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1Historical Milestones in Portfolio Optimization

Probability is the foundation of banking.

Francis Ysidro Edgeworth, 1845–1926,
Anglo-Irish philosopher and political

economist. Edgeworth [1888]

1.1 IN BANKING

⊲ 1938: Bond Duration, Edgeworth [1888]

⊲ 1952: Markowitz mean-variance framework

⊲ 1963: Sharp’s capital asset pricing model

⊲ 1966: Multiple factor models

⊲ 1973: Black & Scholes option pricing model, the “Greeks”

⊲ 1988: Risk weighted assets for banks

⊲ 1993: Value-at-Risk

⊲ 1994: Risk Metrics

⊲ 1997: Credit Metrics

⊲ 1998: Integration of credit and market risk

⊲ 1998: Risk Budgeting, the Basel Rules

⊲ 2007: Basel II

⊲ 2017: Basel III

1.2 IN INSURANCE

The natural business of insurance companies is concerned with Risk.

⊲ Pricing of individual Contracts

⊲ Reserving in the Portfolio

⊲ The Cramér-Lundberg model

⊲ Solvability

⊲ Solvency II

⊲ US and Canada Insurance Supervisory: Conditional Tail Expectation
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2Introduction and Classification of Stochastic Programs

Universitäten sind gefährlicher als
Handgranaten.

Ruhollah Chomeini, 1902–1989

We employ the usual axioms in probability theory and denote a probability space by

(Ω, F , 𝑃).

Typically, we denote random variables mapping to a state space Ξ by

𝜉 : Ω→ Ξ

(or sometimes also 𝑌 : Ω→ R).

2.1 RELATIONS AND CONNECTIONS TO PORTFOLIO OPTIMIZATION: MARKOWITZ

See Markowitz, Section 3 below for details.

Definition 2.1. A portfolio 𝑥∗ ∈ R𝐽 (with 𝐽 indicating the number of stocks) is efficient if it solves

minimize in 𝑥∈R𝐽 var 𝑥⊤𝜉 (2.1)
subject to E 𝑥⊤𝜉 ≥ 𝜇,

1⊤ 𝑥 ≤ 1,
(𝑥 ≥ 0).

2.2 ALTERNATIVE FORMULATIONS OF THE MARKOWITZ PROBLEM

Instead of Markowitz (2.1) one might consider the problem

maximize E 𝑥⊤𝜉 (2.2)
subjet to var 𝑥⊤𝜉 ≤ 𝑞,

1⊤ 𝑥 ≤ 1,
(𝑥 ≥ 0).

2.3 INVOLVING RISK FUNCTIONALS

2.3.1 Risk Neutral
... is about the expectation, as

minimizein x E𝑄(𝑥, 𝜉)
subject to E𝐺𝑖 (𝑥, 𝜉) ≤ 0, 𝑖 = 1, . . . , 𝑘
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14 INTRODUCTION AND CLASSIFICATION OF STOCHASTIC PROGRAMS

Stochastics

Probability Theory

Optimization

Portfolio Optimization

Figure 2.1: Wide intersections: in theory and (economic) practice

This may be reformulated by employing the risk functional

R
(
𝑄(𝑥, ·)

)
B E𝜉 𝑄(𝑥, 𝜉).

2.3.2 Utility Functions
A function 𝑢 : R → R is a utility function if it satisfies some model-design properties in addition. Opti-
mization problems involving utility function generally read

minimizein x E 𝑢
(
𝑄(𝑥, 𝜉)

)
subject to E𝐺𝑖 (𝑥, 𝜉) ≤ 0, 𝑖 = 1, . . . , 𝑘

or

minimizein x R
(
𝑄(𝑥, 𝜉)

)
subject to R

(
𝐺𝑖 (𝑥, 𝜉)

)
≤ 0, 𝑖 = 1, . . . , 𝑘

where we might want to put

R
(
𝑄(𝑥, ·)

)
B E 𝑢

(
𝑄(𝑥, 𝜉)

)
.

2.3.3 Robust Optimization
Robust optimization considers the problem (Ben-Tal and Nemirovski [2001])

minimizein x max
𝜉 ∈Ξ

𝑄(𝑥, 𝜉)

subject to max
𝜉 ∈Ξ

𝐺𝑖 (𝑥, 𝜉) ≤ 0, 𝑖 = 1, . . . , 𝑘

Note, that there is no probability measure

R
(
𝑄(𝑥, ·)

)
B ess sup𝑄(𝑥, 𝜉)

and the problem is basically about the support of the probability measure.
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2.4 PROBABILISTIC CONSTRAINTS 15

2.3.4 Distributionally Robust Optimization
Distributionally robust optimization involves the probability measure instead,

minimizein x max
𝑃∈𝒫
R𝑃

(
𝑄(𝑥, 𝜉)

)
,

subject to R𝑃

(
𝐺𝑖 (𝑥, 𝜉)

)
≤ 0, 𝑖 = 1, . . . , 𝑘,

where we indicate the probability measure 𝑃 ∈ 𝒫 explicitly.

2.4 PROBABILISTIC CONSTRAINTS

This is about the problem

minimize (in 𝑥) R
(
𝑄(𝑥, 𝜉)

)
subject to 𝑃

(
𝐺𝑖 (𝑥, 𝜉) ≤ 0

)
≥ 𝛼, 𝑖 = 1, . . . , 𝑘

Example 2.2 (Economic example). Call Center

2.5 STOCHASTIC DOMINANCE

minimizein x E 𝑢
(
𝑄(𝑥, 𝜉)

)
(2.3)

subject to 𝐺𝑖 (𝑥, 𝜉) ≽ 𝑌, 𝑖 = 1, . . . , 𝑘

for some (stochastic) order relation ≽.

2.6 ON GENERAL DIFFICULTIES IN STOCHASTIC OPTIMIZATION

sample of
observations

estimation/

model selection
probability

model
scenario

generation
scenario
model

Problem 2.3 (Accuracy). How large/ small do we need 𝜀 > 0?

Version: November 29, 2023
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3The Markowitz Model

The trend is your friend.

Börsenweisheit

This section follows Pflug and Römisch [2007, Section 4].
The model of Markowitz1 is historically the first model to determine the decomposition of an optimal

portfolio.

3.1 INTRODUCTION

For portfolio optimization people often use the simple model provided by Harry Markowitz which in-
volves the variance. Note that it is a significant drawback of the Markowitz model that positive de-
viations (profits – this is what the investor wants) and negative deviations (losses – this is what the
investor tries to avoid) are treated exactly the same way. So the Markowitz model is of historical inter-
est (it was the first model on asset allocation with the objective to reduce the variance) but it violates
some natural objectives of an investor.

Extensions of the problem described at the end of this section avoid this downside.

3.2 EMPIRICAL PROBLEM FORMULATION AND VARIABLES

(i) 𝐽 is the number of stocks considered (𝐽 = 5 in the example which Table 3.1 displays);

(ii) each stock 𝑗 ∈ {1, . . . , 𝐽} is observed at 𝑛 + 1 consecutive times 𝑡0, . . . , 𝑡𝑛 (𝑛 = 12 in Table 3.1);

(iii) the price observed of stock 𝑗 at time 𝑡 is 𝑆 𝑗
𝑡 ;

(iv) 𝜉𝑖 =
(
𝜉1
𝑖
, 𝜉2

𝑖
, . . . 𝜉𝐽

𝑖

)⊤ collects the annualized returns of all 𝐽 stocks; note that 𝜉 𝑗
𝑖
= 𝑒⊤

𝑗
𝜉𝑖;

(v) 𝑥 𝑗 represents the fraction of cash invested in stock 𝑗 , 𝑗 ∈ {1, . . . , 𝐽}; we set 𝑥 B (𝑥1, 𝑥2, . . . , 𝑥𝐽 )⊤,
𝑥 is the allocation vector;

(vi) The budget constraint: the total amount of cash to be invested is not more than the budget
available. 1C is the default value (or 1𝑚C, say): the budget constraint thus reads 𝑥⊤ 1 ≤ 1C,
where 1 = (1, . . . , 1)⊤;

(vii) Short-selling constraint: occasionally we do not allow short-selling (i.e., negative positions), then
the constraints 𝑥 ≥ 0 has to be added. 𝑥 ≥ 0 is understood as 𝑥 𝑗 ≥ 0, 𝑗 ∈ {1, . . . , 𝐽}, for each
stock.

To solve the problem one needs to specify the probability measure 𝑃 which is used to compute the
expectation E and the variance var.

1Harry Max Markowitz. 1927. Nobel Memorial Price in Economic Sciences in 1990

17



18 THE MARKOWITZ MODEL

𝑆𝑡/C DAX RWE gold oil US-$/ C

𝑡0 January 9798.11 12.870 981.49 34.9 0.9228
𝑡1 February 9495.40 10.540 1030.49 33.08 0.9197
𝑡2 March 9965.51 11.375 1144.73 33.77 0.8787
𝑡3 April 10038.97 13.045 1137.17 37.04 0.8729
𝑡4 May 10262.74 11.765 1192.35 43.71 0.8983
𝑡5 June 9680.09 14.190 1121.85 45.81 0.9005
𝑡6 July 10337.50 15.905 1222.25 46.04 0.8949
𝑡7 August 10592.69 14.665 1244.67 39.78 0.8962
𝑡8 September 10511.02 15.335 1204.53 43.35 0.8896
𝑡9 October 10665.01 14.460 1212.10 46.15 0.9107
𝑡10 November 10640.30 11.860 1180.53 44.95 0.9444
𝑡11 December 11481.06 11.815 1082.17 47.72 0.9509

𝑡12 January 11599.01 11.800 1081.43 52.69 0.9494

Table 3.1: Prices 𝑆 𝑗
𝑡𝑖

observed in 2016. www.investing.com

Jan 2016 Apr 2016 Jul 2016 Oct 2016 Jan 2017
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

DAX

RWE

gold

oil

Figure 3.1: Prices of Table 3.1
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http://www.investing.com
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3.3 THE EMPIRICAL/ DISCRETE MODEL

Empirical models extract the probability model from historic observations.
For this observe a stock at 𝑛 + 1 successive times (𝑡𝑖)𝑛𝑖=0 and collect the prices 𝑆𝑡𝑖 .

Definition 3.1. Its annualized return during the time-period [𝑡𝑖−1, 𝑡𝑖] is2

𝜉𝑖 B
1

𝑡𝑖 − 𝑡𝑖−1
ln

𝑆𝑡𝑖

𝑆𝑡𝑖−1

.

Define the weights (probabilities) 𝑝𝑖 B 𝑡𝑖−𝑡𝑖−1
𝑡𝑛−𝑡0 , a random variable 𝜉 : Ω → R and a probability

measure with
𝑃(𝜉 = 𝜉𝑖) B 𝑝𝑖 =

𝑡𝑖 − 𝑡𝑖−1
𝑡𝑛 − 𝑡0

and we set

𝑝⊤ B (𝑝1, . . . , 𝑝𝑛) B
(
𝑡1 − 𝑡0
𝑡𝑛 − 𝑡0

,
𝑡2 − 𝑡1
𝑡𝑛 − 𝑡0

, . . . ,
𝑡𝑛 − 𝑡𝑛−1
𝑡𝑛 − 𝑡0

)
.

Remark 3.2. Note that
∑𝑛

𝑖=1 𝑝𝑖 = 𝑝
⊤ · 1 =

∑𝑛
𝑖=1

𝑡𝑖−𝑡𝑖−1
𝑡𝑛−𝑡0 = 1, thus

1
𝑡𝑛 − 𝑡0

ln
𝑆𝑡𝑛

𝑆𝑡0︸          ︷︷          ︸
annual return

=
1

𝑡𝑛 − 𝑡0

𝑛∑︁
𝑖=1

ln
𝑆𝑡𝑖

𝑆𝑡𝑖−1

(3.1)

=

𝑛∑︁
𝑖=1

𝑡𝑖 − 𝑡𝑖−1
𝑡𝑛 − 𝑡0︸    ︷︷    ︸

𝑝𝑖

· 1
𝑡𝑖 − 𝑡𝑖−1

ln
𝑆𝑡𝑖

𝑆𝑡𝑖−1︸              ︷︷              ︸
annualized return per period

=

𝑛∑︁
𝑖=1

𝑝𝑖 · 𝜉𝑖︸     ︷︷     ︸
average of returns

= E𝑃 𝜉. (3.2)

Based on this observation it follows that the annual return for the entire period is the expected value
of the annualized returns of successive periods (cf. Table 3.2).

Definition 3.3 (The first moment). The expected return is 𝑟 B E 𝜉.

Obviously, one may observe all 𝐽 stocks in parallel, at the same time. So put

𝜉
𝑗

𝑖
B

1
𝑡𝑖 − 𝑡𝑖−1

ln
𝑆
𝑗
𝑡𝑖

𝑆
𝑗
𝑡𝑖−1

, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐽

and set 𝜉𝑖 B
(
𝜉1
𝑖
, . . . , 𝜉𝐽

𝑖

)
. Collect all observations in the 𝑛 × 𝐽-matrix

Ξ B
(
𝜉
𝑗

𝑖

) 𝑗=1:𝐽

𝑖=1:𝑛
=

(
1

𝑡𝑖 − 𝑡𝑖−1
ln

𝑆
𝑗
𝑡𝑖

𝑆
𝑗
𝑡𝑖−1

) 𝑗=1:𝐽

𝑖=1:𝑛

(cf. Table 3.2). For the random return vector we have that

𝑃

(
𝜉 =

(
𝜉1
𝑖 , . . . , 𝜉

𝐽
𝑖

))
= 𝑃 (𝜉 = Ξ𝑖) = 𝑝𝑖

where Ξ𝑖 is the 𝑖th row in the matrix Ξ). Note that the return of stock 𝑗 rewrites for the empirical
probability measure

𝑃(·) =
𝑛∑︁
𝑖=1

𝑝𝑖 · 𝛿( 𝜉 1
𝑖
,..., 𝜉 𝐽

𝑖 ) (·),

2Here and always: logarithmus naturalis with basis 𝑒 = 2.718 . . .

Version: November 29, 2023



20 THE MARKOWITZ MODEL

annualized monthly returns 𝜉 𝑗𝑡 DAX RWE gold oil US-$/ C

𝑝1 = 1/12 or 𝑝1 = 31/365 -37.7% -239.7% 58.5% -64.3% -4.0%
𝑝2 = 1/12 or 𝑝2 = 28/365 58.0% 91.5% 126.2% 24.8% -54.7%
𝑝3 = 1/12 or 𝑝3 = 31/365 8.8% 164.4% -8.0% 110.9% -7.9%
𝑝4 = 1/12 or 𝑝4 = 30/365 26.5% -123.9% 56.9% 198.7% 34.4%
𝑝5 = 1/12 or 𝑝5 = 31/365 -70.1% 224.9% -73.1% 56.3% 2.9%
𝑝6 = 1/12 or 𝑝6 = 30/365 78.8% 136.9% 102.9% 6.0% -7.5%
𝑝7 = 1/12 or 𝑝7 = 31/365 29.3% -97.4% 21.8% -175.4% 1.7%
𝑝8 = 1/12 or 𝑝8 = 31/365 -9.3% 53.6% -39.3% 103.1% -8.9%
𝑝9 = 1/12 or 𝑝9 = 30/365 17.5% -70.5% 7.5% 75.1% 28.1%
𝑝10 = 1/12 or 𝑝10 = 31/365 -2.8% -237.9% -31.7% -31.6% 43.6%
𝑝11 = 1/12 or 𝑝11 = 30/365 91.3% -4.6% -104.4% 71.8% 8.2%
𝑝12 = 1/12 or 𝑝12 = 31/365 12.3% -1.5% -0.8% 118.9% -1.9%

average of monthly returns, (3.2) 16.9% -8.7% 9.7% 41.2% 2.8%
annual return, (3.1) 16.9% -8.7% 9.7% 41.2% 2.8%

Table 3.2: Matrix Ξ, collecting the returns 𝜉 𝑗
𝑖
, cf. Table 3.1

i.e., each stock is a random variable with 𝑃
(
𝜉 𝑗 = 𝜉

𝑗

𝑖

)
= 𝑝𝑖, independently of 𝑗 . For every 𝑗 thus

E 𝜉 𝑗 =

𝑛∑︁
𝑖=1

𝑝𝑖 𝜉
𝑗

𝑖
= 𝑝⊤ 𝜉 𝑗 ,

where

𝑝⊤ = (𝑝1, . . . , 𝑝𝑛) =
(
𝑡1 − 𝑡0
𝑡𝑛 − 𝑡0

,
𝑡2 − 𝑡1
𝑡𝑛 − 𝑡0

, . . . ,
𝑡𝑛 − 𝑡𝑛−1
𝑡𝑛 − 𝑡0

)
.

Remark 3.4. It follows from the Taylor series expansion

ln(1 + 𝑥) = 𝑥 − 1
2
𝑥2 + 1

3
𝑥3 − . . .

for small 𝑥 that

𝜉
𝑗

𝑖
=

1
𝑡𝑖 − 𝑡𝑖−1

ln
𝑆
𝑗
𝑡𝑖

𝑆
𝑗
𝑡𝑖−1

=
1

𝑡𝑖 − 𝑡𝑖−1
ln

(
1 +

𝑆
𝑗
𝑡𝑖

𝑆
𝑗
𝑡𝑖−1

− 1

)
≈ 1
𝑡𝑖 − 𝑡𝑖−1

(
𝑆
𝑗
𝑡𝑖

𝑆
𝑗
𝑡𝑖−1

− 1

)
.

3.4 THE FIRST MOMENT: RETURN

Suppose an amount of 𝑥 𝑗 is invested in the stock 𝑗 . Then the total return of the investment is

𝑥⊤𝜉 =
𝐽∑︁
𝑗=1
𝑥 𝑗𝜉

𝑗 .

Note, that 𝑒⊤
𝑗
𝜉 = 𝜉 𝑗 , where 𝑒⊤

𝑗
= (0, . . . , 0︸   ︷︷   ︸

𝑖−1 times

, 1, 0, . . . , 0︸   ︷︷   ︸
𝐽−𝑖 times

) is the 𝑗-th vector in the canonical basis.

Lemma 3.5. The expected return is 𝑟 B E 𝜉 = 𝑝⊤Ξ.

The return observed of the portfolio in period 𝑖 is
∑𝐽

𝑗=1 𝜉
𝑗

𝑖
𝑥 𝑗 = (Ξ · 𝑥)𝑖 (the 𝑖th line in the matrix Ξ · 𝑥).

Markowith adds the constraint

E 𝑥⊤𝜉 =
𝑛∑︁
𝑖=1

𝑝𝑖
©«

𝐽∑︁
𝑗=1
𝜉
𝑗

𝑖
𝑥 𝑗

ª®¬ = 𝑝⊤Ξ𝑥 = 𝑟⊤𝑥 ≥ 𝜇,
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DAX RWE gold oil US-$/ C

return 𝑟 𝑗 = E 𝑒
⊤
𝑗
𝜉 16.9% -8.7% 9.7% 41.2% 2.8%

variance Σ 𝑗 𝑗 = var
(
𝑒⊤
𝑗
𝜉
)

19.2% 208.8% 42.8% 88.9% 5.9%

Table 3.3: Return and variance (cf. Table 3.1)

which means, that a minimum return 𝜇 is required.
Remark 3.6. Suppose the total cash invested in stock 𝑖 is 𝐶𝑖 (i.e., 𝐶 𝑗/𝑆 𝑗

0 is the number of shares of
stock 𝑗) with total initial cash 𝐶0 =

∑𝐽
𝑗=1 𝐶

𝑗 , then it is natural to define the fraction 𝑥 𝑗 B
𝐶 𝑗∑𝐽
𝑗=1 𝐶

𝑗
so

that
∑𝐽

𝑗=1 𝑥 𝑗 = 1. The total portfolio value at time 𝑡 then is 𝐶𝑡 = 𝐶0 ·
∑𝐽

𝑗=1 𝑥 𝑗
𝑆
𝑗
𝑡

𝑆
𝑗

0
. Note, however, that∑𝐽

𝑗=1 𝑥 𝑗
∑𝐼

𝑖=1 𝑆
𝑗
𝑡𝑖
= 𝐶𝑡𝐼 , but

∑𝐽
𝑗=1 𝑥 𝑗

∑𝐼
𝑖=1 𝜉

𝑡𝑖
𝑗
≠

𝐶𝑡𝑖

𝐶𝑡0
.

3.5 THE SECOND MOMENT: RISK

The covariance is

var 𝑥⊤𝜉 = E
(
𝑥⊤𝜉 − E 𝑥⊤𝜉

)2
= E

(
𝑥⊤𝜉

)2 −
(
E 𝑥⊤𝜉

)2
=

=

𝑛∑︁
𝑖=1

𝑝𝑖
©«

𝐽∑︁
𝑗=1
𝜉
𝑗

𝑖
𝑥 𝑗

ª®¬
2

−
(

𝑛∑︁
𝑖=1

𝑝𝑖 𝜉
𝑗

𝑖
𝑥 𝑗

)2

=

𝑛∑︁
𝑖=1

𝑝𝑖
©«

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗′=1

𝜉
𝑗

𝑖
𝑥 𝑗 · 𝜉 𝑗

′

𝑖
𝑥 𝑗′

ª®¬ −
𝑛∑︁
𝑖=1

𝑝𝑖
©«

𝐽∑︁
𝑗=1
𝜉
𝑗

𝑖
𝑥 𝑗

ª®¬ ·
𝑛∑︁

𝑖′=1
𝑝𝑖′

©«
𝐽∑︁

𝑗′=1
𝜉
𝑗′

𝑖′ 𝑥 𝑗′
ª®¬

=

𝐽∑︁
𝑗=1
𝑥 𝑗

𝐽∑︁
𝑗′=1

𝑥 𝑗′ ·
𝑛∑︁
𝑖=1

𝑝𝑖

(
𝜉
𝑗

𝑖
𝜉
𝑗′

𝑖

)
−

𝐽∑︁
𝑗=1
𝑥 𝑗

𝐽∑︁
𝑗′=1

𝑥 𝑗′ ·
𝑛∑︁
𝑖=1

𝑝𝑖𝜉
𝑗

𝑖

𝑛∑︁
𝑖′=1

𝑝𝑖′𝜉
𝑗′

𝑖′

=

𝐽∑︁
𝑗=1
𝑥 𝑗

𝐽∑︁
𝑗′=1

𝑥 𝑗′ ·
(

𝑛∑︁
𝑖=1

𝑝𝑖 · 𝜉 𝑗𝑖 𝜉
𝑗′

𝑖
−

𝑛∑︁
𝑖=1

𝑝𝑖𝜉
𝑗

𝑖
·

𝑛∑︁
𝑖′=1

𝑝𝑖′𝜉
𝑗′

𝑖′

)
︸                                            ︷︷                                            ︸

=:Σ 𝑗, 𝑗′

and thus

var 𝑥⊤𝜉 =
𝐽∑︁
𝑗=1
𝑥 𝑗

𝐽∑︁
𝑗′=1

𝑥 𝑗′Σ 𝑗 𝑗′ = 𝑥
⊤Σ𝑥,

where Σ is the covariance matrix (aka. variance-covariance matrix) with entries

Σ 𝑗 𝑗′ =

𝑛∑︁
𝑖=1

𝑝𝑖𝜉
𝑗

𝑖
𝜉
𝑗′

𝑖
−

𝑛∑︁
𝑖=1

𝑝𝑖𝜉
𝑗

𝑖
·

𝑛∑︁
𝑖′=1

𝑝𝑖′𝜉
𝑗′

𝑖′

= E 𝜉 𝑗𝜉 𝑗
′ − E 𝜉 𝑗 · E 𝜉 𝑗′ = cov

(
𝜉 𝑗 , 𝜉 𝑗

′
)
.

Remark 3.7 (Bessel’s correction). For the empirical measure 𝑝𝑖 = 1/𝑛, the entries of the variance–covariance
matrix are

Σ 𝑗 𝑗′ = cov
(
𝜉 𝑗 , 𝜉 𝑗

′
)
=

1
𝑛

𝑛∑︁
𝑖=1

(
𝜉
𝑗

𝑖
− 𝜉 𝑗

) (
𝜉
𝑗′

𝑖
− 𝜉 𝑗

′ )
, where 𝜉

𝑗
B

𝑛∑︁
𝑖=1

𝜉
𝑗

𝑖
.

Bessel’s correction replaces this quantity by Σ 𝑗 , 𝑗′ =
1

𝑛−1
∑𝑛

𝑖=1

(
𝜉
𝑗

𝑖
− 𝜉 𝑗

) (
𝜉
𝑗′

𝑖
− 𝜉 𝑗

′ )
.

Example 3.8. Cf. Table 3.4.
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19.2% 4.1% 7.9% 1.3% -1.9%
4.1% 208.8% -7.4% 44.5% -18.9%
7.9% -7.4% 42.8% -10.3% -6.7%
1.3% 44.5% -10.3% 88.9% 2.9%

-1.9% -18.9% -6.7% 2.9% 5.9%

(a) Covariance matrix Σ of returns in Table 3.1, cf. also Table 3.3

5.72 -0.04 -1.01 -0.20 0.69
-0.04 1.03 0.74 -0.57 4.41
-1.01 0.74 3.59 -0.14 6.22
-0.20 -0.57 -0.14 1.49 -2.78
0.69 4.41 6.22 -2.78 39.83

(b) The inverse Σ−1

Table 3.4: Covariance matrix Σ of returns in Table 3.1 and its inverse

3.6 THE NON-EMPIRICAL FORMULATION

Here, the random variable is 𝜉 : Ω→ R𝐽 . We define 𝑟 B E 𝑥⊤𝜉 and observe that

var 𝑥⊤𝜉 = E
(
𝑥⊤𝜉

)2 −
(
E 𝑥⊤𝜉

)2

= E
©«

𝐽∑︁
𝑗=1
𝜉 𝑗𝑥 𝑗

ª®¬
2

− ©«
𝐽∑︁
𝑗=1
𝑥 𝑗 E 𝜉

𝑗ª®¬
2

=

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗′=1

𝑥 𝑗𝑥 𝑗′ E
(
𝜉 𝑗𝜉 𝑗

′
)
−

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗′=1

𝑥 𝑗𝑥 𝑗′
(
E 𝜉 𝑗

) (
E 𝜉 𝑗

′
)

=

𝐽∑︁
𝑗=1

𝐽∑︁
𝑗′=1

𝑥 𝑗𝑥 𝑗′
(
E

(
𝜉 𝑗𝜉 𝑗

′
)
−

(
E 𝜉 𝑗

) (
E 𝜉 𝑗

′
))

︸                                ︷︷                                ︸
cov( 𝜉 𝑗 , 𝜉 𝑗′ )

= 𝑥⊤ cov(𝜉) 𝑥.

Definition 3.9. The covariance matrix3 is

Σ B cov(𝜉) = E
(
𝜉 · 𝜉⊤

)
− (E 𝜉) · (E 𝜉)⊤ .

Remark 3.10. Note, that
Σ = Ξ⊤ · diag(𝑝) · Ξ − 𝑝⊤Ξ︸︷︷︸

𝑟

· Ξ⊤𝑝︸︷︷︸
𝑟⊤

and Σ is symmetric.

3.7 THE CAPITAL ASSET PRICING MODEL (CAPM)

Markowitz considers the problem

minimize (in 𝑥 ∈ R𝐽 ) var 𝑥⊤𝜉 (3.3)
subject to E 𝑥⊤𝜉 ≥ 𝜇,

1⊤ 𝑥 ≤ 1C,
(𝑥 ≥ 0)

The Markowitz problem (3.3) is quadratic, with linear constraints: 𝐽 varialbes, 2 constraints.

Definition 3.11. A portfolio 𝑥∗ ∈ R𝐽 is efficient if it solves (3.3).

3The covariance cov is a.k.a. variance matrix.
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Figure 3.2: Harry Markowitz (1927) explains the CAPM and the mean-variance plot. Nobel Memorial
Prize in Economic Sciences (1990)

y

g(x,y) = c

f(x,y) = d
1

f(x,y) = d2

x

f(x,y) = d3

Figure 3.3: Illustration of Lagrange multipliers, contour lines of 𝑓

Expressed by matrices the Markowitz problem (3.3) is

minimize in 𝑥∈R𝐽 𝑥⊤Σ𝑥

subject to 𝑥⊤𝑟 ≥ 𝜇,
𝑥⊤ 1 ≤ 1,
(𝑥 ≥ 0).

Theorem 3.12. The efficient Markowitz portfolio is given by

𝑥∗ (𝜇) = 𝜇
(
𝑐

𝑑
Σ−1𝑟 − 𝑏

𝑑
Σ−1 1

)
− 𝑏
𝑑
Σ−1𝑟 + 𝑎

𝑑
Σ−1 1, (3.4)

where 𝑎 B 𝑟⊤Σ−1𝑟, 𝑏 B 𝑟⊤Σ−1 1, 𝑐 B 1⊤ Σ−1 1 and 𝑑 B 𝑎𝑐 − 𝑏2 are auxiliary quantities.

Remark 3.13. The units of the auxiliary are [𝑎] = interest2
variance , [𝑏] = interest

variance , [𝑐] = 1
variance and [Σ] =

variance.

