.

411 PROBLEMS

Exercise 4.1. Which type of parametric process is the time series X, = Z, - 27, 1+7Z;_.
* Plot some paths,
* the autocorrelation and
* the partial autocorrelation function.
« Compare with theoretical results elaborated in this chapter.

Exercise 4.2. As Exercise 4.1, for the time series X; = 0.9X,_1 + Z;.

Exercise 4.3. As Exercise 4.1, for the time series (1 — 1 B) (1 —n,B) X, = Z, with

3 ]71 = 1/2, ]72 = 1/5,
* 171 = 90%, 172 = 50%,
* n1 =-90%, 1, = 50% and

“Mmi=3 (1 J_ri\/g).

Exercise 4.4. Show that the ARMA(2, q) time series

q
X = ¢1Xi 1+ ¢2Xi 2+ ) 0: 7,
i=1

(for ¢1, ¢ € R) is stationary iff ¢ € (=1,1) and ¢y € (¢2 — 1, 1 — ¢7).

Exercise 4.5. Consider the ARMA process
1
X =Xi1 - ZXz—Z +Zi+7Zi

and showthat X, = Y5>, (1 +3k) 27X Z,_x. Further, the autocovariance is yy = 27* (% + Sk).

Exercise 4.6. Consider X, = 90%X,_,+Z,. Show that the partial autocorrelation function

, 90% fort = +1,
Isalr) = 0 else
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Figure 4.4: acf

ACF PACF
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Lag Lag

Figure 4.5: acf and partial acf

Exercise 4.7. Simulate some paths of a GARCH series.
Exercise 4.8. Simulate some paths of an ARIMA series.
Exercise 4.9. Describe and simulate some paths of an ARMAX series.

Exercise 4.10 (From https://www.analyticsvidhya.com). Looking at the below ACF plot
on Figure 4.4, would you suggest to apply AR or MA in ARIMA modeling technique?

Exercise 4.11 (From https://www.analyticsvidhya.com). How many AR and MA terms
should be included for the time series by looking at the above acf and pacf plots in
Firgure 4.5?
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5.1

Estimators

Eternity is a very long time, especially
towards the end.

Woody Allen, 1952

ESTIMATION OF MEAN AND VARIANCE

In what follows we shall assume that X; is weakly stationary with mean u and autoco-
variance function y(-). Set

—
S

A = Yn = —ZX,.
Theorem 5.1. Let X, be weakly stationary.
(i) It holds that E X,, =  and
(i) varX, =Lyn (1 - 'fl;') (0).

(iii) Suppose that y(¢) —0, then var X,, —— 0.

n—oo

(iv) Suppose that 350 ye| < oo, then n-varX, —— Y% ye.

The estimator /i, := X, is an unbiased and consistent estimator for .

Proof. As the time series X, is weakly stationary it holds that E X, = x and hence, by
linearity, EX, =1 ¥" EX, = u.
For the variance we have

- I v 1 ¢ 1 <
var X, :E;;(Xi —H) - ;;(Xj KW= Z E(X; — ) (X; — p)

i.j=1

n n-1 n
- % Z y(@i-j) = % ny(0) +2Z(n —5)7(5)) = % Z (1 B |n£|) 7(0).
=1

i,j=1 {=—-n
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180 International sunspot number S, : hemispheric 13-month smoothed numbers
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Figure 5.1: Sunspot numbers, http://www.sidc.be/silso/

As for (iii) choose N € N large enough so that |y(n)| < ¢ foralln > N. Then

— 1 - . 1 v o
varX, = |— Z yi-HDI<= Z ly(@ = /)l
o " iE
B (2N + Dny(0) + (n — N)’¢

n2 n—oo

The assertion follows, as ¢ > 0 was chosen arbitrarily.
Finally, we have that

n n
_ 4
lim n-varX, = lim (1 - u) v(€) = Z y(6)
n—oo n—oo n
{=—n {=—n

and thus the assertion (iv). O

Remark 5.2. It holds that nvarX,, —— Y2 v(0) = 0% - X5 . p(¢) and thus

2
v X
var X, ~ ——,

n/t

g

where 7 = Y77 p(£). The effect of the correlation (compared to the uncorrelated
case) corresponds to a reduction of the sample size from n to »/~.

Corollary 5.3. It holds that

\/ﬁ(fn—ﬂ) ~N(0, Zn: (1—'%'%(5)). (5.1)
{=—n
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5.2 ESTIMATION OF AUTOCOVARIANCE 51

ESTIMATION OF AUTOCOVARIANCE

Definition 5.4 (Sample autocovariance function, empirical autocovariance). The sam-

ple autocovariance function for some data X;,..., X, forf € Zis
1 n—|€|
LD (Xester = Xa) (X = X). (5.2)

t=1

The sample autocorrelation is g, := %
Definition 5.5 (Sample partial autocorrelation). The sample partial autocorrelation func-
tion of a stationary time series X; is defined as the autocorrelation (see Definition 3.25),

but based on the sample covariance p instead of the covariance p.

Remark 5.6 (Bessel Correction). See Exercise 5.1 for the denominator n instead of
n—1|florn—|f|-1in (5.2).

Remark 5.7. Note that X,, includes all samples Xi,..., X, although the first, nor the
second factor in the product (5.2) involve all.

Proposition 5.8 (Non-negative definiteness). The matrix

Y0 Y ... Yn-1

fn N Yo
: Y1
Yn-1 .. 1 Yo

is positive semi-definite. This is important for forecasting.

