
Chemnitz Scientific Computing Preprints – ISSN 1864-0087

Janine Glänzel Roman Unger

High Quality FEM-Postprocessing and

Visualization Using a Gnuplot Based

Toolchain

CSC/14-03

Chemnitz Scientific Computing

Preprints



Impressum:

Chemnitz Scientific Computing Preprints — ISSN 1864-0087

(1995–2005: Preprintreihe des Chemnitzer SFB393)

Herausgeber:
Professuren für
Numerische und Angewandte Mathematik
an der Fakultät für Mathematik
der Technischen Universität Chemnitz

Postanschrift:
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz
Sitz:
Reichenhainer Str. 41, 09126 Chemnitz

http://www.tu-chemnitz.de/mathematik/csc/



References

[BMP03] S. Beuchler, A. Meyer, and M. Pester. SPC-PM3AdH v1.0 - Program-
mer’s Manual. Preprint SFB393 01-08 TU Chemnitz, 2003.

[Glä09] J. Glänzel. Kurzvorstellung der 3D-FEM Software SPC-PM3AdH-XX.
Preprint CSC/09-03 TU Chemnitz, 2009.

[Glä14] J. Glänzel. Korrektur thermoelastischer Verformungen durch den Ein-
satz der adaptiven FEM. Eingereichte Dissertationsschrift, TU Chem-
nitz, 2014.

[Jan10] Philipp K Janert. Gnuplot in action: understanding data with graphs.
Manning, Greenwich, CT, 2010.

[Mec04] Robert Mecklenburg. Managing Projects with GNU Make. O’Reilly
Media, Sebastopol, 2004.

[Mey01] A. Meyer. Programmer’s Manual for Adaptive Finite Element Code
SPC-PM 2Ad . Preprint SFB393 01-18 TU Chemnitz, 2001.

[Mey14a] A. Meyer. Programmbeschreibung SPC-PM3-AdH-XX Teil 1. Preprint
CSC/14-01 TU Chemnitz, 2014.

[Mey14b] A. Meyer. Programmbeschreibung SPC-PM3-AdH-XX Teil 2. Preprint
CSC/14-02 TU Chemnitz, 2014.

26

Chemnitz Scientific Computing

Preprints

Janine Glänzel Roman Unger

High Quality FEM-Postprocessing and

Visualization Using a Gnuplot Based

Toolchain

CSC/14-03

CSC/14-03 ISSN 1864-0087 July 2014

Abstract

In the paper a toolchain for postprocessing and visualization of simu-
lation datas, arising in finite element computations is described. This
toolchain is based on gnuplot and free software. It is developed on the
simulation problem of thermoelasticity, but it is not restricted on this
problem class and adaptable on all other simulation problems, dealing
with scalar- and vector fields. The most involved programs are gnuplot,
perl, make and ffmpeg.



Contents

1. Introduction 1

2. Simulation problem and emerging datas 1

3. Gnuplot basics 3
3.1. Temporal envelopment plots for single nodes (V1) . . . . . . . . . 5
3.2. Usage possibilities for the epslatex-terminal . . . . . . . . . . . . 5
3.3. Automatism with Makefile and DoPic.pl . . . . . . . . . . . . . . 6

4. Mesh plotting (V2) 7

5. Temperature field plotting (V3) 9

6. Video creation (V4) 12

7. Colormaps 12
7.1. Colormap pictures and short description . . . . . . . . . . . . . . 14

8. Summary and outlook 16

9. Acknowledgement 17

A. Script-Listings 18
A.1. Perlscript: DoPic.pl . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.2. Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B. Colormap Sourcecodes 22
B.1. Sourcecode: colormap tg . . . . . . . . . . . . . . . . . . . . . . . 22
B.2. Sourcecode: colormap 01 . . . . . . . . . . . . . . . . . . . . . . . 23
B.3. Sourcecode: colormap 99 . . . . . . . . . . . . . . . . . . . . . . . 24

Author’s addresses:

Janine Glänzel
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU
Abteilung 120, Reichenhainer Straße 88, 09126 Chemnitz, Germany
janine.glaenzel@iwu.fraunhofer.de

http://www.tu-chemnitz.de/~glj

Roman Unger
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz, Germany
roman.unger@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/~uro

return ($red,$green,$blue);}

if ( $u < 0.2 )

