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Preface and Acknowledgment

The purpose of these lecture notes is to facilitate the content of the lecture and the
course. From experience it is helpful and recommended to attend and follow the lec-
tures in presence. The lecture notes do not cover the lectures completely.

Initial literature on the subject includes Box et al. (2013). Brockwell and Davis (1987)
properly describe the mathematics of time series.

Important references for this lecture include Brockwell and Davis (2002) and Shumway
and Stoffer (2000). Härdle et al. (1997) and Fan and Yao (2003) discuss nonparamet-
ric time series. Time series for financial applications can be found in Andersen et al.
(2009); Brooks (2014) and Franke et al. (2004). Some content (including problems)
follows these references very closely.

Please report mistakes, errors, violations of copyright, improvements or necessary
completions.

Further description of the course:
https://www.tu-chemnitz.de/mathematik/studium/module/2013/M22.pdf

Additional material: kick-starting time series in R by Salima Abdalla,
https://www.tu-chemnitz.de/mathematik/fima/public/ZeitreihenAbdalla.pdf
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1Preliminaries, Notations, ...

The fundamental cause of the trouble
is that in the modern world the stupid
are cocksure while the intelligent are
full of doubt.

Bertrand Russell, 1872–1970

1.1 NOTATION AND CONVENTION

Time series analysis is a subarea of (mathematical) statistics.

Definition 1.1. A stochastic process on a probability space (Ω,A, 𝑃) is a family of
random variables (𝑋𝑡 )𝑡∈𝑇 .

Typical index sets for time series include 𝑇 = N and 𝑇 = Z.
By convention, the time-series 𝑋 = (𝑋𝑡 )𝑡∈𝑇 is a row vector (mainly, because C/ C++

and NumPy (Python) use row-major (lexicographical) order; Julia, Matlab and R are
column-major).

1.2 BOX–JENKINS MODELING

The Box–Jenkin modeling approach is a three-step ((ii)–(iv) below) modeling approach
(cf. Box et al. (2013)1):

(i) Data preparation
(ii) Model identification and model selection
(iii) Parameter estimation
(iv) Model checking
(v) Forecasting

The law of parsimony, aka. Occam’s razor.2

Example 1.2 (Classical decomposition). A typical result of the Box–Jenkins modeling
is the decomposition (the classical decomposition)

𝑋𝑡 = 𝑚𝑡︸︷︷︸
trend

+ 𝑘𝑡︸︷︷︸
economic cycle

+ 𝑠𝑡︸︷︷︸
season

+ 𝑓 (𝑢𝑡 )︸︷︷︸
nonlinear control

+ 𝑍𝑡 ,︸︷︷︸
residual, unexplained

1See also https://robjhyndman.com/papers/BoxJenkins.pdf for a nice overview.
2William of Ockham, 1287–1347
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Figure 1.1: Charles Minard’s map of Napoleon’s Russian campaign of 1812,
https://en.wikipedia.org/wiki/Charles Joseph Minard

Figure 1.2: Dow Jones Insdustrial Average, historic chart. Source:
http://allstarcharts.com/110-years-of-the-dow-jones-industrial-average-volatility-is-
normal/
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Figure 1.3: Prices for electricity and natural gas

where 𝑚𝑡 is a trend component (𝑘𝑡 another, short-term trend, regime), 𝑠𝑡 a seasonal
component ( 𝑓 (𝑢𝑡 ) a control) and 𝑍𝑡 an unexplained error, or noise. For an example
consider Figure 1.4a.

1.3 TIMESTAMP

The timestamp is an index which can be identified with a float number. In Excel, e.g.,
Jan 1st, 1900 = 1,00 or 44000,35 = June 18th, 2020, 8:24. The Astronomers’ time stamp
is 2018-05-27 22:50:55.338162 + 02:00 = 2458266.3686960433, for example.

Python’s datetime and panda’s timestamp start with 1900 as well. Unix time is the
number of seconds since Jan 1st, 1970, 00:00 UTC, without leap seconds.

Note, that this approach allows algebra on dates. 𝑡 + 1 is the next instant of time
day (day, say, or second, year) based on the implementation; 𝑡2 − 𝑡1 is the term between
different dates, measured in base time units (seconds, in Unix, e.g.).

Of course, including the time stamp 𝑡𝑖 in the time series 𝑋𝑡𝑖 one can consider the
new time series

(
𝑡𝑖 , 𝑋𝑡𝑖

)
𝑖∈N, indexed by N, say.

As an example for a time series with non equidistant timestams see Figure 1.5.

Version: May 16, 2023
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2The trend

All shall be well and all shall be well
and all manner of thing shall be well.

Julian of Norwich, 1342–1416

2.1 FILTERS

Filters are employed to increase the signal-to-noise ratio without greatly distorting the
signal.

Definition 2.1. A Filter is a map, mapping a time series to another time series

(𝑋𝑡 )𝑡∈Z ↦→ (𝑚𝑡 )𝑡∈Z .

A general linear filter has the form

𝑚𝑡 =
∑︁
𝑗∈Z

𝑎 𝑗𝑋𝑡+ 𝑗 . (2.1)

In what follows we discuss low-pass filters, aka. high-cut filter: a low-pass filter is
a filter that passes signals with a frequency lower than a certain cutoff frequency and
attenuates signals with frequencies higher than the cutoff frequency.

Note, that we may rewrite (2.1) formally as matrix product, 𝑚 = 𝐴𝑋, or

©­­­­­­­«

...

𝑚−1
𝑚0
𝑚1
...

ª®®®®®®®¬
=

©­­­­­­­­­­«

. . .
. . .

. . .

. . . 𝑎0 𝑎1
. . .

. . . 𝑎−1 𝑎0 𝑎1
. . .

. . . 𝑎−1 𝑎0
. . .

. . .
. . .

. . .

ª®®®®®®®®®®¬
·

©­­­­­­­«

...

𝑋−1
𝑋0
𝑋1
...

ª®®®®®®®¬
on RZ.

2.2 THE LEAST SQUARES FILTER

Cf. linear models in math. statistics,
https://www.tu-chemnitz.de/mathematik/fima/public/mathematischeStatistik.pdf.
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16 THE TREND

2.3 POLYNOMIAL FITTING—SAVITZKY–GOLAY FILTER

The data points 𝑋𝑡 are observed at 𝑡 + 𝑧 with 𝑧 ∈ {𝑧𝑖 : 𝑖 = 1, . . . , 𝑚} ⊂ Z and approximat-
ed/ fitted with a function

𝑚𝛽 (𝑧) = 𝛽1 · 𝑔1(𝑧) + 𝛽2 · 𝑔2(𝑧) + · · · + 𝛽𝑘 · 𝑔𝑘 (𝑧) = 𝑔(𝑧)⊤𝛽 (2.2)

with 𝑔(𝑧) =
(
𝑔0(𝑧), . . . , 𝑔𝑘 (𝑧)

)⊤. For 𝑔 𝑗 (𝑧) = 𝑧 𝑗−1, the function 𝑚𝛽 is a polynomial.
The coefficients 𝛽 = (𝛽1, . . . , 𝛽𝑘) are chosen to minimize

𝑚∑︁
𝑖=1

𝑤𝑖

(
𝑋𝑡+𝑧𝑖 −

𝑘∑︁
𝑗=1

𝛽 𝑗 𝑔 𝑗 (𝑧𝑖)
)2

=

𝑚∑︁
𝑖=1

𝑤𝑖
(
𝑋𝑡+𝑧𝑖 − 𝑚𝛽 (𝑧𝑖)

)2
.

Set
𝐺 B

(
𝑔 𝑗 (𝑧𝑖)

) 𝑗=0:𝑘
𝑖=1:𝑚 ∈ R

(𝑘+1)×𝑚.

Differentiating with respect to 𝛽ℓ , ℓ = 1, . . . , 𝑘, gives the first order conditions

0 =

𝑚∑︁
𝑖=1

𝑤𝑖2
(
𝑋𝑡+𝑧𝑖 −

𝑘∑︁
𝑗=1

𝛽 𝑗 𝑔 𝑗 (𝑧𝑖)
)
𝑔ℓ (𝑧𝑖) = 2

𝑚∑︁
𝑖=1

𝑔ℓ (𝑧𝑖)𝑤𝑖𝑋𝑡+𝑧𝑖 − 2
𝑚∑︁
𝑖=1

𝑔ℓ (𝑧𝑖)𝑤𝑖
𝑘∑︁
𝑗=0
𝑔 𝑗 (𝑧𝑖) 𝛽 𝑗

)
,

i.e., the normal equations
𝐺⊤𝑊𝑋 = 𝐺⊤𝑊𝐺𝛽 (2.3)

with solution 𝛽 = (𝐺⊤𝑊𝐺)−1
𝐺⊤𝑊𝑋 (or 𝛽 = (𝐺⊤𝐺)−1

𝐺⊤𝑋, if𝑊 = 1). Note that only 𝑧 = 0
is important to evaluate the polynomial (2.2), i.e., 𝑚𝛽 (0) ≈ 𝑋𝑡 . That is,

𝑋𝑡 ≈ 𝑔(0)⊤𝛽 = 𝑔(0)⊤
(
𝐺⊤𝑊𝐺

)−1
𝐺⊤𝑊𝑋.

Remark 2.2. The formula (2.2) can be employed to predict 𝑋𝑡 ≈ 𝑚𝛽 (0) or to extrapolate
the smoothed data by simply evaluating 𝑋𝑡+Δ = 𝑚𝛽 (Δ) at 𝑧 = Δ appropriately.
Remark 2.3. The idea can be extended and used to higher dimensional data as well.

Example 2.4 (Savitzky–Golay filter). For 𝑚 = 5 and polynomials of degree 𝑘 = 3 (𝑔(𝑧) =

(1, 𝑧, 𝑧2, . . . , 𝑧𝑘)) with 𝑧 ∈
{
−𝑚−1

2 , . . . , 0, . . . 𝑚−1
2

}
(𝑚 odd) we obtain 𝐺 =

©­­­­­«
1 −2 4 −8
1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

ª®®®®®¬
and (𝐺⊤𝐺)−1

𝐺⊤ =

©­­­«
− 3

35
12
35

17
35

12
35 − 3

35
1
12 − 2

3 0 2
3 − 1

12
1
7 − 1

14 − 1
7 − 1

14
1
7

− 1
12

1
6 0 − 1

6
1

12

ª®®®¬. The regression polynomial, evaluated

at 𝑧 = 0, is the linear filter

𝑚𝑡 =
1
35
(−3 𝑋𝑡−2 + 12 𝑋𝑡−1 + 17 𝑋𝑡 + 12 𝑋𝑡+1 − 3 𝑋𝑡+2) .

Example 2.5. For 𝑧𝑖 ∈ {0,−1,−2,−3,−4} and 𝑘 = 3, the filter is

𝑚𝑡 =
1
70
(69 𝑋𝑡 + 4 𝑋𝑡−1 − 6 𝑋𝑡−2 + 4 𝑋𝑡−3 − 𝑋𝑡−4) .

rough draft: do not distribute



2.4 DIFFERENCING 17

2.3.1 Spencer filter

The Spencer 15-point moving average (MA) filter has the weights

(𝑎−7, . . . , 𝑎7) =
1

320
(−3,−6,−5, 3, 21, 46, 67, 74, 67, 46, 21, 3,−5,−6,−3) .

Which polynomials are not distorted by the Spencer filter?

2.3.2 The moving average filter

The Savitzky–Golay filter with 𝑘 = 0 is given by 𝐺 =
©­­«
1
...

1

ª®®¬ and (𝐺⊤𝐺)−1
𝐺⊤ = 1

𝑚
(1, . . . , 1).

Here, the regression thus is 𝑚𝑖 = 1
𝑚

∑𝑚−1
2

𝑖=−𝑚−1
2
𝑋𝑖 or

𝑚𝑡 =
1

2𝑞 + 1

𝑞∑︁
𝑗=−𝑞

𝑋𝑡+ 𝑗 , (2.4)

the moving average filter.

Remark 2.6. The filter (2.4) is also optimal for 𝑘 = 1.

Weights. The Savitzky–Golay filter with 𝑘 = 0 and weights 𝑤 = (𝑤1, . . . , 𝑤𝑚) (cf. (2.4))
is

𝑚𝑡 =
∑︁
𝑖∈𝑊

𝑤𝑖∑
𝑖∈𝑊 𝑤𝑖

𝑋𝑡+𝑖 .

2.4 DIFFERENCING

Definition 2.7. The (backward) difference operator is

∇𝑋𝑡 B 𝑋𝑡 − 𝑋𝑡−1 = (1−𝐵)𝑋𝑡 ,

where 𝐵 is the backshift,1

𝐵𝑋𝑡 = 𝑋𝑡−1. (2.5)

Powers of this operator ∇0 B 1 and ∇ 𝑗+1 B ∇∇ 𝑗 are obvious. For example, ∇2𝑋𝑡 =

𝑋𝑡 − 2𝑋𝑡−1 + 𝑋𝑡−2, etc.

1The backward shift operator is occasionally called lag operator and denoted 𝐿.
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Figure 2.1: Time series of historic temperatures, Germany: temperature increases by 0.546◦ per century
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2.5 LOG AND DIFFERENCING THE LOG 19

Remark 2.8. As a matrix, mapping (𝑋𝑡 )𝑡∈Z ∈ RZ to itself, the backshift is

𝐵 =

©­­­­­­­­­­«

. . .
. . .

. . .
. . .

. . . 0 0 0 . . .

. . . 1 0 0 . . .

. . . 0 1 0 . . .

. . .
. . .

. . .
. . .

ª®®®®®®®®®®¬
.

Definition 2.9. The (forward) difference is

Δ𝑋𝑡 B 𝑋𝑡+1 − 𝑋𝑡 = (𝑆 − 1)𝑋𝑡 , (2.6)

where 𝑆 B 𝐵−1 = 𝐵∗ is the (forward) shift.

Remark 2.10. The operators 𝑆 and 𝐵 are adjoint (𝑆 = 𝐵∗ and 𝐵 = 𝑆∗) with respect to the
inner product ⟨𝑋 | 𝑌⟩ = ∑

𝑡∈Z 𝑋𝑡𝑌𝑡 , as ⟨𝑋 | 𝑆𝑌⟩ = ∑
𝑡 𝑋𝑡𝑌𝑡+1 =

∑
𝑡 𝑋𝑡−1𝑌𝑡 = ⟨𝐵𝑋 | 𝑌⟩.

Example 2.11 (Polynomial trend). Suppose that 𝑋𝑡 = 𝑎 + 𝑏 𝑡︸ ︷︷ ︸
trend 𝑚𝑡

+ 𝑍𝑡︸︷︷︸
noise

, then ∇𝑋𝑡 = 𝑏 +∇𝑍𝑡

has constant trend and ∇2𝑋𝑡 = ∇2𝑍𝑡 . More generally, for 𝑋𝑡 =
∑𝑘
𝑖=0 𝑎 𝑗 𝑡

𝑗 + 𝑍𝑡 , then
∇𝑘𝑋𝑡 = 𝑘!𝑎𝑘 + ∇𝑘𝑍𝑡 and ∇𝑘+1𝑋𝑡 = ∇𝑘+1𝑍𝑡 completely removes the polynomial trend.

Definition 2.12. The operator
∇ℓ B 1−𝐵ℓ (2.7)

is called lag-ℓ difference operator.

Remark 2.13. Note that ∇ℓ = 1−𝐵ℓ ≠ (1−𝐵)ℓ = ∇ℓ (ℓ > 1).

2.5 LOG AND DIFFERENCING THE LOG

Consider and differentiate the transformed time series log 𝑋𝑡 . Note, that this filter is not
linear.

2.6 THE SEASONAL COMPONENT

2.6.1 Lag-ℓ difference

To deseasonalize, one may also consider the filter ∇ℓ B 1−𝐵ℓ , cf. (2.7). For period 𝑑,
applying ∇𝑑 to the model 𝑋𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑍𝑡 gives the new series ∇𝑑𝑋𝑡 = 𝑚𝑡 − 𝑚𝑡−𝑑 + 0 +
𝑍𝑡 − 𝑍𝑡−𝑑 with seasonal component 𝑠𝑡 removed.

A further option is

𝑚𝑡 B
1
2

(
𝑋𝑡 + 𝑋𝑡−𝑑/2

)
=

1
2

(
1+𝐵𝑑/2

)
𝑋𝑡 =

(
1−1/2∇𝑑/2

)
𝑋𝑡 ; (2.8)
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20 THE TREND

indeed, 1
2
(
1+𝐵𝑑/2) 𝑋 = 1

2
(
𝑚𝑡 + 𝑚𝑡−𝑑/2

)
+ 1

2
(
𝑠𝑡 + 𝑠𝑡−𝑑/2

)︸        ︷︷        ︸
0

+ 1
2
(
𝑍𝑡 + 𝑍𝑡−𝑑/2

)
has the seasonal

component with period 𝑑 removed as well.

2.6.2 Non-integer periods

A generalization for periods 𝑑 ∈ R which are not necessarily integers is the operator

∇𝑑 B
(
1 − (𝑑 − ⌊𝑑⌋)

)
∇⌊𝑑⌋𝑋 +

(
𝑑 − ⌊𝑑⌋

)
∇⌊𝑑⌋+1, (2.9)

so that the formula (2.8) remains applicable (cf. (2.11)); equivalently,

𝐵𝑑 B (1 − 𝑑 + ⌊𝑑⌋) 𝐵⌊𝑑⌋ + (𝑑 − ⌊𝑑⌋) 𝐵⌊𝑑⌋+1. (2.10)

2.6.3 Moving average

The seasonal component can be removed by averaging. If the period is 𝑑 = 2𝑞 + 1, then
the moving average filter (2.4) can do the job; for 𝑑 = 2𝑞, a useful filter to deseasonalize
is

𝑚𝑡 =
1

2𝑞

(
1
2
𝑋𝑡−𝑞 + 𝑋𝑡−𝑞+1 + · · · + 𝑋𝑡+𝑞−1 +

1
2
𝑋𝑡+𝑞

)
.

Another variant is

𝑚𝑡 =
1
𝑑

(
𝑋𝑡 + 𝑋𝑡−1 + · · · + 𝑋𝑡−⌊𝑑⌋+1 + (𝑑 − ⌊𝑑⌋) · 𝑋𝑡−⌊𝑑⌋

)
(2.11)

for a non-integer period 𝑑 > 0.

2.7 EXPONENTIAL MOVING AVERAGE (EMA)

A.k.a. exponential smoothing. The smoothing operation is given recursively by

𝑚𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝑚𝑡−1 (2.12)
= 𝑚𝑡−1 + 𝛼 (𝑋𝑡 − 𝑚𝑡−1)

and 𝑚0 = 𝑋0, where 𝛼 ∈ [0, 1] is a model parameter called exponential weight. The
parameter is often 𝛼 = 1

𝑑
or 𝛼 = 2

𝑑+1 , where 𝑑 is a sample period comparable to the
period of the moving average. An explicit formula is

𝑚𝑡 =

𝑡∑︁
𝑖=1

𝛼(1 − 𝛼)𝑡−𝑖𝑋𝑖 + (1 − 𝛼)𝑡𝑋0. (2.13)

rough draft: do not distribute
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2.8 PROBLEMS

Exercise 2.1. Show that a linear filter (𝑎 𝑗) passes every polynomial of degree 𝑘 without
distortion, i.e., 𝑚𝑡 =

∑
𝑗 𝑎 𝑗 𝑚𝑡−1 for all 𝑚𝑡 =

∑𝑘
𝑖=0 𝑐𝑖𝑡

𝑖, iff
∑
𝑗 𝑎 𝑗 = 1 and

∑
𝑗 𝑗
𝑟𝑎 𝑗 = 0 for

𝑟 = 1, . . . , 𝑘.

Exercise 2.2. Show that the Spencer filter does not distort polynomials up to degree 3.

Exercise 2.3. The filter with binomial weights is 𝑎 𝑗 = 1
2𝑞

( 𝑞

𝑗+𝑞/2
)
, 𝑗 = −𝑞2 , . . . ,

𝑞

2 . Investigate
its properties.

Exercise 2.4. Show that the backward difference operator satisfies ∇ 𝑗𝑋𝑡 =
∑ 𝑗

𝑖=0(−1)𝑖
( 𝑗
𝑖

)
𝑋𝑡−𝑖.

Give the corresponding formula for the forward difference operator?

Exercise 2.5. Show that (2.9) and (2.10) are equivalent.

Exercise 2.6 (Newton’s backward difference formula). Show that

𝑋𝑡 = 𝑋0 +
𝑡

1
∇1

0 +
𝑡 (𝑡 + 1)

2!
∇2

0 +
𝑡 (𝑡 + 1) (𝑡 + 2)

3!
∇3

0 + . . .

and compare the formula with the Taylor series expansion.