0 0 )21 Xz Xn
Proof. Define M = | ¢ .- .= .= .= ¢ |with X; = X; - X,, and observe that
X X ... X 0 0

I, =1MMT, thus

N 1 1 1

a'lTwa==-a"MM a=~(M"a)" MTa= -~ ||MTa||2 >0
n n n

for every a € R™ and thus the assertion. O

Theorem 5.9. Let X, be stationary and ¢ € Z be fixed. Then

(i) E9, — v(£), ify(n) — 0, i.e., 9, is biased, but asymptotically consistent.

n u=-n n

O+yu+k)y(u—1~0+1-3)0*Yicz VirurkWiskWireWi
1Bartlett’s formula; Peter Bartlett, 1942

(i) cov(y(k),7(€)) = Ly (1 - M) V., where Ew?} = no* and’ V,, = y(u)y(u + k —
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Lemma 5.10. For any &, n € R it holds that

1 & _ 3 n ) Ny
=K =T = 2 D K= = 2 D K= 6)2 DK =) (63)
i=1 — 2 2,
Proof. Indeed,
1 <& _ I - i
;;(Xi_xn)(yi_yn)z;;(Xi_f_(Xn_f))(yi—n_(yn_n))

n

I -0 - 1Y (K-8 )

A Fa- -+ LY, (Ko Fa)
=S e -0 - (Ko=) Fa

and thus the assertion. O

Proof of (i). We replace X; « Xi¢, Yy <« X; and € =n = uin (5.3). Then
1 n—{ 1 n—{ 1 n—{
Ve = p Z(XH[ - W)(Xi — ) - - Z(XH{’ —p)- - Z(Xj — K.
i=1 i=1 j=1
It follows that

1 n—¢ 1 n—{ n—~¢ 1 n—{
Efe == v == ) yi+l=j)=—y(O)——= D yi+l-j).  (54)
n = n n

n
i,j=1 i,j=1

Again, let N > ¢ be large enough so that |y(n)| < £ forn > N. Then

= AR (N +Dn+en?
;.Zly(z+€—1) S;‘Zl|y(z+€—])|$ s — &
i,j= L,Jj=

The assertion follows from (5.4).
For the (rather messy) proof of (ii) we refer to Shumway and Stoffer (2000, (A.50)).
|

PROBLEMS

Exercise 5.1. It is occasionally proposed to scale (5.2) with n—l[ instead of % Then the
matrix T',, is not positive semi-definite any longer. Give a counterexample.
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Exercise 5.2. Verify (5.1) by simulations.
Exercise 5.3. Use Example 3.13 and investigate (5.1) by simulations.

Exercise 5.4. Give a histogram for (5.2) by simulation and compare with the result in
Theorem 5.9 (i).

Exercise 5.5. The time series X; in Exercise 3.3 has constant acf. Do the results of
Theorem 5.1 still hold true? As well, investigate the results by simulations.

Exercise 5.6. Use the Levinson Algorithm (Proposition 3.23) to simulate a time series
withy(€) — 0, but 3,7 y(£) = oo. Investigate the results of Theorem 5.1 by simulations.

Exercise 5.7 (Brockwell and Davis (1987, Problem 7.3)). Show that the sample auto-
covariance y of a time series (xi, . . .,x,) satisfies },,.,, 7(£) = 0.
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6.1

Fourier transform in sequence spaces

DEFINITIONS AND PROPERTIES

Definition 6.1. A series (x;),z is absolutely p-summable if [|x]|, == (X;ez Ix:|P)7" < oo.
We set £,(Z,C) = {(x¢)iez: x; € C, ||x]l,, < o0}.

Remark 6.2. The theory here can be developed forz € N, i.e., £;(N,R), as well.

Lemma 6.3. Forx,y € {; it holds that
s x+y = (X + Yo €0 and
* x-y = (X Yi)iez € {1.

Proof. We have
(i) llx+ylly < llxlly + lIyll; < oo and

(i) llx-ylly < Ziez lxe yil < sup,ez X:]-2iez lyel < llxlly-1lyll; < oo by HOlder’s inequality.
O

Definition 6.4 (Fourier transform). For x € ¢;, the function
X:R—-C
AN )’C\(V) — Z e—27rivtxt

teZ
is the Fourier transform of x, often also denoted by F, = £. The mapping
F:l —» CR,C)
x> Fx)=%C():R->C
is the Fourier transform. Note, that # maps sequences (¢;) to functions (C(R)).
Remark 6.5. Note that £(v + 1) = £(v). For this reason it is enough to restrict £ to [0, 1].

Definition 6.6 (Fourier cosine and sine transform). The Fourier sine and cosine trans-
form are

Fo(x)(v) i= £(v) = th - cos(2nvt) and (6.1)
teZ
Fo(x)(v) = 25(v) = th - sin(27ve). (6.2)

teZ

Remark 6.7. It follows from Euler's formula ¢’ = cos ¢ + ising that £(-) = F(x)(-) =

X)) =i 2.
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FOURIER TRANSFORM IN SEQUENCE SPACES
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Figure 6.1: Milankovitch cycles, https://en.wikipedia.org/wiki/Milankovitch_cycles
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Proposition 6.8. The Fourier transform is well-defined and for all x € ¢, and v € R it
holds that
(i) % is uniformly bounded,
I£lleo < lIxlly (6.3)

ie., |£(v)| < ||x||, foreveryv e R,
(”) )?(O) = Zzezxt ;
(iii) x(v) =x(v+1), i.e., the period is 1, and
(iv) £(-v) =%(v) .
Further, the Fourier transform is linear, it holds that
(v) amy =ail+p39.