{

$red = 1.0-5*$u;

$green = 0;

$blue = 1;

return ($red,$green,$blue);

}

if ( $u < 0.4 )

{

$red = 0;

$green = 5*($u-0.2);

$blue = -5.0 * ($u-0.2) + 1.0;

return ($red,$green,$blue);

}

if ( $u < 0.6 )

{

$red = 5.0 * ($u-0.4);

$green = 1;

$blue = 0;

return ($red,$green,$blue);

}

if ( $u < 0.8 )

{

$red = 1;

$green = -5.0 * ($u-0.6) + 1.0;

$blue = 0;

return ($red,$green,$blue);

}

# case u \in [ 0.8 , 1 ]

$red = 1;

$green = 5.0 * ($u-0.8);

$blue = 5.0 * ($u-0.8);

return ($red,$green,$blue);

}

25



{

$red = 0;

$green = 4.0*$u;

$blue = 1;

return ($red,$green,$blue);

}

if ( $u < 0.5 )

{

$red = 0;

$green = 1;

$blue = -4.0 * ($u-0.25) + 1.0;

return ($red,$green,$blue);

}

if ( $u < 0.75 )

{

$red = 4.0 * ($u-0.5);

$green = 1;

$blue = 0;

return ($red,$green,$blue);

}

# case u \in [ 0.75 , 1 ]

$red = 1;

$green = -4.0 * ($u-0.75) + 1;

$blue = 0;

return ($red,$green,$blue);

}

B.3. Sourcecode: colormap 99

sub colmap_99

{

my $u=shift;

my $red;

my $green;

my $blue;

if($u<0){ $red=1;$green=0;$blue=1;

return ($red,$green,$blue);}

if($u>1){ $red=1;$green=1;$blue=1;

24

1. Introduction

The numerical simulation of time dependent thermoelastical problems with adap-
tive finite-element methods leads to a large amount of simulation data. The post-
processing and visualization of this datas with the most tools, using graphical user
interfaces is a job, consuming a lot of time. Especially for series of simulations
an automated, script-based toolchain leads to short working times and moreover
it assures repeatable results.

In the developed toolchain the following programs are involved:

gnuplot A free plot program, available for all platforms (Linux, Mac, Windows)
to create the final plots and pictures. (see: www.gnuplot.org)

perl A scripting language, especially used for file handling and metascript gen-
eration. (see: www.perl.org)

make The classical make for resolving file dependencies. The normal usage of
make is source code compiling, but it is useful for all purposes to handling,
generating and updating files, depending on other files by evaluation of the
file time stamps. (see: www.gnu.org/software/make)

ffmpeg A cross-platform program to convert, record and stream video (and audio
too). It is used to visualize time dependent fem-solutions as video.
(see: www.ffmpeg.org)

All of these programs are free available for the most computing platforms, the
description here is done for a LINUX-platform, but is adaptable for Windows
and Mac too.

2. Simulation problem and emerging datas

In this section a short description of the thermoelastic problem, exemplary used
for the description of the postprocessing steps, is given, however the usefulness
of the developed toolchain is not restricted to the class of thermoelasticity, it can
be easily used or adapted for other simulation problems, for example for flow
problems.

Inside the thermoelastic problem a temperature field T (x, t) and a coupled dis-
placement field u(x, t) are searched such that the instationary heat equation for

1



all t ∈ [0, tend]

c%
∂T (x, t)

∂t
= ∇ · (κ∇ T (x, t)) + fT (x, t) + γ̄(T − TA) ∀x ∈ Ω

T (x, 0) = T0(x) ∀x ∈ Ω

T (x, t) = gTD
(x, t) ∀x ∈ ΓD

−~nT (κ∇ T (x, t)) = gTN
(x, t) ∀x ∈ ΓN

−~nT (κ∇ T (x, t)) = γ(T − Ta) ∀x ∈ ΓR

together with the coupled Lame-equation, describing the resulting displacement
field,

−µ∆u(x, t)− (λ+ µ)∇ div u(x, t) =

f(x, t)− (2µ + 3λ)α∇ T (x, t) ∀x ∈ Ω

u(x, t) = gD(x) ∀x ∈ ΓD

σ(u(x, t))~n = gN(x) ∀x ∈ ΓN

is fulfilled togehter with given boundary conditions. For a detailed description of
the coupled thermoelastic problem and all terms see [Glä14].