Exercise 2.7 (Newton’s forward difference formula). Show that

𝑋𝑡 = 𝑋0 +
𝑡

1
Δ1

0 +
𝑡 (𝑡 − 1)

2!
Δ2

0 +
𝑡 (𝑡 − 1) (𝑡 − 2)

3!
Δ3

0 + . . .

and compare the formula with the Taylor series expansion.

Exercise 2.8. Implement and visualize the filters (2.8) and (2.11) for the time series
Example (3.7).

Exercise 2.9. Implement the exponential smoothing filter (2.12) in Exercise 3.3.

Exercise 2.10. Argue why the filter 1
2
(
1+𝐵𝑑+𝑑/2

)
𝑋𝑡 removes seasonality of period 𝑑 as

well.

Exercise 2.11. Remove the seasonality of the time series 𝑋𝑡 = sin(2𝜋𝜉0𝑡 + 𝜑) + 𝑍𝑡 (𝜉0
and 𝜑 deterministic), where 𝑍𝑡 are iid.

Exercise 2.12. Remove all seasonalities of the time series 𝑋𝑡 = 𝐴1 sin(2𝜋𝜉1𝑡 + 𝜑1) +
𝐴2 sin(2𝜋𝜉2𝑡 + 𝜑2) + 𝑍𝑡 .

Exercise 2.13. Verify the exponential moving average (2.13); show as well that the
weights sum to 1.
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3Stationarity

Things never happen the same way
twice.

C. S. Lewis, 1889–1936

In what follows we assume that the trend and seasonalities are already removed.

Definition 3.1. Let 𝑋𝑡 ∈ R𝑑 be a stochastic process.
(i) mean function of a stochastic process is 𝜇(𝑡) B E 𝑋𝑡 (𝜇 : 𝑇 → R𝑑).
(ii) The variance function is 𝜎2(𝑡) B var 𝑋𝑡 = E

(
𝑋𝑡 − 𝜇(𝑡)

) (
𝑋𝑡 − 𝜇(𝑡)

)⊤ (𝜎2 : 𝑇 → R𝑑×𝑑);
(iii) The autocovariance function is the Pearson covariance 𝛾(𝑡, 𝑡′) B cov

(
𝑋𝑡 , 𝑋𝑡 ′

)
(𝛾 : 𝑇 × 𝑇 → R𝑑×𝑑).

(iv) The autocorrelation function is the Pearson correlation 𝜌(𝑡, 𝑡′) B cov
(
𝑋𝑡 ,𝑋𝑡′

)
√

var𝑋𝑡 ·var𝑋𝑡′
.

Proposition 3.2. We have that

2 𝛾(𝑡, 𝑡′) = (𝜇(𝑡) − 𝜇(𝑡′))2 + var 𝑋𝑡 + var 𝑋𝑡 ′ − E (𝑋𝑡 ′ − 𝑋𝑡 )2 .

Proof. Indeed,

E (𝑋𝑡 ′ − 𝑋𝑡 )2 = E
(
𝑋𝑡 ′ − 𝜇(𝑡′) −

(
𝑋𝑡 − 𝜇(𝑡)

)
+

(
𝜇(𝑡′) − 𝜇(𝑡)

) )2

= E
(
𝑋𝑡 ′ − 𝜇(𝑡′)

)2 + E
(
𝑋𝑡 − 𝜇(𝑡)

)2 +
(
𝜇(𝑡′) − 𝜇(𝑡)

)2

− 2 · E
(
𝑋𝑡 ′ − 𝜇(𝑡′)

) (
𝑋𝑡 − 𝜇(𝑡)

)
+ 2 ·

(
E

(
𝑋𝑡 ′ − 𝜇(𝑡′)

)
− E

(
𝑋𝑡 − 𝜇(𝑡)

) )
·
(
𝜇(𝑡′) − 𝜇(𝑡)

)
= var 𝑋𝑡 ′ + var 𝑋𝑡 +

(
𝜇(𝑡) − 𝜇(𝑡′)

)2 − 2 𝛾(𝑡, 𝑡′),

from which the assertion follows. □

Definition 3.3. A stochastic process 𝑋𝑡 is weakly or wide-sense stationary or covari-
ance stationary if

(i) E 𝑋𝑡 = 𝜇𝑋 (𝑡) = 𝜇𝑋 (𝑡 + 𝜏) C 𝜇 for all 𝜏 ∈ 𝑇 (𝜇𝑋 : 𝑇 → R𝑑),
(ii) var 𝑋𝑡 < ∞ for all 𝑡 ∈ 𝑇 and
(iii) cov(𝑋𝑡 , 𝑋𝑡 ′) = E

(
𝑋𝑡 − 𝜇𝑋 (𝑡)

) (
𝑋𝑡 ′ − 𝜇𝑋 (𝑡′)

)
C 𝛾𝑋 (𝑡, 𝑡′) = 𝛾𝑋 ( |𝑡 − 𝑡′ |) for 𝛾𝑋 : Z→ R.

Proposition 3.4. Suppose the process is weakly stationary. Then

𝛾(ℎ) = var 𝑋𝑡 −
1
2
E (𝑋𝑡+ℎ − 𝑋𝑡 )2 .

23



24 STATIONARITY

Proof. The assertion is immediate from Proposition 3.2. □

Remark 3.5 (Variogram). A spatial analogue of the (temporal) covariance used in geo-
statistics is the variogram (semivariogram; not to be confused with covariance; kriging).
It is defined as 𝛾(𝑥, 𝑦) = 1

2 E (𝑍 (𝑥) − 𝑍 (𝑦))
2, where 𝑍 (·) is a random field.

Definition 3.6 (Strict stationarity). A stochastic process 𝑋𝑡 is stationary (strictly station-
ary), if the cumulative distribution functions satisfy

𝐹𝑋 (𝑥𝑡1+𝜏 , . . . , 𝑥𝑡𝑘+𝜏) = 𝐹𝑋 (𝑥𝑡1 , . . . , 𝑥𝑡𝑘 )

for all 𝑡1 < · · · < 𝑡𝑘 ∈ 𝑇 and 𝜏 ≥ 0.

A process is a Gaussian process if (𝑋𝑡1 , . . . 𝑋𝑡𝑛) is multivariate normal for every n-
tuple (𝑡1, . . . 𝑡𝑛).
Remark 3.7. The augmented Dickey–Fuller test (ADF test) is the most prominent test
to test stationarity.

Definition 3.8. Let 𝑋𝑡 be a weakly stationary process. The covariance function is the
even function

𝛾(𝜏) B cov
(
𝑋𝑡+𝜏 , 𝑋𝑡 ).

The autocorrelation function (aka. serial correlation or lagged correlation) is

𝜌(𝜏) B 𝛾(𝜏)
√

var 𝑋𝑡 ·
√

var 𝑋𝑡+𝜏
.

Remark 3.9. Note, that 𝛾(𝜏) = 𝛾(−𝜏), that 𝛾(0) = var 𝑋𝑡 and 𝜌(0) = 1.

Remark 3.10 (𝑍-transform). For a weakly stationary process 𝑋𝑡 with 𝜇𝑋 B E 𝑋𝑡 set
𝜎2
𝑋
B 𝛾𝑋 (0) = var 𝑋𝑡 . Then the time series 𝑋 ′𝑡 B

𝑋𝑡−𝜇𝑋
𝜎𝑋

is zero mean (E 𝑋 ′𝑡 = 0) and
variance 𝜎2

𝑋′ B var 𝑋 ′𝑡 = 1. The covariance is 𝛾𝑋 (𝑡) = 𝜎2
𝑋
· 𝜌𝑋′ (𝑡) so that is enough to

consider the correlation 𝜌 in what follows.

Proposition 3.11. The covariance function is non-negative definite, i.e.,

𝑛∑︁
𝑖, 𝑗=1

𝑎𝑖 𝛾(𝑖 − 𝑗) 𝑎 𝑗 ≥ 0 (3.1)

for all 𝑛 ≥ 1 and all 𝑎1, . . . , 𝑎𝑛.

Proof. Consider the random vector 𝑍 B (𝑋1 − E 𝑋1, . . . , 𝑋𝑛 − E 𝑋𝑛). It holds that

0 ≤ var
(
𝑎⊤𝑍

)
= E

(
𝑎⊤𝑍

) (
𝑎⊤𝑍

)⊤
= E 𝑎⊤𝑍𝑍⊤𝑎 = 𝑎⊤E

(
𝑍𝑍⊤

)
𝑎 =

∑︁
𝑖, 𝑗

𝑎𝑖 𝛾(𝑖 − 𝑗) 𝑎 𝑗

and thus (3.1). □
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Definition 3.12 (White noise or white independent noise). The time series 𝑋𝑡 with un-
correlated (but not necessarily independent) components is called white noise and often
denoted 𝑤𝑡 . We shall write

𝑤𝑡 ∼
(
𝜇𝑤 , 𝜎

2
𝑤

)
.

The autocovariance function of the white noise is the covariance function of iid noise
is

𝛾(𝑡 + 𝜏, 𝑡) = 𝛾(𝜏) =
{
𝜎2
𝑤 if 𝜏 = 0,

0 else.
(3.2)

Definition 3.13 (iid noise). The time series 𝑋1, 𝑋2, . . . for 𝑋𝑖 iid with mean E 𝑋𝑖 = 0 is
called iid noise.

It holds that 𝑃
(
𝑋1 ≤ 𝑥1, . . . 𝑋𝑛 ≤ 𝑥𝑛

)
= 𝑃(𝑋1 ≤ 𝑥1) · . . . · 𝑃(𝑋𝑛 ≤ 𝑥𝑛) and thus

𝑃
(
𝑋𝑛+ℓ ≤ 𝑥 | 𝑋1, . . . 𝑋𝑛

)
= 𝑃(𝑋𝑛+ℓ ≤ 𝑥) and thus has no value for predicting the time

series. The autocovariance function (provided that var 𝑋 𝑗 < ∞) is (3.2).

Definition 3.14 (Gaussian). Terms as Gaussian white noise or Gaussian iid noise are
evident.

Example 3.15 (Periodic time series). Consider the periodic time series

𝑋𝑡 = 𝐴 cos(2𝜋𝜉0𝑡) + 𝐵 sin(2𝜋𝜉0𝑡) (3.3)

for 𝐴, 𝐵 uncorrelated, mean zero, variance 𝜎2 and angular frequency 𝜉0 fixed. Then1

𝛾(𝜏) = cov(𝑋𝑡 , 𝑋𝑡+𝜏) = E 𝑋𝑡+𝜏𝑋𝑡
= E

(
𝐴 cos 2𝜋𝜉0𝑡 + 𝐵 sin 2𝜋𝜉0𝑡

) (
𝐴 cos 2𝜋𝜉0(𝑡 + 𝜏) + 𝐵 sin 2𝜋𝜉0(𝑡 + 𝜏)

)
= E 𝐴2 cos 2𝜋𝜉0𝑡 · cos 2𝜋𝜉0(𝑡 + 𝜏) + 𝐵2 sin 2𝜋𝜉0𝑡 · sin 2𝜋𝜉0(𝑡 + 𝜏)
= 𝜎2 cos 2𝜋𝜉0

(
𝑡 − (𝑡 + 𝜏)

)
= 𝜎2 cos 2𝜋𝜉0𝜏.

Example 3.16 (Cf. Proposition 4.6 below). Consider 𝑋𝑡 B 𝑍𝑡 + 𝜃 𝑍𝑡−1 with 𝑍𝑡 uncorre-
lated, zero-mean and variance 𝜎2

𝑍
. Then

𝛾(ℓ) =


(1 + 𝜃2) 𝜎2

𝑍
if ℓ = 0,

𝜃 𝜎2
𝑍

if ℓ = ±1,
0 else

and 𝑋𝑡 is weakly stationary, as 𝑚𝑡 = 0.

1Recall the trigonometric identities

sin(𝛼 ± 𝛽) = sin𝛼 cos 𝛽 ± cos𝛼 sin 𝛽 and

cos(𝛼 ± 𝛽) = cos𝛼 cos 𝛽 ∓ sin𝛼 sin 𝛽.

Version: May 16, 2023



26 STATIONARITY

Example 3.17 (Random walk). For 𝑋𝑡 , 𝑡 = 1, 2, . . . uncorrelated, zero-mean and vari-
ance 𝜎2 define 𝑆𝑡 B 𝑋1 + 𝑋2 + · · · + 𝑋𝑡 . Then

cov(𝑆𝑡+ℎ, 𝑆𝑡 ) = cov ©­«
𝑡+ℎ∑︁
𝑖=1

𝑋𝑖 ,

𝑡∑︁
𝑗=1

𝑋 𝑗
ª®¬ =

𝑡+ℎ∑︁
𝑖=1

𝑡∑︁
𝑗=1

cov
(
𝑋𝑖 , 𝑋 𝑗

)
=

𝑡∑︁
𝑖, 𝑗=1

cov
(
𝑋𝑖 , 𝑋 𝑗

)
= 𝑡 · 𝜎2,

which depends on 𝑡 but not on ℎ. 𝑆𝑡 thus is not stationary.

3.1 LINEAR PROCESS WITH GIVEN AUTOCOVARIANCE

We are interested in a weakly stationary time series 𝑋0, 𝑋1, . . . so that var 𝑋𝑘 = 𝜎2 and
cov(𝑋𝑘 , 𝑋ℓ) = 𝛾𝑘−ℓ .

Proposition 3.18 (Yule–Walker). Suppose that 𝑍𝑡 , 𝑡 = 0, . . . , are uncorrelated, zero
mean E 𝑍𝑡 = 0 with variance var 𝑍𝑡 = 1 (not necessarily iid, white noise, e.g.). Then, for
𝛾(·) positive (cf. (3.1)), the time series

𝑋𝑡 = 𝜙𝑡𝑡 · 𝑋0 + · · · + 𝜙𝑡1 · 𝑋𝑡−1 + 𝜓𝑡 · 𝑍𝑡 =
𝑡−1∑︁
𝑖=0

𝜙𝑡𝑡−𝑖 𝑋𝑖 + 𝜓𝑡 𝑍𝑡 (3.4)

has the acf cov (𝑋𝑘 , 𝑋ℓ) = 𝛾𝑘−ℓ , where the coefficients satisfy

©­­­­­«
𝛾0 𝛾1 . . . 𝛾𝑡−1

𝛾1 𝛾0
. . .

...
...

. . .
. . . 𝛾1

𝛾𝑡−1 . . . 𝛾1 𝛾0

ª®®®®®¬︸                         ︷︷                         ︸
Γ𝑡

©­­­­«
𝜙𝑡1
𝜙𝑡2
...

𝜙𝑡𝑡

ª®®®®¬︸︷︷︸
Φ𝑡

=

©­­­­«
𝛾1
𝛾2
...

𝛾𝑡

ª®®®®¬︸︷︷︸
𝑟𝑡

(3.5)

and
𝜓2
𝑡 B 𝜎2 − 𝑟⊤𝑡 Φ𝑡 > 0. (3.6)

Remark 3.19. The matrix Γ𝑡 is a Toeplitz matrix. Note the reverse order in (3.4).

Corollary 3.20. The function 𝛾(·) is the acf of a time series iff 𝛾(·) is positive.

Corollary 3.21 (Cf. Proposition 3.11). The matrix

Γ𝑡 B

©­­­­­«
𝛾0 𝛾1 . . . 𝛾𝑡−1

𝛾1 𝛾0
. . .

...
...

. . .
. . . 𝛾1

𝛾𝑡−1 . . . 𝛾1 𝛾0

ª®®®®®¬
= 𝜎2 ·

©­­­­­«
1 𝜌1 . . . 𝜌𝑡−1

𝜌1 1 . . .
...

...
. . .

. . . 𝜌1
𝜌𝑡−1 . . . 𝜌1 1

ª®®®®®¬
is positive definite.
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Definition 3.22 (Yule–Walker). Equations (3.5) are the Yule–Walker equations.

Proof of Proposition 3.18. By construction, 𝑍𝑡 is independent from 𝑋𝑖, 𝑖 = 0, . . . , 𝑡 − 1,
so we deduce from (3.4) that

𝛾𝑘 = E 𝑋𝑡𝑋𝑡−𝑘 = E

(
𝑡∑︁
𝑖=1

𝜙𝑡𝑖𝑋𝑡−𝑖 + 𝜓𝑡𝑍𝑡

)
· 𝑋𝑡−𝑘 ,

=

𝑡∑︁
𝑖=1

𝛾𝑘−𝑖 𝜙𝑡𝑖 , 𝑘 = 1, . . . 𝑡,

i.e., 𝑟𝑡 = Γ𝑡 Φ𝑡 . It follows that 𝑋𝑡 has the desired covariance structure if the coefficients
in (3.4) are Φ𝑡 = Γ−1

𝑡 𝑟𝑡 .
Further,

var 𝑋𝑡 =
𝑡∑︁

𝑖, 𝑗=1
𝜙𝑡𝑖 𝜙𝑡 𝑗 E 𝑋𝑡−𝑖𝑋𝑡− 𝑗 + 𝜓2

𝑡 =

𝑡∑︁
𝑖, 𝑗=1

𝜙𝑡𝑖 𝛾𝑖− 𝑗 𝜙𝑡 𝑗 + 𝜓2
𝑡

and we thus find Φ⊤𝑡 Γ𝑡Φ𝑡+𝜓2
𝑡 = 𝜎

2 to obtain var 𝑋𝑡 = 𝜎2, i.e., (3.6) by employing (3.5). □

Proposition 3.23 (Durbin, cf. the Levinson Algorithm in Golub and Van Loan (2013)).
The solution of the Yule–Walker equations can be updated recursively as

𝛼𝑡+1 =
𝛾𝑡+1 − 𝑟⊤𝑡 𝐽𝑡Φ𝑡

𝜓2
𝑡

, (3.7)

Φ𝑡+1 =

(
Φ𝑡 − 𝛼𝑡+1𝐽𝑡Φ𝑡

𝛼𝑡+1

)
and (3.8)

𝜓2
𝑡+1 = 𝜓2

𝑡

(
1 − 𝛼2

𝑡+1

)
, (3.9)

where 𝐽𝑡 B
©­­­«
. . . 0 1

. .
.
. .
.

0

1 . .
.

ª®®®¬ is the 𝑡-by-𝑡 exchange matrix.

Remark 3.24. The initial conditions and first solutions are

• 𝑡 = 0: Φ0 B 𝑟0 B (), 𝜓0 B 𝜎2, 𝛼1 =
𝛾1
𝜎

= 𝜌1 (cf. (3.7)) and thus 𝑋0 = 𝜎 𝑍0;

• 𝑡 = 1: Φ1 = 𝑟1 = (𝜌1), 𝜓2
1 = 𝜎2(1 − 𝜌2

1) and thus 𝑋1 = 𝜌1 · 𝑋0 + 𝜎
√︃

1 − 𝜌2
1 · 𝑍1;

• 𝑡 = 2: Φ2 = 1
1−𝜌2

1

(
𝜌1 − 𝜌1𝜌2
𝜌2 − 𝜌2

1

)
and thus

𝑋2 =
𝜌2 − 𝜌2

1

1 − 𝜌2
1
𝑋0 +

𝜌1 − 𝜌1𝜌2

1 − 𝜌2
1
𝑋1 + 𝜎

√√
1 − 2𝜌2

1 + 𝜌
2
2

1 − 𝜌2
1

𝑍2. (3.10)
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Note that the necessary memory allocation for the update is 𝑡 + O(1) and the time to
compute the update is 𝑡 + O(1). So the total cost to compute Φ𝑡 and 𝛼𝑡 are 𝑡2/2 + O(𝑡)
instead of O(𝑡3) when inverting (3.5) directly.