Proof. Define the partial sum F,(v) := 3/ _, x; e 2" and observe that for m < n,
Fav) = Fu) < Y e < Y x| —0.
m<|t|<n [t|>m moe

Note that convergence is uniform in n > m and v € R. As C(R) is closed under uniform
limits it follows that the limit F = lim F,, is continuous, i.e., F € C(R). The remaining
statements are obvious. O

Theorem 6.9. For x € ¢,(Z;C) it holds that
1
[ 1roaP av=3 1wl
0 teZ
e, 1%l L2¢p0.17) = lIxlle, -
Proof. This is a consequence of the following more general statement. O

Theorem 6.10. /t holds that

‘/Olf(v)mdv = th)T,.

tez

Proof. Notice first the integral representation of Kronecker’s delta,

1 .
I , 1dv ift=1, 1 ifr=¢
/ eva(t—l ) dv = {Ozm'v(rt') 1 . ) — { . ,’ = 6z’t/. (64)
0 i ift—1 €Z\{0} |0 ifr—1 €Z\{0}

v=0
Thus
1 - 1 . .,
/ 2v)-F(v)dv = / Z e 2mViy, . Z 2 dy
0 0 tez t'eZ
1
= Z X W‘/ (=) gy = th “Vis
t,t’'eZ 0 teZ
the statement.
Parseval’s theorem follows by choosing x = y. ]
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1901/10 192426 32/34 49/51 6062 7072 80/82 91/93 2002 0911
85 : : : z : : : : s
Jahre | === Madchen
80 i === Jungen :
75
70 : :
65 ? o7 4 -ab 1991/93

: e : Gesamt-
P . deutschland

60 ab 1949151 T T R
e ‘Westdeutschland
5o 483 :
45  bis 1932/34

448 : Deutsches Reich

Figure 6.2: future lifetime, https://www.welt.de/article149577156/

Corollary 6.11. [t holds that

Z|xt|2=/ )+ 25 (v)2 dv,

1
tez 0

where ¢ (&%, resp.) is the Fourier cosine (Fourier sine, resp.) transform, cf. (6.1).

INVERSION

Proposition 6.12 (Inversion of the Fourier transform). Forx € ¢; it holds that
1 .
X = / 2TV 2 (v) dv, teZ. (6.5)
0

Remark 6.13. The inverse Fourier transform for x € L! is occasionally denoted ¥, =
/01 e Vix(v) dy.

Proof. Recall that £(v) = 3,/ <z xe 2" hence

1 1 1
/ xA(v)eZKth dy = / Z xt/e—vat . evat dy = Z Xy / eZ?er(t—t ) dv = x,,
0 0 0

t'eZ t'eZ

where we have use (6.4). Thus the result. O
Corollary 6.14. It holds that [ £(v)dv = xo and #(0) = ¥, cz x;.
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CONVOLUTION

Definition 6.15. The convolution of x, y € £; is the sequence
X*y = (Z Xt 1 -yT) . (6.6)
TEZ teZ
Remark 6.16. Note, that (x *y); = X ez Xi—7 - Vo = Drez Xt * Vi1

Lemma 6.17. Forx,y € ¢, it holds that

eyl < llelly - Iyl

and thus x =y € ¢;.

Proof. By the triangular inequality, ||x = y|l; < Y;ez Drez -zl = ez Direz 1Xelly<| =
llxlly - llylly < eo. o

Proposition 6.18 (Convolution theorem). It holds that
(i) xxy=%-9,Le,x=y(v)=%(v) 9(v) and

(i) -y =29, e, x-y(v) = (£=9)(v), where (f = g)(v) = /01 FOglv =v)dv
(cf. (6.6)) is the convolution of the functions f, g € L?.

Proof. It holds that

FEY(0) = Y (xxy) e = N N ey e 2

tez teZ T€Z

— Z ZxTyte—Zm'v(HT)

TEZtEL

— ZxTe—Zm'VT . Zyte—Znivl — )2(1/) . ﬁ(v)

TEZ teZ

Further,

1
— _ . —2nivt  _ S0\ L2V 1., . —2nivt
x-y(v) = E X;-yre ) E /0 () e dv' - yse

teZ Tl teZ
1
_ / () - Z e—2ﬂl(V—y’)t vy dy (6.7)
0 teZ

1
= /0 FO)P(v=V)dY = (&% 9)(v).
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The integral and sum in (6.7) can be interchanged by the monotone convergence theo-
rem (Lebesgue’s theorem) as the integrand is uniformly bounded by

XA(V/) . Z e—27ri(v—v’)t vl = X.(V/) . Ze—Zﬂi(v—v')t Yy

[t|<n t<n

< Rl Nyl < flxlly llylly

by (6.3). o
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Spectral analysis

Spectral analysis is the analysis of the time series in the frequency domain.

Definition 7.1. The temporal frequency f, the period T and the angular frequency
w are related by w = 2nf and f = 1/r. Tabular 7.1 compares temporal and spatial
frequency terms.

Remark 7.2. For an amplitude A and a phase shift ¢ we have from the angle addition
theorems that!
. [2nt 2t . [2nt
A-sm(T+go) = A, -COS(T) + A, -sm(?),
where
A.=A-cospand A; == A -sing;

note as well the inverse relation

Ag
A =+JA2 + A2 and tamp:A—“

C

and consequently

span {t — Asin(wt+¢): A e R, ¢ € [0,2n7)}
=span{t — A, sin(wt), t — Agsin(wt): A., Ay € R}

SPECTRAL DENSITY

Remark 7.3. The process (3.3) is random, but Exercise 7.4 demonstrates that X; is
perfectly predictable from its past (deterministic).