Proof. Differentiate the Lagrangian4

𝐿 (𝑥;𝜆, 𝛾) B 1
2
𝑥⊤Σ𝑥 − 𝜆(𝑟⊤𝑥 − 𝜇) − 𝛾(1⊤ 𝑥 − 1)

4We could choose 𝑥⊤Σ𝑥 or
√
𝑥⊤Σ𝑥 equally well in the Lagrangian function 𝐿.
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24 THE MARKOWITZ MODEL

to get the necessary conditions for optimality,

0 =
𝜕𝐿

𝜕𝑥
=

1
2
(Σ𝑥)⊤ + 1

2
𝑥⊤Σ − 𝜆𝑟⊤ − 𝛾 1⊤, (3.5)

0 =
𝜕𝐿

𝜕𝜆
= −𝑟⊤𝑥 + 𝜇, (3.6)

0 =
𝜕𝐿

𝜕𝛾
= −1⊤ 𝑥 + 1. (3.7)

It follows from (3.5) that
𝑥∗ = 𝜆Σ−1𝑟 + 𝛾Σ−1 1 . (3.8)

To determine the shadow prices 𝜆 and 𝛾 we employ (3.6) and (3.7), i.e.,

𝜇 = 𝑟⊤𝑥∗ = 𝜆𝑟⊤Σ−1𝑟 + 𝛾𝑟⊤Σ−1 1 and (3.9)

1 = 1⊤ 𝑥∗ = 𝜆 1⊤ Σ−1𝑟 + 𝛾 1⊤ Σ−1 1 .

We may rewrite these latter equations as a usual matrix equation,(
𝑎 𝑏

𝑏 𝑐

) (
𝜆

𝛾

)
=

(
𝜇

1

)
(3.10)

with solutions 𝜆∗ = 𝜇𝑐−𝑏
𝑎𝑐−𝑏2 and 𝛾∗ = 𝑎−𝜇𝑏

𝑎𝑐−𝑏2 . Substitute them in (3.8) to get the assertion (3.4) of the
theorem, i.e., the efficient portfolio. □

Corollary 3.14. Note from (3.9) that
E 𝑥∗⊤𝜉 = 𝑥∗⊤𝜉 = 𝜇

and

var
(
𝑥∗⊤𝜉

)
= 𝑥∗⊤Σ𝑥∗ =

𝜇2𝑐 − 2𝜇𝑏 + 𝑎
𝑎𝑐 − 𝑏2 , (3.11)

cov
(
𝑥∗⊤𝜉, 𝜉𝑖

)
= 𝑥∗⊤Σ𝑒𝑖 =

𝜇𝑐 − 𝑏
𝑎𝑐 − 𝑏2 𝑟𝑖 +

𝑎 − 𝜇𝑏
𝑎𝑐 − 𝑏2 .

Proof. We have

var
(
𝑥∗⊤𝜉

)
= 𝑥∗⊤Σ𝑥∗ =

(
𝜆Σ−1𝑟 + 𝛾Σ−1 1

)⊤
Σ𝑥∗

= 𝜆𝑟⊤𝑥∗ + 𝛾 1⊤ 𝑥∗ = 𝜆𝜇 + 𝛾

=
𝜇𝑐 − 𝑏
𝑎𝑐 − 𝑏2 𝜇 +

𝑎 − 𝜇𝑏
𝑎𝑐 − 𝑏2

= 𝜇2 𝑐

𝑎𝑐 − 𝑏2 − 2𝜇
𝑏

𝑎𝑐 − 𝑏2 +
𝑎

𝑎𝑐 − 𝑏2

=: 𝜎2 (𝜇).

□

Corollary 3.15. It holds that 𝑎𝑐 > 𝑏2.

Proof. The matrix Σ is positive definite as it is a covariance matrix, and so is its inverse. It thus holds
that 𝑐 = 1⊤ Σ−1 1 > 0. The variance is also positive for every 𝜇 > 0, so it follows from (3.11) that
𝑎𝑐 − 𝑏2 > 0. □
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Figure 3.4: The mean-variance plot (3.12), the efficient frontier and asymptotic (3.13)

3.7.1 The Mean-Variance Plot

This section studies the Markowitz problem as a function of the parameter 𝜇.

Corollary 3.16 (Mean-variance). Set 𝜎2 B var𝑌𝑥∗ , then we have (for 𝜎 > 1√
𝑐
) that

𝜇(𝜎) = 𝑏 +
√︁
(𝑎𝑐 − 𝑏2) (𝑐𝜎2 − 1)

𝑐
=
𝑏

𝑐
+

√︄(
𝑎 − 𝑏

2

𝑐

) (
𝜎2 − 1

𝑐

)
. (3.12)

Proof. Solve (3.11) for var𝑌𝑥 = 𝜎2 using the quadratic formula. □

Figure 3.4 graphs the relation (3.12), i.e., the mean and the variance of efficient portfolios.

Corollary 3.17. It holds that

𝜇(𝜎) ≤ 𝑏
𝑐
+ 𝜎

√︂
𝑎 − 𝑏

2

𝑐
(3.13)

and every efficient portfolio satisfies 𝜎 ≥ 1√
𝑐

and 𝜇 ≥ 𝑏
𝑐
.

Proof. This is immediate from (3.12); cf. also Figure 3.4. □

Remark 3.18. The Markowitz portfolio with smallest variance which does not include a risk free asset
is given for 𝜇 = 𝑏

𝑐
(differentiate (3.11) with respect to 𝜇) and this portfolio thus is of particular interest.

In particular, note that its variance, by (3.11), is

𝜎2
min = var 𝑥∗

(
𝑏

𝑐

)⊤
𝜉 =

(
𝑏
𝑐

)2
𝑐 − 2 𝑏

𝑐
𝑏 + 𝑎

𝑎 𝑐 − 𝑏2 =
1
𝑐

𝑏2 − 2𝑏2 + 𝑎 𝑐
𝑎 𝑐 − 𝑏2 =

1
𝑐
.

Exercise 3.1. The portfolio with smallest-variance in our data is 𝜇 = 𝑏
𝑐
= 1.76

66.3 = 2.66%, the corre-
sponding standard deviation, which cannot be improved, is 𝜎 = 1√

𝑐
= 1√

1⊤ Σ−1 1
= 12.3%; cf. Figure 3.4

and Figure 3.5.
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26 THE MARKOWITZ MODEL

3.7.2 Tangency portfolio
For some fixed risk free rate 𝑟0 we study the particular reward

𝜇𝑚 B
𝑎 − 𝑟0 𝑏

𝑏 − 𝑟0 𝑐
. (3.14)

Lemma 3.19. The variance corresponding to the reward 𝜇𝑚 is

𝜎2
𝑚 B 𝜎2 (𝜇𝑚) =

𝑎 − 2𝑟0 𝑏 + 𝑟2
0 𝑐

(𝑏 − 𝑟0 𝑐)2
. (3.15)

Proof. From (3.11) it follows that

𝜎2 (𝜇𝑚) =
𝑐𝜇2

𝑚 − 2𝑏𝜇𝑚 + 𝑎
𝑎𝑐 − 𝑏2

=
1

(𝑏 − 𝑟0𝑐)2
𝑐(𝑎 − 𝑟0𝑏)2 + 2𝑏(𝑎 − 𝑟0𝑏) (𝑏 − 𝑟0𝑐) + 𝑎(𝑏 − 𝑟0𝑐)2

𝑎𝑐 − 𝑏2

= · · · =
𝑎 − 2𝑟0 𝑏 + 𝑟2

0 𝑐

(𝑏 − 𝑟0 𝑐)2

after some annoying, but elementary algebra. □

Definition 3.20 (Sharpe ratio). The Sharpe ratio of the portfolio with reward 𝜇𝑚 is

𝑠𝑚 B
𝜇𝑚 − 𝑟0
𝜎𝑚

. (3.16)

Remark 3.21. Note first that 𝜇𝑚−𝑟0
𝑏−𝑟0 𝑐

= 𝜎2
𝑚. It follows that

𝑏 − 𝑟0 𝑐 =
𝜇𝑚 − 𝑟0

𝜎2
𝑚

=
(3.16)

𝑠𝑚

𝜎𝑚

(3.17)

and with (3.14) that
𝑎 − 𝑟0 𝑏 =

(3.14)
𝜇𝑚 (𝑏 − 𝑟0 𝑐) =

(3.17)

𝜇𝑚 · 𝑠𝑚
𝜎𝑚

.

From (3.15) we deduce further that

𝑎 − 2𝑟0 𝑏 + 𝑟2
0 𝑐 =

(3.15)
𝜎2
𝑚 (𝑏 − 𝑟0 𝑐)2 =

(3.17)
𝑠2
𝑚. (3.18)

Definition 3.22 (Market portfolio, tangency portfolio). The market portfolio is

𝑥𝑚 B 𝑥∗ (𝜇𝑚) =
𝜎𝑚

𝑠𝑚
· Σ−1 (𝑟 − 𝑟0 · 1

)
. (3.19)

Remark 3.23. It follows according (3.4) is

𝑥𝑚 = 𝑥∗ (𝜇𝑚) =
𝜇𝑚𝑐 − 𝑏
𝑎𝑐 − 𝑏2 Σ−1𝑟 − 𝜇𝑚𝑏 − 𝑎

𝑎𝑐 − 𝑏2 Σ−1 1

=
1

𝑏 − 𝑟0𝑐
Σ−1𝑟 − 𝑟0

𝑏 − 𝑟0𝑐
Σ−1 1

and with (3.17) thus (3.19).
Remark 3.24. For the line 𝑡 (𝜎) B 𝑟0 + 𝜎 · 𝜇𝑚−𝑟0

𝜎𝑚
it holds that

𝑡 (𝜎𝑚) = 𝜇(𝜎𝑚) and
𝑡′ (𝜎𝑚) = 𝜇′ (𝜎𝑚) (cf. (3.12)).

The line 𝑡 thus is the tangent drawn from the point of the risk-free asset 𝑡 (0) = 𝑟0 to the feasible region
for risky assets. The tangent line is called capital market line. The portfolio with decomposition (3.19)
is also called the most efficient portfolio, it has the highest reward-to-volatility ratio.
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Figure 3.5: Asset allocation according to Markowitz for varying return 𝜇

3.7.3 The Two Fund Theorem

Note that 𝜇 is a model-parameter in the Markowitz model (2.1). We now compare efficient portfolios
for different returns 𝜇.

Theorem 3.25 (Two fund theorem). If 𝑥∗1 and 𝑥∗2 are different efficient portfolios (for different 𝜇s), then
every efficient portfolio can be obtained as an affine combination of these two.

Proof. Recall from (3.4) that

𝑥∗ (𝜇) = 𝜇𝑐 − 𝑏
𝑎𝑐 − 𝑏2 Σ

−1𝑟 + 𝑎 − 𝜇𝑏
𝑎𝑐 − 𝑏2 Σ

−1 1

=

(
− 𝑏

𝑎𝑐 − 𝑏2 Σ
−1𝑟 + 𝑎

𝑎𝑐 − 𝑏2 Σ
−1 1

)
+ 𝜇

(
𝑐

𝑎𝑐 − 𝑏2 Σ
−1𝑟 − 𝑏

𝑎𝑐 − 𝑏2 Σ
−1 1

)
.

□

Exercise 3.2. The result for our data is (cf. Figure 3.5)

𝑥∗ (𝜇) =
©«

2.7%
10.5%
14.3%
−7.8%
80.2%

ª®®®®®¬
+ 𝜇

©«
+1.90
−0.80
−0.05
+1.68
−2.73

ª®®®®®¬
;

the auxiliary quantities are 𝑎 = 0.40, 𝑏 = 1.76 and 𝑐 = 66.31.
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28 THE MARKOWITZ MODEL

3.8 MARKOWITZ PORTFOLIO INCLUDING A RISK FREE ASSET

Set 𝑟 B E 𝜉, i.e., 𝑟 𝑗 B E 𝜉 𝑗 , 𝑗 = 1, . . . , 𝐽. Further, let 𝑟0 be the return of the risk-free asset. We set

𝑟 =

©«
𝑟0
𝑟1
...

𝑟𝐽

ª®®®®¬
=

©«
𝑟0

𝑟

ª®®®¬ with 𝑟 =
©«
𝑟1
...

𝑟𝐽

ª®®¬ and 𝑥 =
©«
𝑥0
𝑥1
...

𝑥𝐽

ª®®®®¬
=

©«
𝑥0

𝑥

ª®®®¬ with 𝑥 =
©«
𝑥1
...

𝑥𝐽

ª®®¬ .
Note that 𝑆0

𝑡 = 𝑆
0
0 · 𝑒

𝑟0𝑡 and the annualized return 𝜉0
𝑖
= 1

𝑡𝑖+1−𝑡𝑖 ln 𝑆0
𝑡+1

𝑆0
𝑡+1

= 𝑟0 is the constant risk-free interest

rate. The risk free asset is not correlated with other assets. The covariance matrix

Σ̃ B

(
0 0
0 Σ

)
thus is not invertible. Consequently, the results from the previous section do not apply.

Theorem 3.26. The Markowitz portfolio is given by

𝑥∗ (𝜇) =
(
𝑥∗0 (𝜇)
𝑥∗ (𝜇)

)
=

( 𝜇𝑚−𝜇
𝜇𝑚−𝑟0

𝜇−𝑟0
𝜇𝑚−𝑟0

· 𝑥𝑚

)
, (3.20)

where 𝑥𝑚 (cf. (3.19)) is the tangency portfolio (market portfolio).

Proof. Differentiate the Lagrangian (cf. Figure 3.3 for illustration)

𝐿 (𝑥;𝜆, 𝛾) B 1
2
𝑥⊤Σ𝑥 − 𝜆(𝑟⊤𝑥 − 𝜇) − 𝛾(1⊤ 𝑥 − 1)

to get the necessary conditions for optimality,

0 =
𝜕𝐿

𝜕𝑥
= Σ𝑥 − 𝜆𝑟⊤ − 𝛾 1⊤, (3.21)

0 =
𝜕𝐿

𝜕𝑥0
= −𝜆𝑟0 − 𝛾, (3.22)

0 =
𝜕𝐿

𝜕𝜆
= 𝑟⊤𝑥 − 𝜇 = 𝑟0𝑥0 + 𝑟⊤𝑥 − 𝜇, (3.23)

0 =
𝜕𝐿

𝜕𝛾
= 1⊤ 𝑥 − 1 = 𝑥0 + 1⊤ 𝑥 − 1, (3.24)

We get from (3.21) that 𝑥∗ = 𝜆Σ−1𝑟 + 𝛾Σ−1 1. Substitute 𝑥∗ in (3.23) and (3.24), and after collecting
terms in (3.22)–(3.24) one finds (cf. (3.10))

©«
0 𝑟0 1
𝑟0 𝑎 𝑏

1 𝑏 𝑐

ª®¬ ©«
𝑥0
𝜆

𝛾

ª®¬ =
©«

0
𝜇

1

ª®¬ .
This linear matrix equation has explicit solution

©«
𝑥∗0
𝜆∗

𝛾∗

ª®¬ =
1

𝑎 − 2𝑏𝑟0 + 𝑐𝑟2
0︸            ︷︷            ︸

=𝑠2
𝑚 , cf. (3.18)

©«
𝑎 − 𝑏𝑟0 + 𝜇(𝑐𝑟0 − 𝑏)

−𝑟0 + 𝜇
𝑟2

0 − 𝑟0𝜇

ª®¬ . (3.25)

So we finally get

𝑥∗ =

(
𝑥∗0
𝑥∗

)
=

(
1
𝑠2
𝑚
(𝑎 − 𝑏𝑟0 + 𝜇(𝑐𝑟0 − 𝑏))
𝜆∗Σ−1𝑟 + 𝛾∗Σ−1 1

)
=

1
𝑠2
𝑚

(
𝑠2
𝑚 − (𝑏 − 𝑟0𝑐) (𝜇 − 𝑟0)

(𝜇 − 𝑟0)
(
Σ−1𝑟 − 𝑟0Σ

−1 1
) )

from (3.24); cf. Exercise 3.3. □
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Corollary 3.27. The variance (standard deviation, resp.) of the portfolio corresponding to 𝜇 is

var
(
𝑥∗ (𝜇)⊤𝜉

)
=

(
𝜇 − 𝑟0
𝑠𝑚

)2
(𝜎(𝜇) = |𝜇 − 𝑟0 |

𝑠𝑚
, resp.).

Proof. Recall the special structure of Σ̃. It thus follows from (3.20) that

var
(
𝑥∗ (𝜇)⊤𝜉

)
= 𝑥∗ (𝜇)⊤Σ𝑥∗ (𝜇)

=
(𝜇 − 𝑟0)2

𝑠4
𝑚

(𝑟 − 𝑟0 1)⊤ Σ−1ΣΣ−1 (𝑟 − 𝑟0 1)

=
(𝜇 − 𝑟0)2

𝑠4
𝑚

(
𝑟⊤Σ−1𝑟 − 2𝑟0 1

⊤ Σ−1𝑟 + 𝑟2
0 1
⊤ Σ−1 1

)
=
(𝜇 − 𝑟0)2

𝑠4
𝑚

(
𝑎 − 2𝑟0𝑏 + 𝑟2

0𝑐
)
=

(
𝜇 − 𝑟0
𝑠𝑚

)2
, (3.26)

which is the assertion. □

Remark 3.28. Note, that the portfolio with smallest variance is attained here for �̃� = 𝑟0, the correspond-
ing variance by (3.26) is zero , i.e, there is no risk. This is in significant contrast to Remark 3.18.

3.9 ONE FUND THEOREM

Theorem 3.29 (One fund theorem, Tobin5-separation, market portfolio). Every efficient portfolio is the
affine combination of

(i) a portfolio without a risk-free asset (the market portfolio), and

(ii) the risk free asset.

Definition 3.30. The portfolio allocation in (i) is called market portfolio.

Proof. Choose

(i) 𝜇 B 𝑟0, then the portfolio in (3.20) is 𝑥∗ (𝑟0) =
©«
1
0
...

0

ª®®®®¬
; this portfolio does not involve stocks and thus

is completely free of risk, i.e., it consists of the risk-free asset solely;

(ii) For the market portfolio, recall (cf. the tangency portfolio (3.14))

𝜇𝑚 B 𝜇𝑡 =
𝑎 − 𝑟0 𝑏

𝑏 − 𝑟0 𝑐

and 𝑥𝑚 B 𝑥𝑡 . Then, by (3.19) and (3.20),

𝑥∗ (𝜇𝑚) =
(

0
𝑥∗ (𝜇𝑡 )

)
=

(
0

𝜎𝑚

𝑠𝑚
Σ−1 (𝑟 − 𝑟0 · 1)

)
=

(
0
𝑥𝑚

)
,

which means that the portfolio 𝑥∗ (𝜇𝑚) is free from risk-free assets, i.e., does not contain the risk
free asset.

5Tobin-Separation, 1918–2002, American economist
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Figure 3.6: Markowitz portfolio including a risk free asset (cash) with return 𝑟0 = 2% for varying
return 𝜇

The assertion follows, as every portfolio is a linear combination of both portfolios by the Two Fund
Theorem, Theorem 3.25. Explicitly, the optimal portfolio (cf. (3.20)) is

𝑥∗ (𝜇) = 𝜇𝑚 − 𝜇
𝜇𝑚 − 𝑟0

(
1
0

)
+ 𝜇 − 𝑟0
𝜇𝑚 − 𝑟0

(
0

𝜎𝑚

𝑠𝑚
Σ−1 (𝑟 − 𝑟0 1

) ) =
𝜇𝑚 − 𝜇
𝜇𝑚 − 𝑟0

(
1
0

)
+ 𝜇 − 𝑟0
𝜇𝑚 − 𝑟0

(
0
𝑥𝑚

)
.

□

Remark 3.31. The tangency portfolio coincides with the market portfolio, 𝑥𝑚 = 𝑥𝑡 .

Example 3.32. For 𝑟0 B 2%, the optimal portfolios for our data are given according the one fund
theorem as

𝑥∗ (𝜇) = 83.3% − 𝜇
81.3%

©«

100%
0
0
0
0
0

ª®®®®®®®¬︸      ︷︷      ︸
no stocks

+ 𝜇 − 2%
81.3%

©«

0
160.7%
−56.0%

10.3%
132.2%
−147.3%

ª®®®®®®®¬︸           ︷︷           ︸
no cash

;

cf. Figure 3.6.

3.9.1 Capital Asset Pricing Model (CAPM)
Recall that the market (or tangency) portfolio

𝑥𝑚 = 𝑥𝑡 =
𝜎𝑚

𝑠𝑚
Σ−1 (𝑟 − 𝑟0 · 1

)
rough draft: do not distribute
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has expectation (cf. (3.14))
E 𝑥⊤𝑚𝜉 = 𝜇𝑚

and variance (cf. (3.15))
var

(
𝑥⊤𝑚𝜉

)
= 𝜎2

𝑚.

Remark 3.33 (Covariance of the market portfolio). The covariance of the market portfolio with asset
𝑗 is

cov
(
𝑒⊤𝑗 𝜉, 𝑥

⊤
𝑚𝜉

)
= 𝑒⊤𝑗 Σ𝑥𝑚 = 𝑒⊤𝑗 Σ ·

𝜎𝑚

𝑠𝑚
Σ−1 (𝑟 − 𝑟0 · 1) =

𝜎𝑚

𝑠𝑚

(
𝑟 𝑗 − 𝑟0),

where 𝑟 = E 𝜉 and 𝑟 𝑗 = E 𝜉 𝑗 .

It follows from the definition of the Sharpe ratio (3.16) that

𝛽 𝑗 B
cov

(
𝑥⊤𝑚𝜉, 𝑒

⊤
𝑗
𝜉

)
var (𝑥⊤𝑚𝜉)

=

𝜎𝑚

𝑠𝑚

(
𝑟 𝑗 − 𝑟0)
𝜎2
𝑚

=
𝑟 𝑗 − 𝑟0

𝑠𝑚 𝜎𝑚

=
𝑟 𝑗 − 𝑟0

𝜇𝑚 − 𝑟0
,

i.e.,
𝑟 𝑗 = 𝑟0 + 𝛽 𝑗 · (𝜇𝑚 − 𝑟0) . (3.27)

The quantity 𝛽 𝑗 is the sensitivity of the expected excess asset returns to the expected excess market
returns

The relation (3.27) is the core of the capital asset pricing model (CAPM). The graph of (3.27),

𝛽 ↦→ 𝑟0 + 𝛽 (𝜇𝑚 − 𝑟0)

is also called security market line (SML in the 𝜇-𝛽-diagram).

Remark 3.34. For the market portfolio 𝑥𝑚 it holds that 𝑥⊤𝑚𝛽 = 𝛽𝑚 = 1.
Indeed, with (3.27),

𝜇𝑚 = 𝑥⊤𝑚𝑟 = 𝑟0𝑥
⊤
𝑚 1+𝑥⊤𝑚𝛽 · (𝜇𝑚 − 𝑟0) = 𝑟0 + 𝑥⊤𝑚𝛽 · (𝜇𝑚 − 𝑟0)

and thus the assertion.

3.9.2 On systematic and specific risk

Observe that the correlation of asset 𝑗 with the market is defined as 𝜌 𝑗 ,𝑚 B
cov

(
𝑒⊤
𝑗
𝜉 , 𝜉⊤𝑥⊤𝑚 𝜉

)√︂
var(𝑥⊤𝑚 𝜉 ) ·var

(
𝑒⊤
𝑗
𝜉

) so that

𝛽 𝑗 = 𝜌 𝑗 ,𝑚 ·
𝜎𝑗

𝜎𝑚

.

It follows that

𝜎𝑗 = 𝜌 𝑗 ,𝑚 𝜎𝑗 +
(
1 − 𝜌 𝑗 ,𝑚

)
𝜎𝑗 = 𝛽 𝑗 𝜎𝑚︸︷︷︸

systematic

+
(
1 − 𝛽 𝑗

𝜎𝑚

𝜎𝑗

)
𝜎𝑗︸             ︷︷             ︸

specific

.

⊲ The systematic risk 6 is also called aggregate or undiversifiable risk ;

⊲ the specific risk 7 is also called unsystematic, residual or idiosyncratic risk.

6systematisches Risiko (dt.)
7unsystematisches, spezifisches, diversifizierbares Risiko (dt.)
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3.9.3 Sharpe ratio
Note that E 𝑒⊤

𝑗
𝜉 = 𝑟 𝑗 and var 𝑒⊤

𝑗
𝜉 = 𝑒⊤

𝑗
Σ𝑒 𝑗 = Σ 𝑗 𝑗 .

Definition 3.35. Then quantity
𝑟 𝑗 − 𝑟0√︁

Σ 𝑗 𝑗

is the Sharpe ratio of asset 𝑗 .8

It holds that

𝛽 𝑗 =
cov

(
𝜉⊤𝑒 𝑗 , 𝜉⊤𝑥∗𝑚

)
var (𝜉⊤𝑥∗𝑚)

=
corr

(
𝜉⊤𝑒 𝑗 , 𝜉⊤𝑥∗𝑚

)
𝜎𝑚

√︁
Σ 𝑗 𝑗

𝜎2
𝑚

=

√︁
Σ 𝑗 𝑗

𝜎𝑚

𝜌 𝑗 ,𝑚.

The security market line (SML) is

SML : 𝛽 ↦→ 𝑟0 + 𝛽 · (𝜇𝑚 − 𝑟0) .

Note, from (3.27), that

SML(𝛽 𝑗 ) = 𝑟 𝑗 ,
SML(0) = 𝑟0 and
SML(1) = 𝑟𝑚.

3.10 ALTERNATIVE FORMULATIONS OF THE MARKOWITZ PROBLEM

Instead of Markowitz (3.3) one may consider the problem

maximize 𝑟⊤𝑥
subjet to 𝑥⊤Σ𝑥 ≤ 𝑞,

1⊤ 𝑥 ≤ 1,
(𝑥 ≥ 0)

Proposition 3.36 (Utility maximization). The explicit solution of (𝜅 > 0)

maximize E 𝑥⊤𝜉 − 𝜅
2

var 𝑥⊤𝜉 (3.28)

subjet to 1⊤ 𝑥 ≤ 1,
(𝑥 ≥ 0)

is

𝑥 =
1
𝜅
Σ−1

(
𝑟 + 𝜅 − 1

⊤ Σ−1𝑟

1⊤ Σ−1 1
1

)
.

Proof. The first order conditions for the Lagrangian 𝐿 (𝑥;𝜆) B 𝑥⊤𝑟 − 𝜅
2 𝑥
⊤Σ𝑥 + 𝜆 (1⊤ 𝑥 − 1) are

0 = 𝑟 − 𝜅 Σ 𝑥 + 𝜆 1 and
1 = 1⊤ 𝑥.

from which follows that 𝑥 = 1
𝜅
Σ−1 (𝑟 + 𝜆 1). Further, 1 = 1⊤ 𝑥 = 1

𝜅
1⊤ Σ−1 (𝑟 + 𝜆 1), i.e., 𝜆 = 𝜅−1⊤ Σ−1𝑟

1⊤ Σ−1 1
.

Hence the result. □

Remark 3.37. The portfolios of (3.28) and (3.4) coincide for 𝜅 = 𝑑
𝑐 𝜇−𝑏 . In this case, 𝜇 = 𝑑+𝑏 𝜅

𝑐 𝜅
and

𝜎2 = 𝑑+𝜅2

𝑐 𝜅2 = 1
𝑐
+ 𝑑

𝑐 𝜅2 .
8William Sharpe, 1934, Nobel memorial Price in Economic Sciences (1990)
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Eigenvalue 2.254 0.773 0.440 0.165 0.024
Variance explained 61.7% 21.2% 12.0% 4.5% 0.6%

(a) Eigenvalues and percentages of explained variance

PC1 PC2 PC3

DAX -0.02 -0.34 0.31
RWE -0.95 0.30 0.05
gold 0.05 -0.24 -0.91
oil -0.31 0.91 0.26
FX 0.08 0.14 0.13

(b) The first 3 principal components ex-
plain 94.9%

Table 3.5: Principal component analysis

Stocks:
return 𝜇 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

0 % 2.8 % 10.5 % 14.3 % −7.8 % 80.2 %
15 % 31.2 % −1.5 % 13.6 % 17.4 % 39.3 %

5 %

(a) Markowitz portfolio

Stocks:
return 𝜇 𝑆1 𝑆2 𝑆3

2 % −4 % −2 % 106 %
14 % 12 % 6 % 82 %

(b) Markowitz portfolio

Table 3.6: Markowitz portfolios for various 𝜇

3.11 PRINCIPAL COMPONENTS

Table 3.5 collects the eigenvalues and principal components of the covariance matrix Σ for the three
components according the Karhunen–Loève decomposition. The first three principal components
explain 95 % of the data.

3.12 PROBLEMS

Exercise 3.3. Verify (3.25) and (3.20).

Exercise 3.4. The following portfolios (asset allocations, Table 3.6a) are efficient (in the sense of
Markowitz). Give the Markowitz portfolio for 𝜇 = 5%?

Exercise 3.5. Is there a risk free asset among 𝑆1, . . . 𝑆5 in Table 3.6a?

Exercise 3.6. Give two pros and two cons for Markowtz’s model.

Exercise 3.7. The portfolios in Table 3.6b are efficient. What is the risk free rate?

Exercise 3.8. Give the portfolio in Table 3.6b which does not contain a risk free asset.

Exercise 3.9. Verify Remark 3.37.
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4Value-at-Risk

Never catch a falling knife.

investment strategy

4.1 DEFINITIONS

Definition 4.1 (Cumulative distribution function, cdf). Let 𝑌 : Ω→ R be a real-valued random variable.
The cumulative distribution function (cdf, or just distribution function) is1

𝐹𝑌 (𝑥) B 𝑃(𝑌 ≤ 𝑥). (4.1)

Definition 4.2. The Value-at-Risk at (confidence, or risk) level 𝛼 ∈ [0, 1] is2

V@R𝛼 (𝑌 ) B 𝐹−1
𝑌 (𝛼) = inf {𝑥 : 𝑃 (𝑌 ≤ 𝑥) ≥ 𝛼} . (4.2)

The Value-at-Risk is also called the quantile funciton 𝑞𝛼 (𝑌 ) B V@R𝛼 (𝑌 ) or generalized inverse.

Example 4.3. Cf. Figur 4.1 and Table 4.1 or Figure 9.1.

4.2 HOW ABOUT ADDING RISK?

Fact. Consider the random variables (cf. Table 4.2) for which

V@R40% (𝑋 + 𝑌 ) = 9 ≤ V@R40% (𝑋) + V@R40% (𝑌 ) = 4 + 6 = 10

but
V@R20% (𝑋 + 𝑌 ) = 4 > V@R20% (𝑋) + V@R20% (𝑌 ) = 2 + 0.