Proof of Proposition 3.23. Note that 𝐽𝑡Γ𝑡 = Γ𝑡𝐽𝑡 (cf. Exercise 3.12). The Yule–Walker

equations (3.5) for 𝑡 + 1 read
(
Γ𝑡 𝐽𝑡𝑟𝑡
𝑟⊤𝑡 𝐽𝑡 𝜎2

)
︸          ︷︷          ︸

Γ𝑡+1

(
𝑧𝑡
𝛼𝑡+1

)
=

(
𝑟𝑡
𝛾𝑡+1

)
and it follows that

𝑧𝑡 = Γ−1
𝑡 (𝑟𝑡 − 𝛼𝑡+1𝐽𝑡𝑟𝑡 ) = Φ𝑡 − 𝛼𝑡+1𝐽𝑡Γ−1

𝑡 𝑟𝑡 = Φ𝑡 − 𝛼𝑡+1𝐽𝑡Φ𝑡

and

𝜎2 𝛼𝑡+1 = 𝛾𝑡+1 − 𝑟⊤𝑡 𝐽𝑡 𝑧𝑡 = 𝛾𝑡+1 − 𝑟⊤𝑡 𝐽𝑡 (Φ𝑡 − 𝛼𝑡+1𝐽𝑡Φ𝑡 ) = 𝛾𝑡+1 − 𝑟⊤𝑡 𝐽𝑡Φ𝑡 + 𝛼𝑡+1𝑟⊤𝑡 Φ𝑡

and thus 𝛼𝑡+1 =
𝛾𝑡+1−𝑟⊤𝑡 𝐽𝑡Φ𝑡

𝜎2−𝑟⊤𝑡 Φ𝑡
, so (3.7) and (3.8) with (3.6). Next,

𝜓2
𝑡+1 =

(3.6)
𝜎2 − 𝑟⊤𝑡+1Φ𝑡+1 = 𝜎2 −

(
𝑟𝑡
𝛾𝑡+1

)⊤ (
Φ𝑡 − 𝛼𝑡+1𝐽𝑡Φ𝑡

𝛼𝑡+1

)
= 𝜎2 − 𝑟⊤𝑡 Φ𝑡 + 𝛼𝑡+1𝑟⊤𝑡 𝐽𝑡Φ𝑡 − 𝛼𝑡+1𝛾𝑡+1 = 𝜓2

𝑡 − 𝛼𝑡+1
(
𝛾𝑡+1 − 𝑟⊤𝑡 𝐽𝑡Φ𝑡

)
=

(3.7)
𝜓2
𝑡 − 𝛼𝑡+1𝛼𝑡+1𝜓2

𝑡 = 𝜓
2
𝑡

(
1 − 𝛼2

𝑡+1
)

and thus (3.9).

Finally recall that the matrix Γ𝑡+1 is positive definite. It follows for
(
−𝐽𝑡𝜙𝑡

1

)
that

0 ≤
(
−𝐽𝑡𝜙𝑡

1

)⊤ (
Γ𝑡 𝐽𝑡𝑟𝑡
𝑟⊤𝑡 𝐽𝑡 𝜎2

)
︸          ︷︷          ︸

Γ𝑡+1

(
−𝐽𝑡Φ𝑡

1

)
=

(
−Φ⊤𝑡 𝐽𝑡 1

) (
0

𝜎2 − 𝑟⊤𝑡 Φ𝑡

)
= 𝜎2 − 𝑟⊤𝑡 Φ𝑡 = 𝜓2

𝑡

and thus 𝜓𝑡 > 0 is well defined. □

Definition 3.25 (Partial autocorrelation). The partial autocorrelation at lag ℓ (or order ℓ)
of the stationary time series 𝑋𝑡 is

𝛼(ℓ) = corr (𝑋𝑡+ℓ , 𝑋𝑡 | 𝑋𝑡+1, . . . 𝑋𝑡+ℓ−1) = corr (𝑋𝑡 , 𝑋𝑡−ℓ | 𝑋𝑡−ℓ+1, . . . 𝑋𝑡−1)

(conditioning on the intervening variables).
The partial autocorrelations are often called reflection coefficients (particularly in

signal processing).

Remark 3.26. Apparently, 𝛼(1) = 𝜌1.
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Proposition 3.27. For a time series with mean 0 it holds that

𝛼(ℓ) = Φℓℓ = 𝛼ℓ ,

where Φℓ = 𝑅
−1
ℓ
𝑟ℓ (the solution of the Yule–Walker equation).

Proof. Indeed, this follows with (3.4) from

𝑋𝑡 = 𝜙ℓ1 · 𝑋𝑡−1 + · · · + 𝜙ℓℓ−1 · 𝑋𝑡−ℓ+1︸                                    ︷︷                                    ︸
conditioned

+𝜙ℓℓ · 𝑋𝑡−ℓ + 𝜓ℓ · 𝑍ℓ .

□

From Remark 3.24 it follows that 𝛼(0) = 1, 𝛼(1) = 𝜌1, 𝛼(2) = 𝜌2−𝜌1 𝜌1
1−𝜌2

1
and 𝛼(3) =

𝜌3
1−𝜌

2
1𝜌3−𝜌1𝜌2 (2−𝜌2 )+𝜌3

(1−𝜌2 ) (1−2𝜌2
1+𝜌2 )

, etc.

3.2 PROBLEMS

Exercise 3.1. Simulate and visualize the time series (3.3).

Exercise 3.2. Visualize samples of the time series from Example 3.16.

Exercise 3.3 (Constant acf). Let 𝑍𝑖 be independent with E 𝑍𝑖 = 0 and var 𝑍𝑖 =: 𝜎2,
𝑖 = 0, 1, . . . . Define 𝑋0 B 𝑍0 and recursively

𝑋𝑖 B 𝜌𝑖 ·
1
𝑖

𝑖−1∑︁
𝑗=0

𝑋 𝑗 +
√︁

1 − 𝜌𝑖 · 𝜌 · 𝑍𝑖

with 𝜌𝑖 =
𝑖𝜌

1+(𝑖−1)𝜌 . Simulate and visualize the time series 𝑋𝑖, 𝑖 = 0, 1, . . . .

Exercise 3.4. Consider the time series 𝑋𝑖 given in Exercise 3.3. Show that E 𝑋𝑖 = 0,
var 𝑋𝑖 = 𝜎2 for all 𝑖 ∈ {0, 1, . . . } and corr(𝑋𝑖 , 𝑋 𝑗) = 𝜌 whenever 𝑖 ≠ 𝑗 (Hint: show the result

for 𝑖 = 0, 𝑖 = 1 first and use induction on 𝑖; as a side result, var
(

1
𝑖

∑𝑖−1
𝑗=0 𝑋 𝑗

)
=
𝑖+𝑖 (𝑖−1)𝜌

𝑖2
.)

Exercise 3.5. Suppose that corr(𝑋𝑖 , 𝑋 𝑗) ≤ 𝜌 for 0 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 . Show that 𝑛 ≥ − 1
𝜌
.

Discuss the consequences for the time series in Example 3.3 and show as well that
𝜌0 = 0 ≤ 𝜌 = 𝜌1 ≤ 𝜌𝑖 ≤ 𝜌𝑖+1 −−−−→

𝑖→∞
1.

Exercise 3.6. Discuss Exercise 3.3 for Gaussian random variables.

Exercise 3.7. Simulate a time series with autocovariance function ℓ ↦→


1 if ℓ = 0,
0.9 if ℓ = ±1,
0.7 if ℓ = ±2

?
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Exercise 3.8. Is there a time series with autocovariance function ℓ ↦→


1 if ℓ = 0,
0.9 if ℓ = ±1,
0.6 if ℓ = ±2

?

Exercise 3.9. Show that ℓ ↦→


1 if ℓ = 0,
𝜌 if ℓ = ±1,
0 else

is an autocovariance function of a time

series iff |𝜌 | ≤ 1
2 . (Hint: choose 𝑎 = (1,−1, 1,−1, . . . ) in (3.1).

Exercise 3.10. Verify (3.10) explicitly.

Exercise 3.11. Verify the Woodbury matrix identity.

Exercise 3.12. Verify the update (3.6) (use that 𝑅𝑛 and 𝑅−1
𝑛 are persymmetric matrices,

i.e., 𝑅−1
𝑛 𝐽𝑛 = 𝐽𝑛𝑅

−1
𝑛 ).

Exercise 3.13. Implement the algorithm (3.4) and run tests for your choice of 𝜌ℓ , where∑
ℓ∈Z |𝜌ℓ | < ∞ (i.e., (𝜌ℓ)ℓ ∈ ℓ1, the space of absolutely summable sequencs)

𝜌ℓ −−−−→
ℓ→∞

0 but
∑
ℓ∈Z |𝜌ℓ | = ∞ and

lim infℓ→∞ 𝜌ℓ > 0.

Exercise 3.14. Set 𝑅𝑡 B
(
𝑅𝑡 0
0 1

)
. With𝑈 B

©­­­­«
𝜌𝑡 0
...

...

𝜌1 0
0 1

ª®®®®¬
=

(
𝐽𝑡𝑟𝑡 0

0 1

)
and𝑉 B

(
0 . . . 0 1
𝜌𝑡 . . . 𝜌1 0

)
=

(
0 1

𝑟⊤𝑡 𝐽𝑡 0

)
, then 𝑅𝑡+1 = 𝑅𝑡 +𝑈 · 𝑉 . By employing the Woodbury matrix identity (rank two

update, aka. Sherman–Morrison–Woodbury formula, Exercise 3.11)

𝑅−1
𝑡+1 = 𝑅

−1
𝑡 − 𝑅

−1
𝑡 𝑈

((
1 0
0 1

)
+𝑉𝑅−1

𝑡 𝑈

)−1

𝑉𝑅
−1
𝑡 .

We have (use Exercise 3.12) 𝑅
−1
𝑡 𝑈 =

(
𝑅−1
𝑡 𝐽𝑡𝑟𝑡 0

0 1

)
=

(
𝐽𝑡Φ𝑡 0

0 1

)
, thus𝑉𝑅

−1
𝑡 𝑈 =

(
0 1

𝑟⊤𝑡 Φ𝑡 0

)
and

((
1 0
0 1

)
+𝑉𝑅−1

𝑡 𝑈

)−1

= 1
1−𝑟⊤𝑡 Φ𝑡

(
1 −1

−𝑟⊤𝑡 Φ𝑡 1

)
. It follows that

Φ𝑡+1 = 𝑅−1
𝑡+1𝑟𝑡+1 =

(
Φ𝑡

𝜌𝑡+1

)
−

(
𝐽𝑡Φ𝑡 0

0 1

)
1

1 − 𝑟⊤𝑡 Φ𝑡

(
1 −1

−𝑟⊤𝑡 Φ𝑡 1

) (
0 1

𝑟⊤𝑡 𝐽𝑡 0

) (
Φ𝑡

𝜌𝑡+1

)
=

(
Φ𝑡

𝜌𝑡+1

)
− 1

1 − 𝑟⊤𝑡 Φ𝑡

(
𝐽𝑡Φ𝑡 −𝐽𝑡Φ𝑡
−𝑟⊤𝑡 Φ𝑡 1

) (
𝜌𝑡+1

𝑟⊤𝑡 𝐽𝑡Φ𝑡

)
=

(
Φ𝑡

𝜌𝑡+1

)
− 1

1 − 𝑟⊤𝑡 Φ𝑡

( (
𝜌𝑡+1 − 𝑟⊤𝑡 𝐽𝑡Φ𝑡

)
𝐽𝑡Φ𝑡

𝑟⊤𝑡 𝐽𝑡Φ𝑡 − 𝜌𝑡+1𝑟⊤𝑡 Φ𝑡

)
,

a restatement of (3.8).
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Exercise 3.15. In the setting of Example 3.16 set 𝑚(𝜆) B E exp(𝜆𝑍𝑖). Express the joint
moment generating function E exp

(∑𝑛
𝑖=1 𝜆𝑖𝑋𝑖

)
in terms of the function 𝑚(·). Deduce that

(𝑋𝑡 ) is stationary.

Exercise 3.16. Which of the following processes is weakly, which is strictly stationary
for iid. 𝑍𝑡 , 𝑡 ∈ Z?

• 𝑋𝑡 = 𝑎 + 𝑏𝑍𝑡 + 𝑐𝑍𝑡−1,
• 𝑋𝑡 = 𝑎 + 𝑏𝑍0,
• 𝑋𝑡 = 𝑍1 cos(𝑐𝑡) + 𝑍2 sin(𝑐𝑡),
• 𝑋𝑡 = 𝑍0 cos(𝑐𝑡),
• 𝑋𝑡 = 𝑍𝑡 cos(𝑐𝑡) + 𝑍𝑡−1 sin(𝑐𝑡),
• 𝑋𝑡 = 𝑍𝑡𝑍𝑡−1.

Exercise 3.17. For 𝑌𝑡 iid define 𝑋𝑡 B 𝑎 + 𝑏𝑡 + 𝑌𝑡 and 𝑊𝑡 B
1

2𝑞+1
∑𝑞

𝑗=−𝑞 𝑋𝑡+ 𝑗 . Is 𝑊𝑡
starionary? Compute cov(𝑊𝑡+ℓ ,𝑊𝑡 ).

Exercise 3.18. Suppose that (𝑋𝑡 ) and (𝑌𝑡 ) are each stationary and independent. Com-
pute the acf. of the process 𝑋𝑡 + 𝑌𝑡 .
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4Parametric models

4.1 ARMA

ARMA (Autoregressive-Moving Average) provide a parsimonious description of a (weakly)
stationary stochastic process in terms of two polynomials, one for the autoregression
and the second for the moving average. The general ARMA model was described in
the 1951 thesis of Whittle,1 Hypothesis testing in time series analysis, and it was popu-
larized in the 1970 book by Box2 and Jenkins.3 (Wikipedia)

Definition 4.1 (ARMA). The process 𝑋𝑡 is an ARMA(𝑝, 𝑞) process if the recursion

𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝︸                               ︷︷                               ︸
auto regressive, AR

+ 𝑍𝑡 + 𝜃1𝑍𝑡−1 + · · · + 𝜃𝑞𝑍𝑡−𝑞︸                             ︷︷                             ︸
moving average, MA

(4.1)

is valid for the innovation 𝑍𝑡 ∼ N(0, 𝜎2
𝑍
), a white noise process. The parameters are 𝜙𝑖,

𝑖 = 1, . . . , 𝑝, and 𝜃 𝑗 , 𝑗 = 1, . . . 𝑞. For convenience, we set 𝜃0 B 1. The lag orders are 𝑝

and 𝑞.

Definition 4.2. With an ARMA(𝑝, 𝑞) model we associate the polynomials

𝜙(𝑧) B1 − 𝜙1 𝑧 − · · · − 𝜙𝑝 𝑧𝑝 (AR polynomial) and
𝜃 (𝑧) B1 + 𝜃1 𝑧 + · · · + 𝜃𝑞 𝑧𝑞 (MA polynomial).

Employing the backshift operator 𝐵 (cf. (2.5)) the ARMA(𝑝, 𝑞) time series 𝑋𝑡 solves
the equation

𝜙(𝐵)𝑋𝑡 = 𝜃 (𝐵)𝑍𝑡 .
Remark 4.3 (Expectation). Taking expectations in (4.1) reveals that

E 𝑋𝑡 =
𝜃 (1)
𝜙(1) E 𝑍𝑡 .

Remark 4.4 (Normalizing, standardizing). Suppose that the stationary time series 𝑋̃𝑡
satisfies the more general equations

𝑋̃𝑡 = 𝜙1 𝑋̃𝑡−1 + · · · + 𝜙𝑝 𝑋̃𝑡−𝑝︸                                ︷︷                                ︸
𝜙 (𝐵) 𝑋̃𝑡

+𝜈 + 𝜃0 𝑍̃𝑡 + 𝜃1 𝑍̃𝑡−1 + · · · + 𝜃𝑞 𝑍̃𝑡−𝑞︸                                  ︷︷                                  ︸
𝜃 (𝐵) 𝑍̃𝑡

, (4.2)

1Peter Whittle, 1927–2021
2George E. P. Box, 1919–2013
3Gwilym Jenkins, 1932–1982
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ARMA( [0.9], [1.7, 1.4, 0.2, 1.0])
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ARMA( [-0.9], [1.7, 1.4, 0.2, 1.0])
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i.e., 𝜙(𝐵) 𝑋̃ = 𝜈 + 𝜃 (𝐵) 𝑍̃. Then the expectation is (with 𝜇𝑋̃ B E 𝑋̃𝑡 and 𝜇𝑍̃ B E 𝑍̃𝑡 )

𝜇𝑋̃ = 𝜙1𝜇𝑋̃ + · · · + 𝜙𝑝𝜇𝑋̃ + 𝜈 + 𝜃0𝜇𝑍̃ + · · · + 𝜃𝑞𝜇𝑍̃ ,

that is

E 𝑋̃𝑡 =
𝜈 + 𝜃 (1) · E 𝑍̃𝑡

𝜙(1) .

Remark 4.5 (Transformation4). The transformed time series 𝑋𝑡 B
𝑋̃𝑡−𝛿𝑋
𝜎𝑋

and 𝑍𝑡 B
𝑍̃𝑡−𝛿𝑍
𝜎𝑍

satisfy

𝛿𝑋 + 𝜎𝑋𝑋𝑡 = 𝜙1(𝛿𝑋 + 𝜎𝑋𝑋𝑡−1) + · · · + 𝜙𝑝 (𝛿𝑋 + 𝜎𝑋𝑋𝑡−𝑝)
+ 𝜈
+ 𝜃0(𝛿𝑍 + 𝜎𝑍𝑍𝑡 ) + · · · + 𝜃𝑞 (𝛿𝑍 + 𝜎𝑍𝑍𝑡−𝑞),

or

𝑋𝑡 = 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝

+ 𝜈

𝜎𝑋
− 𝛿𝑋
𝜎𝑋
(1 − 𝜙1 − · · · − 𝜙𝑝) +

𝛿𝑍

𝜎𝑋
(𝜃0 + · · · + 𝜃𝑞)

+ 𝜎𝑍
𝜎𝑋
(𝜃0𝑍𝑡 + · · · + 𝜃𝑞𝑍𝑡−𝑞),

that is

𝜙(𝐵)𝑋 =
𝜈 − 𝛿𝑋𝜙(1) + 𝛿𝑍𝜃 (1)

𝜎𝑋︸                      ︷︷                      ︸
C𝑐

+ 𝜎𝑍
𝜎𝑋

𝜃 (𝐵)︸    ︷︷    ︸
C𝜃 (𝐵)

𝑍

with 𝜃𝑖 B 𝜎𝑍

𝜎𝑋
𝜃′
𝑖
.

The special choices

• 𝛿𝑍 B 𝜇𝑍̃ = E 𝑍̃𝑡 and 𝜎𝑍 B var 𝑍̃𝑡 to obtain 𝑍𝑡 ∼ (0, 1) (a standard white noise, cf.
Definition 3.12),

• 𝛿𝑋 B
𝜈+𝛿𝑍 𝜃 (1)
𝜙 (1) to have 𝑐 = 0;

• 𝜎𝑋 B 𝜃0 𝜎𝑍 to have 𝜃0 = 1

reveal the standard ARMA(𝑝, 𝑞) representation (4.1).

4In German also 𝑍-Transformation
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4.2 MOVING AVERAGE, MA

The moving average process MA(𝑞) is a special ARMA process MA(𝑞) = ARMA(0, 𝑞)
with 𝜙(·) = 1 (i.e., 𝑝 = 0, or 𝜙1 = · · · = 𝜙𝑝 = 0 in (4.1)).

Proposition 4.6. The covariance function of an MA(𝑞) process is

cov(𝑋𝑡 , 𝑋𝑡+𝜏) =
{
𝜎2
𝑍
·∑𝑞−|𝜏 |

𝑗=0 𝜃 𝑗 𝜃 𝑗+|𝜏 | |𝜏 | ≤ 𝑞,
0 𝜏 > 𝑞.

(4.3)

Proof. For the expected value we have

E 𝑋𝑡 =

𝑞∑︁
𝑗=0
𝜃 𝑗 E 𝑍𝑡− 𝑗 = 0.

The covariance is

cov
(
𝑋𝑡 , 𝑋𝑡+𝜏) = E ©­«

𝑞∑︁
𝑗=0
𝜃 𝑗𝑍𝑡− 𝑗

ª®¬
(
𝑞∑︁
𝑘=0

𝜃𝑘𝑍𝑡+𝜏−𝑘

)
=

𝑞∑︁
𝑗 ,𝑘=0

𝜃 𝑗 𝜃𝑘 E 𝑍𝑡− 𝑗𝑍𝑡+𝜏−𝑘︸           ︷︷           ︸
𝜎2
𝑍
·𝛿 𝑗−𝑘+𝜏

from which the assertion is immediate. □

Remark 4.7. Estimating the MA parameters is a nontrivial task which can be accom-
plished by nonlinear curve fitting.

Remark 4.8. Note that the autocovariance function 𝛾(𝜏) stops abruptly, as 𝛾(𝜏) = 0 for
𝜏 > 𝑞.

Example 4.9. Cf. Example 3.16.