1Cf. Footnote 1 (page 25)

temporal spatial Sl unit

period T period A wavelength m
linear frequency f=1/T=v & =v =1/ (wavenumber, repetency) hertz= s~!
angular frequency  w =2nf k = 2n¢ (angular wavenumber, Kreiszahl)  radiant/ s
speed c=Af m/s

Table 7.1: Frequencies
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Atmospheric CO, at Mauna Loa Observatory
420 F T T T T T T T T T T T T T
Scripps Institution of Oceanography .
400 - NOAA Global Monitoring Laboratory |
/E\ -
Q
£ 380 .
c
.2 _
f 360 -
o
Q
s ]
& 340 -
SCRIPPS istirurion of 1
300 OCEANOGRAPHY s
UC San Diego %
| L | L | L | L | | .’Mmo‘“ | 42
1960 1970 1980 1990 2000 2010 2020
Year
Figure 7.1: Keeling Curve, CO> at Mauna Loa,
https://www.esrl.noaa.gov/gmd/ccgg/trends/; see also

https://www.youtube.com/watch?v=gbxEsG8g6BA
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Example 7.4 (Cf. Example 3.15). Consider a time series

X; = ) Ajcos2nv;t+ Bjsin2ny;t (7.1)
j=1

with zero mean, uncorrelated A;, B; and varA; = var B; = o7, i.e., A; B; ~ (0,07). Then
v(1) = Z 0']2 cos2nv;T. (7.2)
j=1

Note, that the frequencies v; are explicit frequencies in the autocovariance function
y().

Define the measure

g

u() = 3 2 (8,0 + 81, 0))
7=
then, by (7.2),
o o? : :
/O e u(dv) = Z 7] (ez’””f + ez”’T(l“’f)) = > o7 cos2nv;T =y(1)
= =

for r € Z.
The density of u(-) is the spectral density.

Definition 7.5 (Spectral density). A function f is the spectral density of a stationary
time series X, with autocovariance function y(-) if

(i) f(v) =0forall veR and
(i) y(r) = /01 e?™7v £(y) dv for all integers 7 € Z.

Remark 7.6. The inversion of the Fourier transform (6.12) suggests the notation f(-) =
Y(+): this should not be mixed with the sample autocovariance, also denoted by . A
distinction is always clear by the differing argument: we write 7, for the acf depending
on the lag ¢ € Z (cf. (5.2)), but $(v) for the spectral density depending on a frequency
v e [0,1].

Suppose that X; is a zero mean stationary time series with autocovariance function
v(-) satisfying X ,cz |y(7)| < co. From (6.12) (the inversion of the Fourier transform),
the spectral density of the time series is the Fourier transform of the autocovariance
function,

FO) =9 = Y e y(r),  veR (7.3)

TEZ

Occasionally, the spectral density is ﬁ Y ez e Ty(1) instead of (7.3)
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64 SPECTRAL ANALYSIS

Example 7.7 (White noise). Let f(v) = o> be constant. Then, by (6.4),

2 H _
y(x) = {g Tr=0 (7.4)
else

and thus 9(v) = o2 is constant. This is the spectral density of the white noise pro-
cess X, = o2¢, for some iid, zero mean and variance 1 error «.
Note, that the fact that 9(-) = constant explains the term white noise.

Remark 7.8. Recall that y(-) is even, i.e., y(1) = y(-71). Hence, by (7.3),

FO) =9() =y(0)+2 )" y(7) cos(2xv7)

7=1

= Z v(1) cos(2nvT), v €R,

TEZL

is even as well.
Remark 7.9. Recall from Theorem 5.1 (iv) that

nvar X, — Z ve = ¥(0).
¢

Proposition 7.10 (Properties of the spectral density). It holds that
(i) v(-) is even, i.e., y(v) = y(-v) with period 1, (- + 1) = 9(-),
(i) y(v) =0 forall v e R and
(i) fort € Z,
v(t) = /01 2T 9(v)dy = Al cos(2atv) - y(v) dv. (7.5)
Remark 7.11. It follows from (7.5) that var X; = y(0) = fol 7(v) dv. The spectral density

Y(+) restricted to [0, 1] (or [-1/2,1/2]) thus is indeed a density up to scaling by var X,.
Replacing the autocovariance by the autocorrelation in (7.3) removes this gap.

Proof. (i) is obvious from the definition and (7.5) follows from Proposition 6.12. To
see (ii) define

2
1 n . n N
- _ EZ X, e—lmtv Z X, estv (76)
n

t=1 s=0

1
fu(v) = ; E

n
Z X, o~ 2mity
t=1

n-1

1 < —2miv(t-s) n- |£| -2mivl
= — —7) = _ f .
n E e ’}/(S ) E n e 7( )

s,t=1 =0

The assertion follows with n — oo as f£,(-) > 0 and f,(v) — 7(v). O
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Remark 7.12 (Periodic time series). Consider the spectral density (v) = ¥, a} y; ().
Using the property (7.5) we obtain that

v(T) = Z 0'12- cos2ntv; = (7.2).
j=1
However, $(-) is a distribution and not a classical function and so the periodic time
series (7.1) does not have a spectral density.
0 ifv <vj,
However, define Fy(v) := ¥, F;(v) with F;(v) == yoj/2 ifv;<v<1-v;,  Then

a} else,i.e., 1 —v; <.

1 .
v(7) =/0 2T dF5(v).
Definition 7.13. The representation

1
;«T)zt/'EQ"”Vdfxv) (7.7)
0
is the spectral representation of the autocovariance function y(-). The integrand F(-) is
the spectral distribution function.
If F(v) = fo" y(v')dv’, then ¥ is the spectral density.

Definition 7.14. The time series has a continuous spectrum, if it has a spectral density,
and a discrete spectrum otherwise.

Theorem 7.15. A functiony: Z — R is an autocovariance function, iff it can be written
in the form (7.7) for some nondecreasing function F(-).