Because the given problem is time dependent, the finite element simulation is
done by a time stepping algorithm. During the finite element simulation of this
thermoelastic problem vectors T ∈ RNT and u ∈ RNu are generated, holding the
node values for the temperature field and displacement field. Together with the
finite-element-mesh this are the source datas for visualization.

The main applications of visualization are:

(V1) Visualize the temporal development of a single node value at fixed posi-
tion x0 for example for the temperature value T (x0, t) or a displacement
component ui(x0, t) for t ∈ [0, tend].

(V2) Visualize a displaced finite-element-mesh at a fixed time value t0 as a 2d-
plot, e.g. X + u(x, t0).

(V3) Visualize a full scalar field like the temperature field, components of the
displacement field or the norm of the displacement field at a fixed time
value t0 as a 2d-plot, f.e. T (x, t0).

(V4) Especially for points (V2) and (V3) sometimes the full time development is
of interest, which can be done by generating appropriate image sequences
and converting this sequences to a video with the help of a video compres-
sion tool like ffmpeg.

In the next sections the used tools for this applications will described.

2

$blue = 0;

return ($red,$green,$blue);

}

if ( $u < 0.75 )

{

$red = 1;

$green = -4 * ($u-0.5) + 1.0;

$blue = 0;

return ($red,$green,$blue);

}

if ( $u < 0.9 )

{

$red = 1;

$green = 0;

$blue = 6.66 * ($u-0.75);

return ($red,$green,$blue);

}

# case u \in [ 0.9 , 1 ]

$red = 1;

$green = 10.0 * ($u-0.9);

$blue = 1;

return ($red,$green,$blue);

}

B.2. Sourcecode: colormap 01

sub colmap_01

{

my $u=shift;

my $red;

my $green;

my $blue;

if($u<0){ $red=0;$green=0;$blue=1;

return ($red,$green,$blue);}

if($u>1){ $red=1;$green=0;$blue=0;

return ($red,$green,$blue);}

if ( $u < 0.25 )

23



B. Colormap Sourcecodes

In the following subsections the color mapping functions, corresponding with the
colormaps, shown in figures 6a, 7a, 8a are given in perl-syntax. The usage of this
functions is calling (my $red, my $green, my $blue)=colmap XX($u).

B.1. Sourcecode: colormap tg

sub colmap_tg

{

my $u=shift;

my $red;

my $green;

my $blue;

if($u<0){ $red=0;$green=0;$blue=0;

return ($red,$green,$blue);}

if($u>1){ $red=1;$green=1;$blue=1;

return ($red,$green,$blue);}

if ( $u < 0.2 )

{

$red = 0;

$green = 0;

$blue = 5*$u;

return ($red,$green,$blue);

}

if ( $u < 0.4 )

{

$red = 0;

$green = 5*($u-0.2);

$blue = -5.0 * ($u-0.2) + 1.0;

return ($red,$green,$blue);

}

if ( $u < 0.5 )

{

$red = 10 * ($u-0.4);

$green = 1;

22

3. Gnuplot basics

In preparation for the special applications, given in (V1) · · · (V4) some basic
informations about the used special features of gnuplot will given here. For the
elementary steps in gnuplot exist a lot of literature and scripts in the web and
books too, for example [Jan10].

The most simplistic case of usage for gnuplot is having a two column datafile
x.dat like

0.00000 0.00000

0.10000 0.09983

0.20000 0.19867

...

which can be plotted inside gnuplot by calling

plot "x.dat"

To use the plot in other documents exist in gnuplot a possibility to create a file
in a choosen graphic format, therefore the so called ’terminal’ variable is useful.
In the example from above the plot will create as a picture in png-format (png:
portable network graphic) by extend the plot call to

set terminal png

set output "x.png"

plot "x.dat"

Here we start with some special features, like the used terminal. The terminal
is the choosen output driver of gnuplot, it is possible to generate pixel based
pictures like png or vector based pictures like eps or pdf, but one special point
for the later usage of these generated pictures is the choosen font for titles, labels
and so on. Using a complete by gnuplot generated picture in LATEX is possible
with a simple \includegraphics but the fonts will taken as they are and so
they differ from the used font in the main document in most cases.