4.3 AUTOREGRESSIVE AR

The autoregressive process is the special AR(𝑝) = ARMA(𝑝, 0) process (i.e., 𝑞 = 0 or
𝜃1 = · · · = 𝜃𝑞 = 0 in (4.1)),

𝑋𝑡 =𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 . (4.4)

Proposition 4.10 (Yule-Walker equations). The covariance function of an AR(𝑝) pro-
cess satisfies the recursive equations

𝛾(0) =
𝑝∑︁
𝑗=1

𝜙 𝑗 𝛾( 𝑗) + 𝜎2
𝑍 , for 𝜏 = 0, (4.5)

𝛾(𝜏) =
𝑝∑︁
𝑗=1

𝜙 𝑗 𝛾(𝜏 − 𝑗) for 𝜏 > 0. (4.6)
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i.e., 𝛾0 =
∑𝑝

𝑗=1 𝛾 𝑗𝜙 𝑗 + var 𝑍 and (cf. (3.5))

©­­­­­«
𝛾0 𝛾1 . . . 𝛾𝑝−1

𝛾1 𝛾0
. . .

...
...

. . .
. . . 𝛾1

𝛾𝑝−1 . . . 𝛾1 𝛾0

ª®®®®®¬
©­­­­«
𝜙1
𝜙2
...

𝜙𝑝

ª®®®®¬
=

©­­­­«
𝛾1
𝛾2
...

𝛾𝑝

ª®®®®¬
. (4.7)

Proof. With (4.4) we have

𝛾(𝜏) = cov
(
𝑋𝑡 , 𝑋𝑡+𝜏) = E 𝑋𝑡 ·

©­«
𝑝∑︁
𝑗=1

𝜙 𝑗𝑋𝑡+𝜏− 𝑗 + 𝑍𝑡+𝜏
ª®¬

=

𝑝∑︁
𝑗=1

𝜙 𝑗 𝛾(𝜏 − 𝑗) + cov
(
𝑋𝑡 , 𝑍𝑡+𝜏).

Now note that 𝑋𝑡 depends on . . . , 𝑍𝑡−1, 𝑍𝑡 and thus cov
(
𝑍𝑡+𝜏 , 𝑋𝑡 ) =

{
var 𝑍𝑡 if 𝜏 = 0,
0 if 𝜏 > 0.

Hence the result. □

Example 4.11. Consider the AR(1) process 𝑋𝑡 = 𝜙1𝑋𝑡−1 +𝑍𝑡 . The equations (4.5)–(4.6)
with 𝜙 = (𝜙1, 0, 0, . . . )⊤ read

𝛾0 = 𝛾1 · 𝜙1 + 𝜎2
𝑍 , (4.8)

𝛾1 = 𝛾0 · 𝜙1,

𝛾2 = 𝛾1 · 𝜙1, etc.

It follows that 𝛾ℓ = 𝛾0 · 𝜙ℓ1 and with (4.8) thus the general solution 𝛾ℓ =
𝜎2
𝑍
𝜙
|ℓ |
1

1−𝜙2
1

.

Remark 4.12. Suppose that 𝑧 is a root of the polynomial 𝜙(·), i.e., 𝜙(𝑧) = 0. Then
1 =

∑𝑝

𝑗=1 𝜙 𝑗 𝑧
𝑗 or 𝑧−𝜏 =

∑𝑝

𝑗=1 𝜙 𝑗 𝑧
−(𝜏− 𝑗 ) , i.e., 𝛾(ℓ) B 𝑧−ℓ solves (4.6). By linearity, the

autocovariance function of an AR(𝑝) process has the general form

𝛾(𝜏) =
𝑝∑︁
𝑘=1

𝑐𝑘

𝑧
|𝜏 |
𝑘

(4.9)

for some constants 𝑐𝑘 , where 𝑧𝑘 are the roots (zeros) of the polynomial 𝜙(·), 𝜙(𝑧𝑘) = 0,
𝑘 = 1, . . . , 𝑝. The constants 𝑐𝑘 are determined by the initial conditions (4.6).

Proposition 4.13. The general form of the autocovariance function is given by (4.9).

Remark 4.14. In contrast to the MA process, the autocovariance function 𝛾(·) does not
terminate abruptly (cf. Remark 4.8).

Remark 4.15. If 𝑋 is an AR(𝑝) process, then the autocorrelation is 𝛼(ℓ) = 0 for ℓ > 𝑝.
Table 4.1 outlines the behavior further. Notice also that 𝛼(𝑝) = 𝜙𝑝.
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Remark 4.16. Generalized Yule–Walker equations

(i) The roots 𝑧𝑘 determine decay of the covariance function. Note, that 𝑋𝑡 cannot
explode if |𝑧𝑘 | > 1 for all 𝑘 = 1, . . . , 𝑝, i.e., 𝜙(𝑧) ≠ 0 for |𝑧 | ≤ 1.

(ii) The roots 𝑧𝑘 and thus the decay do not depend on the moving average operator,
𝜃1, . . . 𝜃𝑞 .

(iii) The constants 𝑐𝑘 need to be determined by the initial conditions in (4.6).

Remark 4.17. If 𝜙1, . . . , 𝜙𝑝 and 𝜎2
𝑍
= var 𝑍𝑡 are known (𝑝+1 parameters), then 𝛾(0), . . . , 𝛾(𝑝)

can be computed from (4.6). For 𝜏 > 𝑝, the correlations can be computed recursively
from (4.6).

Alternatively, if 𝛾(0), . . . , 𝛾(𝑝) are known or estimated, then (4.6) can be used to
compute 𝜙1, . . . , 𝜙𝑝 and var 𝑍.
Remark 4.18. The Yule–Walker equations provide a way to estimate the parameters
𝜙1, . . . , 𝜙𝑝 by replacing 𝛾0, . . . , 𝛾𝑝 by their estimates 𝛾̂0, . . . , 𝛾̂𝑝.

4.4 STATIONARY ARMA PROCESSES

Proposition 4.19 (Linear transformation). Suppose that 𝑌𝑡 is stationary (but not neces-
sarily iid.) and

∑
𝑗∈Z |𝜓 𝑗 | < ∞. Then 𝑋𝑡 =

∑
𝑗∈Z 𝜓 𝑗 𝑌𝑡− 𝑗 is well-defined, stationary and

𝛾𝑋 (ℓ) =
∑︁
𝑗 ,𝑘∈Z

𝜓 𝑗 𝜓𝑘 𝛾𝑌 (ℓ − 𝑗 + 𝑘).

Proof. The expectation is E 𝑋𝑡 =
∑
𝑗∈Z 𝜓 𝑗 E𝑌𝑡− 𝑗 = 𝜇𝑌 ·

∑
𝑗 𝜓 𝑗 < ∞. For the autocovari-

ance, we have that

𝛾𝑋 (ℓ) = E 𝑋𝑡+ℓ · 𝑋𝑡 − E 𝑋𝑡+ℓ · E 𝑋𝑡

= lim
𝑛→∞

𝑛∑︁
𝑗=−𝑛

E𝜓 𝑗𝑌𝑡+ℓ− 𝑗

𝑛∑︁
𝑘=−𝑛

𝜓𝑘𝑌𝑡−𝑘 −
𝑛∑︁

𝑗 ,𝑘=−𝑛
𝜓 𝑗𝜓𝑘 E𝑌𝑡+ℓ−𝑘 E𝑌𝑡−𝑘

=

∞∑︁
𝑗 ,𝑘=−∞

𝜓 𝑗𝜓𝑘
(
E𝑌𝑡+ℓ− 𝑗 · 𝑌𝑡−𝑘 − E𝑌𝑡+ℓ− 𝑗 · E𝑌𝑡−𝑘

)
∞∑︁

𝑗 ,𝑘=−∞
𝜓 𝑗 𝜓𝑘 𝛾𝑌 (ℓ − 𝑗 + 𝑘)

and thus the assertion. □

Definition 4.20 (Causal process). The ARMA(𝑝, 𝑞) process 𝑋𝑡 is causal if there are
constants 𝜓 𝑗 such that

∑∞
𝑗=0

��𝜓 𝑗 �� < ∞ and

𝑋𝑡 =

∞∑︁
𝑗=0
𝜓 𝑗 · 𝑍𝑡− 𝑗 . (4.10)

As above, we shall also associate the function 𝜓(𝑧) B ∑∞
𝑗=0 𝑧

𝑗 and write 𝑋𝑡 = 𝜓(𝐵)𝑍𝑡 .
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Example 4.21. Recall the process 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝑍𝑡 from Example 4.11. It holds that

𝑋𝑡 = 𝑍𝑡 + 𝜙1𝑋𝑡−1

= 𝑍𝑡 + 𝜙1𝑍𝑡−1 + 𝜙2
1𝑋𝑡−2

. . .

=

∞∑︁
𝑗=0

𝜙
𝑗

1𝑍𝑡− 𝑗

so that this AR(1) can be seen as a MA(∞) process.

Theorem 4.22. The covariance function of a causal time series 𝑋𝑡 is

𝛾𝑋 (ℎ) = 𝜎2
𝑍 ·

∞∑︁
𝑗=0
𝜓 𝑗+|ℎ |𝜓 𝑗 . (4.11)

Proof. This is a consequence of (4.10) and (4.3). □

Definition 4.23. The function 𝐺 (𝑧) B 𝜓(𝑧) · 𝜓
(
𝑧−1) is the covariance generating func-

tion.

Theorem 4.24. It holds that
∑
ℎ∈Z 𝛾𝑋 (ℎ) 𝑧ℎ = 𝜎2

𝑋
𝐺 (𝑧).

Proof. Indeed,

𝐺 (𝑧) = 𝜓
(
𝑧−1

)
· 𝜓(𝑧) =

∑︁
𝑗=0

∑︁
𝑘=0

𝜓 𝑗𝜓𝑘𝑥
𝑘− 𝑗 =

∑︁
ℎ∈Z

𝑧ℎ
∑︁
𝑘− 𝑗=ℎ

𝜓 𝑗𝜓𝑘

=
∑︁
ℎ∈Z

𝑧ℎ
∑︁
𝑗=0
𝜓 𝑗+ℎ𝜓 𝑗 =

∑︁
ℎ∈Z

𝑧ℎ𝛾𝑋 (ℎ)

with (4.11), hence the assertion. □

Theorem 4.25. For a causal ARMA(𝑝, 𝑞) process it holds that

2𝛾(𝜏) =
𝑝∑︁
𝑗=1
𝛾(𝜏 − 𝑗) 𝜙 𝑗 + 𝜎2

𝑍 ·
𝑞∑︁
𝑘=𝜏

𝜃𝑘 𝜓𝑘−𝜏 for 𝜏 ≤ 𝑞, (4.12)

𝛾(𝜏) =
𝑝∑︁
𝑗=1
𝛾(𝜏 − 𝑗) 𝜙 𝑗 for 𝜏 > 𝑞. (4.13)

Proof. Indeed,

𝛾(𝜏) = cov
(
𝑋𝑡−𝜏 , 𝑋𝑡

)
= E 𝑋𝑡−𝜏 ·

©­«
𝑝∑︁
𝑗=1

𝜙 𝑗𝑋𝑡− 𝑗 +
𝑞∑︁
𝑘=0

𝜃𝑘𝑍𝑡−𝑘
ª®¬

=

𝑝∑︁
𝑗=1

𝜙 𝑗 E 𝑋𝑡−𝜏𝑋𝑡− 𝑗 +
𝑞∑︁
𝑘=0

𝜃𝑘 E 𝑋𝑡−𝜏𝑍𝑡−𝑘

=

𝑝∑︁
𝑗=1

𝜙 𝑗𝛾(𝜏 − 𝑗) +
𝑞∑︁
𝑘=0

𝜃𝑘 E 𝑋𝑡−𝜏𝑍𝑡−𝑘 .
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Now note that 𝑋𝑡−𝜏 depends on . . . , 𝑍𝑡−𝜏−1, 𝑍𝑡−𝜏 . Hence (4.13) for 𝜏 > 𝑞.
Recall next the causal representation (4.10) so that further

𝛾(𝜏) =
𝑝∑︁
𝑗=1

𝜙 𝑗𝛾(𝜏 − 𝑗) +
𝑞∑︁
𝑘=0

𝜃𝑘

∞∑︁
𝑗=0
𝜓 𝑗 E 𝑍𝑡−𝜏− 𝑗𝑍𝑡−𝑘

=

𝑝∑︁
𝑗=1

𝜙 𝑗𝛾(𝜏 − 𝑗) + 𝜎2
𝑍

𝑞∑︁
𝑘=𝜏

𝜃𝑘𝜓𝑘−𝜏

and thus (4.12). □

Remark 4.26. By (4.13), Remark 4.12 applies to ARMA(𝑝, 𝑞) as well.

Theorem 4.27. Let 𝑋𝑡 be an ARMA(𝑝, 𝑞) process (where 𝜃 (·) and 𝜙(·) do not have
common zeros).

𝑋𝑡 is causal iff 𝜙(𝑧) ≠ 0 for |𝑧 | ≤ 1. The coefficients are given by the generating
function

𝜓(𝑧) B 𝜃 (𝑧)
𝜙(𝑧) =

∞∑︁
𝑗=0
𝜓 𝑗 𝑧

𝑗 =: 𝜓(𝑧). (4.14)

Proof. It holds that 𝜙(𝑧) ≠ 0 for |𝑧 | ≤ 1 and 𝜙 is a polynomial. There is hence 𝜀 > 0 so
that 𝜉 (𝑧) B 1

𝜙 (𝑧) =
∑∞
𝑗=0 𝜉 𝑗 𝑧

𝑗 for |𝑧 | < 1 + 𝜀. Consequently, 𝜉 𝑗
(
1 + 𝜀

2
) 𝑗 −−−−→

𝑗→∞
0 and there

exists 𝐾 > 0 so that |𝜉 𝑗 | < 𝐾
(1+𝜀/2) 𝑗 . In particular,

∑
𝑗=0 |𝜉 𝑗 | < ∞ and (𝜉 𝑗)∞𝑗=0 ∈ ℓ1. By

Proposition 4.19 we may apply 𝜉 (𝐵) to 𝜙(𝐵)𝑋𝑡 = 𝜃 (𝐵)𝑍𝑡 and get 𝑋𝑡 = 𝜉 (𝐵)𝜃 (𝐵)︸     ︷︷     ︸
𝜓 (𝐵)

𝑍𝑡 with

𝜓 as in (4.14).
As for the contrary, assume that the ARMA(𝑝, 𝑞) process 𝑋𝑡 is causal, then 𝑋𝑡 =∑

𝑗=0 𝜓 𝑗𝑍𝑡− 𝑗 for some 𝜓 𝑗 with
∑∞
𝑗=0 |𝜓 𝑗 | < ∞. It holds 𝜃 (𝐵)𝑍𝑡 = 𝜙(𝐵)𝑋𝑡 = 𝜙(𝐵)𝜓(𝐵)︸      ︷︷      ︸

𝜂 (𝐵)

𝑍𝑡

with 𝜂(𝑧) B 𝜙(𝑧)𝜓(𝑧), which converges for |𝑧 | ≤ 1, that is

𝑞∑︁
𝑗=0
𝜃 𝑗𝑍𝑡− 𝑗 =

∞∑︁
𝑗=0
𝜂 𝑗𝑍𝑡− 𝑗 .

Take the inner product with 𝑍𝑡−𝑘 on each side gives 𝜃𝑘 = 𝜂𝑘 and thus 𝜃 (𝑧) = 𝜂(𝑧) =
𝜙(𝑧)𝜓(𝑧) for |𝑧 | ≤ 1. It follows that 𝜙(𝑧) ≠ 0 for |𝑧 | ≤ 1, as 𝜃 (𝑧) and 𝜙(𝑧) have no common
zeros and as 𝜓(𝑧) < ∞ for all |𝑧 | ≤ 1. □

Corollary 4.28 (Corollary to Theorem 4.27 and Theorem 4.24). The covariance gener-
ating function of the general ARMA(𝑝, 𝑞) is∑︁

ℎ∈Z
𝛾𝑋 (ℎ) 𝑧ℎ = 𝜎2

𝑋 ·
𝜃 (𝑧)𝜃 (𝑧−1)
𝜙(𝑧)𝜙(𝑧−1)

.
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AR(𝑝) ARMA(𝑝, 𝑞) MA(𝑞)
autocorrelation 𝛾(ℎ) geometric decay geometric after 𝑞 cuts off at 𝑞

partial autocorrelation 𝛼(ℎ) cuts off at 𝑝 geometric after 𝑝 geometric decay

Table 4.1: Autocorrelation and partial autocorrelation

Definition 4.29. A ARMA(𝑝, 𝑞) process 𝑋𝑡 is invertible, if there are constants 𝜋 𝑗 so that

𝑍𝑡 =

∞∑︁
𝑗=0
𝜋 𝑗𝑋𝑡− 𝑗 , 𝑡 ∈ Z.

Theorem 4.30. 𝑋𝑡 is invertible, iff 𝜃 (𝑧) ≠ 0 for |𝑧 | ≤ 1, cf. Theorem 4.27 with 𝜋(𝑧) =∑
𝑗=0 𝜋 𝑗 𝑧

𝑗 =
𝜙 (𝑧)
𝜓 (𝑧) .

Remark 4.31. Since an invertible moving average can be represented as infinite regres-
sion, the partial autocorrelations of a moving average process decay geometrically (cf.
Table 4.1).

4.5 SEASONAL ARMA

These models are often given by

𝜙𝑠 (𝐵𝑠)𝜙(𝐵)𝑋𝑡 = 𝑐 + 𝜃𝑠 (𝐵𝑠)𝜃 (𝐵)𝑍𝑡 ,

where the polynomials 𝜙𝑠 and 𝜃𝑠 model the seasonal components (cf. (4.2)).

4.6 ARMAX

ARMAX models have an additional exogenous variable,

𝜙(𝐵)𝑋𝑡 = 𝑐 + 𝜃 (𝐵)𝑍𝑡 + 𝑒(𝐵)𝑌𝑡 ,

where 𝑌𝑡 is an exogenous time series.

4.7 ARIMA

A time series 𝑋𝑡 is ARIMA(𝑝, 𝑑, 𝑞) if Δ𝑑𝑋𝑡 is ARMA(𝑝, 𝑞) (for the forward difference
operator Δ see (2.6)).
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Figure 4.1: VIX, http://www.cboe.com or https://en.wikipedia.org/wiki/VIX
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4.8 GARCH

ARCH (autoregressive conditional heteroscedasticity) models have been developed by
Engle.5 The ARCH(p) series satisfy the recursive equations

𝑥𝑡 = 𝜎𝑡𝜖𝑡 ,

𝜎2
𝑡 = 𝛼0 + 𝛼1𝑥

2
𝑡−1 + · · · + 𝛼𝑝𝑥

2
𝑡−𝑝

with parameters 𝛼1, . . . 𝛼𝑝.
GARCH(p,q) (generalized ARCH) follow the recursion

𝑥𝑡 = 𝜎𝑡𝜖𝑡 ,

𝜎2
𝑡 = 𝛼0 + 𝛼1𝑥

2
𝑡−1 + · · · + 𝛼𝑝𝑥

2
𝑡−𝑝

+ 𝛽1𝜎
2
𝑡−1 + · · · + 𝛽𝑞𝜎

2
𝑡−𝑞

with additional parameters 𝛽1, . . . 𝛽𝑞.

Remark 4.32. Note, that 𝛾(𝜏) = 0 for 𝜏 > 0.

4.9 VAR

The vector autoregression (VAR) is

𝑋𝑡 = 𝜙0 + 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 , (4.15)

where 𝜙0 ∈ R𝑑 and 𝜙 𝑗 ∈ R𝑑×𝑑 ( 𝑗 > 0). Further, the error is assumed to satisfy

(i) E 𝑍𝑡 = 0,

(ii) E 𝑍𝑡𝑍⊤𝑡 = Σ and

(iii) E 𝑍𝑡𝑍⊤𝑡−𝑘 = 0.

4.10 MODEL SELECTION

Occam’s razor.
Which parametric model should one choose to characterize a time series? ARMA(1,2)

or ARMA(2,1)? Or is ARMA(3,0) a better choice? Will ARMA(3,1) be better compared
to ARMA(2,1)?

To select a model among others, the following criteria can be employed.
In what follows, 𝑘 is the number of parameters, 𝐿 is the likelihood function and 𝑛 is

the number of observations.

5Robert F. Engle (1942), Nobel Memorial Price in Economic Sciences 2003
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Figure 4.2: Robert Engle, 1942. Nobel Memorial Price 1942 in Economic Sciences
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Figure 4.3: Hirotugu Akaike, 1927–2009, Japanese

4.10.1 Ordinary least squares

For the AR(𝑝) model with 𝑋𝑡 = 𝑐 + 𝜙1𝑋𝑡−1 + · · · + 𝜙𝑝𝑋𝑡−𝑝 + 𝑍𝑡 we consider the regression
model, where 𝑋𝑡 is the endogenous variable, 𝑋𝑡−1, . . . , 𝑋𝑡−𝑝 are the regressors and 𝑍𝑡
is the error term. In matrix representation (and notation),

©­­­­«
𝑋𝑝+1
𝑋𝑝+2
...