Proof. (cf. Brockwell and Davis (1987)) We show first that y is nonnegative if it has the
representation (7.7). Indeed,

n

S asyts == 3 as [ A ar

s,t=1 s,t=1

=/01

Conversely, if y is nonnegative definite, then f,(v) := + 37 | e72™"y(s — 1)e*™"” and
Fo,(v) = fOV f»(v)dv' is a (generalized) cdf, which is nondecreasing, as f,(v) > 0, as
v(+) is nonnegative. We have

n 2

§ aseZHISV

s,t=1

dF(v) = 0.

n

1 1
/ e27ri'rv an(V) _ / 2riTtv 1 Z 2msv,y(s _ t)e27ritv dv
0 0

At

1
k .
— 27TlTV (1 _ u) (k)e—kav dv (S —t= k)

|k|<n

_{(—%j(n ifr <n
- 0 else
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66 SPECTRAL ANALYSIS

The assertion follows from Helly’s selection theorem by letting n — o (note that F,,(1) =
S F2() dv = 7(0) < o). o

7.2 THE SPECTRUM OF AN ARMA PROCESS
Theorem 7.16 (Linear transformation). Suppose that X, is a covariance stationary pro-

cess with acf yx and 3 jcz lyx(j)| < oo. Define Y, = X2, ¢;X,—; with 35, tﬁ? < o0,
ThenY, is covariance stationary with spectral density

2
Z % e—27rivj

J=0

fr(v) = fx (),

where fx (fy, resp.) is the spectral density of X (Y, resp.).

Proof. Recall that (Proposition 4.19)

Yy (h) =cov (Y;,Y;_p)

= Z Z Yk cov (Xe—j, Xe—p—k)

7=0 k=0
= > > wityx(h+k - j).
=0 k=0
Next,
fr(v) =) ey (h)
heZ
=D ey D wivyx (it k=)
heZ J=0 k=0
_ Z l//J —2mv1 Z Wi evak Z —2niv(h+k-j) )’X(h +k — ])
heZ
_ (er// —Zﬂle)(Zl// evak)f (V)
= Zl//] €_2ﬂiVj fX(V)’
7=0
the assertion. C

Remark 7.17 (AR(e0) spectral density). The spectral density of an AR(w0) time series
=y (B)W, is (cf. (7.4))

S = | (e[
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Corollary 7.18 (ARMA spectral density). The spectral density of an ARMA time series

#(B)X, = 0(B)W, is (fory(-) = % see (4.14))

_ 0—2 . 9(6—271'1'1/) 2
w ¢ (e—2m'v)

S =2 Ju (27

Definition 7.19. The spectrum (7.8) is called a rational sprectrum.
Remark 7.20. By (7.8), the spectrum of an invertible process (cf. Theorem 4.30) is

4
O-W

fx(»)’

which explains (again, finally) the name inverse process.

finverse(v) —

DISCRETE FOURIER TRANSFORM

Definition 7.21. For x, y € R" we shall write (y, x) := }I', yix;. We set

eZm’k-O/n
1 e27rik-1/n
ey = . , k=1,...,n

N

eZﬂik~(n—1)/n

(these are not the unit vectors).

Remark 7.22. The vectors e, = e, are orthonormal, i.e.,

n—

1
_ 1 ___
<€k, €g> = e;;ef = - eka-]/neZmZ j/n
n <
J=0
n-1 . ~
_ 1 2rij(b—k)/n _ 1 if k =¢, s
= ; e = e2rin(t-k)n_y 0 | = 0k ¢t-
J=0 amempmo — Y €lse

It follows that
n n—1
X=Z<€k, X>‘ek=ZXk‘ek
k=1 k=0

for every X e C*, where X = (ey, X) = Py e~ mikiny

Proposition 7.23 (Parseval). It holds that
IXI7 = )" Kew, X)P, i, D X7 =" %2 (7.9)
k=1 j
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Proof. Indeed,

n

n
X = Z (ex, X) - ek, Z (e, X) - er
=1

n n

(ex, X) (ec, X) ek, ec) = Z (exs X)I* =

k,t=1 k=1

the assertion. O
PERIODOGRAM

In this section we shall assume that the time series is mean adjusted, i.e., X, =
% ", X, = 0. We are interested in an estimator for the spectral density 7(-) (cf. (7.3)).

Definition 7.24. The preriodogram? of the sample X, ..., X,, is the function (cf. (7.6))

n 2

1 o
; Ze 27utht

t=1

L,(v) = (7.10)

Remark 7.25. Note, that 1,,(¥/n) = |{ex, X)|* and thus || X||*> = Yipey In(K/n) by (7.9).
Remark 7.26 (Discrete Fourier sine and cosine transform). It holds that

1 ¢ .
= (ex, X) = % Z e_zmj'k/an

1 2 k 2nijk
:TZX./'CO 2nijk ZX . 2mijk
n

More generally,

2

2
1 1 &
I,(v) = (% Z X; cos 27m/) + (% Z X; sin 27m/) .
t=1 t=1

Proposition 7.27. For k + 0 it holds that

LK) = ) gx(z)e 2mkem, (7.11)

|T|<n

where vx is the sample autocovariance function (5.2) (not to be confused with the
Fourier transform § here).

2Stichprobenspektrum, Periodogramm, Germ.
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Corollary 7.28 (Proposition 7.27 for k = 0). For a mean adjusted time series it holds
that I,(k/n) = |71, $(1)e 2™ k7/" for all k € {-n, ..., n}, i.e. including k = 0.

Proof. Expanding (7.10) gives I,,(v) = + 37 _, e 2" (=97 X X,  Note that

l n n

1 2ri is i
- - (t=s)k/n _ _ e2msk/n . e—2mtk/n =0
Ik "2 2,

s,t=1 s=1 t=1

provided that £ # 0. Hence

n

1 . _ _
In(kf) = = 3 e2=IKn (x, X, ) (X, - X

n
s,t=1
. 1 — —
_ Z e 2mitk/n Z (Xt—-r _ Xn) (Xt _ Xn)
T<n n t—s=T
— Z e—27ri‘rk/n,)A/(T),
|T|<n
the result. O

Fact. Although Proposition 7.27 suggests that (replace k/n «— v)

() —= $() = 3 e Ty (1),

TEZ
the periodogram (7.11) is not a consistent estimator of the spectral density J.