Lemma 4.4 (Cf. Figur 4.1). It holds that

1Note that 𝐹𝑌 ( ·) is càdlàg, i.e., continue à droite, limite à gauche: right continuous with left limits
2Note, that inf ∅ = +∞.

𝑖 1 2 3 4 5

𝑦𝑖 3 7 −3 8 −5
𝑃 (𝑌 = 𝑦𝑖) 1/5 1/5 1/5 1/5 1/5

(a) Observations

𝑦 −5 −3 3 7 8 3.9
𝐹𝑌 (𝑦) 1/5 2/5 3/5 4/5 5/5 3/5

(b) Cumulative distribution function

𝛼 1/5 2/5 3/5 4/5 5/5
V@R𝛼 (𝑌 ) −5 −3 3 7 8

(c) Value-at-Risk

Table 4.1: Value-at-Risk

35
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𝑥0

1

𝑝 = 𝑃(𝑌 ≤ 𝑞)

𝑞 = V@R𝛼 (𝑌 )

𝛼

𝑦′

𝑃(𝑌 = 𝑞)

(a) Cumulative distribution function, cdf

𝐹−1
𝑌
(𝛼)

𝛼
0 1

𝑞 = V@R𝑝 (𝑌 )

𝑦′

𝛼

−V@R1−𝑝 (−𝑌 )

𝑝 = 𝑃(𝑌 ≤ 𝑦′)

𝑃(𝑌 = 𝑞)

(b) Quantile function, the generalized inverse of Figure 4.1a

Figure 4.1: Cumulative distribution and its corresponding quantile function

Figure 4.2: Deutsche Bank, annual report 2014, Values-at-Risk

𝑃 (𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑖) 1/3 1/3 1/3
𝑋 2 4 5
𝑌 7 0 6

𝑋 + 𝑌 9 4 11

Table 4.2: Counterexample

rough draft: do not distribute
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(i) 𝐹−1
𝑌
(𝛼) ≤ 𝑥 if and only if 𝛼 ≤ 𝐹𝑌 (𝑥) (Galois connection, cf. van der Vaart [1998, Lemma 21.1]);

(ii) 𝐹𝑌 is continuous from right (upper semi-continuous);

(iii) 𝐹−1
𝑌

is continuous from left (lower semi-continuous);

(iv) 𝐹−1
𝑌
(𝐹𝑌 (𝑥)) ≤ 𝑥 for all 𝑥 ∈ R and 𝐹𝑌

(
𝐹−1
𝑌
(𝛼)

)
≥ 𝛼 for all 𝛼 ∈ (0, 1);

(v) 𝐹−1
𝑌

(
𝐹𝑌

(
𝐹−1
𝑌
(𝑦)

) )
= 𝐹−1

𝑌
(𝑦) and 𝐹𝑌

(
𝐹−1
𝑌
(𝐹𝑌 (𝑦))

)
= 𝐹𝑌 (𝑦).

Remark 4.5 (Quantile transform). Let𝑈 be uniformly distributed, i.e., 𝑃(𝑈 ≤ 𝑢) = 𝑢 for every 𝑢 ∈ (0, 1).
The random variables 𝑌 and 𝐹−1

𝑌
(𝑈) share the same distribution.

Proof. 𝑃
(
𝐹−1
𝑌
(𝑈) ≤ 𝑦

)
= 𝑃 (𝑈 ≤ 𝐹𝑌 (𝑦)) = 𝐹𝑌 (𝑦), the assertion. □

The converse does not hold true, i.e., 𝐹𝑌 (𝑌 ) is not necessarily uniformly distributed. However, we
have the following:

Lemma 4.6 (The generalized quantile transform, Pflug and Römisch [2007, Proposition 1.3]). Let 𝑈
be uniform and independent from 𝑌 . Then

𝐹 (𝑌,𝑈) B (1 −𝑈) · 𝐹 (𝑌−) +𝑈 · 𝐹 (𝑌 ) (4.3)

is uniformly [0, 1] and
𝐹−1
𝑌

(
𝐹 (𝑌,𝑈)

)
= 𝑌 almost surely,

where 𝐹 (𝑥−) B lim𝑥′↗𝑥 𝐹 (𝑥′).

Proof. For 𝑝 ∈ (0, 1) fixed let 𝑦𝑝 satisfy 𝐹𝑌 (𝑦𝑝−) ≤ 𝑝 ≤ 𝐹 (𝑦𝑝). Then

𝑃
(
𝐹 (𝑌,𝑈) ≤ 𝑝 |𝑌

)
=


1 if 𝑌 < 𝑦𝑝

𝑝−𝐹 (𝑦𝑝−)
𝐹 (𝑦𝑝 )−𝐹 (𝑦𝑝−) if 𝑌 = 𝑦𝑝

0 if 𝑌 > 𝑦𝑝

and thus 𝑃
(
𝐹 (𝑌,𝑈) ≤ 𝑝

)
= 𝐹 (𝑦𝑝−) +

(
𝐹 (𝑦𝑝) − 𝐹 (𝑦𝑝−)

) 𝑝−𝐹 (𝑦𝑝−)
𝐹 (𝑦𝑝 )−𝐹 (𝑦𝑝−) = 𝑝, i.e., 𝐹 (𝑌,𝑈) is uniformly

distributed.
Conditional on {𝑌 = 𝑦} it holds that 𝐹 (𝑌,𝑈) ∈

[
𝐹−1 (𝑦−), 𝐹−1 (𝑦)

]
. But 𝐹−1 (𝑢) = 𝑦 for every 𝑢 ∈[

𝐹−1 (𝑦−), 𝐹−1 (𝑦)
]

and thus the assertion. □

4.3 PROPERTIES OF THE VALUE-AT-RISK

Nice properties (cf. Lemma 4.4)

(i) Homogeneity: it holds that V@R𝛼 (𝜆𝑌 ) = 𝜆 · V@R𝛼 (𝑌 ) for 𝜆 ≥0;3

𝐹𝜆𝑌 (·) = 𝐹𝑌 ( ·/𝜆) .

(ii) Cash-invariance: V@R𝛼 (𝑌 + 𝑐) = 𝑐 + V@R𝛼 (𝑌 ), where 𝑐 ∈ R is a constant. Note also that

𝐹𝑌+𝑐 (·) = 𝐹𝑌 (· − 𝑐) .

(iii) Law-invariance: if 𝑋 and 𝑌 share the same law, i.e., 𝑃(𝑋 ≤ 𝑧) = 𝑃(𝑌 ≤ 𝑧) for all 𝑧 ∈ R, then
V@R𝛼 (𝑋) = V@R𝛼 (𝑌 ) (note 𝑋 and 𝑌 may have the same law, even if 𝑋 (𝜔) ≠ 𝑌 (𝜔) for all 𝜔 ∈ Ω
and even if 𝑋 : Ω→ R and 𝑌 : Ω′ → R);

3Throughout this lecture shall investigate positively homogeneous acceptability functionals.
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−AV@R95% (−𝑌 ) = A(𝑌 )
V@R5% (𝑌 )

0

E𝑌

loss profit

𝑌

V@R95% (−𝑌 ) = −V@R5% (𝑌 )
AV@R95% (−𝑌 )

0

−E𝑌

profit loss

−𝑌

Figure 4.3: Profit versus loss

(iv) 𝐹𝑌
(
𝐹−1
𝑌
(𝑝)

)
≥ 𝑝, with equality, if 𝑝 is in the range of 𝐹𝑌 , equivalently, if 𝐹−1

𝑌
(𝑝) is a point of

continuity of 𝐹𝑌 ;

(v) 𝐹−1
𝑌
(𝐹𝑌 (𝑢)) ≤ 𝑢, with equality, if 𝑢 is in the range of 𝐹−1

𝑌
, equivalently, if 𝐹𝑌 (𝑢) is a point of

continuity of 𝐹−1
𝑌

;

(vi) comonotonic additive (cf. Section 14), i.e., V@R𝛼 (𝑋 +𝑌 ) = V@R𝛼 (𝑋) + V@R𝛼 (𝑌 ), provided that
𝑋 and 𝑌 are comonotonic.

4.4 PROFIT VERSUS LOSS

For an illustration see Figure 4.3.

Lemma 4.7 (Profit vs. loss, cf. Figure 4.3). It holds that

V@R𝛼 (𝑌 ) ≤ −V@R1−𝛼 (−𝑌 ) (4.4)

with equality if 𝐹𝑌 (𝑦 + ℎ) > 𝐹𝑌 (𝑦) for ℎ > 0 at 𝑦 = V@R𝛼 (𝑌 ).

Proof. First,

−V@R1−𝛼 (−𝑌 ) = − inf {𝑦 : 𝑃(−𝑌 ≤ 𝑦) ≥ 1 − 𝛼}
= sup {−𝑦 : 𝑃(𝑌 ≥ −𝑦) ≥ 1 − 𝛼}
= sup {𝑦 : 𝑃(𝑌 ≥ 𝑦) ≥ 1 − 𝛼}
= sup {𝑦 : 1 − 𝑃(𝑌 ≥ 𝑦) ≤ 𝛼}
= sup {𝑦 : 𝑃(𝑌 < 𝑦) ≤ 𝛼} (4.5)
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𝑆1 𝑆2 𝑆3

Ξ: 5 % −4 % −2 %
8 % 2 % 0 %
4 % 1 % 0 %
−9 % 0 % −10 %

Table 4.3: Annualized, logarithmic returns

Now observe that
{𝑦 : 𝑃(𝑌 < 𝑦) ≤ 𝛼} ¤∪ {𝑦 : 𝑃(𝑌 < 𝑦) > 𝛼}

and disjoint intervals. It follows that

−V@R1−𝛼 (−𝑌 ) = inf {𝑦 : 𝑃(𝑌 < 𝑦) > 𝛼}
≥ inf {𝑦 : 𝑃(𝑌 ≤ 𝑦) > 𝛼}
≥ inf {𝑦 : 𝑃(𝑌 ≤ 𝑦) ≥ 𝛼} ,

the assertion.
Now set 𝑦 B V@R𝛼 (𝑌 ). As the cdf 𝑦 ↦→ 𝑃(𝑌 ≤ 𝑦) is right-continuous it follows that 𝑦 is feasible

for (4.2) and (4.5), i.e., 𝑃(𝑌 < 𝑦) ≤ 𝛼 ≤ 𝑃(𝑌 ≤ 𝑦). Hence the result. □

Problem 4.8. A Markowitz-like formulation involving the Value-at-Risk is

maximize
(in 𝑥 = (𝑥1, . . . 𝑥𝑆) )

1
𝑁

∑𝑁
𝑛=1 𝑥

⊤𝜉𝑛 = 𝑥⊤𝜉

subject to V@R5 % (𝑥⊤𝜉) ≥ −2$ 5% worst profits > −2$
𝑥1 + · · · + 𝑥𝑆 ≤ 1.000$ budget constraint
(𝑥 ≥ 0) shortselling allowed / not allowed

or, with (4.4),

maximize
(in 𝑥 = (𝑥1, . . . 𝑥𝑆) )

1
𝑁

∑𝑁
𝑛=1 𝑥

⊤𝜉𝑛 = 𝑥⊤𝜉

subject to V@R95 % (−𝑥⊤𝜉) ≤ 2$ 95% of all losses < 2$
𝑥1 + · · · + 𝑥𝑆 ≤ 1.000$ budget constraint
(𝑥 ≥ 0) shortselling allowed / not allowed

4.5 PROBLEMS

Exercise 4.1. Is Problem 4.8 always feasible? Where is the Risk? Which statistics are involved?

Exercise 4.2. Is Problem 4.8 clever? – Downsides? How can one obtain higher returns?

Exercise 4.3. The matrix Ξ in Table 4.3 contains logarithmic, annualized returns of 3 shares at the
end of 4 quarters. You are invested with 𝑥 = (40 %, 30 %, 30 %). What is the Value-at-Risk at risk-level
𝛼 = 30 %, 𝛼 = 70 % of your returns?
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5Axiomatic Treatment of Risk

If in trouble, double.

Börsenweisheit

Definition 5.1 (Artzner et al. [1999, 1997]). A positively homogeneous risk measure, aka. risk func-
tional or coherent risk measure is a mapping R : 𝐿 𝑝 → R ∪ {∞} with the following properties:

(i) MONOTONICITY: R(𝑌1) ≤ R(𝑌2) whenever 𝑌1 ≤ 𝑌2 almost surely;

(ii) CONVEXITY: R
(
(1 − 𝜆)𝑌0 + 𝜆𝑌1

)
≤ (1 − 𝜆)R(𝑌0) + 𝜆R(𝑌1) for 0 ≤ 𝜆 ≤ 1;

(iii) TRANSLATION EQUIVARIANCE:1 R(𝑌 + 𝑐) = R(𝑌 ) + 𝑐 if 𝑐 ∈ R;

(iv) POSITIVE HOMOGENEITY: R(𝜆𝑌 ) = 𝜆R(𝑌 ) whenever 𝜆 > 0.

Throughout this lecture shall investigate positively homogeneous risk functionals.

Remark 5.2. In the present context 𝑌 is associated with loss. In the literature the mapping

𝜌 : 𝑌 ↦→ R(−𝑌 )

is often called coherent risk measure instead, when 𝑌 is associated with a reward rather than a loss:
Whereas R is more frequent in an actuarial (insurance) context, 𝜌 is typically used in a banking
context.

The term acceptability functional (or Utility Function, cf. Figure 4.3) is frequently used for the
concave mapping

A : 𝑌 ↦→ −R (−𝑌 ) . (5.1)

Example 5.3 (Simple Examples of risk measures). The functionals

R(𝑌 ) B E𝑌

and
R(𝑌 ) B ess sup𝑌

are risk measures.

Example 5.4. The functional R(𝑌 ) B E𝑌𝑍 is a risk functional, provided that 𝑍 ≥ 0 and E 𝑍 = 1.

Proof. By translation equivariance we have that

R(𝑌 ) + 𝑐 = R(𝑌 + 𝑐 1) = E(𝑌 + 𝑐 1)𝑍 = E𝑌 + 𝑐E 𝑍,

hence E 𝑍 = 1.
Further, we have for all 𝑌1 ≤ 𝑌2 that E𝑌1𝑍 = R(𝑌1) ≤ R(𝑌1) = E𝑌2𝑍, i.e., E 𝑍𝑌 ≥ 0 for all 𝑌 ≥ 0.

This can only hold true for 𝑍 ≥ 0. □

Theorem 5.5. Suppose a risk functional R(·) is well defined on 𝐿∞ and satisfies (i) and (iii) in Defini-
tion 5.1. Then R is Lipschitz-continuous with respect to ∥·∥∞; the Lipschitz constant is 1.

1In an economic or monetary environment this is often called CASH INVARIANCE instead.
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42 AXIOMATIC TREATMENT OF RISK

Proof. For 𝑋 and 𝑌 ∈ 𝐿∞ it is true that 𝑋−𝑌 ≤ ∥𝑋 − 𝑌 ∥∞ and hence 𝑋 ≤ ∥𝑌 − 𝑋 ∥∞+𝑌 . By monotonicity
and translation equivariance thus

R(𝑋) ≤ R(𝑌 + ∥𝑌 − 𝑋 ∥∞) = ∥𝑌 − 𝑋 ∥∞ + R(𝑌 )

and thus
R(𝑋) − R(𝑌 ) ≤ ∥𝑌 − 𝑋 ∥∞ ;

interchanging the role of 𝑋 and 𝑌 reveals the result. □

Lemma 5.6. If R1 and R2 are risk measures, then so are

⊲ 1
2R1 + 1

2R2 and

⊲ max {R1,R2}.

By the Fenchel–Moreau theorem (see below), no other risk measures are possible.
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6Examples of Coherent Risk Functionals

Buy on rumors, sell on facts.

Börsenweisheit

6.1 MEAN SEMI-DEVIATION

The semi-deviation risk measure is1

R(𝑌 ) B E𝑌 + 𝛽 · ∥ (𝑌 − E𝑌 )+∥ 𝑝 , (6.1)

where 𝛽 ∈ [0, 1] and 𝑝 ≥ 1.

Proposition 6.1. The semi-deviation (6.1) is a risk measure.

Proof. Convexity (ii), translation equivariance (iii) and homogeneity (iv) are evident. To show mono-
tonicity (i) assume that 𝑋 ≤ 𝑌 . By Jensens inequality (i.e., 𝑥 ↦→ 𝑥+ is convex) we have that (𝑥 + 𝑦)+ ≤
𝑥+ + 𝑦+ and it follows that

(𝑋 − E 𝑋)+ =
(
𝑌 − E𝑌 + (𝑋 − 𝑌 − E(𝑋 − 𝑌 ))

)
+

≤ (𝑌 − E𝑌 )+ +
(
𝑋 − 𝑌 − E(𝑋 − 𝑌 )

)
+.

Now we have that 𝑥+ = 𝑥 + (−𝑥)+ (cf. Footnote 1) and thus further

(𝑋 − E 𝑋)+ ≤ (𝑌 − E𝑌 )+ +
(
𝑋 − 𝑌 − E(𝑋 − 𝑌 )

)
+

(
𝑌 − 𝑋 − E(𝑌 − 𝑋)

)
+.

Recall that 𝑌 − 𝑋 ≥ 0 and further that E 𝑋 ≤ E𝑌 , and thus
(
𝑌 − 𝑋 −E(𝑌 − 𝑋)

)
+ ≤ 𝑌 − 𝑋. Consequently

(𝑋 − E 𝑋)+ ≤ (𝑌 − E𝑌 )+ + 𝑋 − 𝑌 − E(𝑋 − 𝑌 ) + 𝑌 − 𝑋
= (𝑌 − E𝑌 )+ + E(𝑌 − 𝑋).

It follows that
E 𝑋 + (𝑋 − E 𝑋)+ ≤ E𝑌 + (𝑌 − E𝑌 )+.

Now multiply the latter inequality with the density 𝑍 with 𝑍 ≥ 0, E 𝑍 = 1 and ∥𝑍 ∥𝑞 ≤ 1 to obtain

E 𝑋 + ∥(𝑋 − E 𝑋)+∥ 𝑝 ≤ E𝑌 + ∥(𝑌 − E𝑌 )+∥ 𝑝

by Hölder’s inequality. Multiplying this inequality with 𝛽 and adding (1 − 𝛽) times the inequality E 𝑋 ≤
E𝑌 finally gives monotonicity (i). □

6.2 AVERAGE VALUE-AT-RISK

The most important and prominent acceptability functional satisfying all axioms of the Definition is the
Average Value-at-Risk.

1𝑥+ B max {0, 𝑥}. Note, that 𝑥+ − (−𝑥 )+ = 𝑥.

43



44 EXAMPLES OF COHERENT RISK FUNCTIONALS

Definition 6.2. The Average Value-at-Risk 2 at level 𝛼 ∈ [0, 1] is given by

AV@R𝛼 (𝑌 ) B
1

1 − 𝛼

∫ 1

𝛼

V@R𝑝 (𝑌 ) d𝑝 =
1

1 − 𝛼

∫ 1

𝛼

𝐹−1
𝑌 (𝑢) d𝑢 (0 ≤ 𝛼 < 1)

and
AV@R1 (𝑌 ) B ess sup𝑌 .

Proposition 6.3. Representations of the Average Value-at-Risk include(cf. Footnote 1 on the preced-
ing page)

AV@R𝛼 (𝑌 ) =
1

1 − 𝛼

∫ 1

𝛼

𝐹−1
𝑌 (𝑝) d𝑝 (6.2)

= inf
𝑞∈R

𝑞 + 1
1 − 𝛼 E (𝑌 − 𝑞)+ (6.3)

= sup
{
E 𝑌𝑍 : 0 ≤ 𝑍 ≤ (1 − 𝛼)−1 , E 𝑍 = 1

}
(6.4)

= sup
{
E𝑄 𝑌 :

d𝑄
d𝑃
≤ 1

1 − 𝛼

}
=

cf. Remark 6.4
E

(
𝑌 | 𝑌 > V@R𝛼 (𝑌 )

)
. (6.5)

The 𝛼-quantile 𝑞∗ = 𝐹−1
𝑌
(𝛼) minimizes (6.3).

Remark 6.4. Equation (6.5) is correct, provided that 𝑃 (𝑌 > V@R𝛼 (𝑌 )) = 1−𝛼, i.e., 𝑃 (𝑌 ≤ V@R𝛼 (𝑌 )) =
𝛼, or 𝐹𝑌

(
𝐹−1
𝑌
(𝛼

)
= 𝛼 (cf. Lemma 4.4 (iv)). In this case (6.5) follows from (6.2).

Proof. Differentiate the objective in (6.3) with respect to 𝑞 to get the necessary condition of optimality

0 = 1 − 1
1 − 𝛼 E1{𝑞<𝑌 } = 1 − 1

1 − 𝛼
(
1 − 𝑃(𝑌 ≤ 𝑞)

)
,

i.e., 𝑃(𝑌 ≤ 𝑞) = 𝛼, so that 𝑞∗ = 𝐹−1
𝑌
(𝛼) = V@R𝛼 (𝑌 ). The objective in (6.3) hence is

𝑞∗ + 1
1 − 𝛼 E (𝑌 − 𝑞

∗)+ = 𝑞∗ +
1

1 − 𝛼

∫ 1

0

(
𝐹−1
𝑌 (𝑢) − 𝑞∗

)
+

d𝑢

= 𝐹−1
𝑌 (𝛼) +

1
1 − 𝛼

∫ 1

𝛼

𝐹−1
𝑌 (𝑢) − 𝐹−1

𝑌 (𝛼) d𝑢

=
1

1 − 𝛼

∫ 1

𝛼

𝐹−1
𝑌 (𝑢) d𝑢 = AV@R𝛼 (𝑌 ).

See Lemma (6.7) below for the remaining assertion. □

Lemma 6.5. It holds that

(i) AV@R0 (𝑌 ) = E𝑌 ;

(ii) V@R𝛼 (𝑌 ) ≤ AV@R𝛼 (𝑌 );

2The

⊲ Average Value-at-Risk, or conditional Value-at-Risk,

is sometimes also called

⊲ Conditional Tail Expectation (CTE)

⊲ expected shortfall,

⊲ tail value-at-risk or newly

⊲ super-quantile.
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6.2 AVERAGE VALUE-AT-RISK 45

(iii) AV@R𝛼′ (𝑌 ) ≤ AV@R𝛼 (𝑌 ), provided that 𝛼′ ≤ 𝛼, and particularly

(iv) E𝑌︸︷︷︸
risk neutral

≤ AV@R𝛼 (𝑌 )︸        ︷︷        ︸
risk averse

≤ ess sup𝑌 .︸     ︷︷     ︸
completely risk averse

Proof. Indeed, substitute 𝑢 ← 𝐹𝑌 (𝑦) and we have AV@R0 (𝑌 ) =
∫ 1

0 𝐹−1
𝑌
(𝑢) d𝑢 =

∫
R
𝑦 d𝐹𝑌 (𝑦) = E𝑌 . In

case a density is available then d𝐹𝑌 (𝑦) = 𝑓𝑌 (𝑦) d𝑦 and thus AV@R0 (𝑌 ) =
∫
R
𝑦 𝑓𝑌 (𝑦) d𝑦.

For the proof of (iii) see the more general Proposition 6.14 below. □

Proposition 6.6. The Average Value-at-Risk is a risk functional according the axioms of Definition 5.1.

Proof. Monotonicity, translation equivariance and positive homogeneity are evident by (6.2) and (6.3).
As for convexity let 𝑞∗0 (𝑞∗1, resp.) be optimal in (6.3) for the random variable 𝑌0 (𝑌1, resp.). Set

𝑌𝜆 B (1 − 𝜆)𝑌0 + 𝜆𝑌1 and 𝑞𝜆 B (1 − 𝜆)𝑞∗0 + 𝜆𝑞
∗
1. Then

AV@R𝛼

(
(1 − 𝜆)𝑌0 + 𝜆𝑌1

)
≤ 𝑞𝜆 +

1
1 − 𝛼 E (𝑌𝜆 − 𝑞𝜆)+

= (1 − 𝜆)𝑞∗0 + 𝜆𝑞
∗
1 +

1
1 − 𝛼 E

(
(1 − 𝜆)

(
𝑌0 − 𝑞∗0

)
+ 𝜆

(
𝑌1 − 𝑞∗1

) )
+

≤ (1 − 𝜆)𝑞∗0 + 𝜆𝑞
∗
1 +

1 − 𝜆
1 − 𝛼 E

(
𝑌0 − 𝑞∗0

)
+ +

𝜆

1 − 𝛼 E
(
𝑌1 − 𝑞∗1

)
+ (6.6)

= (1 − 𝜆) AV@R𝛼 (𝑌0) + 𝜆 AV@R𝛼 (𝑌1),

where we have used Jensen’s inequality in (6.6) for the convex function 𝑦 ↦→ (𝑦 − 𝑞)+; thus the
assertion. □

Lemma 6.7. It holds that

AV@R𝛼 (𝑌 ) = max
{
E𝑌𝑍 : 0 ≤ 𝑍 ≤ 1

1 − 𝛼 , E 𝑍 = 1
}
= min

𝑐∈R

{
𝑐 + 1

1 − 𝛼 E (𝑌 − 𝑐)+
}
. (6.7)

Proof. We provide a prove of the statement for discrete random variables based on duality.
Recall first that the linear problems

minimize (in 𝑥) 𝑐⊤𝑥
subject to 𝐴1𝑥 = 𝑏1

𝐴2𝑥 ≥ 𝑏2
𝑥 ≥ 0

and

maximize (in 𝜆,𝜇) 𝜆⊤𝑏1 + 𝜇⊤𝑏2
subject to 𝜆⊤𝐴1 + 𝜇⊤𝐴2 ≤ 𝑐⊤

𝜇 ≥ 0

are dual to each other. We rewrite the initial problem (6.7)

−minimize (in 𝑍) ∑
𝑖 −𝑝𝑖𝑌𝑖𝑍𝑖

subject to
∑

𝑖 𝑝𝑖𝑍𝑖 = 1
−𝑝𝑖𝑍𝑖 ≥ −𝑝𝑖 1

1−𝛼
𝑍𝑖 ≥ 0

with 𝑐𝑖 = −𝑝𝑖𝑌𝑖, 𝐴1,𝑖 = 𝑝𝑖, 𝑏1 = 1, 𝐴2,𝑖 = −𝑝𝑖 and 𝑏2,𝑖 = − 𝑝𝑖
1−𝛼 . Inserting in the dual gives

−maximize (in 𝜆, 𝜇) 𝜆 −∑
𝑖

𝑝𝑖
1−𝛼 𝜇𝑖

subject to 𝜆𝑝𝑖 − 𝑝𝑖𝜇𝑖 ≤ −𝑝𝑖𝑌𝑖 ,
𝜇𝑖 ≥ 0.

(6.8)

Now note that the latter two inequalities are 𝜇𝑖 ≥ 0 and 𝜇𝑖 ≥ 𝜆 + 𝑌𝑖. The maximum in (6.8) is attained
for 𝜇𝑖 = max {0, 𝜆 + 𝑌𝑖}. Hence (6.8) rewrites as

−maximize𝜆 = 𝜆 − 1
1 − 𝛼

∑︁
𝑖

𝑝𝑖 (𝑌𝑖 + 𝜆)+ = minimize𝜆 = −𝜆 + 1
1 − 𝛼

∑︁
𝑖

𝑝𝑖 (𝑌𝑖 + 𝜆)+ ,

from which the assertion follows. □
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6.3 ENTROPIC VALUE-AT-RISK

Definition 6.8. The Entropic Value-at-Risk at risk level 𝛼 ∈ [0, 1) is

EV@R𝛼 (𝑌 ) = inf
𝑡>0

1
𝑡

log
1

1 − 𝛼 E 𝑒
𝑡𝑌 . (6.9)

It is a risk measure satisfying all conditions (i)–(iv) in Definition 5.1.

Remark 6.9. For small values of 𝑡, it holds that

1
𝑡

logE 𝑒𝑡𝑌 ≈ E 𝑋 + 𝑡
2

var𝑌 + O(𝑡2)

(cf. (3.28)).

Proof. Indeed, E 𝑒𝑡𝑌 = 1 + 𝑡 E𝑌 + 1
2 𝑡

2E𝑌2. Using log(1 + 𝑥) ≈ 𝑥 − 1
2𝑥

2 + O(𝑥3) gives

logE 𝑒𝑡𝑌 ≈ log
(
1 + 𝑡 E𝑌 + 1

2
𝑡2E𝑌2

)
= 𝑡 E𝑌 + 1

2
𝑡2E𝑌2 − 1

2
(
𝑡 E𝑌 )2 + O(𝑡3)

= 𝑡 E𝑌 + 𝑡
2

2
var𝑌 + O(𝑡3)

and thus the assertion. □

Remark 6.10. A good guess for the optimal 𝑡∗ in (6.9) thus is 𝑡∗ ≈
√︃

var𝑌
2 log 1

1−𝛼
.

6.4 SPECTRAL RISK MEASURES

Definition 6.11. Spectral risk measures3 are

R𝜎 (𝑌 ) B
∫ 1

0
𝜎(𝑢)𝐹−1

𝑌 (𝑢) d𝑢

for some spectral function 𝜎 : [0, 1] → R; occasionally, the function 𝜎(·) is also called spectrum.

Proposition 6.12. Spectral functions 𝜎 : [0, 1) → R≥0 necessarily satisfy

(i)
∫ 1

0 𝜎(𝑢) d𝑢 = 1 (by translation equivariance),

(ii) 𝜎(·) ≥ 0 (by monotonicity) and

(iii) 𝜎(·) is nondecreasing (by convexity).