To overcome this disadvantage it is possible to separate the plot from the inscrip-
tion by using special terminals in gnuplot like the epslatex - terminal. For a
first impression in the figures 1a and 1b, the same plot is done with the terminal
png (fig. 1a) and with the terminal epslatex (fig. 1b)

It is evident, that the quality of the second variant (fig. 1b) is much better, espe-
cially the font style and font size are the same like in the whole LATEX-document,
please note that the font in the plot is choosen without serifs. Especially the test
label in figure 1b shows that the whole power of the math mode in LATEX can be
used inside gnuplot with appropriating terminals like epslatex.

3



(a) Example picture for terminal png

21

22

23

24

25

26

27

28

0 20 40 60 80 100

T
[◦
C
]

t[s]

Testlabel
N∑
i=1

ai
bi
= c

T(t)

(b) Example picture for terminal epslatex

Figure 1: Comparison of different terminals

4

ALLPLOTS = gnutest1.pdf

ALLPLOTS += colmapshow_cm99.pdf

ALLPLOTS += colmapshow_cm01.pdf

ALLPLOTS += colmapshow_cmtg.pdf

# The main target

all: $(ALLPLOTS)

# and the build rule

%.pdf : %.txt

perl DoPic.pl $<

.PHONY : clean realclean

ALLDVI =$(ALLPLOTS:.pdf=.dvi)

ALLEPS =$(ALLPLOTS:.pdf=.eps)

ALLTEX =$(ALLPLOTS:.pdf=.tex)

ALLTEXI=$(ALLPLOTS:.pdf=-input.tex)

ALLEPSI=$(ALLPLOTS:.pdf=-input.eps)

ALLPDFI=$(ALLPLOTS:.pdf=-input.pdf)

ALLPS =$(ALLPLOTS:.pdf=.ps)

ALLLOG =$(ALLPLOTS:.pdf=.log)

ALLAUX =$(ALLPLOTS:.pdf=.aux)

clean :

rm -fv $(ALLDVI) $(ALLEPS) $(ALLTEX) $(ALLTEXI)

rm -fv $(ALLEPSI) $(ALLPS) $(ALLLOG) $(ALLAUX) $(ALLPDFI)

rm -fv $(ALLPLOTS)

realclean : clean

21



A.2. Makefile

###############################################################

#

# Makefile to create all plots

#

# Janine Glänzel, Roman Unger ... 06/2014

#

###############################################################

#

# Copyright (C) 2014 Janine Glänzel, Roman Unger

#

# janine.glaenzel@mathematik.tu-chemnitz.de

# roman.unger@mathematik.tu-chemnitz.de

#

# This program is free software: you can redistribute it

# and/or modify it under the terms of the GNU General Public

# License as published by the Free Software Foundation,

# either version 3 of the License, or (at your option) any

# later version.

#

# This program is distributed in the hope that it will be

# useful, but WITHOUT ANY WARRANTY; without even the implied

# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

# PURPOSE.

# See the GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.

# If not, see <http://www.gnu.org/licenses/>.

#

###############################################################

# The target files are PDFs.

#

# To get foo.pdf create a gnuplot file foo.txt

# and set in this gnuplotfile the output as

# set output ’foo-input.tex’

20

3.1. Temporal envelopment plots for single nodes (V1)

Plotting the temporal envelopment of single node values is one of the simplistic
usages of gnuplot, the only thing to do is generating a 2- or more column datafile
gnu.dat with the corresponding time in the first column and scalar plot values
in column 2 (or more columns for other values). Then inside the gnuplot script
this values can be visualized by calling

plot "gnu.dat"

which is the minimalistic variant. All other possibilities for tuning the picture
can be used too. For getting qualitative good pictures the used terminal has an
important influence, which will decribed in the next section in more detail.