𝑋𝑇

ª®®®®¬
=

©­­­­«
1 𝑋𝑝 𝑋𝑝−1 . . . 𝑋1
1 𝑋𝑝+1 𝑋𝑝 . . . 𝑋2
...

...
...

. . .
...

1 𝑋𝑇−1 𝑋𝑇−2 . . . 𝑋𝑇−𝑝

ª®®®®¬
©­­­­­­«

𝑐

𝜙1
𝜙2
...

𝜙𝑝

ª®®®®®®¬
+

©­­­­«
𝑍𝑝+1
𝑍𝑝+2
...

𝑍𝑇

ª®®®®¬
,

i.e., 𝑋 = X𝛽 + 𝑍.

The ordinary least squares estimator for 𝛽 =
(
𝑐, 𝜙1, . . . 𝜙𝑝

)⊤ is given by 𝛽 = (X⊤X)−1 X𝑋
(cf. the normal equations (2.3)). We may estimate 𝜎2 via the OLS residuals 𝜀 B 𝑋 −X𝛽
by 𝜎̂2 = 𝜀̂⊤ 𝜀̂

𝑇−𝑝 .

4.10.2 Maximum likelihood

4.10.3 Akaike information criterion

Hirotugu Akaike
AIC(𝑝, 𝑞) = log 𝜎̂2

𝑝,𝑞 + (𝑝 + 𝑞) 2
𝑇

Schwarz information criterion:
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SIC(𝑝, 𝑞) = log 𝜎̂2
𝑝,𝑞 + (𝑝 + 𝑞)

log𝑇
𝑇

Hannan-Quinn information criterion:
SIC(𝑝, 𝑞) = log 𝜎̂2

𝑝,𝑞 + (𝑝 + 𝑞)
2 log log𝑇

𝑇

4.10.4 Bayesian information criterion

Bayesian information (BIC) criterion or Schwarz criterion is a criterion for model selec-
tion among a finite set of models; the model with the lowest BIC is preferred. It is based,
in part, on the likelihood function and it is closely related to the Akaike information crite-
rion (AIC).

BIC = 𝑘 ln 𝑛 − 2 ln 𝐿̂, where 𝑛 is the number of data points.

4.11 PROBLEMS

Exercise 4.1. Which type of parametric process is the time series 𝑋𝑡 = 𝑍𝑡 −2𝑍𝑡−1+𝑍𝑡−2.
• Plot some paths,
• the autocorrelation and
• the partial autocorrelation function.
• Compare with theoretical results elaborated in this chapter.

Exercise 4.2. As Exercise 4.1, for the time series 𝑋𝑡 = 0.9𝑋𝑡−1 + 𝑍𝑡 .

Exercise 4.3. As Exercise 4.1, for the time series (1 − 𝜂1𝐵) (1 − 𝜂2𝐵) 𝑋𝑡 = 𝑍𝑡 with
• 𝜂1 = 1/2, 𝜂2 = 1/5,
• 𝜂1 = 90%, 𝜂2 = 50%,
• 𝜂1 = −90%, 𝜂2 = 50% and
• 𝜂1,1 = 3

8

(
1 ± 𝑖
√

3
)
.

Exercise 4.4. Show that the ARMA(2, 𝑞) time series

𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 +
𝑞∑︁
𝑖=1

𝜃𝑖 𝑍𝑡−𝑖

(for 𝜙1, 𝜙2 ∈ R) is stationary iff 𝜙2 ∈ (−1, 1) and 𝜙1 ∈ (𝜙2 − 1, 1 − 𝜙2).

Exercise 4.5. Consider the ARMA process

𝑋𝑡 = 𝑋𝑡−1 −
1
4
𝑋𝑡−2 + 𝑍𝑡 + 𝑍𝑡−1

and show that 𝑋𝑡 =
∑∞
𝑘=0 (1 + 3𝑘) 2−𝑘𝑍𝑡−𝑘 . Further, the autocovariance is 𝛾𝑘 = 2−𝑘

(
32
3 + 8𝑘

)
.

Exercise 4.6. Consider 𝑋𝑡 = 90%𝑋𝑡−1+𝑍𝑡 . Show that the partial autocorrelation function

is 𝛼(𝑡) =
{

90% for 𝑡 = ±1,
0 else.
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Figure 4.4: acf

Figure 4.5: acf and partial acf

Exercise 4.7. Simulate some paths of a GARCH series.

Exercise 4.8. Simulate some paths of an ARIMA series.

Exercise 4.9. Describe and simulate some paths of an ARMAX series.

Exercise 4.10 (From https://www.analyticsvidhya.com). Looking at the below ACF plot
on Figure 4.4, would you suggest to apply AR or MA in ARIMA modeling technique?

Exercise 4.11 (From https://www.analyticsvidhya.com). How many AR and MA terms
should be included for the time series by looking at the above acf and pacf plots in
Firgure 4.5?
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5Estimators

Eternity is a very long time, especially
towards the end.

Woody Allen, 1952

5.1 ESTIMATION OF MEAN AND VARIANCE

In what follows we shall assume that 𝑋𝑡 is weakly stationary with mean 𝜇 and autoco-
variance function 𝛾(·). Set

𝜇̂𝑛 B 𝑋𝑛 B
1
𝑛

𝑛∑︁
𝑡=1

𝑋𝑡 .

Theorem 5.1. Let 𝑋𝑡 be weakly stationary.

(i) It holds that E 𝑋𝑛 = 𝜇 and

(ii) var 𝑋𝑛 = 1
𝑛

∑𝑛
ℓ=−𝑛

(
1 − |ℓ |

𝑛

)
𝛾(ℓ).

(iii) Suppose that 𝛾(ℓ) −−−−→
ℓ→∞

0, then var 𝑋𝑛 −−−−→
𝑛→∞

0.

(iv) Suppose that
∑∞
ℓ=−∞ |𝛾ℓ | < ∞, then 𝑛 · var 𝑋𝑛 −−−−→

𝑛→∞

∑∞
ℓ=−∞ 𝛾ℓ .

The estimator 𝜇̂𝑛 B 𝑋𝑛 is an unbiased and consistent estimator for 𝜇.

Proof. As the time series 𝑋𝑡 is weakly stationary it holds that E 𝑋𝑡 = 𝜇 and hence, by
linearity, E 𝑋𝑛 = 1

𝑛

∑𝑛
𝑡=1E 𝑋𝑡 = 𝜇.

For the variance we have

var 𝑋𝑛 = E
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇) ·

1
𝑛

𝑛∑︁
𝑗=1
(𝑋 𝑗 − 𝜇) =

1
𝑛2

𝑛∑︁
𝑖, 𝑗=1

E(𝑋𝑖 − 𝜇) (𝑋 𝑗 − 𝜇)

=
1
𝑛2

𝑛∑︁
𝑖, 𝑗=1

𝛾(𝑖 − 𝑗) = 1
𝑛2

(
𝑛𝛾(0) + 2

𝑛−1∑︁
ℓ=1
(𝑛 − ℓ)𝛾(ℓ)

)
=

1
𝑛

𝑛∑︁
ℓ=−𝑛

(
1 − |ℓ |

𝑛

)
𝛾(ℓ).

49
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Figure 5.1: Sunspot numbers, http://www.sidc.be/silso/

As for (iii) choose 𝑁 ∈ N large enough so that |𝛾(𝑛) | < 𝜀 for all 𝑛 ≥ 𝑁. Then

var 𝑋𝑛 =

������ 1
𝑛2

𝑛∑︁
𝑖, 𝑗=1

𝛾(𝑖 − 𝑗)

������ ≤ 1
𝑛2

𝑛∑︁
𝑖, 𝑗=1
|𝛾(𝑖 − 𝑗) |

≤ (2𝑁 + 1)𝑛 𝛾(0) + (𝑛 − 𝑁)2𝜀
𝑛2 −−−−→

𝑛→∞
𝜀.

The assertion follows, as 𝜀 > 0 was chosen arbitrarily.
Finally, we have that

lim
𝑛→∞

𝑛 · var 𝑋𝑛 = lim
𝑛→∞

𝑛∑︁
ℓ=−𝑛

(
1 − |ℓ |

𝑛

)
𝛾(ℓ) =

𝑛∑︁
ℓ=−𝑛

𝛾(ℓ)

and thus the assertion (iv). □

Remark 5.2. It holds that 𝑛 var 𝑋𝑛 −−−−→
𝑛→∞

∑∞
ℓ=−∞ 𝛾(ℓ) = 𝜎2

𝑋
·∑∞ℓ=−∞ 𝜌(ℓ) and thus

var 𝑋𝑛 ≈
𝜎2
𝑋

𝑛/𝜏 ,

where 𝜏 B
∑∞
ℓ=−∞ 𝜌(ℓ). The effect of the correlation (compared to the uncorrelated

case) corresponds to a reduction of the sample size from 𝑛 to 𝑛/𝜏.
Corollary 5.3. It holds that

√
𝑛

(
𝑋𝑛 − 𝜇

)
∼ N

(
0,

𝑛∑︁
ℓ=−𝑛

(
1 − |ℓ |

𝑛

)
𝛾(ℓ)

)
. (5.1)
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5.2 ESTIMATION OF AUTOCOVARIANCE

Definition 5.4 (Sample autocovariance function, empirical autocovariance). The sam-
ple autocovariance function for some data 𝑋1, . . . , 𝑋𝑛 for ℓ ∈ Z is

𝛾̂ℓ B
1
𝑛

𝑛−|ℓ |∑︁
𝑡=1

(
𝑋𝑡+|ℓ | − 𝑋𝑛

) (
𝑋𝑡 − 𝑋𝑛

)
. (5.2)

The sample autocorrelation is 𝜌̂ℓ B
𝛾̂ℓ
𝛾̂0

.

Definition 5.5 (Sample partial autocorrelation). The sample partial autocorrelation func-
tion of a stationary time series 𝑋𝑡 is defined as the autocorrelation (see Definition 3.25),
but based on the sample covariance 𝜌̂ instead of the covariance 𝜌.

Remark 5.6 (Bessel Correction). See Exercise 5.1 for the denominator 𝑛 instead of
𝑛 − |ℓ | or 𝑛 − |ℓ | − 1 in (5.2).

Remark 5.7. Note that 𝑋𝑛 includes all samples 𝑋1, . . . , 𝑋𝑛 although the first, nor the
second factor in the product (5.2) involve all.

Proposition 5.8 (Non-negative definiteness). The matrix

Γ̂𝑛 B

©­­­­­«
𝛾̂0 𝛾̂1 . . . 𝛾̂𝑛−1

𝛾̂1 𝛾̂0
. . .

...
...

. . .
. . . 𝛾̂1

𝛾̂𝑛−1 . . . 𝛾̂1 𝛾̂0

ª®®®®®¬
is positive semi-definite. This is important for forecasting.

Proof. Define 𝑀 B
©­­«

0 0 𝑋̃1 𝑋̃2 . . . 𝑋̃𝑛

0 . .
.
. .
.
. .
.
. .
.

0
𝑋̃1 𝑋̃2 . . . 𝑋̃𝑛 0 0

ª®®¬ with 𝑋̃𝑖 B 𝑋𝑖 − 𝑋𝑛 and observe that

Γ̂𝑛 =
1
𝑛
𝑀𝑀⊤, thus

𝑎⊤Γ̂𝑛𝑎 =
1
𝑛
𝑎⊤𝑀𝑀⊤𝑎 =

1
𝑛

(
𝑀⊤𝑎

)⊤
𝑀⊤𝑎 =

1
𝑛



𝑀⊤𝑎

2 ≥ 0

for every 𝑎 ∈ R𝑛 and thus the assertion. □

Theorem 5.9. Let 𝑋𝑡 be stationary and ℓ ∈ Z be fixed. Then

(i) E 𝛾̂ℓ −−−−→
𝑛→∞

𝛾(ℓ), if 𝛾(𝑛) −−−−→
𝑛→∞

0, i.e., 𝛾̂ℓ is biased, but asymptotically consistent.

(ii) cov
(
𝛾̃(𝑘), 𝛾̃(ℓ)

)
= 1
𝑛

∑𝑛
𝑢=−𝑛

(
1 − |𝑢 |

𝑛

)
𝑉𝑢, where E𝑤4

𝑡 = 𝜂𝜎
4 and1 𝑉𝑢 = 𝛾(𝑢)𝛾(𝑢 + 𝑘 −

ℓ) + 𝛾(𝑢 + 𝑘)𝛾(𝑢 − ℓ) + (𝜂 − 3)𝜎4 ∑
𝑖∈Z 𝜓𝑖+𝑢+𝑘𝜓𝑖+𝑘𝜓𝑖+ℓ𝜓𝑖

1Bartlett’s formula; Peter Bartlett, 1942
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Lemma 5.10. For any 𝜉, 𝜂 ∈ R it holds that

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛) (𝑌𝑖 − 𝑌𝑛) =

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉) (𝑌𝑖 − 𝜂) −

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜉)

1
𝑛

𝑛∑︁
𝑗=1
(𝑌 𝑗 − 𝜂). (5.3)

Proof. Indeed,

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝑋𝑛) (𝑌𝑖 − 𝑌𝑛) =

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜉 −

(
𝑋𝑛 − 𝜉)

) (
𝑌𝑖 − 𝜂 − (𝑌𝑛 − 𝜂)

)
=

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜉

) (
𝑌𝑖 − 𝜂

)
− 1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜉

) (
𝑌𝑛 − 𝜂

)
− 1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑛 − 𝜉

) (
𝑌𝑖 − 𝜂

)
+ 1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑛 − 𝜉

) (
𝑌𝑛 − 𝜂

)
=

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝜉

) (
𝑌𝑖 − 𝜂

)
−

(
𝑋𝑛 − 𝜉

) (
𝑌𝑛 − 𝜂

)
and thus the assertion. □

Proof of (i). We replace 𝑋𝑡 ← 𝑋𝑡+ℓ , 𝑌𝑡 ← 𝑋𝑡 and 𝜉 = 𝜂 = 𝜇 in (5.3). Then

𝛾̂ℓ =
1
𝑛

𝑛−ℓ∑︁
𝑖=1
(𝑋𝑖+ℓ − 𝜇) (𝑋𝑖 − 𝜇) −

1
𝑛

𝑛−ℓ∑︁
𝑖=1
(𝑋𝑖+ℓ − 𝜇) ·

1
𝑛

𝑛−ℓ∑︁
𝑗=1
(𝑋 𝑗 − 𝜇).

It follows that

E 𝛾̂ℓ =
1
𝑛

𝑛−ℓ∑︁
𝑖=1

𝛾(ℓ) − 1
𝑛2

𝑛−ℓ∑︁
𝑖, 𝑗=1

𝛾(𝑖 + ℓ − 𝑗) = 𝑛 − ℓ
𝑛

𝛾(ℓ) − 1
𝑛2

𝑛−ℓ∑︁
𝑖, 𝑗=1

𝛾(𝑖 + ℓ − 𝑗). (5.4)

Again, let 𝑁 > ℓ be large enough so that |𝛾(𝑛) | < 𝜀 for 𝑛 ≥ 𝑁. Then������ 1
𝑛2

𝑛−ℓ∑︁
𝑖, 𝑗=1

𝛾(𝑖 + ℓ − 𝑗)

������ ≤ 1
𝑛2

𝑛−ℓ∑︁
𝑖, 𝑗=1
|𝛾(𝑖 + ℓ − 𝑗) | ≤ (2𝑁 + 1)𝑛 + 𝜀𝑛2

𝑛2 −−−−→
𝑛→∞

𝜀.

The assertion follows from (5.4).
For the (rather messy) proof of (ii) we refer to Shumway and Stoffer (2000, (A.50)).

□

5.3 PROBLEMS

Exercise 5.1. It is occasionally proposed to scale (5.2) with 1
𝑛−ℓ instead of 1

𝑛
. Then the

matrix Γ̂𝑛 is not positive semi-definite any longer. Give a counterexample.
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Exercise 5.2. Verify (5.1) by simulations.

Exercise 5.3. Use Example 3.13 and investigate (5.1) by simulations.

Exercise 5.4. Give a histogram for (5.2) by simulation and compare with the result in
Theorem 5.9 (i).

Exercise 5.5. The time series 𝑋𝑖 in Exercise 3.3 has constant acf. Do the results of
Theorem 5.1 still hold true? As well, investigate the results by simulations.

Exercise 5.6. Use the Levinson Algorithm (Proposition 3.23) to simulate a time series
with 𝛾(ℓ) → 0, but

∑
ℓ∈Z 𝛾(ℓ) = ∞. Investigate the results of Theorem 5.1 by simulations.

Exercise 5.7 (Brockwell and Davis (1987, Problem 7.3)). Show that the sample auto-
covariance 𝛾̂ of a time series (𝑥1, . . . , 𝑥𝑛) satisfies

∑
ℓ<𝑛 𝛾̂(ℓ) = 0.
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6Fourier transform in sequence spaces

6.1 DEFINITIONS AND PROPERTIES

Definition 6.1. A series (𝑥𝑡 )𝑡∈Z is absolutely 𝑝-summable if ∥𝑥∥ 𝑝 B (
∑
𝑡∈Z |𝑥𝑡 |𝑝)

1/𝑝 < ∞.
We set ℓ𝑝 (Z,C) B

{
(𝑥𝑡 )𝑡∈Z : 𝑥𝑡 ∈ C, ∥𝑥∥ 𝑝 < ∞

}
.

Remark 6.2. The theory here can be developed for 𝑡 ∈ N , i.e., ℓ1(N,R), as well.

Lemma 6.3. For 𝑥, 𝑦 ∈ ℓ1 it holds that
• 𝑥 + 𝑦 B (𝑥𝑡 + 𝑦𝑡 )∞𝑡=−∞ ∈ ℓ1 and
• 𝑥 · 𝑦 B (𝑥𝑡 · 𝑦𝑡 )𝑡∈Z ∈ ℓ1.

Proof. We have
(i) ∥𝑥 + 𝑦∥1 ≤ ∥𝑥∥1 + ∥𝑦∥1 < ∞ and
(ii) ∥𝑥 · 𝑦∥1 ≤

∑
𝑡∈Z |𝑥𝑡 𝑦𝑡 | ≤ sup𝑡∈Z |𝑥𝑡 | ·

∑
𝑡∈Z |𝑦𝑡 | ≤ ∥𝑥∥1 · ∥𝑦∥1 < ∞ by Hölder’s inequality.

□

Definition 6.4 (Fourier transform). For 𝑥 ∈ ℓ1, the function

𝑥 : R→ C
𝜈 ↦→ 𝑥(𝜈) B

∑︁
𝑡∈Z

𝑒−2𝜋𝑖𝜈𝑡𝑥𝑡

is the Fourier transform of 𝑥, often also denoted by 𝐹𝑥 B 𝑥. The mapping

F : ℓ1 → 𝐶 (R,C)
𝑥 ↦→ F (𝑥) B 𝑥(·) : R→ C

is the Fourier transform. Note, that F maps sequences (ℓ1) to functions (𝐶 (R)).

Remark 6.5. Note that 𝑥(𝜈 + 1) = 𝑥(𝜈). For this reason it is enough to restrict 𝑥 to [0, 1].

Definition 6.6 (Fourier cosine and sine transform). The Fourier sine and cosine trans-
form are

F𝑐 (𝑥) (𝜈) B 𝑥𝑐 (𝜈) B
∑︁
𝑡∈Z

𝑥𝑡 · cos(2𝜋𝜈𝑡) and (6.1)

F𝑠 (𝑥) (𝜈) B 𝑥𝑠 (𝜈) B
∑︁
𝑡∈Z

𝑥𝑡 · sin(2𝜋𝜈𝑡). (6.2)

Remark 6.7. It follows from Euler’s formula 𝑒𝑖𝜑 = cos 𝜑 + 𝑖 sin 𝜑 that 𝑥(·) = F (𝑥) (·) =
𝑥𝑐 (·) − 𝑖 𝑥𝑠 (·).

55
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Figure 6.1: Milankovitch cycles, https://en.wikipedia.org/wiki/Milankovitch cycles
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Proposition 6.8. The Fourier transform is well-defined and for all 𝑥 ∈ ℓ1 and 𝜈 ∈ R it
holds that

(i) 𝑥 is uniformly bounded,
∥𝑥∥∞ ≤ ∥𝑥∥1 , (6.3)

i.e., |𝑥(𝜈) | ≤ ∥𝑥∥1 for every 𝑣 ∈ R,
(ii) 𝑥(0) = ∑

𝑡∈Z 𝑥𝑡 ,
(iii) 𝑥(𝜈) = 𝑥(𝜈 + 1), i.e., the period is 1, and
(iv) 𝑥(−𝜈) = 𝑥(𝜈) .