Proof. See Exercise 6.3. □

Remark 6.13. The Average Value-at-Risk is a spectral risk measure for the spectrum

𝜎(𝑢) B
{

0 if 𝑢 < 𝛼,
1

1−𝛼 if 𝑢 ≥ 𝛼.

Proposition 6.14. Suppose that
∫ 1
𝛼
𝜎1 (𝑢) d𝑢 ≤

∫ 1
𝛼
𝜎2 (𝑢) d𝑢 for all 𝛼 ∈ (0, 1), then R𝜎1 (𝑌 ) ≤ R𝜎2 (𝑌 ).

3Also: distortion risk funtionals
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Figure 6.1: AV@R𝛼’s are extreme points, so there is some Choquet-Bishop-de Leeuw Representation
for A (Krein-Milman Theorem).

Proof. We verify the statement for 𝑌 bounded. Set Σ𝑖 (𝑢) B
∫ 1
𝑢
𝜎𝑖 (𝑝) d𝑝. Then

R𝜎1 (𝑌 ) =
∫ 1

0
𝜎1 (𝑢)𝐹−1

𝑌 (𝑢) d𝑢 = −
∫ 1

0
𝐹−1
𝑌 (𝑢) dΣ1 (𝑢),

and by integration by parts

R𝜎1 (𝑌 ) = −𝐹−1
𝑌 (𝑢)Σ1 (𝑢)

��1
𝑢=0 +

∫ 1

0
Σ1 (𝑢) d𝐹−1

𝑌 (𝑢) = 𝐹−1
𝑌 (0) +

∫ 1

0
Σ1 (𝑢) d𝐹−1

𝑌 (𝑢).

Note, that Σ1 (·) ≤ Σ2 (·) by assumption and 𝐹−1
𝑌
(·) is an increasing function, thus

R𝜎1 (𝑌 ) = 𝐹−1
𝑌 (0) +

∫ 1

0
Σ1 (𝑢) d𝐹−1

𝑌 (𝑢) ≤ 𝐹−1
𝑌 (0) +

∫ 1

0
Σ2 (𝑢) d𝐹−1

𝑌 (𝑢) = R𝜎2 (𝑌 ).

□

Lemma 6.15. R𝜇 (𝑌 ) B
∫ 1

0 AV@R𝛼 (𝑌 ) 𝜇 (d𝛼) is a spectral risk measure, provided that

⊲
∫ 1

0 𝜇 (d𝛼) = 1 (to ensure translation equivariance) and

⊲ 𝜇(·) ≥ 0 (to ensure monotonicity).

Proof. Indeed,

R𝜇 (𝑌 ) =
∫ 1

0
AV@R𝛼 (𝑌 ) 𝜇 (d𝛼) =

∫ 1

0
V@R𝛼 (𝑌 ) 𝜎 (𝛼) d𝛼,

where 𝜎 (𝑝) =
∫ 𝑝

0
𝜇 (d𝛼)
1−𝛼 is the spectrum. □

Lemma 6.16. For 𝑌 ≥ 0 a.s. we have the representation

R𝜎 (𝑌 ) =
∫ ∞

0
Σ (𝐹𝑌 (𝑞)) d𝑞 (if 𝑌 ≥ 0 a.s.),

where Σ (𝛼) =
∫ 1
𝛼
𝜎 (𝑝) d𝑝 is the negative antiderivative.

6.5 KUSUOKA’S REPRESENTATION OF LAW INVARIANT RISK MEASURES

A supremum of Choquet representations.
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Theorem 6.17. Suppose R is a law invariant Risk measure. Then it has the Kusuoka-representation

R (𝑌 ) = sup
𝜇∈M

∫ 1

0
AV@R𝛼 (𝑌 ) 𝜇 (d𝛼)

(M is a set of positive measures on [0, 1]).
Proof. We have that R(𝑌 ) = sup𝑍 E𝑌𝑍 − R∗ (𝑍) = sup𝑍∈Z E𝑌𝑍 as R∗ (𝑍) ∈ {0,∞}. For 𝑍 ∈ Z given,
let 𝑌 ′ have the same distribution as 𝑌 so that 𝑌 ′ and 𝑍 are comonotone. Then

R(𝑌 ) = R(𝑌 ′) = sup
𝑍∈Z

E𝑌𝑍 − R∗ (𝑍) = sup
𝑍∈Z

∫ 1

0
𝐹−1
𝑌 (𝑢)𝐹−1

𝑍 (𝑢) d𝑢 = sup
𝜎∈Σ

∫ 1

0
𝜎(𝑢)𝐹−1

𝑌 (𝑢) d𝑢,

where Σ = {𝐹𝑍 (·) : 𝑍 ∈ Z} collects all distribution functions of Z. Hence the result. □

Proposition 6.18. For any law invariant risk functional R it holds that

E𝑌 ≤ R(𝑌 ).

Proof. Consider the functional R𝜎 (·) first. Find �̃� such that 𝜎(𝑢) ≤ 1 whenever 𝑢 ≤ �̃� and 𝜎(𝑢) ≥ 1
for 𝑢 ≥ �̃�. Note as well that

∫ �̃�

0 1 − 𝜎(𝑢) d𝑢 =
∫ 1
�̃�
𝜎(𝑢) − 1 d𝑢, as

(∫ �̃�

0 +
∫ 1
�̃�

)
𝜎(𝑢) d𝑢 =

(∫ �̃�

0 +
∫ 1
�̃�

)
1 d𝑢 = 1.

Then ∫ �̃�

0
(1 − 𝜎(𝑢))𝐹−1

𝑌 (𝑢) d𝑢 ≤
∫ �̃�

0
(1 − 𝜎(𝑢))𝐹−1

𝑌 (�̃�) d𝑢

=

∫ 1

�̃�

(𝜎(𝑢) − 1)𝐹−1
𝑌 (�̃�) d𝑢 ≤

∫ 1

�̃�

(𝜎(𝑢) − 1)𝐹−1
𝑌 (𝑢) d𝑢.

The assertion follows from Kusuoka’s representation. □

Proposition 6.19. For any law invariant risk measure R and sub-sigma algebra G we have that

R
(
E(𝑌 | G)

)
≤ R (𝑌 ) .

Proof. Note that 𝑥 ↦→ (𝑥 − 𝑞)+ is convex. Thus, by the conditional Jensen inequality

(E(𝑌 | G) − 𝑞)+ ≤ E ((𝑌 − 𝑞)+ |G) .

It follows that

AV@R𝛼

(
E(𝑌 |G)

)
= min

𝑞∈R
𝑞 + 1

1 − 𝛼 E ((E𝑌 | G) − 𝑞)+

≤ min
𝑞∈R

𝑞 + 1
1 − 𝛼 EE ((𝑌 − 𝑞)+ | G)

= min
𝑞∈R

𝑞 + 1
1 − 𝛼 E ((𝑌 − 𝑞)+) = AV@R𝛼 (𝑌 ).

The assertion follows form Kusuoka’s representation. □

Remark 6.20. For the Average Value-at-Risk we have that AV@R𝛼 (E(𝑌 |F )) ≤ AV@R𝛼 (𝑌 ), where F
is a sub-sigma algebra, and thus R (E(𝑌 |F )) ≤ R (𝑌 ) for law invariant risk functionals by Kusuoka’s
theorem.

Proposition 6.21 (Cf. Föllmer and Schied [2004, Theorem 4.67]). AV@R𝛼 (·) is the smallest law
invariant coherent risk functional dominating V@R𝛼 (·) (cf. Lemma 6.5 (ii) and Exercise 6.4).

Proof. By translation equivariance and for𝑌 ∈ 𝐿∞ we may assume that𝑌 > 0. Set 𝐴 B {𝑌 > V@R𝛼 (𝑌 )}
and consider 𝑋 B 𝑌 · 1

𝐴∁
+E(𝑌 |𝐴) · 1𝐴. Notice, that 𝑋 = E

(
𝑌

��𝑌 · 1
𝐴∁

)
and V@R𝛼 (𝑋) = E(𝑌 |𝐴). Sup-

pose the coherent risk functional R(·) dominates V@R𝛼 (·), then

R(𝑌 ) ≥ R(𝑋) ≥ V@R𝛼 (𝑋) = E(𝑌 |𝐴) = AV@R𝛼 (𝑌 )

by (6.5). □
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6.6 APPLICATION IN INSURANCE

The Dutch Premium Principle
A comprehensive list of Kusuoka representations for important risk functionals is provided in [Pflug
and Römisch, 2007]. A compelling example is the absolute semi-deviation risk measure (the Dutch
premium principle, introduced in [van Heerwaarden and Kaas, 1992]) for some fixed 𝜃 ∈ [0, 1],

R𝜃 (𝑌 ) B E [𝑌 + 𝜃 · (𝑌 − E𝑌 )+] ,

assigning an additional loading of 𝜃 to any loss 𝐿 exceeding the net-premium price E 𝐿. Its Kusuoka
representation is

R𝜃 (𝑌 ) = sup
0≤𝜇≤1

(1 − 𝜃 · 𝜇)E𝑌 + 𝜃 𝜇 · AV@R1−𝜇 (𝑌 )

(cf. Shapiro [2012], Shapiro et al. [2021]).

Theorem 6.22. R𝜃 (·) is a convex risk functional.

Proof. We verify that R𝜃 (·) is convex. Indeed, define 𝑌𝜆 B (1 − 𝜆)𝑌0 + 𝜆𝑌1. Then

(𝑌𝜆 − E𝑌𝜆)+ = ((1 − 𝜆) (𝑌0 − E𝑌0) + 𝜆 (𝑌1 − E𝑌1))+ ≤ (1 − 𝜆) (𝑌0 − E𝑌0)+ + 𝜆 (𝑌1 − E𝑌1)+

and hence

E [𝑌𝜆 + 𝜃 · (𝑌𝜆 − E𝑌𝜆)+] ≤ (1 − 𝜆)E𝑌0 + 𝜆E𝑌1 + 𝜃 (1 − 𝜆) (𝑌0 − E𝑌0)+ + 𝜆 (𝑌1 − E𝑌1)+
= (1 − 𝜆) (E𝑌0 + 𝜃 (𝑌0 − E𝑌0)+) + 𝜆 (E𝑌1 + 𝜃 (𝑌1 − E𝑌1)+)
= (1 − 𝜆)R𝜃 (𝑌0) + 𝜆R𝜃 (𝑌1) ,

i.e., R𝜃 is convex. □

6.7 PROBLEMS

Exercise 6.1. Compute the Average Value-at-Risk for the returns given in Table 9.2 for 𝛼 = 20 %, 40%,
60% and 𝛼 = 80%.

Exercise 6.2 (Cf. Exercise 4.3). The matrix Ξ in Table 4.3 contains logarithmic, annualized returns of
3 shares at the end of 4 quarters.

(i) Compute the Average Value-at-Risk for the risk levels 𝛼 = 20 %, 40%, 60% and 𝛼 = 80% for each
asset.

(ii) You are invested with 𝑥 = (40 %, 30 %, 30 %). What is the Value-at-Risk of your returns at the
above risk-levels?

Exercise 6.3. Verify Proposition 6.12. Hint: try the random variables 1[𝜆,1] (𝑈) to show monotonicity,
and 𝑌0 B 1[𝑢,1] (𝑈) and 𝑌1 B 1[𝑢−Δ,1−Δ] (𝑈) for convexity.

Exercise 6.4. Give a risk functional R and a random variable 𝑌 ∈ 𝐿∞ so that R(𝑌 ) > E𝑌 .
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7Portfolio Optimization Problems Involving Risk Measures

. . . : daß keines von ihnen verloren gehe.

Edith Stein, ESGA, Band 1

7.1 INTEGRATED RISK MANAGEMENT FORMULATION

The portfolio optimization problem we want to consider here for simplicity and introduction is (cf. Fig-
ure 4.3 and (iv) in Theorem 9.10)

maximize
in 𝑥 −R (−𝑥⊤𝜉) = A (𝑥⊤𝜉)

subject to 𝑥⊤ 1 ≤ 1C,
𝑥 ≥ 0,

where A(·) B −R(− ·) is an acceptability functional, cf. (5.1), Remark 5.2. The problem is notably
unbounded without shortselling constraints. Equivalent is the formulation (cf. Figure 4.3, again)

minimize
in 𝑥 R (−𝑥⊤𝜉)

subject to 𝑥⊤ 1 ≤ 1C,
𝑥 ≥ 0,

which is apparently a convex problem formulation.
Typical risk functionals are R(𝑌 ) B (1 − 𝛾)E𝑌 + 𝛾 AV@R𝛼 (𝑌 ).

7.2 MARKOWITZ TYPE FORMULATION

Recall from Figure 4.3 that E𝑌 + R(−𝑌 ) (≥ 0) is a one-sided deviation from the mean, which can be
interpreted as risk. The formulation

𝑣(𝜇) B minimize
in 𝑥 E 𝑥⊤𝜉 + R

(
−𝑥⊤𝜉

)
(7.1)

subject to E 𝑥⊤𝜉 ≥ 𝜇,
𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0)

specifies a convex problem in 𝑥, as the objective (i.e., R) is convex, the constraints are even linear.
The function 𝑣 is nondecreasing and it holds that 0 ≤ E𝑌 + R (−𝑌 ), i.e., 𝑣(𝜇) ≥ 0.

Let 𝑥𝜇 denote the optimal diversification in (7.1). For 𝜆 ∈ (0, 1) set 𝜇𝜆 B (1 − 𝜆)𝜇0 + 𝜆𝜇1 and
𝑥𝜇𝜆 B (1 − 𝜆)𝑥𝜇0 + 𝜆𝑥𝜇1 . By linearity, 𝑥𝜇𝜆 is feasible for 𝑣

(
𝜇𝜆

)
and we have from convexity of R that

𝑣
(
𝜇𝜆

)
≤ E 𝑥⊤𝜇𝜆𝜉 + R

(
−𝑥⊤𝜇𝜆𝜉

)
≤ (1 − 𝜆)𝑣(𝜇0) + 𝜆𝑣(𝜇1),

the function 𝑣(·) thus is convex. This gives rise to the efficient frontier 𝜇 ↦→
(
𝑣(𝜇)
𝜇

)
(which is concave)

and an accordant tangency portfolio.
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Example 7.1. Consider R(𝑌 ) B (1 − 𝛾)E𝑌 + 𝛾 AV@R𝛼 (𝑌 ), then the problem of integrated risk man-
agement is (cf. Figure 4.3, and again)

minimize
in 𝑥 𝛾 · E 𝑥⊤𝜉 + 𝛾 · AV@R𝛼 (−𝑥⊤𝜉)

subject to E 𝑥⊤𝜉 ≥ 𝜇,
𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0) ,

(7.2)

with parameters 𝛼, 𝛾 ∈ (0, 1).
Recall that AV@R𝛼 (𝑌 ) = min𝑞∈R

{
𝑞 + 1

1−𝛼 E(𝑌 − 𝑞)+
}
. The discrete model problem (7.2) thus may

be rewritten as
minimize

in 𝑥, 𝑞 𝛾 · 𝑝⊤Ξ𝑥 + 𝛾 ·
(
𝑞 + 1

1−𝛼 𝑝
⊤ (−Ξ𝑥 − 𝑞)+

)
subject to 𝑝⊤Ξ𝑥 ≥ 𝜇,

𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0) .

To eliminate the nonlinear expression (·)+ define the slack variable 𝑧𝑖 B (−𝑞 − 𝑥⊤𝜉𝑖)+ (𝑖 = 1, . . . , 𝑛) and
note that 𝑧𝑖 ≥ 0 and −𝑞 − 𝑥⊤𝜉𝑖 ≤ 𝑧𝑖. So we get the linear program

minimize
in 𝑥, 𝑧, 𝑞 𝛾 · 𝑝⊤Ξ𝑥 + 𝛾 · 𝑞 + 𝛾

1−𝛼 𝑝
⊤𝑧

subject to −𝑞 − 𝑥⊤𝜉𝑖 ≤ 𝑧𝑖 (𝑖 = 1, . . . 𝑛) ,
𝑝⊤Ξ𝑥 ≥ 𝜇,
𝑥⊤ 1 ≤ 1C,
𝑧 ≥ 0, (𝑥 ≥ 0) ,

or re-written in matrix-form

minimize
in 𝑥, 𝑧, 𝑞 −𝛾𝑝⊤Ξ𝑥 + 𝛾 · 𝑞 + 𝛾

1−𝛼 𝑝
⊤𝑧

subject to ©«
−Ξ −𝐼𝑛 −1𝑛
1⊤
𝑆

0 . . . 0 0
−𝑝⊤Ξ 0 0

ª®¬ ©«
𝑥

𝑧

𝑞

ª®¬ ≤ ©«
0
1
−𝜇

ª®¬ ,
𝑧 ≥ 0, (𝑥 ≥ 0) .

Example 7.2. Consider R(𝑌 ) B EV@R𝛼 (𝑌 ), then the problem of integrated risk management is

minimize
in 𝑥, 𝑡 E 𝑥⊤𝜉 + 𝑡 log 1

1−𝛼 E 𝑒
−𝑥⊤ 𝜉/𝑡

subject to E 𝑥⊤𝜉 ≥ 𝜇,
𝑥⊤ 1 ≤ 1C,
𝑡 > 0, (𝑥 ≥ 0) .

(7.3)

7.3 ALTERNATIVE FORMULATION

The formulation

�̃�(𝑐) B maximize
in 𝑥 E 𝑥⊤𝜉

subject to − R
(
−𝑥⊤𝜉

)
≥ 𝑐,

𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0)
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specifies a convex problem in 𝑥 ∈ R𝑆 as well (the objective is linear, the constraints convex). It
holds that 𝑐 ≤ −R (−𝑥⊤𝜉) ≤ E 𝑥⊤𝜉 and thus �̃�(𝑐) ≥ 𝑐. The function �̃�(𝑐) is concave and the frontier

𝑐 ↦→
(
𝑐

�̃�(𝑐)

)
(or 𝑐 ↦→

(
𝑐

�̃�(𝑐) − 𝑐

)
) is a concave efficient frontier, which again gives rise for a tangency

portfolio.
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8Expected Utility Theory

Buy on bad news, sell on good news.

Börsenweisheit

The concept of utility functions dates back to Oskar Morgenstern1 and John von Neumann,2 ex-
pected utilities to Kenneth Arrow3 and John W. Pratt.4

Preference is given to 𝑌 over 𝑋, if
E 𝑢(𝑋) ≤ E 𝑢(𝑌 ). (8.1)

8.1 EXAMPLES OF UTILITY FUNCTIONS

The exponential utility for 𝛾 ≥ 0 is defined as

𝑢(𝑥) = 1 − 𝑒−𝛾𝑥 . (8.2)

For 𝛼 > 0, 𝛼 ≠ 1 the polynomial utility functions are defined as

𝑢(𝑥) =
{

𝑥1−𝛼

1−𝛼 𝑥 ≥ 0,
−∞ 𝑥 < 0;

(8.3)

they are sometimes also termed power utility functions,

𝑢(𝑥) =
{

𝑥𝜅

𝜅
𝑥 ≥ 0,

−∞ 𝑥 < 0;
(8.4)

and in case of 𝛼 = 1,

𝑢(𝑥) =
{

log 𝑥 𝑥 ≥ 0,
−∞ 𝑥 < 0.

Definition 8.1 (HARA utilities). Hyperbolic risk aversion (HARA) utilities are 𝑈 (𝑤) = 1−𝛾
𝛾

(
𝑎𝑤
1−𝛾 + 𝑏

)𝛾
.

8.2 ARROW–PRATT MEASURE OF ABSOLUTE RISK AVERSION

Definition 8.2. The local risk aversion coefficient at 𝑐 (cf. Arrow–Pratt measure of absolute risk-
aversion (ARA), also known as the coefficient of absolute risk), is

𝐴(𝑐) = −𝑢
′′ (𝑐)
𝑢′ (𝑐) ,

the coefficient for relative risk aversion is

𝑅(𝑐) = −𝑐 · 𝑢
′′ (𝑐)

𝑢′ (𝑐) .

11902 (in Görlitz) – 1977
21903 – 1958
31921–2017, Nobel memorial price in economic sciences in 1972
41931
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For a motivation consider the Taylor-series expansion 𝑢(𝑦) ≈ 𝑢(𝑥) + (𝑦 − 𝑥)𝑢′ (𝑥) + (𝑦−𝑥 )
2

2 𝑢′′ (𝑥). At
𝑥 = E𝑌 , 𝑦 = 𝑌 and after taking expectations we obtain

E 𝑢(𝑌 ) ≈ 𝑢(E𝑌 ) + E(𝑌 − E𝑌 ) · 𝑢′ (E𝑌 ) + E(𝑌 − E𝑌 )
2

2
𝑢′′ (E𝑌 ) = 𝑢(E𝑌 ) + var𝑌

2
𝑢′′ (E𝑌 ). (8.5)

Now apply a Taylor-series expansion to the inverse 𝑢−1 (𝑥) ≈ 𝑢−1 (𝑦) + 𝑥−𝑦
𝑢′ (𝑢−1 (𝑦) ) with 𝑥 = E 𝑢(𝑌 ) and

𝑦 = 𝑢(E𝑌 ) to get

𝑢−1 (E 𝑢(𝑌 )) ≈ E𝑌 + E 𝑢(𝑌 ) − 𝑢(E𝑌 )
𝑢′ (E𝑌 ) ≈ E𝑌 + 𝑢′′ (E𝑌 )

2𝑢′ (E𝑌 )︸     ︷︷     ︸
Arrow–Pratt at E𝑌

· var𝑌,

by (8.5).

Example 8.3. The risk aversion coefficient is −𝛾 (thus constant) for the utility function (8.2), while
𝐴(𝑐) = 𝛼

𝑐
and 𝑅(𝑐) = 𝛼 for the utility given in (8.3).

Example 8.4. Consider 𝑢(𝑥) = log 𝑥, then 𝐴(𝑐) = −𝑢′′ (𝑐)
𝑢′ (𝑐) =

1
𝑐
.

8.3 EXAMPLE: ST. PETERSBURG PARADOX5

Consider the following game. A fair coin is tossed until heads appears for the first time and suppose
this happens at the Nth toss. The player will then get 2𝑁−1 euros. What is the fair amount a player
should pay in order to play the game?

The fee is given by the expected payout. By definition of the geometric distribution:

𝑃(𝑁 = 𝑘) = 2−𝑘 𝑘 = 1, 2, . . .
Therefore the expected payout is

E 2𝑁−1 =

∞∑︁
𝑘=1

2−𝑘2𝑘−1 =

∞∑︁
𝑘=1

1
2
= ∞.

This result obviously does not make sense. Several approaches were developed by N. Bernoulli
and G. Cramer. Insetad of calculating the expected payout E

[
2𝑁−1] , 𝑐 = 𝑢−1 (

E
[
𝑢(2𝑁−1)

] )
with

𝑢(𝑥) = log(𝑥) or 𝑢(𝑥) =
√
𝑥 is calculated. In the case of 𝑢(𝑥) = log(𝑥), it follows that

E log 2𝑁−1 =

∞∑︁
𝑘=1

2−𝑘 (𝑘 − 1) log 2 = log(2)
∞∑︁
𝑘=0

𝑘 · 2−𝑘

=
log(2)

4

∞∑︁
𝑘=0

𝑘2𝑘−1 =
log 2

4
1(

1 − 1
2

)2 = log 2

and 𝑐 = 𝑒log 2 = 2.
In case of 𝑢(𝑥) =

√
𝑥,

E
√︁

2𝑁−1 =

∞∑︁
𝑘=1

2
𝑘−1

2 2−𝑘 =
1
√

2

∞∑︁
𝑘=1

(√
2

2

) 𝑘
=

1
√

2

√
2

2

1 −
√

2
2

=
1

2 −
√

2

and therefore 𝑐 =
(
2 −
√

2
)−2
≈ 2.914.

The expected payout was weighted with 𝑢(·) which yields a finite value. The weighting with 𝑢

can be interpreted as giving less importance to very high payouts which have small probabilities of
occurring.
Remark. Note the shape of both log(𝑥) and

√
𝑥. Such functions are called utility functions.

5by ruben schlotter

rough draft: do not distribute



8.4 PREFERENCES AND UTILITY FUNCTIONS 57

8.4 PREFERENCES AND UTILITY FUNCTIONS

The main aim is to

⊲ model decisions under uncertainty

⊲ compare random payouts (lotteries)

Definition 8.5. A function 𝐹 : R→ [0, 1] is called (cumulative) distribution function on R, if

⊲ F is monotone increasing and right continuous.

⊲ lim{𝑥→−∞ 𝐹 (𝑥) = 0 and lim{𝑥→∞ 𝐹 (𝑥) = 1

LetM be the set of all distribution functions onR. We define a relation onM. A preference onM is a
relation ≼ such that

⊲ 𝐹 ≼ 𝐹 for all 𝐹 ∈ M

⊲ (𝐹 ≼ 𝐺) ∧ (𝐺 ≼ 𝐻) implies that 𝐹 ≼ 𝐻 for all 𝐹, 𝐺, 𝐻 ∈ M

⊲ Either (𝐹 ≼ 𝐺) or (𝐺 ≼ 𝐹)
𝐹 ≼ 𝐺 is interpreted as 𝐺 is preferred over 𝐹. 𝐹 and 𝐺 are called equivalent, denoted by𝐹 ∼ 𝐺

if𝐹 ≼ 𝐺 and𝐺 ≼ 𝐹. The preference≼satisfies the continuity axiom if for all 𝐹, 𝐺, 𝐻 ∈ M such that
𝐹 ≼ 𝐺 ≼ 𝐻 there exists an 𝛼 ∈ [0, 1] with

(1 − 𝛼)𝐹 + 𝛼𝐻 ∼ 𝐺.

The preference≼satisfies the independence of irrelevant alternatives axiom, if for all 𝐹, 𝐺, 𝐻 ∈ M and
all 𝛼 ∈ [0, 1]

𝐹 ≼ 𝐺 ⇐⇒ (1 − 𝛼)𝐹 + 𝛼𝐻 ≼ (1 − 𝛼)𝐺 + 𝛼𝐻
Remark. The continuity axiom means that “good” and “bad” risks can be pooled into an average one.

A preference≼has a numerical representation if there is a mapping 𝑈 : M → [−∞,∞) , such that

𝐹 ≼ 𝐺 ⇐⇒ 𝑈 (𝐹) ≤ 𝑈 (𝐺)

This representation has a von Neumann-Morgenstern representation if there exists another func-
tion 𝑢 : R→ [−∞,∞) such that for all 𝑋 with (cumulative) distribution function 𝐹

𝑈 (𝐹) = E 𝑢(𝑋)

Theorem 8.6. Let ≼ be a preference onM. Then the following are equivalent

(i) ≼satisfies the continuity and the independence axiom

(ii) ≼ has a vNM representation

Definition 8.7. 𝑢 : R → [−∞,∞) is called Bernoulli-utility function if 𝑢 is monotone increasing and
strictly concave.

Theorem 8.8. Let ≼be a preference with a vNM-representation. Then 𝑢 is a Bernoulli utility function
if and only if

(i) 𝑐 ≼ 𝑑 ⇐⇒ 𝑐 ≤ 𝑑 for all 𝑐, 𝑑 ∈ R

(ii) 𝑋 ≼ E 𝑋

Let𝑢 be a Bernoulli utility function (wrt. .: (≼𝑢) and 𝑋 have finite expectation then define the
certainty equivalent of 𝑋 by

𝑐 B 𝑐(𝑋, 𝑢) ∈ R, such that 𝑐 ∼𝑢 𝑋

In the introductory example the certainty equivalent of the payout 𝑁 with respect to 2 different
Bernoulli utility functions was calculated.
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9Stochastic Orderings

Ich bin so glücklich, ich habe meinen Posten
verloren. Mein Chef ist nämlich in Konkurs
gegangen. Mich bringt niemand mehr in ein
Bankhaus.

Arnold Schönberg, 1874–1951, an David
Josef Bach

A particular utility function 𝑢(·) is occasionally considered as artifact which specifies a very particu-
lar and individual personal preference. Different investors might employ very different utility functions
to express their individual preference.

Some concepts of stochastic orderings robustify decisions by replacing a single utility function by
a class of functions, so that (8.1) holds for all of them.

9.1 STOCHASTIC DOMINANCE OF FIRST ORDER

Definition 9.1. For R-valued random variables 𝑋 and 𝑌 we say that 𝑋 is dominated by 𝑌 in first order
stochastic dominance,

𝑋 ≼(1) 𝑌 or 𝑋 ≼𝐹𝑆𝐷 𝑌,

if (8.1) holds for all 𝑢 ∈ U𝐹𝑆𝐷 B {𝑢 : R→ R nondecreasing} for which the integrals exists.

Remark 9.2. Not that the function 𝑢(𝑥) B 𝑥 in nondecreasing, so that E 𝑋 ≤ E𝑌 whenever 𝑋 ≼(1) 𝑌 .

Remark 9.3. The relation
𝑋 ≤ 𝑌 almost surely

(cf. Definition 5.1 (i)) is occasionally referred to as stochastic dominance of order 0 and denoted
𝑋 ≼(0) 𝑌 .

Theorem 9.4. The following are equivalent:

(i) 𝑋 ≼(1) 𝑌 ,

(ii) 𝐹𝑋 (·) ≥ 𝐹𝑌 (·), i.e., 𝑃(𝑋 ≤ 𝑧) ≥ 𝑃(𝑌 ≤ 𝑧) for all 𝑧 ∈ R and

(iii) 𝐹−1
𝑋
(·) ≤ 𝐹−1

𝑌
(·), i.e., V@R𝛼 (𝑋) ≤ V@R𝛼 (𝑌 ) for all 𝛼 ∈ (0, 1).