3.2. Usage possibilities for the epslatex-terminal

The usage of the epslatex terminal in gnuplot is done like with all other file orien-
tated terminals, at first the terminal must set with the set terminal command,
then a output file name must be given, for example with

set terminal epslatex size 15cm,12cm color colortext dashed

set output ’gnutest1-input.tex’

This terminal definition together with all other plot commands is placed in a
textfile gnutest1.txt.

Then a gnuplot call will produce 2 files, one file gnutest1-input.tex holding all
the text, labels, etc. and the other file gnutest1-input.eps with the graphical
output. There are now two possibilities to use this in the LATEX document.

The first one is to include test1-input.tex with a simple

\input{gnutest1-input.tex}

The advantage of this variant is their simplicity, there is also no matter for us-
ing pdflatex, the epsfile gnutest1-input.eps must only converted to pdf with
epstopdf gnutest1-input.eps.

The disadvantage is, that a scaling during the input is not possible and a scaling
inside the terminal command collides in some cases with the font sizes. So some-
times a second variant with a separate LATEX run, to produce a complete pdf-file
and use this in the main document is the better one.

5



Therefore the following steps are needed:

1. Create gnutest1.txt and run gnuplot with this inputfile

2. Create a minimalistic LATEX file, called gnutest1.tex with the lines

\documentclass[12pt]{article}

\usepackage{german,indentfirst,graphicx,color}

\usepackage{SIunits}

\usepackage{amsmath}

\pagestyle{empty}

\begin{document}

\begin{center}

{ \sffamily \input{gnutest1-input.tex} }

\end{center}

\end{document}

3. Run LATEX on this file with latex gnutest1.tex.

4. Convert the produced dvi-file to a postscript file gnutest1.ps with match-
ing boundaries (option -E) by dvips -E gnutest1.dvi

5. Create gnutest1.pdf with epstopdf gnutest1.ps

Now one can use this in the main document with
\includegraphics[width=XXcm]{gnutest1.pdf}
to include the picture.

The advantage of this variant is an easy scaling after including, the disadvantage
is that the given 5 steps must done for every plot. To overcome this disadvantage
in the next section an automatism for this steps will shown.

3.3. Automatism with Makefile and DoPic.pl

To overcome the disadvantage of to much program calls for every plot at first
a perlscript DoPic.pl is needed, which does the steps 1 to 5 from page 6 by a
simple call: perl DoPic.pl gnutest1.txt. The script is not very difficult, it
only has to manage some filenames and calls the matching programs. Sourcecode
of the script is given in the appendix on page 18.

Please note that for correct work the following naming convention is manda-
tory: If the gnuplot inputfile is named foo.txt the outputname for the epslatex
terminal inside this file must be foo-input.tex.

In principle all plots can handled only with this script DoPic.pl but sometimes
it is nasty to run this by hand if the number of plots increases and some of the
plots are changed because of some reason. So it is obvious to couple the script

6

if (@ARGV != 1) { die "usage: $0 gnuplotfile.txt\n";}

my $f=$ARGV[0];

my $stem=$f;

$stem =~ s/\.txt$//;

my $res;

# STEP 1 gnuplot, it creates stem-input.tex and stem-input.eps

$res = system("gnuplot $stem.txt");

die "gnuplot error res=$res\n" until ($res==0);

# STEP 2 create the latexfile stem.tex

open (TEX,">$stem.tex") || die "Cant write $stem.tex\n";

print TEX "\\documentclass[12pt]{article}\n";

print TEX "\\usepackage{german,indentfirst,graphicx,color}\n";

print TEX "\\usepackage{SIunits}\n";

print TEX "\\usepackage{amsmath}\n";

#print TEX "\\usepackage{amssymb}\n";

print TEX "\\pagestyle{empty}\n";

print TEX "\\begin{document}\n";

print TEX "\\begin{center} { \\sffamily ";

print TEX "\\input{$stem-input.tex} } \\end{center}\n";

print TEX "\\end{document}\n";

close TEX;

# STEP 3, run latex to get stem.dvi

$res = system("latex $stem.tex");

die "latex error res=$res\n" until ($res==0);

# STEP 4, run dvips -E to get stem.ps

$res = system("dvips -E $stem.dvi");

die "dvips error res=$res\n" until ($res==0);