Example 7.29. Figure 1.4b displays the periodogram of the nottem data, which exhibit
the monthly frequency with f = & ~ 0,0833.

DIFFICULTIES IN READING THE PERIODOGRAM

7.5.1 Leakage

The periodogram 1I,, is continuous for n finite. Hence, frequencies close to a peak
frequency vq are too high (leakage?). When increasing the length of the time series,
then the peak frequencies get sharper. The resolution, in general, is approximately 1/
(where n is the length of the time series observed).

7.5.2 Aliasing

Consider the time series

X; =sin2nft+¢) and X, := —sin 2n(k — f)t - @).

3Durchsickern, Germ.

Version: May 16, 2023



7.6

70 SPECTRAL ANALYSIS

NN YT )
A WIUAT Y WY

Figure 7.2: What is the true frequency for the points observed?

Note, that X, = sin 27 ft + ¢ — 2nk) = X, for all t € Z! However, their true frequencies
(which are f and 1 — f) differ; they cannot be detected (aliasing*).
Further, note that
L, (v) = In(k +v) = I,(k = v)

forevery k € Z. A peak at v in the peridogram indicates a frequency in {k + v,k — v: k € Z}.
A higher sampling frequency is necessary to decide on the true frequency.

Example 7.30. Table 7.2 gives different periods for a peak frequency at v = 0.11.

0.083%12.0 1.08%0.92 2.08=0.48 3.08=0.32
0.9221.09 1.9220.52 2.92=0.34

Table 7.2: Aliasing. A peak at v = 0.11 may indicate different periods

Definition 7.31. The largest frequency, which can be detected in a signal, is called
Nyquist frequency.> For time series, the Nyquist frequency is vnyquist = % (i.e., the
period 2, see Figure 1.4b).

7.5.3 Overtones

The time series (k € Z)
X, =sin 2k ft + @)

has frequency & f (period %), but f (period ]‘7) is a valid frequency too (overtones®).
PROBLEMS

Exercise 7.1. Consider the time series Xi,1 = pi Xi + /1 — pip Yis1.

Exercise 7.2 (AR(1)). Consider the process X; = ¢ X,_1 + Z, with varZ, = o>. Show

that
2 417l 0_2
1 N
T) = andy(v) = .
7(®) 1-¢? ) 1 - 261 cos 2nv + ¢7

“Maskierung, Germ.
SHarry Nyquist, 1889-1976, Swedish engineer
6Oberschwingungen, Germ.
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Plot trajectories of the time series for 1 = 0.9 and ¢, = —0.9 and the spectral density.
Discuss the properties for various signs of ¢, :

¢1 > 0, positive autocorrelation, spectrum is dominated by low frequency components—
smooth in time domain;

#1 < 0, negaitve autocorrelation, spectrum is dominated by high frequency components—
rough in time domain.

Exercise 7.3 (MA(1)). Consider the process X, = Z, + 6,Z,_,. Recall, that

a2 (1 —9%) ift =0,
y(1) ={0%6; ifr=1, and H(v)=o? (1 + 9% + 2601 cos Zm/) .
0 else

Plot trajectories of the time series for 8, = 0.9 and 6, = —0.9 and the spectral density.
Discuss the properties for various signs of 0, :

0, > 0, positive autocorrelation, spectrum is dominated by low frequency components—
smooth in time domain;

0, < 0, negaitve autocorrelation, spectrum is dominated by high frequency components—
rough in time domain.

Exercise 7.4. Show that the time series (3.3) is perfectly predictable, it holds that X, =
2COS(27Z’V()) . Xt—l - Xt—2-

Exercise 7.5. Give the recursion for X; = e P! (A cos(2nvot) + Bsin(2nvot)), similarly to
Exercise 7.4.
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Singular spectrum analysis, SSA

See https://en.wikipedia.org/wiki/Singular_spectrum_analysis,
Zhigljavsky, Anatoly
earth temperature: http://earth-temperature.com
Caterpillar-SSA: http://www.gistatgroup.com/
Forecasting Hyndman: https://www.otexts.org/fpp
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Wold decomposition

Definition 9.1 (Linear process). The time series X, is a linear process if

Xy =pu+ Z zijt_j and Z |lﬂj|<00 (91)

Jj=— Jj=—0o
where Z, is a white noise (cf. Definition 3.12).

Proposition 9.2 (Cf. Proposition 4.19). The autocovariance function of the linear pro-
cess is

y(0) =03 - Z Uive " Y. (9.2)

j==eo

Definition 9.3 (Cf. Definition 4.20). A linear process is causal if y; = 0 for every j < 0
in the representation (9.1).

Proposition 9.4 (Cf. Theorem 4.22). The autocovariance function of the causal linear
process is

YO =03 > Wi
=0
Suppose that X, is stationary. ThenZ, = X,-E (X, | X,_1, X;-2,...) iS a white noise
with variance o* = £EZ? =EX,Z, and E X,Z, = 0 whenevert < u.

Proof. Fort <uitholdsthatE(Z, - X, | X,—1,...) =2, - E (X, | Xu_1,...). Hence

EZZ,=EZ - Xy —E Xy | Xu1,...))
= ]EZtXu _]EZt . E(Xu | XM—l" )
= ]EZ[XM _]E]E(Z[ ‘Xu | Xu_l,. )
=EZX,-EZX, =0.
Further note that the distribution of Z, does not depend on r and hence o2 := varZ, is

well-defined, the variance of the white noise. To see the assertion E X, Z,, = 0 replace
Z, by X; in the latter display.