Proof. The function 𝑢𝑧 (𝑥) B 1(𝑧,∞) (𝑥) is nondecreasing and thus 𝑢𝑧 ∈ U𝐹𝑆𝐷 . Note that E 𝑢𝑧 (𝑋) =
𝑃(𝑋 > 𝑧), thus (8.1) is equivalent to 𝐹𝑋 (𝑧) = 𝑃(𝑋 ≤ 𝑧) = 1 − 𝑃(𝑋 > 𝑧) = 1 − E 𝑢𝑧 (𝑋) ≥ 1 − E 𝑢𝑧 (𝑌 ) =
1 − 𝑃(𝑌 > 𝑧) = 𝑃(𝑌 ≤ 𝑧) = 𝐹𝑌 (𝑧), so that (ii) follows from (i).

As for the converse note that every nondecreasing function 𝑢(·) may be approximated by a simple
step function 𝑢𝑛 (·) =

∑𝑛
𝑖=1 𝛼𝑖 1(𝑧𝑖 ,∞) (·) with 𝛼𝑖 > 0 so that |E 𝑢(𝑋) − E 𝑢𝑛 (𝑋) | < 𝜀 and |E 𝑢(𝑌 ) − E 𝑢𝑛 (𝑌 ) | <

𝜀. With (ii) it follows that E 𝑢𝑛 (𝑋) =
∑𝑛

𝑖=1 𝛼𝑖 𝑃(𝑋 > 𝑧𝑖) ≤
∑𝑛

𝑖=1 𝛼𝑖 𝑃(𝑌 > 𝑧𝑖) = E 𝑢𝑛 (𝑌 ), so that stochastic
dominance in first order follows.

It is evident that (ii) and (iii) are equivalent. □

Remark 9.5. Exercise 9.5 (Table 9.1a) demonstrates that the order ≼(1) is not convex, i.e., the sets{
𝑌 : 𝑋 ≼(1) 𝑌

}
and

{
𝑌 : 𝑌 ≼(1) 𝑋

}
are not convex.
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60 STOCHASTIC ORDERINGS

probabilities 40% 20% 40%

𝑌0 = 𝑋 2 4 4
𝑌1 4 4 2

1
2 (𝑌0 + 𝑌1) 3 4 3

(a) The relation ≼(1) is not convex, cf. Re-
mark 9.5. Note that 𝑌0 ≠ 𝑌1, but 𝐹𝑌0 = 𝐹𝑌1 .

probabilities 40% 20% 10% 30%

𝑋 0 2 3 3
𝑌 1 1 1 4

(b) 𝑋 $(1) 𝑌 , but 𝑋 ≼(2) 𝑌 , cf. Figure 9.1

Table 9.1: Counterexamples

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

𝑥

𝐹𝑋 (𝑥)
𝐹𝑌 (𝑥)

(a) Cumulative distribution function, Theorem 9.4(ii)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

𝛼

V@R𝛼 (𝑋)
V@R𝛼 (𝑌 )

(b) Generalized inverse, V@R, Theorem 9.4(iii)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

𝑥

∫ 𝑥

−∞ 𝐹𝑋 (𝑦) d𝑦∫ 𝑥

−∞ 𝐹𝑌 (𝑦) d𝑦

(c) Integrated cdf, Theorem 9.10(ii)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

𝛼

∫ 𝛼

0 V@R𝑢 (𝑋) d𝑢∫ 𝛼

0 V@R𝑢 (𝑌 ) d𝑢

(d) Integrated V@R, Theorem 9.10(iii)

Figure 9.1: Random variables 𝑋 (blue) and 𝑌 (orange) from Table 9.1b
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9.2 STOCHASTIC DOMINANCE OF SECOND ORDER

Definition 9.6. For R-valued random variables 𝑋 and 𝑌 we say that 𝑋 is dominated by 𝑌 in second
order stochastic dominance,

𝑋 ≼(2) 𝑌 or 𝑋 ≼𝑆𝑆𝐷 𝑌,

if (8.1) holds for all 𝑢 ∈ U𝑆𝑆𝐷 B {𝑢 : R→ R nondecreasing and concave}, for which the integrals
exists.

Remark 9.7. As in Remark 9.2 we have that that E 𝑋 ≤ E𝑌 whenever 𝑋 ≼(2) 𝑌 .
Remark 9.8. By Jensen’s inequality 𝑢(E𝑌 ) ≥ E 𝑢(𝑌 ). This can be read as possessing (i.e., not
investing) the amount 𝑢(E𝑌 ) is given preference to investing.

Lemma 9.9. The set
{
𝑌 : 𝑋 ≼(2) 𝑌

}
is convex (cf. Remark 9.5).

Proof. Let 𝑋 ≼(2) 𝑌0, 𝑋 ≼(2) 𝑌1 and 𝑢 ∈ U𝑆𝑆𝐷 be chosen. Define 𝑌𝜆 B (1 − 𝜆)𝑌0 + 𝜆𝑌1. By Jensen’s
inequality it holds that 𝑢

(
(1 − 𝜆)𝑌0 + 𝜆𝑌1

)
≥ (1 − 𝜆)𝑢(𝑌0) + 𝜆 𝑢(𝑌1) and thus

E 𝑢(𝑌𝜆) = E 𝑢
(
(1 − 𝜆)𝑌0 + 𝜆𝑌1

)
≥

Jensen’s inequality
(1 − 𝜆)E 𝑢(𝑌0) + 𝜆E 𝑢(𝑌1)

≥ (1 − 𝜆)E 𝑢(𝑋) + 𝜆E 𝑢(𝑋) = E 𝑢(𝑋)

by Jensen’s inequality and hence 𝑋 ≼(2) 𝑌𝜆. □

Theorem 9.10. The following are equivalent:

(i) 𝑋 ≼(2) 𝑌 ,

(ii)
∫ 𝑞

−∞ 𝐹𝑋 (𝑧) d𝑧 ≥
∫ 𝑞

−∞ 𝐹𝑌 (𝑧) d𝑧 for all 𝑞 ∈ R and

(iii)
∫ 𝛼

0 𝐹−1
𝑋
(𝑢) d𝑢 ≤

∫ 𝛼

0 𝐹−1
𝑌
(𝑢) d𝑢 (this is what is called the absolute Lorentz function) for 𝛼 ∈ (0, 1),

(iv) −AV@R𝛼 (−𝑋) ≤ −AV@R𝛼 (−𝑌 ) for all 𝛼 ∈ (0, 1).1

Proof. By Riemann–Stieltjes integration by parts we have that∫ 𝑞

−∞
𝐹𝑋 (𝑥) d𝑥 = 𝑥 · 𝐹𝑋 (𝑥) |𝑞𝑥=−∞ −

∫ 𝑞

−∞
𝑥 d𝐹𝑋 (𝑥) =

∫ 𝑞

−∞
𝑞 − 𝑥 d𝐹𝑋 (𝑥) (9.1)

=

∫ ∞

−∞
(𝑞 − 𝑥)+ d𝐹𝑋 (𝑥) = −E 𝑢𝑞 (𝑋),

where
𝑢𝑞 (𝑥) B −(𝑞 − 𝑥)+.

The function 𝑢𝑞 (·) is nondecreasing and concave, hence it follows from (8.1) that E 𝑢𝑞 (𝑋) ≤ E 𝑢𝑞 (𝑌 )
and thus the assertion (ii).

A nondecreasing and concave function 𝑢(·) ∈ U𝑆𝑆𝐷 can be approximated by 𝑢𝑛 (𝑥) B
∑𝑛

𝑖=1 𝛼𝑖 ·𝑢𝑞𝑖 (𝑥)
where 𝛼𝑖 > 0 so that |E 𝑢(𝑋) − E 𝑢𝑛 (𝑋) | < 𝜀 and |E 𝑢(𝑌 ) − E 𝑢𝑛 (𝑌 ) | < 𝜀 (see Müller and Stoyan [2002]
for details). Assertion (i) then follows by combining (9.1) and (ii).

Define
𝐺𝑋 (𝑞) B

∫ 𝑞

−∞
𝐹𝑋 (𝑥) d𝑥 and 𝐺−1

𝑋 (𝛼) B
∫ 𝛼

0
𝐹−1
𝑋 (𝑝) d𝑝.

Recall Young’s inequality (15.7), i.e.,

𝑞 𝛼 ≤
∫ 𝑞

0
𝐹𝑋 (𝑥) d𝑥︸           ︷︷           ︸
𝐺𝑋 (𝑞)

+
∫ 𝛼

0
𝐹−1
𝑋 (𝑝) d𝑝︸             ︷︷             ︸

𝐺−1
𝑋
(𝛼)

.

1Recall from Remark 5.2 that A(𝑌 ) B − AV@R𝛼 (−𝑌 ) is an acceptability functional.
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From (ii) we deduce that 𝑞 𝛼 − 𝐺𝑋 (𝑞) ≤ 𝑞 𝛼 − 𝐺𝑌 (𝑞) and thus

𝐺−1
𝑋 (𝛼) = sup

𝑞∈R
{𝑞 𝛼 − 𝐺𝑋 (𝑞)} ≤ sup

𝑞∈R
{𝑞 𝛼 − 𝐺𝑌 (𝑞)} = 𝐺−1

𝑌 (𝛼).

The converse follows by the same reasoning.
As for (iv) recall that E 𝑢𝑞 (𝑋) ≤ E 𝑢𝑞 (𝑌 ) is equivalent to E(𝑞 − 𝑋)+ ≥ E(𝑞 − 𝑌 )+, which holds true

for every 𝑞 ∈ R. Thus 𝑞 + 1
1−𝛼 E(−𝑋 − 𝑞)+ ≥ 𝑞 +

1
1−𝛼 E(−𝑌 − 𝑞)+, from which assertion (iv) follows after

taking the infimum with respect to 𝑞 ∈ R.
As for the converse define 𝑞∗𝛼 B −V@R𝛼 (−𝑌 ) and recall that AV@R𝛼 (−𝑌 ) = −𝑞∗𝛼+ 1

1−𝛼 E(−𝑌 +𝑞
∗
𝛼)+.

It follows that

−𝑞∗𝛼 +
1

1 − 𝛼 E(−𝑋 + 𝑞
∗
𝛼)+ ≥ AV@R𝛼 (−𝑋) ≥ AV@R𝛼 (−𝑌 ) = −𝑞∗𝛼 +

1
1 − 𝛼 E

(
−𝑌 + 𝑞∗𝛼

)
+ ,

and thus E 𝑢𝑞∗𝛼 (𝑋) ≤ E 𝑢𝑞∗𝛼 (𝑌 ). The assertion follows now, as 𝑞∗𝛼 can be adjusted for every 𝛼 ∈
(0, 1). □

Remark 9.11. It is evident that 𝑋 ≼(1) 𝑌 implies 𝑋 ≼(2) 𝑌 , but the converse is not true: cf. Exercise 9.6
(Table 9.1b).

9.3 PORTFOLIO OPTIMIZATION

Let 𝑋 be a random variable understood as a benchmark (cf. (2.3) in the introduction). By Lemma 9.9,
the problem

maximize
in 𝑥 E 𝑥⊤𝜉

subject to 𝑋 ≼(2) 𝑥
⊤𝜉

𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0)

(9.2)

is a convex optimization problem.
The relation 𝑋 ≼𝑆𝑆𝐷 𝑥⊤𝜉 in (9.2) can be restated as

maximize
in 𝑥 E 𝑥⊤𝜉

subject to −AV@R𝛼 (−𝑋) ≤ −AV@R𝛼 (−𝑥⊤𝜉) for all 𝛼 ∈ (0, 1),
𝑥⊤ 1 ≤ 1C,
(𝑥 ≥ 0)

(9.3)

so that the problem has infinity many (uncountably many) constraints. We refer to Dentcheva and
Ruszczyński [2011] for a discussion and numerical implementation schemes.

9.4 PROBLEMS

Exercise 9.1. Show that

(1 − 𝛼) AV@R𝛼 (𝑌 ) − 𝛼 AV@R1−𝛼 (−𝑌 ) = E𝑌 .

Exercise 9.2. Compute the preferences E 𝑢𝛾 (𝑋) ≤ E 𝑢𝛾 (𝑌 ) for 𝑢𝛾 (𝑥) B 𝑥𝛾

𝛾
with 𝛾 = 0.5 and 𝛾 = 0.6

for the random variable specified in Table 4.2.

Exercise 9.3. Compute the preferences E 𝑢𝜆 (𝑋) for 𝑢𝜆 (𝑥) B 1 − 𝑒−𝜆𝑥 with selections of 𝜆 to get
different preferences (again Table 4.2).

Exercise 9.4. Show by using Theorem 9.4 that we have 𝑋 $(1) 𝑌 and 𝑋 $(2) 𝑌 for the random variable
in Table 4.2.
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9.4 PROBLEMS 63

probabilities 30 % 70 %

return 𝑌1 10 % 25 %
return 𝑌2 25 % 10 %

Table 9.2: Return of different portfolios 𝑌1 and 𝑌2

Exercise 9.5. Consider the random variables in Table 9.1a and verify that the set
{
𝑌 : 𝑋 ≼(1) 𝑌

}
is

not convex.

Exercise 9.6. Verify for the random variables in Table 9.1b that 𝑋 $(1) 𝑌 , but 𝑋 ≼(2) 𝑌 .

Exercise 9.7. Which portfolio is preferable in Table 9.2 if employing the utility function 𝑢(𝑥) = 𝑥𝜅 for
𝜅 ∈ (0, 1)?
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10Arbitrage

On ne peut vivre de frigidaires, de politique,
de bilans et de mots croisés, voyez-vous!
On ne peut plus vivre sans poésie, couleur
ni amour.

Antoine de Saint-Exupéry,
Lettre au général X, 30 juillet 1944

This section follows Cornuejols and Tütüncü [2006, Chapter 4].

Definition 10.1. Arbitrage is a trading strategy,

Type A: that has a positive cash flow and no risk of a later loss;

Type B: that requires no initial cash input, has no risk of a loss, and a positive probability of making
profits in the future: 𝑉0 = 0, 𝑃(𝑉𝑡 ≥ 0) = 1 and 𝑃(𝑉𝑡 > 0) > 0, where 𝑉𝑡 is the portfolio value at
time 𝑡.

10.1 TYPE A

Consider the exchange rates in Table 10.1. Note, that converting any (!) currency forwards and
backwards will result in a loss; for example

1 EUR = 1.12 US$ = 1.12 ∗ 0.892 EUR = 0.99904 EUR < 1 EUR,

etc.
Exchanging a sequence of currencies is a loss as well (in general), e.g.,

1 EUR = 121 JPY
= 121 ∗ 0.00701 GBP
= 121 ∗ 0.00701 ∗ 1.286 US$
= 121 ∗ 0.00701 ∗ 1.286 ∗ 0.892 EUR = 0.97 EUR < 1 EUR. (10.1)

However, the table allows for arbitrage (a free lunch of 1.76%), for example by converting

1 EUR = 1.12 US$
= 1.12 ∗ 0.777 GBP
= 1.12 ∗ 0.777 ∗ 142.6 JPY
= 1.12 ∗ 0.777 ∗ 142.6 ∗ 0.0082 EUR = 1.0176 EUR > 1 EUR. (10.2)

to: EUR US$ GBP JPY
1 EUR = 1.12 0.87 121.0
1 US$ = 0.892 0.777 110.7
1 GBP = 1.149 1.286 142.6
1 JPY = 0.0082 0.00900 0.00701

Table 10.1: Exchange rates
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66 ARBITRAGE

Investing 1C thus will result in a profit of EUR 0.0176 without risk. Note that (10.2) is actually the
reverse order of (10.1).

How can one detect an opportunity for arbitrage?

Define the variables

𝐸𝐷, etc.: quantity of EUR (i.e., number of EUR banknotes) changed to US$, etc.

𝐴: quantity of EUR generated by arbitrage.

Then we may consider the optimization problem

maximize 𝐴

subject to 0.892𝐷𝐸 − 𝐸𝐷 + 1.149𝑃𝐸 − 𝐸𝑃 + 0.0082𝑌𝐸 − 𝐸𝑌 ≥ 𝐴, (10.3)
1.12𝐸𝐷 − 𝐷𝐸 + 1.286𝑃𝐷 − 𝐷𝑃 + 0.009𝑌𝐷 − 𝐷𝑌 ≥ 0,
0.87𝐸𝑃 − 𝑃𝐸 + 0.777𝐷𝑃 − 𝑃𝐷 + 0.00701𝑌𝑃 − 𝑃𝑌 ≥ 0,
121𝐸𝑌 − 𝑌𝐸 + 110.7𝐷𝑌 − 𝑌𝐷 + 142.6𝑃𝑌 − 𝑌𝑃 ≥ 0, (10.4)
𝐸𝐷 + 𝐸𝑌 + 𝐸𝑃 ≤ 1000 EUR, (10.5)
𝐸𝐷 ≥ 0, 𝐷𝐸 ≥ 0, etc. and 𝐴 ≥ 0.

The constraints (10.3)–(10.4) are balance equations (conservation equations1) for EUR, USD, GBP
and JPY (resp.), while the budget constraint (10.5) limits the total, initial amount available. (0, . . . , 0) is
always a feasible solution with profit 𝐴 = 0 (convert nothing, no arbitrage). We have found an arbitrage
opportunity, if our solver returns a solution with objective 𝐴 > 0.

Indeed, this is possible here as 𝐸𝐷 = 1, 𝐷𝑃 = 1.12, 𝑃𝑌 = 1.12 ∗ 0.777 = 0.87024, 𝑌𝐸 = 1.12 ∗ 0.777 ∗
142.6 = 124.09 (all other are 𝐸𝑃 = 𝐸𝑌 = 𝐷𝐸 = · · · = 0) and 𝐴 = 0.0176 > 0 (cf. (10.2)) is feasible and
indeed the optimal solution (up to scaling with 1000, cf. (10.5)).

10.2 TYPE B

Consider as series of options 𝑖 = 1, . . . 𝑛 with payoff Ψ𝑖 (·), written on one single underlying with random
terminal price 𝑆. By investing the amount of 𝑥𝑖 in each option (we allow short-selling, i.e., 𝑥𝑖 ≤ 0 or
𝑥𝑖 ≥ 0), we obtain the random payoff

Ψ𝑥 (𝑆) =
𝑛∑︁
𝑖=1

𝑥𝑖 · Ψ𝑖 (𝑆).

For call and put options with strike 𝐾𝑖, the function Ψ𝑥 (·) is piecewise linear with kinks at the strikes 𝐾𝑖

and thus everywhere nonnegative (thus generating arbitrage) in the range of the underlying 𝑆 ∈ [0,∞),
if

Ψ𝑥 (0) ≥ 0, Ψ𝑥 (𝐾 𝑗 ) ≥ 0 for all 𝑗 = 1, . . . , 𝑛 and Ψ′𝑥 (𝐾𝑚𝑎𝑥) ≥ 0,

where 𝐾𝑚𝑎𝑥 B max 𝑗=1,...𝑛 𝐾 𝑗 is the largest of all strikes.

1Erhaltungsgleichungen, in German
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Assume the price of option 𝑖 is 𝑝𝑖 and solve the linear problem

minimize𝑥∈R𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 𝑝𝑖 (10.6)

subject to
𝑛∑︁
𝑖=1

𝑥𝑖 · Ψ𝑖 (0) ≥ 0,

𝑛∑︁
𝑖=1

𝑥𝑖 · Ψ𝑖 (𝐾 𝑗 ) ≥ 0 for 𝑗 = 1, . . . , 𝑛 and

𝑛∑︁
𝑖=1

𝑥𝑖 ·
(
Ψ𝑖 (𝐾𝑚𝑎𝑥 + 1) − Ψ𝑖 (𝐾𝑚𝑎𝑥)

)
≥ 0.

Then there is type B arbitrage, if the objective (10.6) ≤ 0 or unbounded; no arbitrage is possible,
if (10.6) > 0.

Example 10.2. How should one modify problem (10.6) to incorporate interest, for example because
the options are exercised in 1 year, e.g.?

Version: November 29, 2023
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11The Flowergirl Problem1

Sell in May and go away.

investment strategy

11.1 THE FLOWERGIRL PROBLEM

Example 11.1 (The flowergirl problem, cf. [Pflug and Pichler, 2014]). A flowergirl has to decide how
many flowers she orders from the wholesaler.

⊲ She

– buys for the price 𝑏 per flower and

– sells them for a price 𝑠 > 𝑏.

– The random demand is 𝜉.

– If the demand is higher than the available stock, she may procure additional flowers for an
extra price 𝑒 > 𝑏.

– Unsold flowers may be returned for a price of 𝑟 < 𝑏

⊲ What is the optimal order quantity 𝑥∗, if the expected profit should be maximized?

We formulate the profit as negative costs (expenses minus revenues) are

total costs B initial purchase = 𝑏 𝑥

− revenue from sales − 𝑠 𝜉
+ extra procurement costs + 𝑒 [𝜉 − 𝑥]+
− revenue from returns. − 𝑟 [𝜉 − 𝑥]−;

here, [𝑎]+ = max {𝑎, 0} is the positive part of 𝑎 and [𝑎]− = max {−𝑎, 0} is the negative part of 𝑎. Since
𝑎 = [𝑎]+ − [𝑎]−, the cost function may be rewritten as

𝑄(𝑥, 𝜉) = (𝑏 − 𝑟) 𝑥 − (𝑠 − 𝑟) 𝜉 + (𝑒 − 𝑟) [𝜉 − 𝑥]+

= (𝑏 − 𝑟)
{
𝑥 + 1

1 − 𝑒−𝑏
𝑒−𝑟
[𝜉 − 𝑥]+

}
− (𝑠 − 𝑟) 𝜉.

Since AV@R𝛼 (𝑌 ) = min
{
𝑥 + 1

1−𝛼 E[𝑌 − 𝑥]+ : 𝑥 ∈ R
}

(see Average Value-at-Risk below) it follows that

min
𝑥∈R

E𝑄(𝑥, 𝜉) = (𝑏 − 𝑟) AV@R𝛼 (𝜉) − (𝑠 − 𝑟) E 𝜉,

where 𝛼 B 𝑒−𝑏
𝑒−𝑟 .

To determine the order quantity consider the function

𝑥 ↦→ (𝑏 − 𝑟)
{
𝑥 + 1

1 − 𝑒−𝑏
𝑒−𝑟

E[𝜉 − 𝑥]+

}
− (𝑠 − 𝑟)E 𝜉 (11.1)

1Also: Newsboy, or Newsvendor problem
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70 THE FLOWERGIRL PROBLEM2

and its derivative

0 = (𝑏 − 𝑟)
{
1 − 1

1 − 𝛼 E1𝜉>𝑥

}
= (𝑏 − 𝑟)

{
1 − 1

1 − 𝛼𝑃 (𝜉 > 𝑥)
}
.

Note next that this is equivalent to 𝛼 = 𝑃(𝜉 ≤ 𝑥). The optimal procurement quantity of the flowergirl
thus has the explicit expression

𝑥∗ = V@R𝛼 (𝜉) = V@R 𝑒−𝑏
𝑒−𝑟
(𝜉) = 𝐹−1

𝜉

(
𝑒 − 𝑏
𝑒 − 𝑟

)
(see, e.g., Pflug and Römisch [2007, page 56]).

11.2 PROBLEMS

Exercise 11.1. Show that (11.1) is convex.
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12Duality For Convex Risk Measures

Risk measures, as introduced in Section 5, are convex. They hence have a representation R(𝑌 ) =
sup {𝑥∗ (𝑧) − R∗ (𝑧∗) : 𝑧∗ ∈ 𝑋∗}. To this end we specify the domain, its dual and the inner product 𝑥∗ (𝑧).

Typical candidates for the domain of risk measures are 𝐿 𝑝 spaces, particularly 𝐿∞. Recall that the
duals are 𝐿𝑞. Note further that the canonical inner product for the 𝐿 𝑝 − 𝐿𝑞-duality is

𝐿 𝑝 × 𝐿𝑞 ∋ (𝑌, 𝑍) ↦→ E𝑌𝑍.

Proposition 12.1. Suppose that the risk measure R : 𝐿 𝑝 → R∪{∞} is positively homogeneous. Then
R∗ (𝑍) ∈ {0,∞}.

Proof. Note that

R∗ (𝑍) = sup
𝑌 ∈𝐿𝑝

E𝑌𝑍 − R(𝑌 )

= sup
𝜆∈R

𝜆 · sup
𝑌 ∈𝐿𝑝

(E𝑌𝑍 − R(𝑌 )) ∈ {0,∞} .

□

Proposition 12.2. Suppose that the risk measure R : 𝐿 𝑝 → R ∪ {∞} is translation equivariant. Then
R∗ (𝑍) = ∞ unless E 𝑍 = 1.

Proof.

R∗ (𝑍) = sup
𝑌 ∈𝐿𝑝

E𝑌𝑍 − R(𝑌 )

= sup
𝑌 ∈𝐿𝑝

sup
𝑐∈R
(E(𝑌 + 𝑐)𝑍 − R(𝑌 + 𝑐)) = sup

𝑌 ∈𝐿𝑝

E(𝑌 )𝑍 − R(𝑌 ) + sup
𝑐∈R

𝑐 (E 𝑍 − 1) ,

from which the assertion follows. □

Proposition 12.3. Suppose that the risk measure R : 𝐿 𝑝 → R ∪ {∞} is monotone. Then R∗ (𝑍) = ∞
unless 𝑍 ≥ 0 almost surely.

Proof. Suppose that 𝑃(𝑍 ≤ 0) > 0. Set 𝐴 B {𝑍 ≤ 0} and 𝑌0 B 1𝐴. Note, that −𝑌0 ≤ 0, hence
R(−𝑌0) ≤ R(0) and

R∗ (𝑍) = sup
𝑌 ∈𝐿𝑝

E𝑌𝑍 − R(𝑌 )

≥ sup
𝜆<0
(E𝜆𝑌0𝑍 − R(𝜆𝑌0)) ≥ sup

𝜆<0
E𝜆 1𝐴 𝑍 − R(0) = ∞.

Hence, 𝑍 ≥ 0 a.s. □

Definition 12.4. The support function of a set Z is 𝑠Z (𝑌 ) B sup𝑍∈Z E𝑌𝑍.

Theorem 12.5. Define Z B {𝑍 : R∗ (𝑍) < ∞}.
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13Stochastic Optimization: Terms, and Definitions, and the
Deterministic Equivalent

Kein Geld ist vorteilhafter angewandt als
das, um welches wir uns haben prellen
lassen; denn wir haben dafür unmittelbar
Klugheit eingehandelt.

Arthur Schopenhauer, 1788–1860

13.1 EXPECTED VALUE OF PERFECT INFORMATION (EVPI) AND VALUE OF

STOCHASTIC SOLUTION (VSS)

The expected value of perfect information (EVPI) is the price that one would be willing to pay in order
to gain access to perfect information, that is to say the difference SP – wait-and-see,

E
[
min
𝑥
𝑓 (𝑥, 𝜉)

]
︸              ︷︷              ︸

wait-and-see

≤ min
𝑥
E 𝑓 (𝑥, 𝜉)︸           ︷︷           ︸
SP

≤ E 𝑓 (𝑥, 𝜉). (13.1)

Both inequalities hold always.
For 𝑓 (𝑥, ·) concave, Jensen’s inequality continues the sequence of inequalities above with

E 𝑓 (𝑥, 𝜉) ≤ 𝑓 (𝑥,E 𝜉) ,

drawing some attention to the strategy 𝑥0 ∈ arg min 𝑓 (𝑥,E 𝜉) (if this exists at all): Given this reference
strategy 𝑥0 the distance RHS – SP in (13.1) is called Value of the Stochastic Solution (VSS). However,
in a general context 𝑓 (𝑥, ·) are rather convex and no comparison of 𝑓 (𝑥0,E 𝜉) with (SP) is possible
in (13.1) for this case (counter-example: Farmer Ted).

13.2 THE FARMER TED

See Jeff’s lecture, http://homepages.cae.wisc.edu/∼linderot/classes/ie495/lecture2.pdf.

13.3 THE RISK-NEUTRAL PROBLEM

Two-stage stochastic linear program with fixed recourse:

minimize 𝑐⊤𝑥 + E𝜉

[
𝑞⊤
𝜉
𝑦 𝜉

]
= 𝑐 (𝑥) + EQ (𝑥, ·)

(in 𝑥 and 𝑦)
subject to 𝐴𝑥 = 𝑏 1st stage constraints

𝑇𝜉 𝑥 +𝑊𝑦 𝜉 = ℎ𝜉 for a.e. 𝜉 ∈ Ξ 2nd stage constraints
𝑥 ∈ 𝑋, 𝑦 𝜉 ∈ 𝑌 for a.e. 𝜉 ∈ Ξ

(13.2)

Note, that minimization is done over a deterministic 𝑥 and a random variable 𝑦.

73

http://homepages.cae.wisc.edu/~linderot/classes/ie495/lecture2.pdf


74 STOCHASTIC OPTIMIZATION: TERMS, AND DEFINITIONS, AND THE DETERMINISTIC EQUIVALENT

13.4 GLOSSARY/ CONCEPT/ DEFINITIONS:

⊲
(
𝑥, 𝑦 𝜉

)
↦→ 𝑐⊤𝑥 + E𝜉

[
𝑞⊤𝑦 𝜉

]
is the objective function;

– 𝑥 is called here-and-now decision (solution), 1st stage decision;

– the (optimal) random variable 𝑦 𝜉 is called wait-and-see decision (solution), 2𝑛𝑑 stage deci-
sion or recourse action;

⊲ 𝑐 (deterministic) costs;

⊲ 𝑞: vector of recourse costs, which is sometimes considered random as well;

⊲ 𝑊 is the recourse matrix. Fixed recourse is given, if – as in (13.2) – 𝑊 = 𝑊 (𝜉) (i.e., the matrix
is deterministic/ nonrandom);

⊲ 𝑇𝜉 are sometimes called technology matrices;

⊲ 𝑌 : feasible set of recourse actions;

⊲ the function

𝑣𝑞 (𝑧) B
{

min𝑦∈𝑌 {𝑞⊤𝑦 : 𝑊𝑦 = 𝑧} if feasible
+∞ else

is called second stage value function or recourse (penalty) function;

⊲ then define
Q (𝑥, 𝜉) B 𝑣

(
ℎ𝜉 − 𝑇𝜉 𝑥

)
= min

𝑦∈𝑌

{
𝑞⊤𝑦 : 𝑊𝑦 = ℎ𝜉 − 𝑇𝜉 𝑥

}
,

(notice: 𝑥 ↦→ Q (𝑥, 𝜉) is lsc.)