Further, the Fourier transform is linear, it holds that
(v) �𝛼 𝑥 + 𝛽 𝑦 = 𝛼 𝑥 + 𝛽 𝑦̂.

Proof. Define the partial sum 𝐹𝑛 (𝜈) B
∑𝑛
𝑡=−𝑛 𝑥𝑡 𝑒

−2𝜋𝑖𝜈𝑡 and observe that for 𝑚 < 𝑛,

|𝐹𝑛 (𝜈) − 𝐹𝑚(𝜈) | ≤
∑︁

𝑚< |𝑡 | ≤𝑛

��𝑥𝑡𝑒−2𝜋𝑖𝜈𝑡 �� ≤ ∑︁
|𝑡 |>𝑚

|𝑥𝑡 | −−−−−→
𝑚→∞

0.

Note that convergence is uniform in 𝑛 > 𝑚 and 𝜈 ∈ R. As 𝐶 (R) is closed under uniform
limits it follows that the limit 𝐹 B lim 𝐹𝑛 is continuous, i.e., 𝐹 ∈ 𝐶 (R). The remaining
statements are obvious. □

Theorem 6.9. For 𝑥 ∈ ℓ2(Z;C) it holds that∫ 1

0
|𝑥(𝜈) |2 d𝜈 =

∑︁
𝑡∈Z
|𝑥𝑡 |2 ,

i.e., ∥𝑥∥𝐿2 ( [0,1] ) = ∥𝑥∥ℓ2 .

Proof. This is a consequence of the following more general statement. □

Theorem 6.10. It holds that ∫ 1

0
𝑥(𝜈) 𝑦̂(𝜈) d𝜈 =

∑︁
𝑡∈Z

𝑥𝑡 𝑦𝑡 .

Proof. Notice first the integral representation of Kronecker’s delta,∫ 1

0
𝑒2𝜋𝑖𝜈 (𝑡−𝑡 ′ ) d𝜈 =


∫ 1

0 1 d𝜈 if 𝑡 = 𝑡′,
𝑒2𝜋𝑖𝜈 (𝑡−𝑡′ )

2𝜋𝑖 (𝑡−𝑡 ′ )

���1
𝜈=0

if 𝑡 − 𝑡′ ∈ Z\ {0}
=

{
1 if 𝑡 = 𝑡′,
0 if 𝑡 − 𝑡′ ∈ Z\ {0}

= 𝛿𝑡 ,𝑡 ′ . (6.4)

Thus ∫ 1

0
𝑥(𝜈) · 𝑦̂(𝜈) d𝜈 =

∫ 1

0

∑︁
𝑡∈Z

𝑒−2𝜋𝑖𝜈𝑡𝑥𝑡 ·
∑︁
𝑡 ′∈Z

𝑒2𝜋𝑖𝜈𝑡 ′ 𝑦𝑡 ′ d𝜈

=
∑︁
𝑡 ,𝑡 ′∈Z

𝑥𝑡 · 𝑦𝑡 ′
∫ 1

0
𝑒2𝜋𝑖𝜈 (𝑡 ′−𝑡 ) d𝜈 =

∑︁
𝑡∈Z

𝑥𝑡 · 𝑦𝑡 ,

the statement.
Parseval’s theorem follows by choosing 𝑥 = 𝑦. □
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Figure 6.2: future lifetime, https://www.welt.de/article149577156/

Corollary 6.11. It holds that∑︁
𝑡∈Z
|𝑥𝑡 |2 =

∫ 1

0
𝑥𝑐 (𝜈)2 + 𝑥𝑠 (𝜈)2 d𝜈,

where 𝑥𝑐 (𝑥𝑠, resp.) is the Fourier cosine (Fourier sine, resp.) transform, cf. (6.1).

6.2 INVERSION

Proposition 6.12 (Inversion of the Fourier transform). For 𝑥 ∈ ℓ1 it holds that

𝑥𝑡 =

∫ 1

0
𝑒2𝜋𝑖𝜈𝑡 𝑥(𝜈) d𝜈, 𝑡 ∈ Z. (6.5)

Remark 6.13. The inverse Fourier transform for 𝑥 ∈ 𝐿1 is occasionally denoted 𝑥𝑡 =∫ 1
0 𝑒2𝜋𝑖𝜈𝑡𝑥(𝜈) d𝜈.

Proof. Recall that 𝑥(𝜈) = ∑
𝑡 ′∈Z 𝑥𝑡 ′𝑒

−2𝜋𝑖𝜈𝑡 ′ , hence∫ 1

0
𝑥(𝜈)𝑒2𝜋𝑖𝜈𝑡 d𝜈 =

∫ 1

0

∑︁
𝑡 ′∈Z

𝑥𝑡 ′𝑒
−2𝜋𝑖𝜈𝑡 ′ · 𝑒2𝜋𝑖𝜈𝑡 d𝜈 =

∑︁
𝑡 ′∈Z

𝑥𝑡 ′

∫ 1

0
𝑒2𝜋𝑖𝜈 (𝑡−𝑡 ′ ) d𝜈 = 𝑥𝑡 ,

where we have use (6.4). Thus the result. □

Corollary 6.14. It holds that
∫ 1

0 𝑥(𝜈) d𝜈 = 𝑥0 and 𝑥(0) = ∑
𝑡∈Z 𝑥𝑡 .
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6.3 CONVOLUTION

Definition 6.15. The convolution of 𝑥, 𝑦 ∈ ℓ1 is the sequence

𝑥 ∗ 𝑦 B
(∑︁
𝜏∈Z

𝑥𝑡−𝜏 · 𝑦𝜏

)
𝑡∈Z

. (6.6)

Remark 6.16. Note, that (𝑥 ∗ 𝑦)𝑡 =
∑
𝜏∈Z 𝑥𝑡−𝜏 · 𝑦𝜏 =

∑
𝜏∈Z 𝑥𝜏 · 𝑦𝑡−𝜏 .

Lemma 6.17. For 𝑥, 𝑦 ∈ ℓ1 it holds that

∥𝑥 ∗ 𝑦∥1 ≤ ∥𝑥∥1 · ∥𝑦∥1

and thus 𝑥 ∗ 𝑦 ∈ ℓ1.

Proof. By the triangular inequality, ∥𝑥 ∗ 𝑦∥1 ≤
∑
𝑡∈Z

∑
𝜏∈Z |𝑥𝑡−𝜏𝑦𝜏 | =

∑
𝑡∈Z

∑
𝜏∈Z |𝑥𝑡 | |𝑦𝜏 | =

∥𝑥∥1 · ∥𝑦∥1 < ∞. □

Proposition 6.18 (Convolution theorem). It holds that

(i) �𝑥 ∗ 𝑦 = 𝑥 · 𝑦̂, i.e., �𝑥 ∗ 𝑦(𝜈) = 𝑥(𝜈) · 𝑦̂(𝜈) and

(ii) 𝑥 · 𝑦 = 𝑥 ∗ 𝑦̂, i.e., 𝑥 · 𝑦(𝜈) = (𝑥 ∗ 𝑦̂) (𝜈), where ( 𝑓 ∗ 𝑔) (𝜈) B
∫ 1

0 𝑓 (𝜈′)𝑔(𝜈 − 𝜈′) d𝜈′
(cf. (6.6)) is the convolution of the functions 𝑓 , 𝑔 ∈ 𝐿2.

Proof. It holds that

�𝑥 ∗ 𝑦(𝜈) = ∑︁
𝑡∈Z
(𝑥 ∗ 𝑦)𝑡 · 𝑒−2𝜋𝑖𝜈𝑡 =

∑︁
𝑡∈Z

∑︁
𝜏∈Z

𝑥𝜏𝑦𝑡−𝜏𝑒
−2𝜋𝑖𝜈𝑡

=
∑︁
𝜏∈Z

∑︁
𝑡∈Z

𝑥𝜏𝑦𝑡𝑒
−2𝜋𝑖𝜈 (𝑡+𝜏 )

=
∑︁
𝜏∈Z

𝑥𝜏𝑒
−2𝜋𝑖𝜈𝜏 ·

∑︁
𝑡∈Z

𝑦𝑡𝑒
−2𝜋𝑖𝜈𝑡 = 𝑥(𝜈) · 𝑦̂(𝜈).

Further,

𝑥 · 𝑦(𝜈) =
∑︁
𝑡∈Z

𝑥𝑡 · 𝑦𝑡 𝑒−2𝜋𝑖𝜈𝑡 =
(6.5)

∑︁
𝑡∈Z

∫ 1

0
𝑥(𝜈′) 𝑒2𝜋𝑖𝜈′𝑡 d𝜈′ · 𝑦𝑡 𝑒−2𝜋𝑖𝜈𝑡

=

∫ 1

0
𝑥(𝜈′) ·

∑︁
𝑡∈Z

𝑒−2𝜋𝑖 (𝜈−𝜈′ )𝑡 · 𝑦𝑡 d𝜈′ (6.7)

=

∫ 1

0
𝑥(𝜈′) 𝑦̂(𝜈 − 𝜈′) d𝜈′ =

(
𝑥 ∗ 𝑦̂

)
(𝜈).

Version: May 16, 2023



60 FOURIER TRANSFORM IN SEQUENCE SPACES

The integral and sum in (6.7) can be interchanged by the monotone convergence theo-
rem (Lebesgue’s theorem) as the integrand is uniformly bounded by������𝑥(𝜈′) · ∑︁|𝑡 | ≤𝑛 𝑒−2𝜋𝑖 (𝜈−𝜈′ )𝑡 · 𝑦𝑡

������ =
�����𝑥(𝜈′) ·∑︁

𝑡≤𝑛
𝑒−2𝜋𝑖 (𝜈−𝜈′ )𝑡 · 𝑦𝑡

�����
≤ ∥𝑥∥∞ ∥𝑦∥1 ≤ ∥𝑥∥1 ∥𝑦∥1 ,

by (6.3). □
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7Spectral analysis

Spectral analysis is the analysis of the time series in the frequency domain.

Definition 7.1. The temporal frequency 𝑓 , the period 𝑇 and the angular frequency
𝜔 are related by 𝜔 = 2𝜋 𝑓 and 𝑓 = 1/𝑇. Tabular 7.1 compares temporal and spatial
frequency terms.

Remark 7.2. For an amplitude 𝐴 and a phase shift 𝜑 we have from the angle addition
theorems that1

𝐴 · sin
(
2𝜋𝑡
𝑇
+ 𝜑

)
= 𝐴𝑠 · cos

(
2𝜋𝑡
𝑇

)
+ 𝐴𝑐 · sin

(
2𝜋𝑡
𝑇

)
,

where
𝐴𝑐 B 𝐴 · cos 𝜑 and 𝐴𝑠 B 𝐴 · sin 𝜑;

note as well the inverse relation

𝐴 =

√︃
𝐴2
𝑠 + 𝐴2

𝑐 and tan 𝜑 =
𝐴𝑠

𝐴𝑐

and consequently

span {𝑡 ↦→ 𝐴 sin(𝜔𝑡 + 𝜑) : 𝐴 ∈ R, 𝜑 ∈ [0, 2𝜋)}
= span {𝑡 ↦→ 𝐴𝑐 sin(𝜔𝑡), 𝑡 ↦→ 𝐴𝑠 sin(𝜔𝑡) : 𝐴𝑐, 𝐴𝑠 ∈ R}

7.1 SPECTRAL DENSITY

Remark 7.3. The process (3.3) is random, but Exercise 7.4 demonstrates that 𝑋𝑡 is
perfectly predictable from its past (deterministic).

1Cf. Footnote 1 (page 25)

temporal spatial SI unit

period 𝑇 period 𝜆 wavelength 𝑚

linear frequency 𝑓 = 1/𝑇 = 𝜈 𝜉 = 𝜈 = 1/𝜆 (wavenumber, repetency) hertz= 𝑠−1

angular frequency 𝜔 = 2𝜋 𝑓 𝑘 = 2𝜋𝜉 (angular wavenumber, Kreiszahl) radiant/ 𝑠
speed 𝑐 = 𝜆 𝑓 𝑚/𝑠

Table 7.1: Frequencies
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62 SPECTRAL ANALYSIS

Figure 7.1: Keeling Curve, CO2 at Mauna Loa,
https://www.esrl.noaa.gov/gmd/ccgg/trends/; see also
https://www.youtube.com/watch?v=gbxEsG8g6BA
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Example 7.4 (Cf. Example 3.15). Consider a time series

𝑋𝑡 =
∑︁
𝑗=1

𝐴 𝑗 cos 2𝜋𝜈 𝑗 𝑡 + 𝐵 𝑗 sin 2𝜋𝜈 𝑗 𝑡 (7.1)

with zero mean, uncorrelated 𝐴 𝑗 , 𝐵 𝑗 and var 𝐴 𝑗 = var 𝐵 𝑗 = 𝜎2
𝑗
, i.e., 𝐴 𝑗 𝐵 𝑗 ∼ (0, 𝜎2

𝑗
). Then

𝛾(𝜏) =
∑︁
𝑗=1
𝜎2
𝑗 cos 2𝜋𝜈 𝑗𝜏. (7.2)

Note, that the frequencies 𝜈 𝑗 are explicit frequencies in the autocovariance function
𝛾(·).

Define the measure

𝜇(·) B
∑︁
𝑗=1

𝜎2
𝑗

2

(
𝛿𝜈 𝑗 (·) + 𝛿1−𝜈 𝑗 (·)

)
then, by (7.2),∫ 1

0
𝑒2𝜋𝑖𝜏𝜈𝜇(d𝜈) =

∑︁
𝑗=1

𝜎2
𝑗

2

(
𝑒2𝜋𝑖𝜏𝜈 𝑗 + 𝑒2𝜋𝑖𝜏 (1−𝜈 𝑗 )

)
=

∑︁
𝑗=1
𝜎2
𝑗 cos 2𝜋𝜈 𝑗𝜏 = 𝛾(𝜏)

for 𝜏 ∈ Z.
The density of 𝜇(·) is the spectral density.

Definition 7.5 (Spectral density). A function 𝑓 is the spectral density of a stationary
time series 𝑋𝑡 with autocovariance function 𝛾(·) if

(i) 𝑓 (𝜈) ≥ 0 for all 𝜈 ∈ R and

(ii) 𝛾(𝜏) =
∫ 1

0 𝑒2𝜋𝑖𝜏𝜈 𝑓 (𝜈) d𝜈 for all integers 𝜏 ∈ Z.

Remark 7.6. The inversion of the Fourier transform (6.12) suggests the notation 𝑓 (·) =
𝛾̂(·): this should not be mixed with the sample autocovariance, also denoted by 𝛾̂. A
distinction is always clear by the differing argument: we write 𝛾̂ℓ for the acf depending
on the lag ℓ ∈ Z (cf. (5.2)), but 𝛾̂(𝜈) for the spectral density depending on a frequency
𝜈 ∈ [0, 1].

Suppose that 𝑋𝑡 is a zero mean stationary time series with autocovariance function
𝛾(·) satisfying

∑
ℓ∈Z |𝛾(𝜏) | < ∞. From (6.12) (the inversion of the Fourier transform),

the spectral density of the time series is the Fourier transform of the autocovariance
function,

𝑓 (𝜈) = 𝛾̂(𝜈) =
∑︁
𝜏∈Z

𝑒−2𝜋𝑖𝜈𝜏𝛾(𝜏), 𝜈 ∈ R. (7.3)

Occasionally, the spectral density is 1
2𝜋

∑
𝜏∈Z 𝑒

−𝑖𝜈𝜏𝛾(𝜏) instead of (7.3)
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64 SPECTRAL ANALYSIS

Example 7.7 (White noise). Let 𝑓 (𝜈) = 𝜎2 be constant. Then, by (6.4),

𝛾(𝜏) =
{
𝜎2 if 𝜏 = 0,
0 else

(7.4)

and thus 𝛾̂(𝜈) = 𝜎2 is constant. This is the spectral density of the white noise pro-
cess 𝑋𝑡 = 𝜎2𝜀𝑡 for some iid, zero mean and variance 1 error 𝜀.

Note, that the fact that 𝛾̂(·) = constant explains the term white noise.

Remark 7.8. Recall that 𝛾(·) is even, i.e., 𝛾(𝜏) = 𝛾(−𝜏). Hence, by (7.3),

𝑓 (𝜈) = 𝛾̂(𝜈) = 𝛾(0) + 2
∞∑︁
𝜏=1

𝛾(𝜏) cos(2𝜋𝜈𝜏)

=
∑︁
𝜏∈Z

𝛾(𝜏) cos(2𝜋𝜈𝜏), 𝜈 ∈ R,

is even as well.

Remark 7.9. Recall from Theorem 5.1 (iv) that

𝑛 var 𝑋𝑛 −−−−→
𝑛→∞

∞∑︁
ℓ=−∞

𝛾ℓ = 𝛾̂(0).

Proposition 7.10 (Properties of the spectral density). It holds that

(i) 𝛾̂(·) is even, i.e., 𝛾̂(𝜈) = 𝛾̂(−𝜈) with period 1, 𝛾̂(· + 1) = 𝛾̂(·),

(ii) 𝛾̂(𝜈) ≥ 0 for all 𝜈 ∈ R and

(iii) for 𝜏 ∈ Z,

𝛾(𝜏) =
∫ 1

0
𝑒2𝜋𝑖𝜏𝜈 · 𝛾̂(𝜈) d𝜈 =

∫ 1

0
cos(2𝜋𝜏𝜈) · 𝛾̂(𝜈) d𝜈. (7.5)

Remark 7.11. It follows from (7.5) that var 𝑋𝑡 = 𝛾(0) =
∫ 1

0 𝛾̂(𝜈) d𝜈. The spectral density
𝛾̂(·) restricted to [0, 1] (or [−1/2, 1/2]) thus is indeed a density up to scaling by var 𝑋𝑡 .
Replacing the autocovariance by the autocorrelation in (7.3) removes this gap.

Proof. (i) is obvious from the definition and (7.5) follows from Proposition 6.12. To
see (ii) define

𝑓𝑛 (𝜈) B
1
𝑛
E

����� 𝑛∑︁
𝑡=1

𝑋𝑡 𝑒
−2𝜋𝑖𝑡𝜈

�����2 =
1
𝑛
E

𝑛∑︁
𝑡=1

𝑋𝑡 𝑒
−2𝜋𝑖𝑡𝜈

𝑛∑︁
𝑠=0

𝑋𝑠 𝑒
2𝜋𝑖𝑠𝜈 (7.6)

=
1
𝑛

𝑛∑︁
𝑠,𝑡=1

𝑒−2𝜋𝑖𝜈 (𝑡−𝑠) 𝛾(𝑠 − 𝑡) =
𝑛−1∑︁
ℓ=0

𝑛 − |ℓ |
𝑛

𝑒−2𝜋𝑖𝜈ℓ 𝛾(ℓ).

The assertion follows with 𝑛→∞ as 𝑓𝑛 (·) ≥ 0 and 𝑓𝑛 (𝜈) → 𝛾̂(𝜈). □
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Remark 7.12 (Periodic time series). Consider the spectral density 𝛾̂(𝜈) = ∑
𝑗=1 𝜎

2
𝑗
𝛿𝜈 𝑗 (𝜈).

Using the property (7.5) we obtain that

𝛾(𝜏) =
∑︁
𝑗=1
𝜎2
𝑗 cos 2𝜋𝜏𝜈 𝑗 = (7.2).

However, 𝛾̂(·) is a distribution and not a classical function and so the periodic time
series (7.1) does not have a spectral density.

However, define 𝐹𝛾̂ (𝜈) B
∑
𝑗=1 𝐹𝑗 (𝜈) with 𝐹𝑗 (𝜈) B


0 if 𝜈 < 𝜈 𝑗 ,
𝜎2

𝑗/2 if 𝜈 𝑗 ≤ 𝜈 < 1 − 𝜈 𝑗 ,
𝜎2
𝑗

else, i.e., 1 − 𝜈 𝑗 ≤ 𝜈.
Then

𝛾(𝜏) =
∫ 1

0 𝑒2𝜋𝑖𝜏𝜈 d𝐹𝛾̂ (𝜈).
Definition 7.13. The representation

𝛾(𝜏) =
∫ 1

0
𝑒2𝜋𝑖𝜏𝜈 d𝐹 (𝜈) (7.7)

is the spectral representation of the autocovariance function 𝛾(·). The integrand 𝐹 (·) is
the spectral distribution function.

If 𝐹 (𝜈) =
∫ 𝜈

0 𝛾̂(𝜈′) d𝜈′, then 𝛾̂ is the spectral density.

Definition 7.14. The time series has a continuous spectrum, if it has a spectral density,
and a discrete spectrum otherwise.