# STEP 5, run epstopdf to get stem.pdf

$res = system("epstopdf $stem.ps");

die "epstopdf error res=$res\n" until ($res==0);

# STEP 6, run epstopdf on stem-input.eps to get stem-input.pdf

# which allows direct including of the stem-input.tex

$res = system("epstopdf $stem-input.eps");

die "epstopdf error res=$res\n" until ($res==0);

19



A. Script-Listings

A.1. Perlscript: DoPic.pl

#!/usr/bin/perl

#

# Create foo.pdf togehter with many intermediate files

# from gnuplot file foo.txt

#

# Please use the naming convention, that in a

# gnuplot file foo.txt the output is set to:

# set output ’foo-input.tex’

#

# Janine Glänzel, Roman Unger ... 06/2014

#

###############################################################

#

# Copyright (C) 2014 Janine Glänzel, Roman Unger

#

# janine.glaenzel@mathematik.tu-chemnitz.de

# roman.unger@mathematik.tu-chemnitz.de

#

# This program is free software: you can redistribute it

# and/or modify it under the terms of the GNU General Public

# License as published by the Free Software Foundation,

# either version 3 of the License, or (at your option) any

# later version.

#

# This program is distributed in the hope that it will be

# useful, but WITHOUT ANY WARRANTY; without even the implied

# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

# PURPOSE.

# See the GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public

# License along with this program.

# If not, see <http://www.gnu.org/licenses/>.

#

###############################################################

use strict;

18

with a makefile to use make to recreacte all updated plots. For the principal
usage of make see e.g. [Mec04] or other free available documentations. The only
speciality in the Makefile, given in the appendix on page 20, is the build rule for
the pdf-file, depending on the corresponding textfile for gnuplot by:

%.pdf : %.txt

perl DoPic.pl $<

which is reponsible for calling the perlscript DoPic.pl for every picture, which
needs an update. The used pictures are given inside the Makefile by define and
expand the variable ALLPLOTS e.g.

ALLPLOTS = gnutest1.pdf

ALLPLOTS += colmapshow_cm01.pdf

ALLPLOTS += colmapshow_cmtg.pdf

ALLPLOTS += gnu1_epslatex.pdf

...

Placing Makefile, DoPic.pl and all the textfiles for gnuplot together with all
datas in a subdir, called gnuplots only a simple make in this directory is needed
to (re-)create all the plots. To use it in the main LATEX file don’t forget to expand
the graphicspath by addinge the line

\graphicspath{{./gnuplots/}}

at the beginning of the main document. As an extension inside the makefile a
section called ’clean’ is defined, by calling make clean or make realclean all
outputfiles will deleted.

Some example scripts and data files for this section and later sections too are
given at the authors webpages:
http://www.tu-chemnitz.de/~glj/publications/CSC14-03

http://www.tu-chemnitz.de/~uro/publications/CSC14-03

4. Mesh plotting (V2)

To plot a finite element mesh with gnuplot, a datafile must created either inside
the FE-program or out of output datas with the help of a script in a postpro-
cessing step. However the structure of the datafile for gnuplot must hold the
structure like in the following simple example.

For every (quadrangular) finite element the node coordinates (x1, x2) and dis-
placement values (u1, u2) are given for all 4 nodes and node 1 again, followed
by an empty line. As an example datafile let’s create a file mp1.txt with the
following content.

7



# x1 x2 u_1 u_2

0.0 0.0 0.0 0.0

1.0 0.0 0.001 0.001

1.0 1.0 0.002 0.003

0.0 1.0 -0.001 0.002

0.0 0.0 0.0 0.0

1.0 0.0 0.001 0.001

2.0 0.0 0.001 0.001

2.0 1.0 0.002 0.003

1.0 1.0 0.002 0.003

1.0 0.0 0.001 0.001

Here two elements with displacement values are given. This are a unit square
and a unit square moved by one unit in x1 direction. Columnwise the values
for the node coordinates (x1, x2) and displacement values (u1, u2) are given. The
corresponding plots for the mesh and the displaced mesh are shown in fig. 2.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

x 2
[m

m
]

x1[mm]

Mesh

(a) mesh only

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

x 2
[m

m
]

x1[mm]

Mesh Mesh+U

(b) mesh and displacement

Figure 2: Simple meshplot example

To create a mesh plot like in fig. 2a the gnuplot-command is

plot "mp1.txt" title "Mesh" with lines linetype 1 \

linecolor rgb "#0000FF" linewidth 3

where mp1.txt is the datafile, described above, holding the element values.