⊲ and
Q (𝑥) B E𝜉 [Q (𝑥, 𝜉)] = E𝜉

[
𝑣
(
ℎ𝜉 − 𝑇𝜉 𝑥

) ]
is called expected value function, or expected minimum recourse function.

⊲ A recourse is relatively complete if 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 implies Q (𝑥, 𝜉) < ∞ for a.e. 𝜉 ∈ Ξ.

⊲ A recourse is complete if ∀𝑧 : 𝑣 (𝑧) < ∞ (i.e., there always exists a feasible recourse action,
∀𝑧 ∃𝑦 : 𝑊𝑦 = 𝑧). As a consequence, Q (𝑥, 𝜉) < ∞.

13.5 KKT FOR (13.2)

⊲ 𝑣 is a LP itself and consequently, from duality,

𝑣 (𝑧) = min
𝑦≥0

{
𝑞⊤𝑦 : 𝑊𝑦 = 𝑧

}
= max

𝜆

{
𝜆⊤𝑧 : 𝜆⊤𝑊 ≤ 𝑞⊤

}
(13.3)

where additionally 𝜆∗⊤ ∈ 𝜕𝑣 (𝑧) (𝜆∗ being the optimal (arg max) solution of the dual problem).

⊲ From the chain rule, 𝜕𝑥Q (𝑥, 𝜉) = 𝜕𝑥𝑣
(
ℎ𝜉 − 𝑇𝜉 𝑥

)
∋ −𝜆∗⊤

𝜉
𝑇𝜉 .

⊲ Suppose further the probability space is discrete, that is P =
∑

𝜉 ∈Ξ 𝑝 𝜉 · 𝛿𝜉 (𝑝 𝜉 B P [{𝜉}]), then

Q (𝑥) = E𝜉 [Q (𝑥, 𝜉)] =
∑︁
𝜉 ∈Ξ

𝑝 𝜉Q (𝑥, 𝜉) . (13.4)

For 𝑢⊤
𝜉
B −𝜆∗⊤

𝜉
𝑇𝜉 ∈ 𝜕𝑥Q (𝑥, 𝜉) thus 𝑢⊤ B E𝜉

[
𝑢⊤
𝜉

]
=

∑
𝜉 ∈Ξ 𝑝 𝜉𝑢

⊤
𝜉
∈ 𝜕Q (𝑥).
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KKT, applied to the problem (13.2):
𝑥∗ is an optimal solution of (13.2) iff ∃𝜆∗, 𝜇∗ ≥ 0 st.

(i) 0 ∈ 𝑐⊤ + 𝜕Q (𝑥∗) + 𝜆∗⊤𝐴 − 𝜇∗⊤,

(ii) 𝜇∗⊤𝑥∗ = 0.

13.6 DETERMINISTIC EQUIVALENT

Given the situation, that Ξ consists of finitely many (𝑆 B |Ξ|) atoms, Equation (13.2) can be reformu-
lated in its deterministic equivalent, i.e.

minimize 𝑐⊤𝑥+ 𝑝 𝜉1𝑞
⊤𝑦 𝜉1+ 𝑝 𝜉2𝑞

⊤𝑦 𝜉2+ . . . +𝑝 𝜉𝑆𝑞
⊤𝑦 𝜉𝑆

(in x and y)
subject to 𝐴𝑥 = 𝑏

𝑇𝜉1𝑥 +𝑊𝑦 𝜉1 +0 . . . +0 = ℎ𝜉1

𝑇𝜉2𝑥 +0 +𝑊𝑦 𝜉2

. . .
... = ℎ𝜉2

...
...

. . .
. . . +0

...
...

𝑇𝜉𝑆𝑥 +0 . . . +0 +𝑊𝑦𝑆 = ℎ𝜉𝑆
𝑥 ∈ 𝑋 𝑦 𝜉1 ∈ 𝑌 𝑦 𝜉2 ∈ 𝑌 𝑦 𝜉𝑆 ∈ 𝑌

(13.5)

where 𝑝 𝜉 B P [{𝜉}].
NB: (13.5) is a big LP (often too big, indeed), but linear and sparse. The size increases, as the

number of atoms (scenarios) 𝑆 increases. However, we expect that a lot of these constraints are
redundant and we want to exploit this presumption.

13.7 L-SHAPED METHOD

i.e., Bender’s decomposition, applied to (13.5).
Let 𝜆∗

𝜉
(𝑥)⊤ ∈ arg max𝜆

{
𝜆⊤

(
ℎ𝜉 − 𝑇𝜉 𝑥

)
: 𝜆⊤𝑊 ≤ 𝑞

}
be an optimal, dual solution to the recourse

problem in scenario 𝜉, then 𝑢 (𝑥)⊤ B −∑
𝜉 𝑝 𝜉𝜆

∗⊤
𝜉
(𝑥) 𝑇𝜉 ∈ 𝜕Q (𝑥). Thus,

Q (𝑥) + 𝑢 (𝑥)⊤ (𝑥 − 𝑥) ≤ Q (𝑥) ,

hence 𝑥 ↦→ Q (𝑥) + 𝑢 (𝑥)⊤ (𝑥 − 𝑥) is a supporting hyperplane, supporting Q from below. So is the
bundle,

Q𝐿 (𝑥) B max
𝑙∈𝐿
Q (𝑥𝑙) + 𝑢⊤𝑙 (𝑥 − 𝑥𝑙) ≤ Q (𝑥)

(where 𝑢𝑙 B 𝑢 (𝑥𝑙)).

13.8 FARKAS’ LEMMA

Lemma 13.1 (A Theorem on the Alternative). Exactly one of these following two statements holds
true:

⊲ There exists 𝑦 such that 𝑊𝑦 = 𝑧 and 𝑦 ≥ 0;

⊲ There exists 𝜎 such that 𝜎⊤𝑊 ≤ 0 and 𝜎⊤𝑧 > 0.
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13.9 L-SHAPED ALGORITHM.

The initial problem (13.2) can be restated equivalently, getting rid of the random variable in the objec-
tive function at the same time, as

(13.2) ⇐⇒


minimize (in x) 𝑐⊤𝑥 + Q (𝑥)
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝑋
⇐⇒ min

𝑥∈𝑋

{
𝑐⊤𝑥 + Q (𝑥) : 𝐴𝑥 = 𝑏

}
⇐⇒


minimize (in x, 𝜃) 𝑐⊤𝑥 + 𝜃
subject to 𝐴𝑥 = 𝑏,

Q (𝑥) ≤ 𝜃,
𝑥 ∈ 𝑋

Algorithm 13.1 is based on the previous observation of supporting hyperplanes and the latter, equiva-
lent formulation:

13.10 VARIANTS OF THE ALGORITHM.

⊲ Multicut: In view of linearity of (13.4) and (13.7) we may equally well start with the set

B B {(𝑥, 𝜃1, . . . 𝜃𝑆) : 𝑥 ≥ 0, 𝐴𝑥 = 𝑏, 𝜃𝑖 ≥ 𝜃0}

and solve the problem

min

{
𝑐⊤𝑥 +

∑︁
𝜉

𝑝 𝜉 𝜃 𝜉 : (𝑥, 𝜃1, . . . , 𝜃𝑆) ∈ B
}

instead of (13.6) – the problem is said to be separable into scenario sub-problems.

– The abort criterion reads: Q (𝑥) ≤ ∑
𝜉 𝑝 𝜉 𝜃 𝜉?

– The feasibility cut (singular!) remains unchanged, as they do not involve 𝜃s.

– The new optimality cuts (plural!) read

B ← B ∩
⋂

𝜉 : Q( �̂�, 𝜉 )>𝜃𝜉

{(
𝑥, 𝜃1, . . . 𝜃 𝜉 . . . , 𝜃𝑆

)
: 𝜃 𝜉 ≥ Q (𝑥, 𝜉) + �̂�⊤𝜉 (𝑥 − 𝑥)

}
.

⊲ Chunked multicut: The same idea as multicut, but with a few 𝜉-clusters instead of the entire Ξ:
Ξ = {𝜉1, . . . 𝜉𝑆} = ¤

⋃𝐶

𝑘=1𝑆𝑘 . Define Q[𝑆𝑘 ] (𝑥) B
∑

𝜉 ∈𝑆𝑘
𝑝 𝜉Q (𝑥, 𝜉) and proceed as for the multicut

version.

⊲ Numerical experiments show that the algorithm is sometimes flipping around without improving
the solution significantly. In order to stop this misbehavior search for an improved local solution,
by modifying the objective function as follows:

– Regularization

min

{
𝑐⊤𝑥 +

∑︁
𝑘

𝑝𝑆𝑘
𝜃𝑘 : (𝑥, 𝜃1, . . . , 𝜃𝐶 ) ∈ B,

𝑥 − 𝑥𝑖 ≤ Δ𝑖

}
– Regularized decomposition method

min

{
𝑐⊤𝑥 +

∑︁
𝑘

𝑝𝑆𝑘
𝜃𝑘 +

𝑥 − 𝑥𝑖2

2𝜌
: (𝑥, 𝜃1, . . . , 𝜃𝐶 ) ∈ B

}
rough draft: do not distribute
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Algorithm 13.1 L-Shaped Method

(i) Find 𝜃0 such that 𝜃0 ≤ Q (𝑥) (for all 𝑥) and define

B B {(𝑥, 𝜃) : 𝑥 ≥ 0, 𝐴𝑥 = 𝑏, 𝜃 ≥ 𝜃0} .

(B – to some extent – characterizes the epi-graph of the approximate Q𝐿 and we have B ⊇ epiQ;
if not available then choose 𝜃0 B −∞.)

(ii) Solve the problem
min

{
𝑐⊤𝑥 + 𝜃 : (𝑥, 𝜃) ∈ B

}
(13.6)

and call the solution found
(
𝑥, 𝜃

)
.

(iii) Compute Q (𝑥).

(a) If Q (𝑥) ≤ 𝜃 < ∞, then 𝑥 is the best (i.e., minimal) solution of our original problem.

(b) Optimality cut : if 𝜃 < Q (𝑥) < ∞, then put

�̂�⊤ B −
∑︁
𝜉 ∈Ξ

𝑝 𝜉𝜆
∗
𝜉 (𝑥)

⊤ 𝑇𝜉 ∈ 𝜕Q (𝑥) (13.7)

and send the additional hyperplane, that is

B ← B ∩
{
(𝑥, 𝜃) : 𝜃 ≥ Q (𝑥) + �̂�⊤ (𝑥 − 𝑥)

}
.

Continue with step (ii).

(c) Feasibility cut : It holds that Q (𝑥) = ∞. In this case there exists 𝜉, such that 𝑣
(
ℎ𝜉 − 𝑇𝜉 𝑥

)
=

∞, i.e.,
{
𝑞⊤𝑦 : 𝑊𝑦 = ℎ𝜉 − 𝑇𝜉 𝑥

}
= {}, i.e.

{
𝑦 : 𝑊𝑦 = ℎ𝜉 − 𝑇𝜉 𝑥

}
= {}. Hence, ℎ𝜉 − 𝑇𝜉 𝑥 is not

feasible for 𝑣 and thus 𝑥 is not feasible for Q. Thus, by Farkas’ lemma (Lemma 13.1), find
an appropriate �̂�, such that �̂�⊤𝑊 ≤ 0 and �̂�⊤

(
ℎ𝜉 − 𝑇𝜉 𝑥

)
> 0. To exclude this particular 𝑥

for the future send the additional condition

B ← B ∩
{
(𝑥, 𝜃) : �̂�⊤

(
ℎ𝜉 − 𝑇𝜉 𝑥

)
≤ 0

}
and continue with step (ii).
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Additional controls on Δ and 𝜌 are available here to (intuitively) enforce a direction of (signif-
icantly) good descent. The same techniques as for (unconstrained), nonlinear optimization
apply here.

⊲ Parallelizing: 𝑢⊤
𝜉
B −𝜆∗⊤

𝜉
𝑇𝜉 ∈ 𝜕Q (𝑥, 𝜉) has to be evaluated, which is an LP for all 𝜉 ∈ Ξ (or

chunks). This work can be parallelized, reducing (optimistically) the total time by the factor
1

# Computers .

⊲ Computing 𝜆∗⊤
𝜉
∈ 𝜕𝑣

(
ℎ𝜉 − 𝑇𝜉 𝑥

)
is almost the same LP for all 𝜉 ∈ Ξ, but without involving 𝑆 as

a dimension: the constrains of the dual function stay unchanged, only the objective function
varies (if 𝑞 is nonrandom). The idea of bunching is to avoid all those evaluations and instead
build a basis of representative directions such that 𝜆∗⊤ = 𝑞⊤

𝐵
𝑊−1

𝐵
(cf. (13.3)). This is particularly

advantageous if dimΞ ≫ dim 𝑞. The statement is based on the following

– Theorem: Let 𝑥 be optimal for (LP’),

* then there is a basis such that 𝑞⊤
𝑁
≥ 𝑞⊤

𝐵
𝑊−1

𝐵
𝑊𝑁 for the appropriate decomposition

𝑊 = (𝑊𝐵,𝑊𝑁 ) etc.;

* moreover, 𝜆∗⊤ B 𝑞⊤
𝐵
𝑊−1

𝐵
is optimal for (DP’).
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14Co- and Antimonotonicity

Ich habe elende Millionäre und glückliche
Tagelöhner gesehen.

Johann Nestroy, 1801–1862

14.1 REARRANGEMENTS

Theorem 14.1 (Generalized Chebyshev’s sum inequality). Let 𝑝𝑖 ≥ 0 with
∑𝑛

𝑖=1 𝑝𝑖 = 1. Then, for
𝑥1 ≤ 𝑥2 · · · ≤ 𝑥𝑛 and 𝑦1 ≤ 𝑦2 · · · ≤ 𝑦𝑛 it holds that(

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖

)
·
(

𝑛∑︁
𝑖=1

𝑝𝑖𝑦𝑖

)
≤

𝑛∑︁
𝑖=1

𝑝𝑖𝑥𝑖𝑦𝑖 .

Proof. Note that
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑝 𝑗 𝑝𝑘 (𝑥 𝑗 − 𝑥𝑘) (𝑦 𝑗 − 𝑦𝑘)︸                  ︷︷                  ︸
≥0

≥ 0,

as the components are increasing. Hence, by expanding,

0 ≤
𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝑝 𝑗 𝑝𝑘𝑥 𝑗 𝑦 𝑗 − 𝑝 𝑗 𝑝𝑘𝑥 𝑗 𝑦𝑘 − 𝑝 𝑗 𝑝𝑘𝑥𝑘𝑦 𝑗 + 𝑝 𝑗 𝑝𝑘𝑥𝑘𝑦𝑘 = 2
𝑛∑︁
𝑗=1

𝑝 𝑗𝑥 𝑗 𝑦 𝑗 − 2
𝑛∑︁
𝑗=1

𝑝 𝑗𝑥 𝑗

𝑛∑︁
𝑘=1

𝑝𝑘𝑦𝑘 ,

from which the result is immediate. □

Theorem 14.2 (Chebyshev’s sum inequality, the continuous version). Let 𝑓 , 𝑔 : [0, 1] → R be nonde-
creasing. Then it holds that ∫ 1

0
𝑓 (𝑥) d𝑥 ·

∫ 1

0
𝑔(𝑥) d𝑥 ≤

∫ 1

0
𝑓 (𝑥)𝑔(𝑥) d𝑥.

Theorem 14.3 (The rearrangement inequality). Let 𝑥1 ≤ 𝑥2 · · · ≤ 𝑥𝑛 and 𝑦1 ≤ 𝑦2 · · · ≤ 𝑦𝑛. Then

𝑛∑︁
𝑖=1

𝑥𝑛+1−𝑖𝑦𝑖 ≤
𝑛∑︁
𝑖=1

𝑥𝜎 (𝑖) 𝑦𝑖 ≤
𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 (14.1)

for every permutation 𝜎 : {1, . . . , 𝑛} → {1, . . . , 𝑛}.

Proof. Suppose the permutation 𝜎 maximizing (14.1) were not the identity. Then find the smallest 𝑗
so that 𝜎( 𝑗) ≠ 𝑗 . Note, that 𝜎( 𝑗) > 𝑗 and there is 𝑘 > 𝑗 so that 𝜎( 𝑗) = 𝑘. Now

𝑗 < 𝑘 =⇒ 𝑦 𝑗 ≤ 𝑦𝑘 and 𝑗 < 𝜎( 𝑗) =⇒ 𝑥 𝑗 ≤ 𝑥𝜎 ( 𝑗 )

and thus 0 ≤
(
𝑥𝜎 ( 𝑗 ) − 𝑥 𝑗

) (
𝑦𝑘 − 𝑦 𝑗

)
, i.e.,

𝑥𝜎 ( 𝑗 ) 𝑦 𝑗 + 𝑥 𝑗 𝑦𝑘 ≤ 𝑥 𝑗 𝑦 𝑗 + 𝑥𝜎 ( 𝑗 ) 𝑦𝑘 . (14.2)
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Define the permutation exchanging the values 𝜎( 𝑗) and 𝜎(𝑘), i.e., 𝜏(𝑖) B


𝑖 for 𝑖 ∈ {1, . . . , 𝑗}
𝜎( 𝑗) if 𝑖 = 𝑘
𝜎(𝑖) else

and

observe that the right hand side of (14.2) is better for 𝜏(·) and 𝜏( 𝑗) = 𝑗 . It follows that 𝜎(·) is the
identity. □

14.2 COMONOTONICITY

Definition 14.4. The random variables 𝑋𝑖, 𝑖 = 1, . . . , 𝑛 are comonotonic (aka. nondecreasing), if(
𝑋𝑖 (𝜔) − 𝑋𝑖 (�̃�)

)
·
(
𝑋 𝑗 (𝜔) − 𝑋 𝑗 (�̃�)

)
≥ 0 for all 𝜔, �̃� ∈ 𝑁 and 𝑖, 𝑗 ≤ 𝑛 (14.3)

and anti-monotone, if(
𝑋𝑖 (𝜔) − 𝑋𝑖 (�̃�)

)
·
(
𝑋 𝑗 (𝜔) − 𝑋 𝑗 (�̃�)

)
≤ 0 for all 𝜔, �̃� ∈ 𝑁 and 𝑖, 𝑗 ≤ 𝑛,

where 𝑃(𝑁) = 1.

Theorem 14.5 (Cf. Denneberg [1994]). Let 𝑋 and 𝑌 be R-valued random variables. The following are
equivalent:

(i) 𝑋 and 𝑌 are comonotonic;

(ii) there exists an R-valued random variable 𝑍 and nondecreasing functions 𝑣, 𝑤 : R→ R so that

𝑋 = 𝑣(𝑍) and 𝑌 = 𝑤(𝑍);

(iii) there are nondecreasing functions 𝑣, 𝑤 : R→ R so that

𝑋 = 𝑣(𝑋 + 𝑌 ) and 𝑌 = 𝑤(𝑋 + 𝑌 ).

Remark. The subsequent proof verifies that 𝑣 and 𝑤 are monotone on the range of 𝑍.

Proof. (𝑖) =⇒ (𝑖𝑖𝑖): Define 𝑍 B 𝑋 + 𝑌 . For 𝑧 = 𝑍 (𝜔) define 𝑣(𝑧) B 𝑋 (𝜔) and 𝑤(𝑧) B 𝑌 (𝜔). To
see that 𝑣(·) and 𝑤(·) are well-defined choose 𝜔1, 𝜔2 ∈ 𝑍−1 ({𝑧}), then 𝑋 (𝜔1) + 𝑌 (𝜔1) = 𝑍 (𝜔1) = 𝑧 =
𝑍 (𝜔2) = 𝑋 (𝜔2) + 𝑌 (𝜔2), and thus

𝑋 (𝜔1) − 𝑋 (𝜔2) = −
(
𝑌 (𝜔1) − 𝑌 (𝜔2)

)
. (14.4)

If 𝑋 (𝜔1)−𝑋 (𝜔2) ≤ 0, then𝑌 (𝜔1)−𝑌 (𝜔2) ≥ 0 by (14.4) and𝑌 (𝜔1)−𝑌 (𝜔2) ≤ 0 by comonotonicity, thus
𝑌 (𝜔1) − 𝑌 (𝜔2) = 0 and consequently 𝑋 (𝜔1) = 𝑋 (𝜔2) by (14.4). Hence, 𝑣(·) and 𝑤(·) are well-defined.

To see that 𝑣(·) and 𝑤(·) are monotonic pick 𝜔1, 𝜔2 ∈ Ω with 𝑧1 B 𝑍 (𝜔1) ≤ 𝑍 (𝜔2) =: 𝑧2, then we
find

𝑋 (𝜔1) − 𝑋 (𝜔2) ≤ −
(
𝑌 (𝜔1) − 𝑌 (𝜔2)

)
. (14.5)

If 𝑋 (𝜔1) > 𝑋 (𝜔2), then 𝑌 (𝜔1) < 𝑌 (𝜔2) by (14.5), which is in contrast to our assumption on comono-
tonicity and hence 𝑋 (𝜔1) ≤ 𝑋 (𝜔2); similarly we find that 𝑌 (𝜔1) ≤ 𝑌 (𝜔2). It follows that

𝑣(𝑧1) = 𝑋 (𝜔1) ≤ 𝑋 (𝜔2) = 𝑣(𝑧2) and
𝑤(𝑧1) = 𝑌 (𝜔1) ≤ 𝑌 (𝜔2) = 𝑤(𝑧2),

i.e., 𝑣(·) and 𝑤(·) are nondecreasing.
We shall verify next that 𝑣(·) and 𝑤(·) are Lipschitz with constant 1. Note that we have 𝑣(𝑧) +𝑤(𝑧) =

𝑋 (𝜔) + 𝑌 (𝜔) = 𝑍 (𝜔) = 𝑧.
If 𝑧1 ≤ 𝑧2, then

𝑧2 − 𝑧1 = 𝑣(𝑧2) + 𝑤(𝑧2) − 𝑣(𝑧1) − 𝑤(𝑧1) ≥ 𝑣(𝑧2) − 𝑣(𝑧1) = |𝑣(𝑧2) − 𝑣(𝑧1) |

rough draft: do not distribute
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by monotonicity of 𝑤(·); if 𝑧1 ≥ 𝑧2, then

𝑧1 − 𝑧2 = 𝑣(𝑧1) + 𝑤(𝑧1) − 𝑣(𝑧2) − 𝑤(𝑧2) ≥ 𝑣(𝑧1) − 𝑣(𝑧2) = |𝑣(𝑧2) − 𝑣(𝑧1) | ,

i.e., 𝑣(·) and 𝑤(𝑧) = 𝑧 − 𝑣(𝑧) are both Lipschitz on 𝑍 (Ω).
Finally note that a Lipschitz function 𝑓 (·) with Lipschitz constant 𝐿 can be extended to the entire

domain by setting 𝑓 (𝑧) B inf𝑡∈𝑍 (Ω) 𝑓 (𝑡) + 𝐿 |𝑡 − 𝑧 | while keeping the Lipschitz constant 𝐿 (cf. Exer-
cise 14.1).
(𝑖𝑖𝑖) =⇒ (𝑖𝑖) is evident by choosing the random variable 𝑍 B 𝑋 + 𝑌 .
(𝑖𝑖) =⇒ (𝑖): Let 𝜔1, 𝜔2 ∈ Ω. To prove (i) we may assume that 𝑋 (𝜔1) > 𝑋 (𝜔2), i.e., by assumption,

𝑣(𝑍 (𝜔1)) > 𝑣(𝑍 (𝜔2)). As 𝑣(·) is monotone we deduce that 𝑍 (𝜔1) ≥ 𝑍 (𝜔2). As 𝑤(·) is monotone as well
it follows that 𝑌 (𝜔1) = 𝑤(𝑍 (𝜔1)) > 𝑤(𝑍 (𝜔2)) = 𝑌 (𝜔2) and hence (i), i.e., 𝑋 and 𝑌 are comonotonic. □

Corollary 14.6. The random variables 𝑋𝑖 are comonotonic iff

(𝑋1, . . . 𝑋𝑛) ∼
(
𝐹−1
𝑋1
(𝑈), . . . , 𝐹−1

𝑋𝑛
(𝑈)

)
for one uniform random variable 𝑈.

Proof. It is evident that
(
𝐹−1
𝑋1
(𝑈), . . . , 𝐹−1

𝑋𝑛
(𝑈)

)
are comonotonic, as 𝐹−1

𝑋𝑖
(·) are nondecreasing and

𝐹−1
𝑋𝑖
(𝑈) ∼ 𝑋𝑖.
As for the converse apply Theorem 14.5 (ii) and (4.3). Then 𝑋 = 𝐹−1

𝑋
(𝑈) = 𝑢 ◦ 𝐹−1

𝑍
(𝑈). □

Proposition 14.7 (Upper Fréchet1 bound). If 𝑋𝑖 are pairwise comonotonic, then

𝐹𝑋1 ,...𝑋𝑛
(𝑥1, . . . , 𝑥𝑛) = min

𝑖=1,...𝑛
𝐹𝑋𝑖
(𝑥𝑖).

Proof. By Theorem 14.5 (ii) we have

𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) = 𝑃(𝑣(𝑍) ≤ 𝑥1, 𝑤(𝑍) ≤ 𝑥2).

As 𝑣(·) and 𝑤(·) are monotone we have either {𝑣(𝑍) ≤ 𝑥1} ⊂ {𝑤(𝑍) ≤ 𝑥2} or {𝑣(𝑍) ≤ 𝑥1} ⊃ {𝑤(𝑍) ≤ 𝑥2}.
If {𝑣(𝑍) ≤ 𝑥1} ⊂ {𝑤(𝑍) ≤ 𝑥2}, then

𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) = 𝑃(𝑣(𝑍) ≤ 𝑥1) = 𝐹𝑋1 (𝑥1) ≤ 𝐹𝑋2 (𝑥2),

and if {𝑣(𝑍) ≤ 𝑥1} ⊃ {𝑤(𝑍) ≤ 𝑥2}, then

𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 𝑃(𝑣(𝑍) ≤ 𝑥1, 𝑤(𝑍) ≤ 𝑥2) = 𝑃(𝑤(𝑍) ≤ 𝑥2) = 𝐹𝑋2 (𝑥2) ≤ 𝐹𝑋1 (𝑥1).

The assertion follows. □

Remark 14.8. It is always true that 𝐹𝑋1 ,...𝑋𝑛
(𝑥1, . . . , 𝑥𝑛) ≤ min𝑖=1,...𝑛 𝐹𝑋𝑖

(𝑥𝑖). For comonotonic random
variables, however, the upper Fréchet bound is attained.

Corollary 14.9. Let 𝑌 and 𝑍 be comonotonic. Then E𝑌 · E 𝑍 ≤ E𝑌𝑍.

Proof. Integrate (14.3) with respect to 𝑃(d𝜔) ⊗𝑃(d𝜔′) and proceed as in Chebyshevs’s sum inequality,
Theorem 14.1. □

Corollary 14.10. The covariance cov( �̃�,𝑌 ) among all random variables with �̃� ∼ 𝑋 and 𝑌 ∼ 𝑌 is
maximal, if �̃� and 𝑌 are comonotonic.

1Maurice René Fréchet, 1878–1973
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𝐹 (𝑥 + Δ𝑥, 𝑦 + Δ𝑦)

𝐹 (𝑥 + Δ𝑥, 𝑦)

𝐹 (𝑥, 𝑦 + Δ𝑦)

𝐹 (𝑥, 𝑦)

Figure 14.1: Probability of an area

14.3 INTEGRATION OF RANDOM VECTORS

For R-valued random variables we have

E 𝑔(𝑋) =
∫
Ω

𝑔(𝜔)𝑃(d𝜔) =
∫ ∞

−∞
𝑔(𝑥) d𝐹𝑋 (𝑥) =

∫ ∞

−∞
𝑔(𝑥) 𝑓𝑋 (𝑥) d𝑥,

where the latter is only possible if the derivative (density) d𝐹𝑋 (𝑥) = 𝑓𝑋 (𝑥) d𝑥 exists.
How do these formulae generalize for higher dimensions?

E 𝑔(𝑋,𝑌 ) =
∫
Ω

𝑔
(
𝑋 (𝜔), 𝑌 (𝜔)

)
𝑃(d𝜔) =

∬
R2
𝑔(𝑥, 𝑦) d2𝐹𝑋,𝑌 (𝑥, 𝑦) =

∬
R2
𝑔(𝑥, 𝑦) 𝑓𝑋,𝑌 (𝑥, 𝑦) d𝑥d𝑦. (14.6)

To this end observe that

𝑃
(
𝑋 ∈ [𝑥, 𝑥 + Δ𝑥), 𝑌 ∈ [𝑦, 𝑦 + Δ𝑥)

)
(14.7)

= 𝐹𝑋,𝑌 (𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝐹𝑋,𝑌 (𝑥, 𝑦 + Δ𝑦) − 𝐹𝑋,𝑌 (𝑥 + Δ𝑥, 𝑦) + 𝐹𝑋,𝑌 (𝑥, 𝑦)

and it is thus evident what d2𝐹𝑋,𝑌 (𝑥, 𝑦) in (14.6) has to stand for (cf. Figure 14.1).
Generalizations to random vectors in R𝑛 are obvious, the general form for (14.7), however, in-

volves 2𝑛 evaluations of 𝐹𝑋1 ,...𝑋𝑛
(𝑥1, . . . , 𝑥𝑛).