Theorem 7.15. A function 𝛾 : Z → R is an autocovariance function, iff it can be written
in the form (7.7) for some nondecreasing function 𝐹 (·).
Proof. (cf. Brockwell and Davis (1987)) We show first that 𝛾 is nonnegative if it has the
representation (7.7). Indeed,

𝑛∑︁
𝑠,𝑡=1

𝑎𝑠𝛾(𝑠 − 𝑡)𝑎𝑡 =
𝑛∑︁

𝑠,𝑡=1
𝑎𝑠

∫ 1

0
𝑒2𝜋𝑖 (𝑠−𝑡 )𝜈 d𝐹 (𝜈)𝑎𝑡

=

∫ 1

0

����� 𝑛∑︁
𝑠,𝑡=1

𝑎𝑠𝑒
2𝜋𝑖𝑠𝜈

�����2 d𝐹 (𝜈) ≥ 0.

Conversely, if 𝛾 is nonnegative definite, then 𝑓𝑛 (𝜈) B 1
𝑛

∑𝑛
𝑠,𝑡=1 𝑒

−2𝜋𝑖𝑠𝜈𝛾(𝑠 − 𝑡)𝑒2𝜋𝑖𝑡𝜈 and
𝐹𝑛 (𝜈) B

∫ 𝜈
0 𝑓𝑛 (𝜈′) d𝜈′ is a (generalized) cdf, which is nondecreasing, as 𝑓𝑛 (𝜈) ≥ 0, as

𝛾(·) is nonnegative. We have∫ 1

0
𝑒2𝜋𝑖𝜏𝜈 d𝐹𝑛 (𝜈) =

∫ 1

0
𝑒2𝜋𝑖𝜏𝜈 1

𝑛

𝑛∑︁
𝑠,𝑡=1

𝑒−2𝜋𝑖𝑠𝜈𝛾(𝑠 − 𝑡)𝑒2𝜋𝑖𝑡𝜈 d𝜈

=

∫ 1

0
𝑒2𝜋𝑖𝜏𝜈

∑︁
|𝑘 | ≤𝑛

(
1 − |𝑘 |

𝑛

)
𝛾(𝑘)𝑒−2𝜋𝑖𝑘𝜈 d𝜈 (𝑠 − 𝑡 = 𝑘)

=

{(
1 − |𝜏 |

𝑛

)
𝛾(𝜏) if 𝜏 ≤ 𝑛

0 else.
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The assertion follows from Helly’s selection theorem by letting 𝑛→∞ (note that 𝐹𝑛 (1) =∫ 1
0 𝑓𝑛 (𝜈) d𝜈 = 𝛾(0) < ∞). □

7.2 THE SPECTRUM OF AN ARMA PROCESS

Theorem 7.16 (Linear transformation). Suppose that 𝑋𝑡 is a covariance stationary pro-
cess with acf 𝛾𝑋 and

∑
𝑗∈Z |𝛾𝑋 ( 𝑗) | < ∞. Define 𝑌𝑡 B

∑∞
𝑗=0 𝜓 𝑗𝑋𝑡− 𝑗 with

∑∞
𝑗=0 𝜓

2
𝑗
< ∞.

Then 𝑌𝑡 is covariance stationary with spectral density

𝑓𝑌 (𝜈) =
����∑︁
𝑗=0
𝜓 𝑗 𝑒

−2𝜋𝑖𝜈 𝑗
����2 · 𝑓𝑋 (𝜈),

where 𝑓𝑋 ( 𝑓𝑌 , resp.) is the spectral density of 𝑋 (𝑌 , resp.).

Proof. Recall that (Proposition 4.19)

𝛾𝑌 (ℎ) = cov (𝑌𝑡 , 𝑌𝑡−ℎ)
=

∑︁
𝑗=0

∑︁
𝑘=0

𝜓 𝑗𝜓𝑘 cov
(
𝑋𝑡− 𝑗 , 𝑋𝑡−ℎ−𝑘

)
=

∑︁
𝑗=0

∑︁
𝑘=0

𝜓 𝑗𝜓𝑘𝛾𝑋 (ℎ + 𝑘 − 𝑗).

Next,

𝑓𝑌 (𝜈) =
∑︁
ℎ∈Z

𝑒−2𝜋𝑖𝜈ℎ𝛾𝑌 (ℎ)

=
∑︁
ℎ∈Z

𝑒−2𝜋𝑖𝜈ℎ
∑︁
𝑗=0

∑︁
𝑘=0

𝜓 𝑗 𝜓𝑘 𝛾𝑋 (ℎ + 𝑘 − 𝑗)

=
∑︁
𝑗=0
𝜓 𝑗 𝑒

−2𝜋𝑖𝜈 𝑗
∑︁
𝑘=0

𝜓𝑘 𝑒
2𝜋𝑖𝜈𝑘

∑︁
ℎ∈Z

𝑒−2𝜋𝑖𝜈 (ℎ+𝑘− 𝑗 ) 𝛾𝑋 (ℎ + 𝑘 − 𝑗)

=

(∑︁
𝑗=0
𝜓 𝑗 𝑒

−2𝜋𝑖𝜈 𝑗
) (∑︁
𝑘=0

𝜓𝑘 𝑒
2𝜋𝑖𝜈𝑘

)
𝑓𝑋 (𝜈)

=

����∑︁
𝑗=0
𝜓 𝑗 𝑒

−2𝜋𝑖𝜈 𝑗
����2 𝑓𝑋 (𝜈),

the assertion. □

Remark 7.17 (AR(∞) spectral density). The spectral density of an AR(∞) time series
𝑋𝑡 = 𝜓(𝐵)𝑊𝑡 is (cf. (7.4))

𝑓𝑋 (𝜈) = 𝜎2
𝑤

���𝜓 (
𝑒−2𝜋𝑖𝜈

)���2 .
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Corollary 7.18 (ARMA spectral density). The spectral density of an ARMA time series
𝜙(𝐵)𝑋𝑡 = 𝜃 (𝐵)𝑊𝑡 is (for 𝜓(·) = 𝜃 ( ·)

𝜙 ( ·) see (4.14))

𝑓𝑋 (𝜈) = 𝜎2
𝑤 ·

���𝜓 (
𝑒−2𝜋𝑖𝜈

)���2 = 𝜎2
𝑤 ·

����� 𝜃 (
𝑒−2𝜋𝑖𝜈 )

𝜙
(
𝑒−2𝜋𝑖𝜈 )

�����2 . (7.8)

Definition 7.19. The spectrum (7.8) is called a rational sprectrum.

Remark 7.20. By (7.8), the spectrum of an invertible process (cf. Theorem 4.30) is

𝑓 inverse(𝜈) =
𝜎4
𝑤

𝑓𝑋 (𝜈)
,

which explains (again, finally) the name inverse process.

7.3 DISCRETE FOURIER TRANSFORM

Definition 7.21. For 𝑥, 𝑦 ∈ R𝑛 we shall write ⟨𝑦, 𝑥⟩ B ∑𝑛
𝑖=1 𝑦𝑖𝑥𝑖. We set

𝑒𝑘 B
1
√
𝑛

©­­­­«
𝑒2𝜋𝑖𝑘 ·0/𝑛

𝑒2𝜋𝑖𝑘 ·1/𝑛

...

𝑒2𝜋𝑖𝑘 · (𝑛−1)/𝑛

ª®®®®¬
, 𝑘 = 1, . . . , 𝑛

(these are not the unit vectors).

Remark 7.22. The vectors 𝑒𝑘 = 𝑒𝑘+𝑛 are orthonormal, i.e.,

⟨𝑒𝑘 , 𝑒ℓ⟩ = 𝑒⊤𝑘 𝑒ℓ =
1
𝑛

𝑛−1∑︁
𝑗=0
𝑒2𝜋𝑖𝑘 · 𝑗/𝑛𝑒2𝜋𝑖ℓ · 𝑗/𝑛

=
1
𝑛

𝑛−1∑︁
𝑗=0
𝑒2𝜋𝑖 𝑗 (ℓ−𝑘 )/𝑛 =

{
1 if 𝑘 = ℓ,

𝑒2𝜋𝑖𝑛(ℓ−𝑘)/𝑛−1
𝑒2𝜋𝑖 (ℓ−𝑘)/𝑛−1 = 0 else

= 𝛿𝑘,ℓ .

It follows that

𝑋 =

𝑛∑︁
𝑘=1
⟨𝑒𝑘 , 𝑋⟩ · 𝑒𝑘 =

𝑛−1∑︁
𝑘=0

𝑋̂𝑘 · 𝑒𝑘

for every 𝑋 ∈ C𝑛, where 𝑋̂𝑘 B ⟨𝑒𝑘 , 𝑋⟩ =
∑𝑛
𝑗=1 𝑒

− 𝑗 ·2𝜋𝑖𝑘/𝑛𝑋 𝑗 .

Proposition 7.23 (Parseval). It holds that

∥𝑋 ∥2 =

𝑛∑︁
𝑘=1
|⟨𝑒𝑘 , 𝑋⟩|2 , i.e.,

𝑛∑︁
𝑖=1

𝑋2
𝑖 =

𝑛−1∑︁
𝑘=0

𝑋̂2
𝑘 . (7.9)
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Proof. Indeed,

∥𝑋 ∥2 =

〈
𝑛∑︁
𝑘=1
⟨𝑒𝑘 , 𝑋⟩ · 𝑒𝑘 ,

𝑛∑︁
ℓ=1
⟨𝑒ℓ , 𝑋⟩ · 𝑒ℓ

〉
=

𝑛∑︁
𝑘,ℓ=1
⟨𝑒𝑘 , 𝑋⟩ ⟨𝑒ℓ , 𝑋⟩ ⟨𝑒𝑘 , 𝑒ℓ⟩ =

𝑛∑︁
𝑘=1
|⟨𝑒𝑘 , 𝑋⟩|2 =

𝑛∑︁
𝑘=1

��𝑋̂𝑘 ��2 =


𝑋̂

2

,

the assertion. □

7.4 PERIODOGRAM

In this section we shall assume that the time series is mean adjusted, i.e., 𝑋𝑛 =
1
𝑛

∑𝑛
𝑡=1 𝑋𝑡 = 0. We are interested in an estimator for the spectral density 𝛾̂(·) (cf. (7.3)).

Definition 7.24. The preriodogram2 of the sample 𝑋1, . . . , 𝑋𝑛 is the function (cf. (7.6))

𝐼𝑛 (𝜈) B
1
𝑛

����� 𝑛∑︁
𝑡=1

𝑒−2𝜋𝑖𝑡𝜈 𝑋𝑡

�����2 (7.10)

Remark 7.25. Note, that 𝐼𝑛 (𝑘/𝑛) = |⟨𝑒𝑘 , 𝑋⟩|2 and thus ∥𝑋 ∥2 =
∑𝑛
𝑘=1 𝐼𝑛 (𝑘/𝑛) by (7.9).

Remark 7.26 (Discrete Fourier sine and cosine transform). It holds that

𝑋̂𝑘 = ⟨𝑒𝑘 , 𝑋⟩ =
1
√
𝑛

𝑛∑︁
𝑗=1
𝑒−2𝜋𝑖 𝑗 ·𝑘/𝑛𝑋 𝑗

=
1
√
𝑛

𝑛∑︁
𝑗=1

𝑋 𝑗 cos
2𝜋𝑖 𝑗 𝑘
𝑛
− 𝑖 1
√
𝑛

𝑛∑︁
𝑗=1

𝑋 𝑗 sin
2𝜋𝑖 𝑗 𝑘
𝑛

=: 𝑋̂𝑐𝑘 − 𝑖 𝑋̂
𝑠
𝑘 .

More generally,

𝐼𝑛 (𝜈) =
(

1
√
𝑛

𝑛∑︁
𝑡=1

𝑋𝑡 cos 2𝜋𝑡𝜈

)2

+
(

1
√
𝑛

𝑛∑︁
𝑡=1

𝑋𝑡 sin 2𝜋𝑡𝜈

)2

.

Proposition 7.27. For 𝑘 ≠ 0 it holds that

𝐼𝑛 (𝑘/𝑛) =
∑︁
|𝜏 |<𝑛

𝛾̂𝑋 (𝜏)𝑒−2𝜋𝑖𝑘𝜏/𝑛, (7.11)

where 𝛾̂𝑋 is the sample autocovariance function (5.2) (not to be confused with the
Fourier transform 𝛾̂ here).

2Stichprobenspektrum, Periodogramm, Germ.
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Corollary 7.28 (Proposition 7.27 for 𝑘 = 0). For a mean adjusted time series it holds
that 𝐼𝑛 (𝑘/𝑛) =

∑
|𝜏 |<𝑛 𝛾̂(𝜏)𝑒−2𝜋𝑖𝑘𝜏/𝑛 for all 𝑘 ∈ {−𝑛, . . . , 𝑛}, i.e., including 𝑘 = 0.

Proof. Expanding (7.10) gives 𝐼𝑛 (𝜈) = 1
𝑛

∑𝑛
𝑠,𝑡=1 𝑒

−2𝜋𝑖 (𝑡−𝑠)𝜈𝑋𝑠𝑋𝑡 . Note that

1
𝑛

𝑛∑︁
𝑠,𝑡=1

𝑒−2𝜋𝑖 (𝑡−𝑠)𝑘/𝑛 =
1
𝑛

𝑛∑︁
𝑠=1

𝑒2𝜋𝑖𝑠𝑘/𝑛 ·
𝑛∑︁
𝑡=1

𝑒−2𝜋𝑖𝑡𝑘/𝑛 = 0

provided that 𝑘 ≠ 0. Hence

𝐼𝑛 (𝑘/𝑛) =
1
𝑛

𝑛∑︁
𝑠,𝑡=1

𝑒−2𝜋𝑖 (𝑡−𝑠)𝑘/𝑛
(
𝑋𝑠 − 𝑋𝑛

) (
𝑋𝑡 − 𝑋𝑛

)
=

∑︁
𝜏<𝑛

𝑒−2𝜋𝑖𝜏𝑘/𝑛 1
𝑛

∑︁
𝑡−𝑠=𝜏

(
𝑋𝑡−𝜏 − 𝑋𝑛

) (
𝑋𝑡 − 𝑋𝑛

)
=

∑︁
|𝜏 |<𝑛

𝑒−2𝜋𝑖𝜏𝑘/𝑛𝛾̂(𝜏),

the result. □

Fact. Although Proposition 7.27 suggests that (replace 𝑘/𝑛← 𝜈)

𝐼𝑛 (𝜈) −−−−→
𝑛→∞

𝛾̂(𝜈) =
∑︁
𝜏∈Z

𝑒−2𝜋𝑖𝜈𝜏𝛾(𝜏),

the periodogram (7.11) is not a consistent estimator of the spectral density 𝛾̂.

Example 7.29. Figure 1.4b displays the periodogram of the nottem data, which exhibit
the monthly frequency with 𝑓 = 1

12 ≈ 0, 0833.

7.5 DIFFICULTIES IN READING THE PERIODOGRAM

7.5.1 Leakage

The periodogram 𝐼𝑛 is continuous for 𝑛 finite. Hence, frequencies close to a peak
frequency 𝜈0 are too high (leakage3). When increasing the length of the time series,
then the peak frequencies get sharper. The resolution, in general, is approximately 1/𝑛
(where 𝑛 is the length of the time series observed).

7.5.2 Aliasing

Consider the time series

𝑋𝑡 B sin (2𝜋 𝑓 𝑡 + 𝜑) and 𝑋̃𝑡 B − sin (2𝜋(𝑘 − 𝑓 )𝑡 − 𝜑) .

3Durchsickern, Germ.
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𝑡

Figure 7.2: What is the true frequency for the points observed?

Note, that 𝑋̃𝑡 = sin (2𝜋 𝑓 𝑡 + 𝜑 − 2𝜋𝑘) = 𝑋𝑡 for all 𝑡 ∈ Z! However, their true frequencies
(which are 𝑓 and 1 − 𝑓 ) differ; they cannot be detected (aliasing4).

Further, note that
𝐼𝑛 (𝜈) = 𝐼𝑛 (𝑘 + 𝜈) = 𝐼𝑛 (𝑘 − 𝜈)

for every 𝑘 ∈ Z. A peak at 𝜈 in the peridogram indicates a frequency in {𝑘 + 𝜈, 𝑘 − 𝜈 : 𝑘 ∈ Z}.
A higher sampling frequency is necessary to decide on the true frequency.

Example 7.30. Table 7.2 gives different periods for a peak frequency at 𝜈 = 0.11.

0.083=̂12.0 1.08=̂0.92 2.08=̂0.48 3.08=̂0.32 . . .

0.92=̂1.09 1.92=̂0.52 2.92=̂0.34 . . .

Table 7.2: Aliasing. A peak at 𝜈 = 0.11 may indicate different periods

Definition 7.31. The largest frequency, which can be detected in a signal, is called
Nyquist frequency.5 For time series, the Nyquist frequency is 𝜈Nyquist = 1

2 (i.e., the
period 2, see Figure 1.4b).

7.5.3 Overtones

The time series (𝑘 ∈ Z)
𝑋𝑡 = sin (2𝜋𝑘 𝑓 𝑡 + 𝜑)

has frequency 𝑘 𝑓 (period 1
𝑘𝜈

), but 𝑓 (period 1
𝑓
) is a valid frequency too (overtones6).

7.6 PROBLEMS

Exercise 7.1. Consider the time series 𝑋𝑖+1 = 𝜌𝑖 𝑋 𝑖 +
√︁

1 − 𝜌𝑖𝜌𝑌𝑖+1.

Exercise 7.2 (AR(1)). Consider the process 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝑍𝑡 with var 𝑍𝑡 = 𝜎2. Show
that

𝛾(𝜏) =
𝜎2𝜙

|𝜏 |
1

1 − 𝜙2
1

and 𝛾̂(𝜈) = 𝜎2

1 − 2𝜙1 cos 2𝜋𝜈 + 𝜙2
1
.

4Maskierung, Germ.
5Harry Nyquist, 1889–1976, Swedish engineer
6Oberschwingungen, Germ.
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Plot trajectories of the time series for 𝜙1 = 0.9 and 𝜙1 = −0.9 and the spectral density.
Discuss the properties for various signs of 𝜙1:

𝜙1 > 0, positive autocorrelation, spectrum is dominated by low frequency components—
smooth in time domain;

𝜙1 < 0, negaitve autocorrelation, spectrum is dominated by high frequency components—
rough in time domain.

Exercise 7.3 (MA(1)). Consider the process 𝑋𝑡 = 𝑍𝑡 + 𝜃1𝑍𝑡−1. Recall, that

𝛾(𝜏) =


𝜎2(1 − 𝜃2

1) if 𝜏 = 0,
𝜎2𝜃1 if 𝜏 = 1,
0 else

and 𝛾̂(𝜈) = 𝜎2
(
1 + 𝜃2

1 + 2𝜃1 cos 2𝜋𝜈
)
.

Plot trajectories of the time series for 𝜃1 = 0.9 and 𝜃1 = −0.9 and the spectral density.
Discuss the properties for various signs of 𝜃1:

𝜃1 > 0, positive autocorrelation, spectrum is dominated by low frequency components—
smooth in time domain;

𝜃1 < 0, negaitve autocorrelation, spectrum is dominated by high frequency components—
rough in time domain.

Exercise 7.4. Show that the time series (3.3) is perfectly predictable, it holds that 𝑋𝑡 =
2 cos(2𝜋𝜈0) · 𝑋𝑡−1 − 𝑋𝑡−2.

Exercise 7.5. Give the recursion for 𝑋𝑡 = 𝑒−𝛽𝑡
(
𝐴 cos(2𝜋𝜈0𝑡) + 𝐵 sin(2𝜋𝜈0𝑡)

)
, similarly to

Exercise 7.4.
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8Singular spectrum analysis, SSA

See https://en.wikipedia.org/wiki/Singular spectrum analysis,
Zhigljavsky, Anatoly
earth temperature: http://earth-temperature.com
Caterpillar-SSA: http://www.gistatgroup.com/
Forecasting Hyndman: https://www.otexts.org/fpp

73

https://en.wikipedia.org/wiki/Singular_spectrum_analysis
https://www.cardiff.ac.uk/people/view/98671-zhigljavsky-anatoly
http://earth-temperature.com
http://www.gistatgroup.com/
https://www.otexts.org/fpp
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9Wold decomposition

Definition 9.1 (Linear process). The time series 𝑋𝑡 is a linear process if

𝑋𝑡 = 𝜇 +
∞∑︁

𝑗=−∞
𝜓 𝑗 𝑍𝑡− 𝑗 and

∞∑︁
𝑗=−∞

��𝜓 𝑗 �� < ∞ (9.1)

where 𝑍𝑡 is a white noise (cf. Definition 3.12).