Finally
]EX[Z[ - ]EZ[Z[ = ]E(Xt - Zt) . Zt
=K [E(Xt | Xi-1,...) - (Xt - E(X; | Xz—l,---))] =0
by the projection property of the conditional expectation. O
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Theorem 9.5. Every covariance-stationary time series X, has the representation

Xt = Z l;l’JZt—j + T]t, (93)

Jj=0
where
(i) Z, is a white noise with variance a%,
(i) o =1and X7, |l |* < oo and

(iii) n, is deterministic, or perfectly predictable from its past, i.e., En,Zs = 0 for all (sic!)
s, 1 € 7.

Remark 9.6. See Exercise 7.4 below for a perfectly predictable process.
Proof. We demonstrate the statement only for stationary processes. Define
Zt = Xt - ]E (Xt | Xt_l,Xt_z, .. )

We have seen in Proposition 9.4 that Z, is a white noise and we may set o2 := var Z,.

Now we may set

1
lﬁj = _EXtZt -j

O'Z

and .
= X: — ijzt—j-
Jj=0
The coefficient y; is well-defined, as the time series is stationary.
Note that LZI is an orthonormal subset of L? and by Bessel’s inequality thus co >

1% > 25 o|<Z’ LX) = 520 lw1?. Further, by Proposition 9.4,

E X, Z,
E 7?2

Yo = =1 (9.4)

and thus (ii). As Z; are orthogonal we have Proposition 9.4 that
E(X |Z:j€ez)= ]]E—Xt_ ZIE—Xt Z,, ”X, z, .
Finally note that

X=X -EX, |1Z;: jeZ)+E (X, | Z;: j €2)

—ij-Zt_j+lejZ,_j:nt+z¢jZ,_j. (95)

j=0 j=0 j=0
Finally note that IEn,Z, = 0 whenever u > ¢ by Proposition 9.4. Then we have En,Z; =0
by (9.4) and for u < r we get the result from (9.5). |

rough draft: do not distribute



WOLD DECOMPOSITION 77

N

2r 41 kyr cycle 100 kyr cycle

o
|

N

)]

1
N

L Five Million Years of
- Climate Change
L From Sediment Cores

5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5
Millions of Years Ago

I
w

w
)

'
(o]

Equivalent
Vostok AT (°C)
A

N
5'° 0 Benthic
Carbonate (per mil)

'
(oe}

»
o

Figure 9.1: Climate history. Source: https://en.wikipedia.org/wiki/Geologic_temperature record

Remark 9.7 (Properties). The following hold true for the Wold decomposition
() EX, =n,, from (9.3);
(i) cov(Xy, Xree) = y(£) = 0'% . 2;‘;0 ¥ j+c ¥ j from (9.2) and in particular

(iii) varX; = y(0) = 07 - Z70 47,
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10.1

Nonparametric forecasts

THE COMPOSITION METHOD

Suppose a random variable X has a density function of the particular form fx(:) =
iz Pifi(+), where p; > 0 and },_, p; = 1. To get a sample of X with density fx(-)
one may, first, sample a random i* with P(i* = i) = p; (for example, sample a uniform

U € [0,1] and find i* such that Zlel pi <UL Zfil pi); second, get a sample X from
fi+(-). The variable X then has density fx(:). In symbols, X; ~ f;(-) and X+ ~ fx(-).

Example 10.1. The usual kernel density estimator for fx(x) based on observations
X, i=1,...nis f(x) = I, Lk,(x - X;). Here, the weights are simply p; = 1
and fi(x) = kn(x — X;), where ku(x) = +k (%) is the scaled kernel. Samples from
fi() =kn(-—X;) are X;+h- K, where K is a sample based on the (unscaled) kernel with

density k(-). In symbols, K ~ k(-), X; + hK ~ f;(-) and X;- ~ £(-).
Example 10.2 (Conditional density 7 (-|y) for y fixed). The density estimator for f(x|y)

. oA k -Y;
based on observations (X;,Y;),i=1,..., n,is f(xly) = XL, <=z n(y ) kp(x = X;).
Zj:] kh(y - Yj)
N’
pi(y)
Here, the weights are p;(y) = Fe0Y)__ and the functions fi() = kn(- — X;) are as

S kn(y=Y))
above. Samples from f;(+), in particular, are X; + i - K (as above). In symbols, K ~ k(+),

X ~ fi(-) and X;- ~ f(-ly).

Example 10.3 (Markovian time series). Suppose the transition probability of a discrete-
time Markovian time series has a density, P(X;+; € dx| X; = y) = f(x]y)dx. A typical
observation for such models is a trajectory (Xy, X1, Xo, .. ., X,) and every X,,; is a real-
ization based (conditioned) on the previous observation y = X; with density f(:|X;).

To estimate the transition density f(x|y) based on the previous Example 10.2 we
consider the paired observations (X;, X;_1), i = 1,...,n, i.e., we set ¥; := X;_;. This
gives the explicit estimator

, N kO =Xie)
f(x|y>-§27:2kh(y_xj_l) ki (x = X) (10.1)
pi(y)

for f(x|y). The estimator f(x|y) is based on the observed trajectory (Xo, X1, Xa, . . ., X;.).
To sample a new time series (xg,x1,x2...,%,Xr41,...) based on the observation
(Xo, X1, X5, ..., X,) we pick an (arbitrary, but reasonable) start value xy. Next, generate
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Figure 10.1: Global warming precition, https://en.wikipedia.org/wiki/Global warming

a sample x; with x; ~ f(-|xo) by setting y = xo in (10.1) and by applying the procedure

described in Example 10.2 with p;(y) = Wyx_;)l)
j=1 J-

In general, suppose the new series generated is (xg, x1, ...x;). The series is contin-
ued by generating x,.; ~ f(-|x;), where y = x, in (10.1) (x, is the previously generated
sample, i.e., the last entry in the new series). Once x,,; is found, we may restart with
(x0, X1, ... X, Xr41), €1C.