14.4 COPULA

Definition 14.11. The copula function of a random vector (𝑋1, . . . , 𝑋𝑛) is the cdf 𝐶 : [0, 1]𝑛 → [0, 1]
on [0, 1]𝑚 expressing the joint distribution function by all marginal distributions, i.e.,

𝐹𝑋1 ,...,𝑋𝑛
(𝑥1, . . . , 𝑥𝑛) = 𝐶

(
𝐹𝑋1 (𝑥1), . . . 𝐹𝑋𝑛

(𝑥𝑛)
)
.

Remark 14.12. Note, that the copula in dimension 1 is trivial, as 𝐶 (𝑢) = 𝑢.
Remark 14.13 (Independence copula). The independence copula

𝐶 (𝑢1, . . . 𝑢𝑛) = 𝑢1 · . . . 𝑢𝑛
governs independent random variables 𝑋1, . . . 𝑋𝑛.

Lemma 14.14. Copulas functions can be assumed to be uniformly continuous; more precisely, it
holds that

𝐶 (𝑢1, . . . 𝑢𝑛) − 𝐶 (𝑣1, . . . 𝑣𝑛) ≤ |𝑣1 − 𝑢1 | + · · · + |𝑣𝑛 − 𝑢𝑛 | .
Proof. Just observe that

𝑃 (𝑋 ≤ 𝑥2, 𝑌 ≤ 𝑦2) − 𝑃 (𝑋 ≤ 𝑥1, 𝑌 ≤ 𝑦1) ≤ |𝑃 (𝑋 ≤ 𝑥2, 𝑌 ≤ 𝑦2) − 𝑃 (𝑋 ≤ 𝑥1, 𝑌 ≤ 𝑦2) |
+ |𝑃 (𝑋 ≤ 𝑥1, 𝑌 ≤ 𝑦2) − 𝑃 (𝑋 ≤ 𝑥1, 𝑌 ≤ 𝑦1) |

≤ |𝑃 (𝑋 ≤ 𝑥2) − 𝑃 (𝑋 ≤ 𝑥1) | + |𝑃 (𝑌 ≤ 𝑦2) − 𝑃 (𝑌 ≤ 𝑦1) |

and thus
𝐶 (𝑢1, 𝑢2) − 𝐶 (𝑣1, 𝑣2) ≤ |𝑢1 − 𝑣1 | + |𝑢2 − 𝑣2 | .

This generalizes to higher dimensions. □
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Lemma 14.15. It holds that

E 𝑔(𝑋1, . . . 𝑋𝑛) =
∫ 1

0
· · ·

∫ 1

0
𝑔

(
𝐹−1
𝑋1
(𝑢1), . . . 𝐹−1

𝑋1
(𝑢1)

)
d𝑛𝐶 (𝑢1, . . . 𝑢𝑛).

Proof. By (14.6) and substituting the marginals 𝑥𝑖 ← 𝐹−1
𝑋𝑖
(𝑢𝑖) we have

E 𝑔(𝑋1, . . . 𝑋𝑛) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑔(𝑥1, . . . 𝑥𝑛) d𝑛𝐹𝑋1 ,...𝑋𝑛

(𝑥1, . . . 𝑥𝑛)

=

∫ 1

0
· · ·

∫ 1

0
𝑔

(
𝐹−1
𝑋1
(𝑢1), . . . 𝐹−1

𝑋1
(𝑢1)

)
d𝑛𝐹𝑋1 ,...,𝑋𝑛

(
𝐹−1
𝑋1
(𝑢1), . . . 𝐹−1

𝑋1
(𝑢1)

)
=

∫ 1

0
· · ·

∫ 1

0
𝑔

(
𝐹−1
𝑋1
(𝑢1), . . . 𝐹−1

𝑋1
(𝑢1)

)
d𝑛𝐶 (𝑢1, . . . 𝑢1) .

□

Example 14.16. The copula for comonotonic random variables is 𝐶 (𝑢1, . . . , 𝑢𝑛) = min𝑖=1,...𝑛 𝑢𝑖 .

Lemma 14.17. For comonotonic random variables 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, we have

E 𝑔(𝑋1, . . . , 𝑋𝑛) =
∫ 1

0
𝑔

(
𝐹−1
𝑋1
(𝑢), . . . 𝐹−1

𝑋𝑛
(𝑢)

)
d𝑢.

14.5 PROBLEMS

Exercise 14.1 (McShane’s Lemma on Lipschitz extensions). Let (𝑍, 𝑑) be a set equipped with a
metric and let 𝑓 : 𝑈 → R be Lipschitz with Lipschitz constant 𝐿, where 𝑈 ⊂ 𝑍. Then 𝑓 (𝑧) B
inf𝑢∈𝑈 𝑓 (𝑢) + 𝐿𝑑 (𝑢, 𝑧) is well-defined for 𝑧 ∈ 𝑍, 𝑓 (𝑢) = 𝑓 (𝑢) for 𝑢 ∈ 𝑈 and 𝑓 : 𝑍 → R has Lipschitz
constant 𝐿.

Kirszbraun’s theorem provides an extension for vector-valued functions, although the assertion for
general Lipschitz functions is false.
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15Convexity

Gentlemen, we have run out of money. It is
time to start thinking.

Ernest Rutherford, 1871–1937

Some parts follow a lecture by Mete Soner, but the content can be found in many elementary
textbooks on convex analysis, for example in Boţ et al. [2009].

In what follows 𝑋 is a real topological vector space.

15.1 PROPERTIES OF CONVEX FUNCTIONS

We consider functions to the extended reals, 𝑓 : 𝑋 → R ∪ {±∞}.

Definition 15.1. The domain of 𝑓 is dom 𝑓 B { 𝑓 < ∞}. 𝑓 is proper, if its domain is not empty.

Definition 15.2. We shall say that 𝑓 : 𝑋 → R∪ {±∞} is lower semicontinuous (lsc.) if the sets { 𝑓 > 𝜆}
are open for all 𝜆 ∈ R. The sets { 𝑓 ≤ 𝜆} are called lower levelsets, sublevel sets or trenches.

Lemma 15.3. The following are equivalent.

(i) 𝑓 is lsc. at 𝑥0 ∈ 𝑋;

(ii) for every 𝜀 > 0 there exists a neighborhood so that 𝑓 (𝑥) > 𝑓 (𝑥0) − 𝜀 for every 𝑥 ∈ 𝑈;

(iii) then lim inf𝑥→𝑥0 𝑓 (𝑥) ≥ 𝑓 (𝑥0).

Lemma 15.4. The following are equivalent.

(i) 𝑓 is lsc.;

(ii) the epigraph epi 𝑓 B {(𝑥, 𝛼) ∈ 𝑋 × R : 𝛼 ≥ 𝑓 (𝑥)} is closed in 𝑋 × R;

(iii) the level sets { 𝑓 ≤ 𝜆} are closed for all 𝜆 ∈ R.

Example 15.5. 𝛿𝐴 B

{
0 𝑥 ∈ 𝐴
+∞ else

is lsc., iff 𝐴 is closed.

Definition 15.6. We shall call 𝑓 : 𝑋 → R

⊲ convex, if 𝑓
(
(1 − 𝜆)𝑥 + 𝜆𝑦

)
≤ (1 − 𝜆) 𝑓 (𝑥) + 𝜆 𝑓 (𝑦) for 𝜆 ∈ [0, 1],

⊲ concave, if 𝑓
(
(1 − 𝜆)𝑥 + 𝜆𝑦

)
≥ (1 − 𝜆) 𝑓 (𝑥) + 𝜆 𝑓 (𝑦) for 𝜆 ∈ [0, 1], and

⊲ affine, if 𝑓
(
(1 − 𝜆)𝑥 + 𝜆𝑦

)
= (1 − 𝜆) 𝑓 (𝑥) + 𝜆 𝑓 (𝑦) for all 𝜆 ∈ R.

Remark 15.7. Note, that 𝑓 is affine iff 𝑓 (𝑥) = 𝑑 + 𝑥∗ (𝑥) for some linear 𝑥∗. Indeed, for 𝑓 affine write
𝑓 (𝑥) = 𝑎(0) + 𝑓 (𝑥) − 𝑎(0) and show that 𝑓 (𝑥) − 𝑎(0) is linear.

Lemma 15.8. If 𝑓 is lsc. and convex, then

𝑓 (𝑥) = sup
𝑎 ( ·)≤ 𝑓 ( ·)

𝑎(𝑥) for all 𝑥 ∈ 𝑋,

where 𝑎 is affine and 𝑎(·) ≤ 𝑓 (·) iff 𝑎(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋.
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Proof. Note first that sup𝑎 ( ·)≤ 𝑓 ( ·) 𝑎(𝑥) is convex and lsc.
Conversely, consider

𝑀 B {(𝑥∗, 𝛼) ∈ 𝑋∗ × R : 𝑥∗ (𝑥) + 𝛼 ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋} .

We show that 𝑀 is not empty.
If 𝑓 ≡ +∞, the always (𝑥∗, 𝛼) ∈ 𝑀, hence 𝑀 ≠ ∅.
Otherwise, there is 𝑦 ∈ 𝑋 so that 𝑓 (𝑦) ∈ R. Then epi 𝑓 ≠ ∅ and (𝑦, 𝑓 (𝑦) − 1) ∉ epi 𝑓 . As 𝑓 is lsc., it

follows from Lemma 15.4 that epi 𝑓 is closed and convex. By the Hahn–Banach theorem there exists
(𝑥∗, 𝛼) ∈ 𝑋∗ × R so that

𝑥∗ (𝑦) + 𝛼( 𝑓 (𝑦) − 1) < 𝑥∗ (𝑥) + 𝛼𝑟 for all (𝑥, 𝑟) ∈ epi 𝑓 . (15.1)

As (𝑦, 𝑓 (𝑦)) ∈ epi 𝑓 it follows that 𝛼 > 0 and by rescaling (𝑥∗, 𝑐), we may assume that 𝛼 = 1 and
we get 𝑥∗ (𝑦 − 𝑥) + 𝑓 (𝑦) − 1 < 𝑟 for all (𝑥, 𝑟) ∈ epi 𝑓 . For 𝑥 ∈ dom 𝑓 we have that (𝑥, 𝑓 (𝑥)) ∈ epi 𝑓 ,
and thus 𝑥∗ (𝑦 − 𝑥) + 𝑓 (𝑦) − 1 < 𝑓 (𝑥), which actually holds for all 𝑥 ∈ 𝑋. Consequently, the function
𝑥 ↦→ −𝑥∗ (𝑥) + 𝑥∗ (𝑦) + 𝑓 (𝑦) − 1 is a minorant and 𝑀 ≠ ∅.

We thus have
𝑓 (𝑥) ≥ sup {𝑥∗ (𝑥) + 𝛼 : (𝑥∗, 𝛼) ∈ 𝑀} ,

it remains to be shown that equality holds.
Assume there were 𝑥 ∈ 𝑋 and 𝑟 ∈ R such that

𝑓 (𝑥) > 𝑟 > sup {𝑥∗ (𝑥) + 𝛼 : (𝑥∗, 𝛼) ∈ 𝑀} . (15.2)

Then (𝑥, 𝑟) ∉ epi 𝑓 . Again, by Hahn–Banach theorem, there are (𝑥∗, �̃�) ∈ 𝑋∗ × R and 𝜀 > 0 such that

𝑥∗ (𝑥) + �̃�𝑟 > 𝑥∗ (𝑥) + �̃�𝑟 + 𝜀 for all (𝑥, 𝑟) ∈ epi 𝑓 . (15.3)

It follows that �̃� ≥ 0, as (𝑥, 𝑟 ′) ∈ epi 𝑓 for every 𝑟 ′ ≥ 𝑟.
Assume that 𝑓 (𝑥) ∈ R. Then �̃� (𝑟 − 𝑟) > 𝜀 by (15.3), thus �̃� > 0. It follows from (15.3) that

𝑓 (𝑥) > 1
�̃�
𝑥∗ (𝑥 − 𝑥) + 𝑟 + 𝜀

�̃�
. (15.4)

Hence, 𝑥 ↦→ 1
�̃�
𝑥∗ (𝑥 − 𝑥) + 𝑟 + 𝜀

�̃�
is a minorant of 𝑓 (·) which evaluates to 𝑟 + 𝜀

�̃�
at 𝑥, so that we get

from (15.2) that 𝑓 (𝑥) > 𝑟 > 𝑟 + 𝜀
�̃�

, which is a contradiction.
Hence, 𝑓 (𝑥) = ∞, i.e., 𝑥 ∉ dom 𝑋. As the domain of 𝑋 is convex, we may separate 𝑥 from dom 𝑓 ,

i.e., there is 𝑥∗ so that 𝑥∗ (𝑥 − 𝑥) > 𝜀 > 0 (i.e., we may choose �̃� = 0 in (15.3)).
Consider the function 𝑧∗ (𝑥) B −𝑥∗ (𝑥 − 𝑥) + 𝜀. By (15.3) we get that 𝑧∗ (𝑥) ≤ 0 for every 𝑥 ∈ dom 𝑓 .

As 𝑀 ≠ ∅, there are 𝑦∗ ∈ 𝑋∗ and 𝛽 ∈ R such that 𝑦∗ (𝑥) + 𝛽 ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑋. It follows from (15.2)
that 𝑟 > 𝑦∗ (𝑥) + 𝛽, so 𝛾 B 1

𝜀
(𝑟 − 𝑦∗ (𝑥) − 𝛽) > 0.

The function 𝑎(𝑥) B 𝑦∗ (𝑥) − 𝛾𝑥∗ (𝑥) + 𝛾𝑥∗ (𝑥) + 𝛽 + 𝛾𝜀 is affine. For 𝑥 ∈ dom 𝑓 we have that

𝑎(𝑥) = 𝑦∗ (𝑥) + 𝛽 + 𝛾
©«−𝑥

∗ (𝑥 − 𝑥) + 𝜀︸            ︷︷            ︸
𝑧∗ (𝑥 )

ª®®®¬ ≤ 𝑦
∗ (𝑥) + 𝛽 ≤ 𝑓 (𝑥). Hence 𝑎(·) is an affine minorant of 𝑓 and for

𝑥 = 𝑥 one gets 𝑎(𝑥) B 𝑦∗ (𝑥) − 𝛾𝑥∗ (𝑥) + 𝛾𝑥∗ (𝑥) + 𝛽 + 𝛾𝜀 = 𝑟, which contradicts (15.4).
Hence, 𝑓 is the pointwise supremum of affine functions. □

15.2 DUALITY

Definition 15.9 (Legendre–Fenchel1 transformation). The convex conjugate function is

𝑓 ∗ : 𝑋∗ → R ∪ {∞}
𝑓 ∗ (𝑥∗) B sup

𝑥∈𝑋
𝑥∗ (𝑥) − 𝑓 (𝑥) (15.5)

1Werner Fenchel, 1905–1988
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and the bi-conjugate is

𝑓 ∗∗ : 𝑋 → R ∪ {∞}
𝑓 ∗∗ (𝑥) B sup

𝑥∗∈𝑋∗
𝑥∗ (𝑥) − 𝑓 ∗ (𝑥∗).

Remark 15.10 (Fenchel’s inequality, or Fenchel–Young2 inequality). By (15.5) it holds that

𝑥∗ (𝑥) ≤ 𝑓 (𝑥) + 𝑓 ∗ (𝑥∗) (15.6)

for all 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗.

Lemma 15.11. We have that 𝑓 ≤ 𝑔 implies that 𝑓 ∗ ≥ 𝑔∗.

Proof. Cf. Exercise 15.1. □

Lemma 15.12. If 𝑎(𝑥) = 𝑑 + 𝑦∗ (𝑥) is affine linear, then 𝑎∗ (𝑥∗) =
{
−𝑑 if 𝑥∗ = 𝑦∗

+∞ else.
and 𝑎∗∗ (𝑥) = 𝑎(𝑥).

Proof. Observe that

𝑎∗ (𝑥∗) = sup
𝑥∈𝑋

𝑥∗ (𝑥) − 𝑑 − 𝑦∗ (𝑥) =
{
−𝑑 if 𝑥∗ = 𝑦∗

+∞ else.

Further,
𝑎∗∗ (𝑥) = sup

𝑥∗∈𝑋∗
𝑥∗ (𝑥) − 𝑎∗ (𝑥∗) = sup

{
𝑦∗ (𝑥) + 𝑑︸     ︷︷     ︸

𝑥∗=𝑦∗

, 𝑥∗ (𝑥) − ∞︸      ︷︷      ︸
𝑥∗≠𝑦∗

}
= 𝑦∗ (𝑥) + 𝑑 = 𝑎(𝑥)

for every 𝑥 ∈ 𝑋, i.e., 𝑎 = 𝑎∗∗. □

Example 15.13. On 𝑋 = R let 𝑓 (𝑥) B 1
𝑝
|𝑥 |𝑝, then 𝑓 ∗ (𝑦) = 1

𝑞
|𝑦 |𝑞, where 1

𝑝
+ 1

𝑞
= 1.

Indeed, the maximum is attained at 0 = d
d𝑥 𝑥𝑦 −

1
𝑝
|𝑥 |𝑝 = 𝑦 − 𝑥𝑝−1, so 𝑥∗ = 𝑦

1
𝑝−1 and thus

𝑓 ∗ (𝑦) = 𝑥∗𝑦 − 1
𝑝
|𝑥∗ |𝑝 = 𝑦

1
𝑝−1 𝑦 − 1

𝑝
𝑦

𝑝

𝑝−1 =
𝑝 − 1
𝑝

𝑦
𝑝

𝑝−1 =
1
𝑞
𝑦𝑞 .

Remark 15.14. 𝑓 ∗ and 𝑓 ∗∗ are lsc.

Theorem 15.15 (Fenchel–Moreau Theorem, Rockafellar). Let 𝑋 be a Banach space. Let 𝑓 : 𝑋 → R
be a proper, extended real valued lsc. and convex, function. Then 𝑓 = 𝑓 ∗∗, where

𝑓 ∗∗ (𝑥) B sup
𝑥∗∈𝑋∗

𝑥∗ (𝑥) − 𝑓 ∗ (𝑥∗).

Proof. By Fenchel’s inequality (15.6) we have that that 𝑓 (𝑥) ≥ 𝑥∗ (𝑥) − 𝑓 ∗ (𝑥∗), and thus

𝑓 (𝑥) ≥ sup
𝑥∗∈𝑋∗

𝑥∗ (𝑥) − 𝑓 ∗ (𝑥∗) = 𝑓 ∗∗ (𝑥),

i.e., 𝑓 ≥ 𝑓 ∗∗.
Let 𝑎 be affine so that 𝑎 ≤ 𝑓 . Then 𝑎∗ ≥ 𝑓 ∗ and 𝑎∗∗ ≤ 𝑓 ∗∗. Now by Lemma 15.12 we have that

𝑎 = 𝑎∗∗, hence
𝑓 (𝑥) = sup

𝑎≤ 𝑓

𝑎(𝑥) ≤ sup
𝑎≤ 𝑓 ∗∗

𝑎(𝑥) = 𝑓 ∗∗ (𝑥),

which is the converse inequality. □

Corollary 15.16 (The bipolar theorem). The polar cone is

𝐶◦ B {𝑦 ∈ 𝑋∗ : 𝑦(𝑐) ≤ 0 for all 𝑐 ∈ 𝐶} .

Let 𝐶 be a cone, then 𝐶◦◦ B (𝐶◦)◦ = conv {𝜆𝑐 : 𝜆 ≥ 0, 𝑐 ∈ 𝐶}.
2William Henry Young, 1863–1942
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Proof. Consider the indicator function 𝑓 (𝑐) B 𝛿𝐶 (𝑐) B
{

0 if 𝑐 ∈ 𝐶,
+∞ else.

Then 𝛿∗
𝐶
(𝑦) = sup𝑐∈𝐶 𝑦(𝑐) and

𝛿∗∗
𝐶
(𝑐) = 𝛿𝐶◦◦ (𝑐) iff 𝐶 = 𝐶◦◦. □

Corollary 15.17 (Young’s inequality). For 𝑔(·) strictly increasing it holds that

𝑥𝑦 ≤
∫ 𝑥

0
𝑔(𝑢) d𝑢 +

∫ 𝑦

0
𝑔−1 (𝑣) d𝑣,

where 𝑥 > 0 and 𝑦 ∈ [0, 𝑔(𝑥)]; particularly∫ 𝑦

0
𝑔−1 (𝑣) d𝑣 = sup

𝑥

{
𝑥𝑦 −

∫ 𝑥

0
𝑔(𝑢) d𝑢

}
and

∫ 𝑥

0
𝑔(𝑢) d𝑢 = sup

𝑦

{
𝑥𝑦 −

∫ 𝑦

0
𝑔−1 (𝑣) d𝑣

}
. (15.7)

Proof. Set 𝑓 (𝑥) B
∫ 𝑥

0 𝑔(𝑢) d𝑢, then 0 = d
d𝑥 𝑥𝑦 −

∫ 𝑥

0 𝑔(𝑢) d𝑢 = 𝑦 − 𝑔(𝑥), i.e., 𝑥∗ = 𝑔−1 (𝑦). Hence 𝑓 ∗ (𝑦) =
𝑦𝑔−1 (𝑦) −

∫ 𝑔−1 (𝑦)
0 𝑔(𝑢) d𝑢 =

∫ 𝑦

0 𝑔−1 (𝑣) d𝑣, and hence the assertion. □

15.3 PROBLEMS

Exercise 15.1. Verify Lemma 15.11.

Exercise 15.2. For a family 𝑓 𝜄 it holds that (inf 𝜄 𝑓 𝜄)∗ (𝑥∗) = sup 𝜄 𝑓
∗
𝜄 (𝑥∗), but

(
sup 𝜄 𝑓 𝜄

)∗ (𝑥∗) ≤ inf 𝜄 𝑓 ∗𝜄 (𝑥∗).

Exercise 15.3. Show that ((1 − 𝜆) 𝑓0 + 𝜆 𝑓1)∗ ≤ (1 − 𝜆) 𝑓 ∗0 + 𝜆 𝑓
∗
1 for 𝜆 ∈ [0, 1].

Exercise 15.4. Set 𝑔(𝑥) B 𝛼 + 𝛽 · 𝑥 + 𝛾 𝑓 (𝜆𝑥 + 𝛿), then 𝑔∗ (𝑥∗) = −𝛼 − 𝛿 𝑥∗−𝛽
𝜆
+ 𝛾 𝑓 ∗

(
𝑥∗−𝛽
𝜆𝛾

)
, where 𝜆 ≠ 0

and 𝛾 >0.

Exercise 15.5 (Infimal convolution). Define the infimal convolution

( 𝑓□𝑔) (𝑥) B inf { 𝑓 (𝑥 − 𝑦) + 𝑔(𝑦) : 𝑦 ∈ R𝑛}

and more generally, ( 𝑓1□ . . .□ 𝑓𝑚) (𝑥) B inf
{∑𝑚

𝑖=1 𝑓𝑖 (𝑥𝑖) :
∑𝑚

𝑖=1 = 𝑥
}
. Then, for 𝑓𝑖 proper, convex and

lsc., ( 𝑓1□ . . .□ 𝑓𝑚)∗ = 𝑓 ∗1 + · · · + 𝑓
∗
𝑚.

Exercise 15.6. Show that the conjugate of 𝑓 (𝑥) = 𝑒𝑥 is 𝑓 ∗ (𝑥∗) =


𝑥∗ log 𝑥∗ − 𝑥∗ if 𝑥∗ > 0
0 if 𝑥∗ = 0
+∞ if 𝑥∗ < 0

.
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16Sample Average Approximation (SAA)

This chapter is based on Shapiro et al. [2021]

16.1 SAA

Let 𝑋 ⊂ R𝑛 be closed and 𝑋 ≠ ∅. Consider the problem 𝜗∗ B min𝑥∈𝑋 E 𝐹 (𝑥, 𝜉)︸     ︷︷     ︸
=: 𝑓 (𝑥 )

which we compare with

�̂�𝑁 B min𝑥∈𝑋
1
𝑁

𝑁∑︁
𝑖=1

𝐹 (𝑥, 𝜉 𝑗 )︸            ︷︷            ︸
=: 𝑓𝑁 (𝑥 )

for the empirical measure 𝑃𝑁 = 1
𝑁

∑𝑁
𝑖=1 𝛿𝜉𝑖 and iid samples 𝜉𝑖.

16.1.1 Pointwise LLN

Suppose that E 𝐹 (𝑥, 𝜉) < ∞.

Lemma 16.1. The following hold true:

(i) E 𝑓𝑁 (𝑥) = 𝑓 (𝑥), i.e., 𝑓𝑁 (𝑥) is an unbiased estimator for 𝑓 (𝑥);

(ii) (LLN) For every 𝑥 ∈ 𝑋 it holds that 𝑓𝑁 (𝑥) → 𝑓 (𝑥), as 𝑁 →∞ with probability 1.

Proposition 16.2. The estimator �̂�𝑁 is not necessarily consistent, it holds in general that

lim sup
𝑁→∞

�̂�𝑁 ≤ 𝜗∗.

Proof. We have that �̂�𝑁 ≤ 𝑓𝑁 (𝑥) for every 𝑥 ∈ 𝑋, thus

lim sup
𝑁→∞

�̂�𝑁 ≤ lim
𝑁→∞

𝑓𝑁 (𝑥) = 𝑓 (𝑥)

by the Law of Large Numbers (ii). Thus

lim sup
𝑁→∞

�̂�𝑁 ≤ inf 𝑓 (𝑥) = 𝜗∗.

□

Proposition 16.3. The estimator �̂�𝑁 is downside biased, it holds that E �̂�𝑁+1 ≤ E �̂�𝑁 ≤ 𝜗∗.

Proof. It holds that

E �̂�𝑁 = Emin
𝑥∈𝑋

1
𝑁

𝑁∑︁
𝑗=1

𝐹 (𝑥, 𝜉 𝑗 ) ≤ min
𝑥∈𝑋

E
1
𝑁

𝑁∑︁
𝑗=1

𝐹 (𝑥, 𝜉 𝑗 )

= min
𝑥∈𝑋

1
𝑁

𝑁∑︁
𝑗=1
E 𝐹 (𝑥, 𝜉 𝑗 ) = min

𝑥∈𝑋
𝑓 (𝑥) = 𝜗∗.
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90 SAMPLE AVERAGE APPROXIMATION (SAA)

Further, note that 𝑓𝑁+1 (𝑥) = 1
𝑁+1

∑𝑁+1
𝑖=1 𝐹 (𝑥, 𝜉𝑖) = 1

𝑁+1
∑𝑁+1

𝑖=1
1
𝑁

∑
𝑗≠𝑖 𝐹 (𝑥, 𝜉 𝑗 ), thus

E �̂�𝑁+1 = Emin
𝑥∈𝑋

𝑓𝑁+1 (𝑥) = Emin
𝑥∈𝑋

1
𝑁 + 1

𝑁+1∑︁
𝑖=1

1
𝑁

∑︁
𝑗≠𝑖

𝐹 (𝑥, 𝜉 𝑗 )

≥ E 1
𝑁 + 1

𝑁+1∑︁
𝑖=1

min
𝑥∈𝑋

1
𝑁

∑︁
𝑗≠𝑖

𝐹 (𝑥, 𝜉 𝑗 )︸                  ︷︷                  ︸
�̂�𝑁

= E
1

𝑁 + 1

𝑁+1∑︁
𝑖=1

�̂�𝑁 = E �̂�𝑁 ,

thus the assertion. □

16.1.2 Pointwise and Functional CLT

Suppose here that

(i) 𝜎(𝑥)2 B var 𝐹 (𝑥,Ξ) < ∞ and

(ii) |𝐹 (𝑥, 𝜉) − 𝐹 (𝑥′, 𝜉) | ≤ 𝐶 (𝜉) ∥𝑥 − 𝑥′∥ a.s. and E𝐶 (𝜉)2 < ∞.

Lemma 16.4. 𝑓 (·) is Lipschitz with constant E𝐶 (𝜉).

Proof. It follows from (ii) by taking expectations that 𝑓 (𝑥) − 𝑓 (𝑥′) = E 𝐹 (𝑥, 𝜉) −E 𝐹 (𝑥′, 𝜉) ≤ E𝐶 ∥𝑥 − 𝑥′∥,
from which the assertion follows. □

We have that √
𝑁 ( 𝑓𝑁 (𝑥) − 𝑓 (𝑥))

D−−→ 𝑌 (𝑥) ∼ N
(
0, 𝜎(𝑥)2

)
.

More generally,
√
𝑁 ( 𝑓𝑁 (𝑥1) − 𝑓 (𝑥1), . . . 𝑓𝑁 (𝑥𝑛) − 𝑓 (𝑥𝑛))

D−−→ 𝑌 (𝑥) ∼ N (0, Σ) ,

where Σ = cov (𝐹 (𝑥𝑖 , 𝜉), 𝐹 (𝑥𝑖 , 𝜉))𝑛𝑖, 𝑗=1.
In a functional way,

√
𝑁 ( 𝑓𝑁 (·) − 𝑓 (·))

D−−→ 𝑌 : Ω→ 𝐶 (𝑋),

where 𝑌 : Ω→ 𝐶 (𝑋) is called a random element in 𝐶 (𝑋).

Theorem 16.5. If (i) and (ii), then

(i) �̂�𝑁 = inf𝑥 𝑓𝑁 (𝑥) + 𝑜
(
𝑁−1/2) and

(ii) 𝑁1/2
(
�̂�𝑁 − 𝜗∗

) D−−→ inf𝑠∈𝑆 𝑌 (𝑠), where 𝑆 = arg min𝑥∈𝑋 𝑓 (𝑥) ⊂ 𝑋.

Proof. The proof uses the Δ-method described in Section 16.2 below for finite dimensions. □

Remark 16.6. We obtain from (ii) that �̂�𝑁 = 𝜗∗ + 𝑁−1/2 inf𝑠∈𝑆 𝑌 (𝑠) + 𝑜
(
𝑁−1/2). For 𝑠 = {𝑥∗} we have

that inf𝑠∈𝑆 𝑌 (𝑠) = 𝑌 (𝑥∗) ∼ 𝑁
(
0, 𝜎(𝑥∗)2

)
and hence E �̂�𝑁 = 𝜗∗ + 𝑜

(
𝑁−1/2).