Proposition 9.2 (Cf. Proposition 4.19). The autocovariance function of the linear pro-
cess is

𝛾(ℓ) = 𝜎2
𝑍 ·

∞∑︁
𝑗=−∞

𝜓 𝑗+ℓ · 𝜓 𝑗 . (9.2)

Definition 9.3 (Cf. Definition 4.20). A linear process is causal if 𝜓 𝑗 = 0 for every 𝑗 < 0
in the representation (9.1).

Proposition 9.4 (Cf. Theorem 4.22). The autocovariance function of the causal linear
process is

𝛾(ℓ) = 𝜎2
𝑍 ·

∞∑︁
𝑗=0
𝜓 𝑗+ℓ 𝜓 𝑗 .

Suppose that 𝑋𝑡 is stationary. Then 𝑍𝑡 B 𝑋𝑡 −E (𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, . . . ) is a white noise
with variance 𝜎2 B E 𝑍2

𝑡 = E 𝑋𝑡𝑍𝑡 and E 𝑋𝑡𝑍𝑢 = 0 whenever 𝑡 < 𝑢.

Proof. For 𝑡 < 𝑢 it holds that E (𝑍𝑡 · 𝑋𝑢 | 𝑋𝑢−1, . . . ) = 𝑍𝑡 · E (𝑋𝑢 | 𝑋𝑢−1, . . . ). Hence

E 𝑍𝑡𝑍𝑢 = E 𝑍𝑡 · (𝑋𝑢 − E (𝑋𝑢 | 𝑋𝑢−1, . . . ))
= E 𝑍𝑡𝑋𝑢 − E 𝑍𝑡 · E (𝑋𝑢 | 𝑋𝑢−1, . . . )
= E 𝑍𝑡𝑋𝑢 − EE (𝑍𝑡 · 𝑋𝑢 | 𝑋𝑢−1, . . . )
= E 𝑍𝑡𝑋𝑢 − E 𝑍𝑡𝑋𝑢 = 0.

Further note that the distribution of 𝑍𝑡 does not depend on 𝑡 and hence 𝜎2 B var 𝑍𝑡 is
well-defined, the variance of the white noise. To see the assertion E 𝑋𝑡𝑍𝑢 = 0 replace
𝑍𝑡 by 𝑋𝑡 in the latter display.

Finally

E 𝑋𝑡𝑍𝑡 − E 𝑍𝑡𝑍𝑡 = E(𝑋𝑡 − 𝑍𝑡 ) · 𝑍𝑡
= E

[
E(𝑋𝑡 | 𝑋𝑡−1, . . . ) ·

(
𝑋𝑡 − E(𝑋𝑡 | 𝑋𝑡−1, . . . )

) ]
= 0

by the projection property of the conditional expectation. □
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Theorem 9.5. Every covariance-stationary time series 𝑋𝑡 has the representation

𝑋𝑡 =

∞∑︁
𝑗=0
𝜓 𝑗𝑍𝑡− 𝑗 + 𝜂𝑡 , (9.3)

where

(i) 𝑍𝑡 is a white noise with variance 𝜎2
𝑍

,

(ii) 𝜓0 = 1 and
∑∞
𝑗=1 |𝜓 𝑗 |2 < ∞ and

(iii) 𝜂𝑡 is deterministic, or perfectly predictable from its past, i.e., E 𝜂𝑡𝑍𝑠 = 0 for all (sic!)
𝑠, 𝑡 ∈ Z.

Remark 9.6. See Exercise 7.4 below for a perfectly predictable process.

Proof. We demonstrate the statement only for stationary processes. Define

𝑍𝑡 B 𝑋𝑡 − E (𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, . . . )

We have seen in Proposition 9.4 that 𝑍𝑡 is a white noise and we may set 𝜎2
𝑍
B var 𝑍𝑡 .

Now we may set

𝜓 𝑗 B
1
𝜎2
𝑍

E 𝑋𝑡𝑍𝑡− 𝑗

and

𝜂𝑡 B 𝑋𝑡 −
∞∑︁
𝑗=0
𝜓 𝑗𝑍𝑡− 𝑗 .

The coefficient 𝜓 𝑗 is well-defined, as the time series is stationary.
Note that 1

𝜎𝑍
𝑍𝑡 is an orthonormal subset of 𝐿2 and by Bessel’s inequality thus ∞ >

𝑋𝑡

2 ≥ ∑∞

𝑗=0
��〈 𝑍𝑡− 𝑗
𝜎𝑍

, 𝑋𝑡
〉��2 =

∑∞
𝑗=0 |𝜓 𝑗 |2. Further, by Proposition 9.4,

𝜓0 =
E 𝑋𝑡𝑍𝑡

E 𝑍2
𝑡

= 1 (9.4)

and thus (ii). As 𝑍 𝑗 are orthogonal we have Proposition 9.4 that

E
(
𝑋𝑡 | 𝑍 𝑗 : 𝑗 ∈ Z

)
=

∑︁
𝑗∈Z

𝑍 𝑗

𝜎𝑍
E
𝑍 𝑗

𝜎𝑍
𝑋𝑡 =

𝑡∑︁
𝑗=−∞

𝑍 𝑗 E
𝑍 𝑗

𝜎2
𝑍

𝑋𝑡 =

∞∑︁
𝑗=0

𝑍𝑡− 𝑗 E
𝑍𝑡− 𝑗

𝜎2
𝑍

𝑋𝑡 =

∞∑︁
𝑗=0

𝑍𝑡− 𝑗𝜓 𝑗 .

Finally note that

𝑋𝑡 = 𝑋𝑡 − E
(
𝑋𝑡 | 𝑍 𝑗 : 𝑗 ∈ Z

)
+ E

(
𝑋𝑡 | 𝑍 𝑗 : 𝑗 ∈ Z

)
= 𝑋𝑡 −

∞∑︁
𝑗=0
𝜓 𝑗𝑍𝑡− 𝑗 +

∞∑︁
𝑗=0
𝜓 𝑗𝑍𝑡− 𝑗 = 𝜂𝑡 +

∞∑︁
𝑗=0
𝜓 𝑗𝑍𝑡− 𝑗 . (9.5)

Finally note that E 𝜂𝑡𝑍𝑢 = 0 whenever 𝑢 > 𝑡 by Proposition 9.4. Then we have E 𝜂𝑡𝑍𝑡 = 0
by (9.4) and for 𝑢 < 𝑡 we get the result from (9.5). □
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Figure 9.1: Climate history. Source: https://en.wikipedia.org/wiki/Geologic temperature record

Remark 9.7 (Properties). The following hold true for the Wold decomposition

(i) E 𝑋𝑡 = 𝜂𝑡 , from (9.3);

(ii) cov(𝑋𝑡 , 𝑋𝑡+ℓ) = 𝛾(ℓ) = 𝜎2
𝑍
·∑∞𝑗=0 𝜓 𝑗+ℓ 𝜓 𝑗 from (9.2) and in particular

(iii) var 𝑋𝑡 = 𝛾(0) = 𝜎2
𝑍
·∑∞𝑗=0 𝜓

2
𝑗+ℓ .

Version: May 16, 2023
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10Nonparametric forecasts

10.1 THE COMPOSITION METHOD

Suppose a random variable 𝑋 has a density function of the particular form 𝑓𝑋 (·) =∑
𝑖=1 𝑝𝑖 𝑓𝑖 (·), where 𝑝𝑖 ≥ 0 and

∑
𝑖=1 𝑝𝑖 = 1. To get a sample of 𝑋 with density 𝑓𝑋 (·)

one may, first, sample a random 𝑖∗ with 𝑃(𝑖∗ = 𝑖) = 𝑝𝑖 (for example, sample a uniform
𝑈 ∈ [0, 1] and find 𝑖∗ such that

∑𝑖∗−1
𝑖=1 𝑝𝑖 ≤ 𝑈 ≤

∑𝑖∗

𝑖=1 𝑝𝑖); second, get a sample 𝑋 from
𝑓𝑖∗ (·). The variable 𝑋 then has density 𝑓𝑋 (·). In symbols, 𝑋𝑖 ∼ 𝑓𝑖 (·) and 𝑋𝑖∗ ∼ 𝑓𝑋 (·).

Example 10.1. The usual kernel density estimator for 𝑓𝑋 (𝑥) based on observations
𝑋𝑖, 𝑖 = 1, . . . , 𝑛, is 𝑓 (𝑥) B ∑𝑛

𝑖=1
1
𝑛
𝑘ℎ (𝑥 − 𝑋𝑖). Here, the weights are simply 𝑝𝑖 = 1

𝑛

and 𝑓𝑖 (𝑥) = 𝑘ℎ (𝑥 − 𝑋𝑖), where 𝑘ℎ (𝑥) B 1
ℎ
𝑘

(
𝑥
ℎ

)
is the scaled kernel. Samples from

𝑓𝑖 (·) = 𝑘ℎ (· − 𝑋𝑖) are 𝑋𝑖 + ℎ ·𝐾, where 𝐾 is a sample based on the (unscaled) kernel with
density 𝑘 (·). In symbols, 𝐾 ∼ 𝑘 (·), 𝑋𝑖 + ℎ𝐾 ∼ 𝑓𝑖 (·) and 𝑋𝑖∗ ∼ 𝑓 (·).

Example 10.2 (Conditional density 𝑓 (·|𝑦) for 𝑦 fixed). The density estimator for 𝑓 (𝑥 |𝑦)
based on observations (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, . . . , 𝑛, is 𝑓 (𝑥 |𝑦) = ∑𝑛

𝑖=1
𝑘ℎ (𝑦 − 𝑌𝑖)∑𝑛
𝑗=1 𝑘ℎ (𝑦 − 𝑌 𝑗)︸               ︷︷               ︸

𝑝𝑖 (𝑦)

·𝑘ℎ (𝑥 − 𝑋𝑖).

Here, the weights are 𝑝𝑖 (𝑦) = 𝑘ℎ (𝑦−𝑌𝑖 )∑𝑛
𝑗=1 𝑘ℎ (𝑦−𝑌𝑗 ) and the functions 𝑓𝑖 (·) = 𝑘ℎ (· − 𝑋𝑖) are as

above. Samples from 𝑓𝑖 (·), in particular, are 𝑋𝑖 + ℎ · 𝐾 (as above). In symbols, 𝐾 ∼ 𝑘 (·),
𝑋𝑖 ∼ 𝑓𝑖 (·) and 𝑋𝑖∗ ∼ 𝑓 (·|𝑦).

Example 10.3 (Markovian time series). Suppose the transition probability of a discrete-
time Markovian time series has a density, 𝑃(𝑋𝑡+1 ∈ d𝑥 | 𝑋𝑡 = 𝑦) = 𝑓 (𝑥 |𝑦) d𝑥. A typical
observation for such models is a trajectory (𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑛) and every 𝑋𝑡+1 is a real-
ization based (conditioned) on the previous observation 𝑦 = 𝑋𝑡 with density 𝑓 (·|𝑋𝑡 ).

To estimate the transition density 𝑓 (𝑥 |𝑦) based on the previous Example 10.2 we
consider the paired observations (𝑋𝑖 , 𝑋𝑖−1), 𝑖 = 1, . . . , 𝑛, i.e., we set 𝑌𝑖 B 𝑋𝑖−1. This
gives the explicit estimator

𝑓 (𝑥 | 𝑦) =
𝑛∑︁
𝑖=2

𝑘ℎ (𝑦 − 𝑋𝑖−1)∑𝑛
𝑗=2 𝑘ℎ (𝑦 − 𝑋 𝑗−1)︸                   ︷︷                   ︸

𝑝𝑖 (𝑦)

·𝑘ℎ (𝑥 − 𝑋𝑖) (10.1)

for 𝑓 (𝑥 |𝑦). The estimator 𝑓 (𝑥 |𝑦) is based on the observed trajectory (𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑛).
To sample a new time series (𝑥0, 𝑥1, 𝑥2 . . . , 𝑥𝑡 , 𝑥𝑡+1, . . . ) based on the observation

(𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑛) we pick an (arbitrary, but reasonable) start value 𝑥0. Next, generate
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Figure 10.1: Global warming precition, https://en.wikipedia.org/wiki/Global warming

a sample 𝑥1 with 𝑥1 ∼ 𝑓 (·|𝑥0) by setting 𝑦 = 𝑥0 in (10.1) and by applying the procedure
described in Example 10.2 with 𝑝𝑖 (𝑦) = 𝑘ℎ (𝑦−𝑋𝑖−1 )∑𝑛

𝑗=1 𝑘ℎ (𝑦−𝑋 𝑗−1 ) .
In general, suppose the new series generated is (𝑥0, 𝑥1, . . . 𝑥𝑡 ). The series is contin-

ued by generating 𝑥𝑡+1 ∼ 𝑓 (·|𝑥𝑡 ), where 𝑦 = 𝑥𝑡 in (10.1) (𝑥𝑡 is the previously generated
sample, i.e., the last entry in the new series). Once 𝑥𝑡+1 is found, we may restart with
(𝑥0, 𝑥1, . . . 𝑥𝑡 , 𝑥𝑡+1), etc.

Example 10.4 (Time series with fixed lag ℓ ∈ N). Here, the distribution of the next 𝑥𝑡+1
depends on the historic ℓ values 𝑥𝑡−ℓ+1, . . . , 𝑥𝑡 , i.e., 𝑥𝑡+1 ∼ 𝑓 (· | 𝑥𝑡−ℓ+1, . . . 𝑥𝑡 ). To estimate
the density as above we may employ the density estimator

𝑓 (· | 𝑦−ℓ , . . . 𝑦−1) B
𝑛∑︁

𝑖=ℓ+1

𝑘ℎ (𝑦−ℓ − 𝑋𝑖−ℓ) · . . . 𝑘ℎ (𝑦−1 − 𝑋𝑖−1)∑𝑛
𝑗=ℓ+1 𝑘ℎ (𝑦−ℓ − 𝑋 𝑗−ℓ) · . . . 𝑘ℎ (𝑦−1 − 𝑋 𝑗−1)︸                                                      ︷︷                                                      ︸

𝑝𝑖 (𝑦−ℓ ,...,𝑦−1 )

·𝑘ℎ (· − 𝑋𝑖). (10.2)

To sample a new time series (𝑥0, 𝑥1, 𝑥2 . . . , 𝑥𝑡 , 𝑥𝑡+1, . . . ) based on the observation (𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑛)
pick an (arbitrary, but reasonable) start sequence (𝑥1−ℓ , . . . , 𝑥0). Next, generate a sam-
ple 𝑥1 with 𝑥1 ∼ 𝑓 (· | 𝑥1−ℓ , . . . , , 𝑥0) by using (10.2), then 𝑥2 ∼ 𝑓 (· | 𝑥2−ℓ , . . . , 𝑥0, 𝑥1); in
general 𝑥𝑡+1 ∼ 𝑓 (· | 𝑥𝑡−ℓ+1, . . . , 𝑥𝑡 ).

Notice as well that the vector (𝑋𝑖 , . . . , 𝑋𝑖−ℓ+1)𝑖=ℓ is Markovian and Example 10.3 is
the special case with lag ℓ = 1.

10.2 DIEBOLD-MARIANO TEST

In empirical applications it is often the case that two or more time series models are
available for forecasting a particular variable of interest. The Diebold-Mariano test ad-
dresses the question if they are equally good.

rough draft: do not distribute
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10.3 IMPLEMENTATIONS IN JULIA AND R

Julia implementation of the nonparametric forecast (10.2) to reproduce Figure ??.

1 using CSV, DataFrames , D i s t r i b u t i o n s , Gnuplot
2 kerne l= L o g i s t i c ( 0 . , 0 .5 ) # L o g i s t i c w i th bandwidth
3

4 f u n c t i o n Kernel ( x , y )
5 SigmoidKernel ( x , y ; lag= 7 .5 )
6 end
7

8 df= CSV. read ( ”C: / Users / A lo i s / Dropbox / J u l i a / Stochast icProcess / nottem . csv ” , DataFrame )
9

10 lag= 4; s imu la t i ons = 20*12
11 t imes= [ d f . t ime ; 1940:1 / 12:1940+ ( s imu la t ions − 1) / 12]
12 temp= copy ( t imes ) ; temp [ 1 : leng th ( d f . t ime ) ] . = d f . temperature
13 n= leng th ( d f . t ime ) ; weight= Vector{Float64 } ( undef , n− lag )
14 f o r k= 1 : s imu la t i ons
15 f o r i = 1 :n− lag
16 weight [ i ]= prod ( pdf ( kernel , temp [ n+k− lag : n+k−1]− temp [ i : i + lag − 1 ] ) )
17 end
18 U= rand ( ) ; i S t a r = lag+ f i n d f i r s t ( x−> U* sum( weight )<x , cumsum( weight ) )
19 temp [ n+k ]= temp [ i S t a r ] + rand ( kerne l )
20 end
21

22 @gp ” rese t ; se t t i t l e ’ nottem ’ ; se t border 3 ”
23 @gp : − df . t ime df . temperature ” l s −1 t i t l e ’ temperature ’ w i th l i n e s p o i n t s ”
24 @gp : − t imes [ n : end ] temp [ n : end ] ” l s −1 l t rgb ’ blue ’ t i t l e ’ s imu la t i on c o n d i t i o n a l pdf ’ w i th l i n e s p o i n t s ”
25

26 condExp= RKHSTS( d f . temperature ; lag= lag , \ lambda =.3 , ke rne l= Kernel ) # new r e a l i z a t i o n
27 f o r k =1: s imu la t i ons
28 temp [ n+k ]= condExp ( temp [ n+k− lag : n+k −1])+ 2.1 * randn ( )
29 end

Implementation in R of the nonparametric forecast (10.2).
1 temp<− read . csv ( ” ˜ / . . / Dropbox / Lehre / Vorlesungen / Z e i t r e i h e n / HistoricTSTemperatureGermany . csv ” , sep= ” ; ” , dec= ” , ” )
2 temp$date<− as . Date ( temp$date , ”%m/%d /%Y” )
3 s imu la t i ons<− 100 # fo recas ts to s imu la te
4 lags<− 4 # lags used i n s imu la t i on
5 n<− leng th ( temp$temperature ) # leng th o f t ime se r i es
6 ( bandwidth<− sd ( temp$temperature ) / ( n ˆ (1 / ( lags+ 4 ) ) ) / 12)
7 kerne l<− f u n c t i o n ( t , h ){ #exp(−1 / 2 * ( t / h ) ˆ 2 ) #Gaussian kerne l
8 1 / ( exp ( t / h )+ exp( − t / h ) ) ˆ 2 } # L o g i s t i c kerne l
9

10 tempSimulat ion<− vec to r ( leng th= s imu la t i ons + lags )
11 ( tempSimulat ion [ 1 : lags ]<− t a i l ( temp$temperature , lags ) ) # most recent observat ions
12 weight<− vec to r ( leng th= n )
13 f o r ( k i n ( ( lags + 1 ) : ( lags+ s imu la t i ons ) ) ) { # s imu la t i on count
14 f o r ( i i n ( ( lags +1) : n ) ){ # run next s imu la t i on step
15 weight [ i ]<− prod ( kerne l ( tempSimulat ion [ ( k− lags ) : ( k −1 ) ]
16 − temp$temperature [ ( i − lags ) : ( i −1 ) ] , bandwidth ) )}
17 u<− r u n i f (1 , min= 0 , max= 1) # composi t ion method
18 i S t a r<− min ( which (cumsum( weight ) > u* sum( weight ) , a r r . ind= TRUE) )
19 tempSimulat ion [ k ]= temp$temperature [ i S t a r ] # sample next f o recas t
20 + bandwidth * r l o g i s (1 , l o c a t i o n = 0 , sca le= 1)}
21
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Figure 10.2: nottem time series with nonparametric forecast, computed with methods
from Section 10.3; cf. also Figure 1.4
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22 # f i x output
23 temp$ s imu la t i on<− NA # append new column
24 tmp<− seq (max( temp$date ) , by= ’ month ’ , l eng th= s imu la t i ons +1) # new months
25 ntemp<− nrow ( temp ) # t o t a l number o f rows
26 temp [ ( ntemp + 1 ) : ( ntemp+ s imu la t i ons ) , ] $date<− tmp [ −1] # append new months and
27 temp [ ( ntemp + 1 ) : ( ntemp+ s imu la t i ons ) , ] $ s imu la t i on<− tempSimulat ion [ − (1 : lags ) ] # s imu la t i ons
28

29 p l o t ( temperature ˜ date , temp [ ( n −150) : ( n+ s imu la t i ons ) , ] ,
30 type= ’ l ’ , x lab= ’ year / f o recas t ( blue ) ’ , y lab= ’ termperature / C ’ )
31 l i n e s ( s imu la t i on ˜ date , temp , co l= ’ b lue ’ , type= ’ l ’ )
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