Example 10.4 (Time series with fixed lag ¢ € N). Here, the distribution of the next x,;
depends on the historic £ values x;_¢41, . .., Xz, 1.€., Xs11 ~ f (- | Xt—¢41, .. . X;). TO estimate
the density as above we may employ the density estimator

n

kn(y—¢ = Xie) ... kn(y-1—Xi—1)

FCly-e.ooyo1) = kn(-=Xi). (10.2)
S X kn(y-e = Xj-0) - kn(y-1 — Xj-1) l
Di(y-tsesy-1)
To sample a new time series (xg, x1,x2 ..., Xs, X141, - . . ) Dased on the observation (X, X1, X, ..., Xy)

pick an (arbitrary, but reasonable) start sequence (x;—¢,...,x0). Next, generate a sam-
ple x; with x; ~ f(- | xi—¢,...,,x0) by using (10.2), then x> ~ f(- | xo—¢, ..., x0,x1); iN
general x;41 ~ PO Xempsts v s Xp).

Notice as well that the vector (X;, ..., X;—_¢+1)i=¢ is Markovian and Example 10.3 is
the special case with lag ¢ = 1.

10.2 DIEBOLD-MARIANO TEST
In empirical applications it is often the case that two or more time series models are
available for forecasting a particular variable of interest. The Diebold-Mariano test ad-
dresses the question if they are equally good.
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IMPLEMENTATIONS IN JULIA AND R

Julia implementation of the nonparametric forecast (10.2) to reproduce Figure ?2?.

using CSV, DataFrames, Distributions , Gnuplot
kernel= Logistic(0., 0.5) # Logistic with bandwidth

function Kernel(x, y)
SigmoidKernel (x,y; lag= 7.5)
end

df= CSV.read(”C:/Users/Alois/Dropbox/Julia/StochasticProcess/nottem.csv”, DataFrame)

lag= 4; simulations= 20+12
times= [df.time; 1940:1/12:1940+ (simulations- 1)/ 12]
temp= copy(times); temp[1:length(df.time)].= df.temperature
n= length (df.time); weight= Vector{Float64 }(undef, n-lag)
for k= 1:simulations
for i= 1:n-lag
weight[i]= prod(pdf(kernel, temp[n+k-lag:n+k-1]- temp[i:i+lag-11]))
end
U= rand(); iStar= lag+ findfirst(x—> U» sum(weight)<x, cumsum(weight))
temp[n+k]= temp[iStar] + rand(kernel)
end

@gp "reset;msetmtitlem’ nottem’;msetmborderm3”
@gp :— df.time df.temperature "Ism-1mtitlem’temperature 'mwithmlinespoints”

@gp :- times[n:end] temp[n:end] ”Ism—1mltmrgb blue 'mtitlem’simulationmconditionalmpdf ' mwithmlir

condExp= RKHSTS(df.temperature; lag= lag, \lambda=.3, kernel= Kernel) # new realization
for k=1:simulations

temp[n+k]= condExp(temp[n+k-lag:n+k-1])+ 2.1=xrandn ()
end

Implementation in R of the nonparametric forecast (10.2).

no.n

temp<- read.csv(”"/../Dropbox/Lehre/Vorlesungen/Zeitreihen/HistoricTSTemperatureGermany.csv”, sep= ";
temp$date<— as.Date (temp$date, "%m/%d/%Y")
simulations<- 100 # forecasts to simulate
lags<- 4 # lags used in simulation
n<- length (temp$temperature) # length of time series
(bandwidth<- sd(temp$temperature)/ (n" (1/(lags+ 4)))/ 12)
kernel<- function(t, h){ #exp(-1/2«(t/h)"2) #Gaussian kernel
1/ (exp(t/h)+exp(-t/h))"2 } #Logistic kernel

tempSimulation<— vector(length= simulations+ lags)
(tempSimulation[1:lags]<- tail (temp$temperature, lags)) # most recent observations
weight<- vector(length= n)
for(k in ((lags+1):(lags+simulations))){ # simulation count
for(i in ((lags+1):n)){ # run next simulation step
weight[i]<- prod(kernel( tempSimulation [(k-lags):(k-1)]
- temp$temperature[(i-lags):(i-1)], bandwidth))}

u<- runif(1, min= 0, max= 1) # composition method
iStar<- min(which (cumsum(weight) > u= sum(weight), arr.ind= TRUE))
tempSimulation[k]= temp$temperature[iStar] # sample next forecast

+ bandwidth« rlogis (1, location= 0, scale= 1)}

Version: May 16, 2023
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Figure 10.2: nottem time series with nonparametric forecast, computed with methods
from Section 10.3; cf. also Figure 1.4
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# fix output

temp$simulation<— NA # append new column
tmp<- seq(max(temp$date), by= 'month’, length= simulations+1) # new months

ntemp<- nrow (temp) # total number of rows
temp[(ntemp+1):(ntemp+ simulations),]$date<— tmp[-1] # append new months and

temp[(ntemp+1):(ntemp+ simulations),]$simulation<- tempSimulation[-(1:lags)] # simulations
plot (temperature ~ date, temp[(n-150):(n+simulations),],

type= ’'|’, xlab="year/mforecastm(blue)’, ylab= ’'termperature/mC’)
lines (simulation = date, temp, col= 'blue’, type= 'I|")

Version: May 16, 2023
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