However, convergence is slower, in general, if 𝑆 consists of more than 1 point.

16.2 THE Δ-METHOD

Proposition 16.7. Let 𝑌𝑁 ∈ R𝑑 be random vectors with, 𝑌𝑁 → 𝜇 ∈ R𝑑 in probability and R ∋ 𝜏𝑁 ↗ ∞
deterministic numbers such that 𝜏𝑁 (𝑌𝑁 − 𝜇)

D−−→ 𝑌 . Further, let 𝐺 : R𝑑 → R𝑛 be differentiable at 𝜇.

Then 𝜏𝑁 (𝐺 (𝑌𝑁 ) − 𝐺 (𝜇))
D−−→ 𝐽 · 𝑌 , where 𝐽 = ∇𝐺 (𝜇) is the 𝑛 × 𝑑 Jacobian matrix at 𝜇.
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16.2 THE Δ-METHOD 91

Proof. Notice, that𝐺 (𝑦)−𝐺 (𝜇) = 𝐽 (𝑦−𝜇)+𝑟 (𝑦), where 𝑟 (𝑦) = 𝑜(∥𝑦 − 𝜇∥), so that we have 𝜏𝑁 (𝐺 (𝑌𝑁 ) − 𝐺 (𝜇)) =
𝐽 𝜏𝑁 (𝑌𝑁 − 𝜇)︸         ︷︷         ︸

D−−→𝑌

+𝜏𝑁𝑟 (𝑌𝑁 ). We have that 𝜏𝑁 (𝑌𝑁 − 𝜇) = O(1) (as it converges in distribution), hence

∥𝑌𝑁 − 𝜇∥ = O(1) and thus 𝑟 (𝑌𝑁 ) = 𝑜 (∥𝑌𝑁 − 𝜇∥) = 𝑜
(
𝜏−1
𝑁

)
. Thus the result. □

Claim 16.8. For 𝑁1/2 (𝑌𝑁 − 𝜇)
D−−→ N (0, Σ) we have particularly that 𝑁1/2 (𝐺 (𝑌𝑁 ) − 𝐺 (𝜇))

D−−→ N (0, 𝐽Σ𝐽⊤).
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17Weak Topology of Measures

17.1 GENERAL CHARACTERISTICS

Definition 17.1. Let (𝑋, 𝑑) be a metric space. The weak topology of probability measures is charac-
terized by ∫

𝑋

ℎ d𝑃𝑛 −−−−→
𝑛→∞

∫
𝑋

ℎ d𝑃 for all bounded and continuous functions ℎ : 𝑋 → R.

Theorem 17.2 (Riesz representation theorem). For any continuous linear functional 𝜓 : 𝐶0 (𝑋) → R
(the bounded functions vanishing at infinity on a locally compact Hausdorff space 𝑋) there is a regular,
countatbly additive measure 𝜇 on the Borels so that

𝜓(ℎ) =
∫
𝑋

ℎ d𝜇 for all ℎ ∈ 𝐶0 (𝑋).

Definition 17.3. Let 𝜇, 𝜈 be (probability) measures. The Lévy–Prokhorov metric is

𝜋(𝜇, 𝜈) B inf {𝜀 > 0: 𝜇(𝐴) ≤ 𝜈(𝐴𝜀) + 𝜀 and 𝜈(𝐴) ≤ 𝜇(𝐴𝜀) + 𝜀 for all 𝐴 ∈ ℬ(𝑋)} , (17.1)

where 𝐴𝜀 B
⋃

𝑎∈𝐴 𝐵𝜀 (𝑎) is the 𝜀-fattening (or 𝜀-enlargement) of 𝐴 ⊂ 𝑋.

Remark 17.4. Notice, that 𝜋(𝑃,𝑄) ≤ 1 for probability measures.

Definition 17.5. A collection 𝑀 ⊂ P(𝑋) of probability measures on (𝑋, 𝑑) is tight iff for every 𝜀 > 0
there is a compact set 𝐾𝜀 ⊂ 𝑋 so that

𝜇(𝐾𝜀) > 1 − 𝜀 for all 𝑃 ∈ 𝑀.

Example 17.6. The collection {𝛿𝑛 : 𝑛 = 1, 2, . . . } on R is not tight, while
{
𝛿1/𝑛 : 𝑛 = 1, 2, . . .

}
is.

Example 17.7. A collection of Gaussian measures {N (𝜇𝑖 , Σ𝑖) : 𝑖 ∈ 𝐼} is tight, if {𝜇𝑖 : 𝑖 ∈ 𝐼} and {Σ𝑖 : 𝑖 ∈ 𝐼}
are uniformly bounded.

Theorem 17.8 (Prokhorov’s theorem). The following hold true:

(i) The metric 𝜋 in (17.1) metrizes the weak topology of measures.

(ii) A set K ⊂ P(𝑋) is tight iff K is sequentially compact.

(iii) If {𝑃𝑛 : 𝑛 = 1, 2, . . . } ⊂ P
(
R𝑑

)
is tight, then there is a subsequence and a measure 𝑃 ∈ P

(
R𝑑

)
so that 𝑃𝑛 → 𝑃 weakly.

Properties
(i) If (𝑋, 𝑑) is separable, convergence of measures in the Lévy–Prokhorov metric is equivalent to

weak convergence of measures. Thus, 𝜋 is a metrization of the topology of weak convergence
on P(𝑋).

(ii) The metric space (P(𝑋), 𝜋) is separable if and only if (𝑋, 𝑑) is separable.

(iii) If (P(𝑋), 𝜋) is complete then (𝑋, 𝑑) is complete. If all the measures in P(𝑋) have separable sup-
port, then the converse implication also holds: if (𝑋, 𝑑) is complete then (P(𝑋), 𝜋) is complete.

(iv) If (𝑋, 𝑑) is separable and complete, a subset K ⊆ P(𝑋) is relatively compact if and only if its
𝜋-closure is 𝜋-compact.
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94 WEAK TOPOLOGY OF MEASURES

17.2 THE WASSERSTEIN DISTANCE

Some points here follow [Pflug and Pichler, 2014].

Definition 17.9 (Optimal transportation cost). Given two probability spaces (Ξ, F , 𝑃) and
(
Ξ̃, F̃ , �̃�

)
,

the Wasserstein distance of order 𝑟 ≥ 1 (optimal transportation costs) is

d𝑟
(
𝑃, �̃�

)
= inf

𝜋

(∬
Ξ×Ξ̃

𝑑
(
𝜉, 𝜉

)𝑟
𝜋

(
𝑑𝜉, 𝑑𝜉

) )1/𝑟
, (17.2)

where the infimum is taken over all (bivariate) probability measures 𝜋 on Ξ × Ξ̃ having the marginals
𝑃 and �̃�, that is

𝜋
(
𝐴 × Ξ̃

)
= 𝑃(𝐴) and 𝜋 (Ξ × 𝐵) = �̃�(𝐵) (17.3)

for all measurable sets 𝐴 ∈ F and 𝐵 ∈ F̃ . The optimal measure 𝜋 is called the optimal transport plan.

Remark 17.10. Occasionally, the Wasserstein distance is also considered for a (convex) function
𝑐(𝑥, 𝑦) instead of the distance 𝑑 (𝑥, 𝑦)𝑟 .

Proposition 17.11 (Embedding). It holds that

d𝑟
(
𝑃, 𝛿𝜉0

)𝑟
=

∫
Ξ

d (𝜉, 𝜉0)𝑟 𝑃 (d𝜉) ,

and the mapping

𝑖 : (Ξ, d) → (P𝑟 (Ξ; d) , d𝑟 ) ,
𝜉 ↦→ 𝛿𝜉 (·)

assigning to each point 𝜉 ∈ Ξ its point measure 𝛿𝜉 located on 𝜉 (Dirac measure1) is an isometric
embedding for all 1 ≤ 𝑟 < ∞ ((Ξ, d) ↩→ P𝑟 (Ξ; d)).

Proof. There is just one single measure with marginals 𝑃 and 𝛿𝜉0 , which is the transport plan 𝜋 =

𝑃 ⊗ 𝛿𝜉0 . Hence

d𝑟
(
𝑃, 𝛿𝜉0

)𝑟
=

∫
Ξ

∫
Ξ

d
(
𝜉, 𝜉

)𝑟
𝛿𝜉0

(
𝑑𝜉

)
𝑃 (𝑑𝜉) =

∫
Ξ

d (𝜉, 𝜉0)𝑟 𝑃 (𝑑𝜉) ,

the first assertion.
For the particular choice 𝑃 = 𝛿𝜉0 the latter formula simplifies to

d𝑟
(
𝛿𝜉0
, 𝛿𝜉0

)𝑟
=

∫
Ξ

d (𝜉, 𝜉0)𝑟 𝛿𝜉0
(𝑑𝜉) = d

(
𝜉0, 𝜉0

)𝑟
,

and hence 𝜉 ↦→ 𝛿𝜉 is an isometry. □

Notice that if d is inherited by 𝜉, then d𝑟 (𝑃, 𝛿𝜉0 )𝑟 =
∫
Ξ
∥𝜉 − 𝜉0∥𝑟 𝑃(𝑑𝜉).

17.3 THE REAL LINE

Theorem 17.12 (Cf. Rachev and Rüschendorf [1998, Theorem 2.18]). Let 𝑃 and �̃� be probability
measures on the real line with “cdf” 𝐹 (𝑥) B 𝑃 ((−∞, 𝑥]) and𝐺 (𝑥) B �̃� ((−∞, 𝑥]) . Let 𝜋 be the measure
on R2 with cdf. 𝐻 (𝑥, 𝑦) B min {𝐹 (𝑥), 𝐺 (𝑦)}. Then 𝜋 is optimal for the Kantorovich transportation
problem between 𝑃 and �̃� for every cost function 𝑐(𝑥, 𝑦) = 𝑐(𝑥 − 𝑦) where 𝑐(·) is convex. Further,

d𝑐 (𝑃, �̃�) =
∫ 1

0
𝑐

(
𝐹−1 (𝑢) − 𝐺−1 (𝑢)

)
d𝑢.

1 𝛿𝜉 (𝐴) B 1𝐴 ( 𝜉 ) =
{

1 if 𝜉 ∈ 𝐴

0 if 𝜉 ∉ 𝐴
is the usual Dirac measure.
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Corollary 17.13. For the cost function 𝑐(·) = |·| we have further that d(𝑃, �̃�) =
∫ 1

0

��𝐹−1 (𝑢) − 𝐺−1 (𝑢)
�� d𝑢 =∫ ∞

−∞ |𝐹 (𝑥) − 𝐺 (𝑥) | d𝑥.

Remark 17.14.

(i) If 𝐺 does not give mass to points, then one may define 𝑇 B 𝐺−1 ◦ 𝐹 and it holds that∫ 𝑥

−∞
d𝑃 = 𝐹 (𝑥) = 𝐺 (𝑇 (𝑥)) =

∫ 𝑇 (𝑥 )

−∞
d�̃� (17.4)

The transport map 𝑇 is a monotone rearrangement of 𝑃 to �̃�.

(ii) Suppose 𝑃 and �̃� have the densities 𝑓 = 𝐹′and 𝑔 = 𝐺′. Then differentiating (17.4) gives

𝑓 (𝑥) = 𝑔(𝑇 (𝑥)) · 𝑇 ′ (𝑥).
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18Topologies For Set-Valued Convergence

18.1 TOPOLOGICAL FEATURES OF MINKOWSKI ADDITION

Theorem (Topological properties of Minkowski addition in locally compact vector spaces). Let 𝐴 and
𝐵 be sets.

(i)
◦
𝐴 + 𝐵 is open and

◦
𝐴 + 𝐵 ⊂ (𝐴 + 𝐵)◦ ⊂ 𝐴 + 𝐵. If 𝐴 or 𝐵 is open, then 𝐴 + 𝐵 = (𝐴 + 𝐵)◦;

(ii) �̄� + �̄� ⊂ 𝐴 + 𝐵. If 𝐴 or 𝐵 is bounded, then 𝐴 + 𝐵 = �̄� + �̄�;

(iii) For 𝐴 and 𝐵 closed and 𝐴 (or 𝐵) bounded, 𝜕 (𝐴 + 𝐵) ⊂ 𝜕𝐴 + 𝜕𝐵.

Proof. Let 𝑥 ∈
◦
𝐴 + 𝐵 have the composition 𝑥 = 𝑎 + 𝑏 with 𝑎 ∈ 𝐵𝑟 (𝑎) ⊂

◦
𝐴 for some 𝑟 > 0 and 𝑏 ∈ 𝐵.

Then 𝑥 ∈ 𝐵𝑟 (𝑥) = 𝐵𝑟 (𝑎 + 𝑏) = 𝐵𝑟 (𝑎) + {𝑏} ⊂
◦
𝐴 + 𝐵, so

◦
𝐴 + 𝐵 is open. As

◦
𝐴 + 𝐵 ⊂ 𝐴 + 𝐵 and

◦
𝐴 + 𝐵 open

it is immediate that
◦
𝐴 + 𝐵 ⊂ (𝐴 + 𝐵)◦, which is ((i)) (the rest being obvious).

Let 𝑎 ∈ �̄� and 𝑏 ∈ �̄�. Choose 𝑎𝑘 ∈ 𝐴 with 𝑎𝑘 → 𝑎 ∈ �̄� and 𝑏𝑘 ∈ 𝐵 with 𝑏𝑘 → 𝑏 ∈ �̄�. Obviously
𝑎𝑘 + 𝑏𝑘 ∈ 𝐴 + 𝐵 and thus 𝑎 + 𝑏 ∈ 𝐴 + 𝐵, whence �̄� + �̄� ⊂ 𝐴 + 𝐵.

As for the converse let 𝑥 ∈ 𝐴 + 𝐵, so there is a sequence 𝑥𝑘 = 𝑎𝑘 + 𝑏𝑘 with 𝑎𝑘 ∈ 𝐴 and 𝑏𝑘 ∈ 𝐵 and
𝑥𝑘 → 𝑥. Assume (wlog.) 𝐴 bounded, thus there is a subsequence such that 𝑎𝑘 → 𝑎 ∈ �̄�, and thus
𝑏𝑘 = 𝑥𝑘 − 𝑎𝑘 → 𝑥 − 𝑎 converges as well with 𝑏𝑘 → 𝑥 − 𝑎 =: 𝑏 ∈ �̄�. That is 𝑥 = 𝑎 + 𝑏 ∈ �̄� + �̄� and thus
𝐴 + 𝐵 ⊂ �̄� + �̄�.

Observe first that 𝜕 (𝐴 + 𝐵) ⊂ 𝐴 + 𝐵 ⊂ �̄� + �̄� = 𝐴 + 𝐵. Suppose that 𝑥 ∈ 𝜕 (𝐴 + 𝐵) can be written as

𝑥 = 𝑎 + 𝑏 for some 𝑎 ∈
◦
𝐴 and 𝑏 ∈ 𝐵. Then 𝑥 = 𝑎 + 𝑏 ∈

◦
𝐴 + 𝐵 ⊂ (𝐴 + 𝐵)◦, whence 𝑥 ∉ 𝜕 (𝐴 + 𝐵). This is

a contradiction, so 𝑎 ∉
◦
𝐴, that is 𝑎 ∈ 𝜕𝐴. By similar reasoning (𝐴 and 𝐵 reversed) we find that 𝑏 ∈ 𝜕𝐵

as well, which is the desired assertion. □

The assertion bounded in (ii) may not be dropped: To see this consider the closed sets 𝐴 B

R × {0} ⊂ R2 and 𝐵 B
{(
𝑥, e−𝑥2

)
: 𝑥 ∈ R

}
. 𝐴 + 𝐵 is open though, and �̄� + �̄� ⊊ 𝐴 + 𝐵.

18.1.1 Topological features of convex sets
Theorem (Topological properties of convex sets).

⊲ If 𝐴 is open, then conv 𝐴 is open;1

⊲ If 𝐴 is bounded, then conv 𝐴 is bounded;

⊲ If 𝐴 is closed and bounded, then conv 𝐴 is closed and bounded;

⊲ conv (𝐴 + 𝐵) = conv 𝐴 + conv 𝐵.

Proof. Let 𝑎 ∈ conv 𝐴 have a representation 𝑎 =
∑𝑛

𝑖=1 𝜆𝑖𝑎𝑖 with 𝑎𝑖 ∈ 𝐴, whence 𝑎 ∈ ∑𝑛
𝑖=1 𝜆𝑖𝐴 ⊂ conv 𝐴.

As 𝐴 is open it follows from Theorem (18.1) ((i)) that
∑𝑛

𝑖=1 𝜆𝑖𝐴 is open, whence conv 𝐴 is open.
Boundedness is obvious.
Let 𝑎 ∈ conv 𝐴. Then there is a sequence 𝑎𝑘 =

∑𝑑+1
𝑖=1 𝜆

(𝑘 )
𝑖
𝑎
(𝑘 )
𝑖
∈ conv 𝐴 with 𝑎𝑘 → 𝑎 (here we use

Carathéodory’s theorem; the statement is wrong in non-finite dimensions). By picking subsequences
we may assume that 𝑎 (𝑘 )1 converges, 𝑎 (𝑘 )2 converges, etc. and finally 𝑎 (𝑑+1)

𝑘
, and moreover all 𝜆 (𝑘 )

𝑖
. □

1The statement if 𝐴 is closed, then conv 𝐴 is closed is wrong (why?).
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18.2 PRELIMINARIES AND DEFINITIONS

In a vector space 𝑋 the Minkowski sum (also known as dilation) of two sets 𝐴 and 𝐵 is 𝐴 + 𝐵 B
{𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, and the product with a scalar 𝑝 is 𝑝 · 𝐴 B {𝑝 · 𝑎 : 𝑎 ∈ 𝐴}.

18.2.1 Convexity, and Conjugate Duality
The support function of a set 𝐴 ⊂ 𝑋 is

𝑠𝐴 (𝑥∗) B sup
𝑎∈𝐴

𝑥∗ (𝑎) , (18.1)

where 𝑥∗ ∈ 𝑋∗ is from the dual of a Banach space (𝑋, ∥·∥) with norm ∥·∥; its dual we will denote as
(𝑋∗, ∥·∥), as no confusion with denoting the norm in the dual again by ∥·∥ will be possible anyway.

Remark 18.1 (A collection of properties). Important properties of the support function include

(i) 𝑠𝐴 ≤ 𝑠𝐵 whenever 𝐴 ⊂ 𝐵 (more specifically, 𝑠𝐴 (𝑥∗) ≤ 𝑠𝐴 (𝑥∗) for all 𝑥∗),

(ii) 𝑠𝜆·𝐴 (𝑥∗) = 𝑠𝐴 (𝜆 · 𝑥∗) = 𝜆 · 𝑠𝐴 (𝑥∗) for 𝜆 > 0 (positive homogeneity) and 𝑠𝐴 (0) = 0,

(iii) 𝑠𝐴+𝐵 = 𝑠𝐴 + 𝑠𝐵,

(iv) 𝑠conv 𝐴
= 𝑠𝐴2 and

(v) 𝑠𝐴 is convex, that is 𝑠𝐴
(
(1 − 𝜆) 𝑥∗0 + 𝜆𝑥

∗
1
)
≤ (1 − 𝜆) 𝑠𝐴

(
𝑥∗0

)
+ 𝜆𝑠𝐴

(
𝑥∗1

)
whenever 0 ≤ 𝜆 ≤ 1.

By employing the indicator function of the set 𝐴, I𝐴 (𝑎) B
{

0 if 𝑎 ∈ 𝐴
∞ else , it is immediate that

𝑠𝐴 (𝑥∗) = sup
𝑥∈𝑋

𝑥∗ (𝑥) − I𝐴 (𝑥) ,

where the supremum ranges over all 𝑥 ∈ 𝑋 ⊃ 𝐴 now. The support function itself thus is the usual
convex conjugate function of I𝐴, which we denote 𝑠𝐴 = I∗

𝐴
. The bi-conjugate function of I𝐴 (the

conjugate of 𝑠𝐴) is the function

𝑠∗𝐴 (𝑎) B sup
𝑥∗∈𝑋∗

𝑥∗ (𝑎) − 𝑠𝐴 (𝑥∗) =
{

0 if 𝑥∗ (𝑎) ≤ 𝑠conv 𝐴
(𝑥∗) for all 𝑥∗ ∈ 𝑋∗

∞ else,

and by the Rockafellar-Fenchel-Moreau-duality Theorem (cf. Rockafellar [1974]) one further infers
that 𝑠∗

𝐴
= Iconv 𝐴

.
This also reveals the relation

conv 𝐴 =
{
𝑠∗𝐴 < ∞

}
=

⋂
𝑥∗∈𝑋∗

{𝑎 : 𝑥∗ (𝑎) ≤ 𝑠𝐴 (𝑥∗)} =
⋂

𝑥∗∈𝑋∗
{𝑥∗ ≤ 𝑠𝐴 (𝑥∗)} ,

from which follows that the correspondence 𝐴 ↦→ 𝑠𝐴, restricted to convex, compact sets 𝐴 ∈ C, is
one-to-one (injective).

18.2.2 Pompeiu–Hausdorff Distance
Having addition and multiplication available for sets an adequate and fitting notion of distance is
useful. For this define the distance from 𝑎 to a set 𝐵 as 𝑑 (𝑎, 𝐵) B inf𝑏∈𝐵 𝑑 (𝑎, 𝑏), where 𝑑 is the
distance function. The deviation of the set 𝐴 from the set 𝐵 is D (𝐴, 𝐵) B sup𝑎∈𝐴 𝑑 (𝑎, 𝐵),3 and the
Pompeiu-Hausdorff distance is H (𝐴, 𝐵) B max {D (𝐴, 𝐵) , D (𝐵, 𝐴)} (cf. Rockafellar and Wets [1997]).

2conv 𝐴 B {∑𝑖 𝜆𝑖𝑎𝑖 : 𝜆𝑖 ≥ 0,
∑

𝑖 𝜆𝑖 = 1 and 𝑎𝑖 ∈ 𝐴} is the convex hull of 𝐴.
3in some references Hess [2002] also called excess of 𝐴 over 𝐵.
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Note that D (𝐴, 𝐵) = 0 iff 𝐴 is contained in the topological closure, 𝐴 ⊂ �̄�, and H (𝐴, 𝐵) = 0 iff �̄� = �̄�;
moreover H (𝐴, 𝐵) = H

(
𝐴, 𝐵

)
and obviously H (𝐴, 𝐵) ≤ sup𝑎∈𝐴,𝑏∈𝐵 𝑑 (𝑎, 𝑏).

In a normed space with 𝑑 (𝑎, 𝑏) = ∥𝑏 − 𝑎∥ it is enough to consider the boundaries, as we have in
addition that H (𝐴, 𝐵) = H (𝜕𝐴, 𝜕𝐵) if 𝐴 and 𝐵 are (sequentially) compact (i.e., 𝐴 and 𝐵 are relatively
compact); moreover

H (𝐴, 𝐵) = ∥𝑏 − 𝑎∥ (18.2)

for some 𝑎 ∈ 𝜕𝐴 and 𝑏 ∈ 𝜕𝐵 in this situation.

Lemma 18.2. The deviation D and the Pompeiu-Hausdorff distance H satisfy the triangle inequality,
D (𝐴,𝐶) ≤ D (𝐴, 𝐵) + D (𝐵,𝐶) and H (𝐴,𝐶) ≤ H (𝐴, 𝐵) + H (𝐵,𝐶).
(C, H), where C is the set of all nonempty, compact and convex subsets of 𝑋, is a Polish space

(i.e. a complete, separable and metric space), provided that (𝑋, 𝑑) is Polish.

Proof. See, e.g., Castaing and Valadier [1977]. □

The concept of the Hausdorff distance and the support functions introduced above link as follows
to a nice ensemble: in a normed space (𝑑 (𝑎, 𝑏) = ∥𝑏 − 𝑎∥) the deviation D, using Minkowski addition,
rewrites as D (𝐴,𝐶) = inf {𝑟 > 0: 𝐴 ⊂ 𝐶 + 𝑟 · 𝐵𝑋} where 𝐵𝑋 = {𝑥 : ∥𝑥∥ ≤ 1} is the unit ball and 𝐶𝑟 B
𝐶 + 𝑟 · 𝐵𝑋 is the 𝑟-fattening of 𝐶. If 𝐴 and 𝐶 are convex, then D (𝐴,𝐶) = inf

{
𝑟 > 0: 𝑠𝐴 ≤ 𝑠𝐶 + 𝑟 · 𝑠𝐵𝑋

}
,

where “≤” is the usual “≤”-comparison of functions (𝑠𝐴 ≤ 𝑠𝐶+𝑟 ·𝑠𝐵𝑋
iff 𝑠𝐴 (𝑥∗) ≤ 𝑠𝐶 (𝑥∗)+𝑟 ·𝑠𝐵𝑋

(𝑥∗) for all
𝑥∗ ∈ 𝑋∗). As 𝑠𝐵𝑋

(𝑥∗) = sup𝑏∈𝐵𝑋
𝑥∗ (𝑏) = ∥𝑥∗∥, the norm of 𝑥∗ in the dual (𝑋∗, ∥.∥) by the Hahn-Banach

Theorem, this simplifies further and it follows for general sets that

D (conv 𝐴, conv𝐶) = inf
{
𝑟 > 0: 𝑠𝐴 − 𝑠𝐶 ≤ 𝑟 · 𝑠𝐵𝑋

}
= sup
∥𝑥∗ ∥≤1

𝑠𝐴 (𝑥∗) − 𝑠𝐶 (𝑥∗) ,

and the Pompei-Hausdorff distance thus is

H (conv 𝐴, conv𝐶) = sup
∥𝑥∗ ∥≤1

|𝑠𝐴 (𝑥∗) − 𝑠𝐶 (𝑥∗) | (18.3)

in terms of seminorms. These observations convincingly relate the Pompeiu-Hausdorff distance with
Minkowski addition of convex sets.

It follows from the preceding discussion and remarks that for relatively compact sets 𝐴 and 𝐶 there
are 𝑎 ∈ 𝜕𝐴, 𝑐 ∈ 𝜕𝐶 and ∥𝑥∗∥ ≤ 1 such that D (𝐴,𝐶) = ∥𝑐 − 𝑎∥ = 𝑥∗ (𝑎 − 𝑐). 𝑥∗ is an outer normal for
both sets, conv 𝐴 and conv𝐶.

18.3 LOCAL DESCRIPTION

The sub-differential of a real-valued function 𝑓 : 𝑋∗ → R at a point 𝑥∗ ∈ 𝑋∗ is the set 4

𝜕 𝑓 (𝑥∗) B {𝑢 ∈ 𝑋 : 𝑓 (𝑧∗) − 𝑓 (𝑥∗) ≥ 𝑧∗ (𝑢) − 𝑥∗ (𝑢) for all 𝑧∗ ∈ 𝑋∗} ⊂ 𝑋.

Notably 𝜕 𝑓 (𝑥∗) is a subset of 𝑋, so 𝜕 𝑓 is a set-valued mapping which is expressed by writing

𝜕 𝑓 : 𝑋∗ ⇒ 𝑋

𝑥∗ ↦→ 𝜕 𝑓 (𝑥∗) .

The symbol⇒ 𝑋 indicates that the outcomes are subsets – a collection of elements – of 𝑋.
With the sub-differential at hand we may add the following standard characterization of the support

function 𝑠𝐴 of a set 𝐴, which will turn out useful for our purpose:

Lemma 18.3. The support function 𝑠𝐴 has the sub-differential 𝜕𝑠𝐴 (𝑥∗) = arg maxconv 𝐴
𝑥∗.5 Moreover

𝜕𝑠𝐴 (𝑥∗) ⊂ 𝜕𝐴.
4note, that 𝜕 𝑓 (𝑥∗ ) ⊂ 𝑋 is a subset in the pre-dual 𝑋 rather than 𝑋∗∗.
5We shall abbreviate the argument of the maximum of a function 𝑓 restricted to 𝐷 by arg max𝐷 𝑓 B arg max { 𝑓 (𝑥 ) : 𝑥 ∈ 𝐷}.
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Proof. With 𝑢 ∈ arg maxconv 𝐴 𝑥
∗ ⊂ conv 𝐴, for any 𝑧∗ ∈ 𝑋∗ we have that 𝑠𝐴 (𝑧∗) ≥ 𝑧∗ (𝑢) = 𝑠𝐴 (𝑥∗) +

𝑧∗ (𝑢) − 𝑥∗ (𝑢) and hence 𝑢 ∈ 𝜕𝑠𝐴 (𝑥∗).
Conversely, with 𝑎 ∈ 𝜕𝑠𝐴 (𝑥∗) we have that 𝑠𝐴 (𝑧∗) − 𝑠𝐴 (𝑥∗) ≥ 𝑧∗ (𝑎) − 𝑥∗ (𝑎) or

𝑥∗ (𝑎) ≥ 𝑠𝐴 (𝑥∗) + 𝑧∗ (𝑎) − 𝑠𝐴 (𝑧∗) (18.4)

for all 𝑧∗. For the particular choice 𝑧∗ = 0 we find that 𝑥∗ (𝑎) ≥ 𝑠𝐴 (𝑥∗) and it remains to show that
𝑎 ∈ conv 𝐴. Suppose that 𝑎 ∉ conv 𝐴, then – by the Hahn-Banach Theorem – there is a 𝑧∗ such that
𝑧∗ (𝑎) > sup

{
𝑧∗ (𝑎′) : 𝑎′ ∈ conv 𝐴

}
= 𝑠𝐴 (𝑧∗). This same equation holds for multiples 𝜆 · 𝑧∗ (𝜆 > 0),

hence (18.4) cannot hold in general; thus, 𝑎 ∈ conv 𝐴.
The second statement is obvious. □
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