It is also possible to add the displacement values to the node values for creating
plots like in fig. 2b. In most practical cases the displacement values are so small,
that in a plot of x+u one can not distinguish between the mesh and the displaced
mesh. In such cases a it is useful to exaggerate the displacement values. All this
can be done inside the gnuplot-command, without changing the datafile. As an
example see the command which produced the plot of x+ 10u, shown in fig. 2b.

8

short working times. Especially for video creation, where a lot of single pictures
(approx. 1500 frames for 1 minute video) are needed, it makes it possible to
create this datas. For full 3-dimensional problems a script based visualization
with the help of a raytracer (e.g. PovRay) will shown in a future work. Example
scripts and data files are given at the authors webpages:
http://www.tu-chemnitz.de/~glj/publications/CSC14-03

http://www.tu-chemnitz.de/~uro/publications/CSC14-03

9. Acknowledgement

This research is supported by the Deutsche Forschungsgemeinschaft (DFG) in
context of the Collaborative Research Centre/Transregio 96 thermo-energetic de-
sign of machine tools.

17



The colormap colormap 99 (shown in figure 8 with sourcecode on page 24) is
used inside the adaptive FEM-programs ’SPC-PM2Ad’ (see [Mey01]) or ’SPC-
PM3AdH-XX’ (see [Glä09], [Mey14a], [Mey14b], [BMP03]) when choosing ’99 cols’.
Figure 8a is an example for the color mapping and in figure 8b the color mapping
functions (1),(2),(3) for the red, green and blue color channel are shown.

0 0.2 0.4 0.6 0.8 1

(a) Example for colormap 99

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

co
lo
r

u

r(u) g(u) b(u)

(b) Color mapping functions

Figure 8: Colormap ’99 cols’ out of SPC-PM2Ad: colormap 99

8. Summary and outlook

In this paper a toolchain for producing plotfiles or video sequences in a pleasant
quality was developed. Especially for 2-dimensional problems, arising from the
finite element code ’SPC-PM2Ad’ (see [Mey01]) or surface- and slice plots in the
3-dimensional finite element code ’SPC-PM3AdH-XX’ (see [Glä09], [Mey14a],
[Mey14b], [BMP03]) this toolchain leads to good and reproducible pictures in

16

plot "mp1.txt" title "Mesh" with lines linetype 1 \

linecolor rgb "#0000FF" linewidth 3 ,\

"mp1.txt" using ($1+10*$3):($2+10*$4) \

title "Mesh+U" with lines linetype 1 \

linecolor rgb "#FF0000" linewidth 3

Note the using ($1+10*$3):($2+10*$4) part of the plot command, it calls gnu-
plot to use column 1 plus 10 times column 3 to plot it against column 2 plus 10
times column 4, which leads to an exaggerated displacement plot x+ 10u.

For an example with a ’real’ finite element mesh see fig. 3 where an example plot
for a thermoelastic problem is shown [Glä14]. The plot consists of approximatly
1000 finite elements.

0

5
10

15

20
25

30

35
40

0 20 40 60 80 100

x 2
[m

m
]

x1[mm]

Mesh Mesh+U

Figure 3: Example picture for mesh plot [Glä14]

5. Temperature field plotting (V3)

Plotting two dimensional colorflows with gnuplot is possible by using gnuplot’s
splot together with pm3d and the palette definition. However, it is sometimes
very complicated to achieve the needed results on this way.

A more flexible way to achieve this destination is the usage of simple plotting
colored polygons and compute the colors before plotting. Plotting colored poly-
gons can be done with inline data plot, for understanding again a simple example
with 3 colored quadrangles.

The first step is to compute inside the finite element program or by script out of
some datafiles from the output of the FE-program a color value for every finite
element.

9



Let’s say we computed the color red (#FF0000) for element 1, the color green
(#00FF00) for the second and the color blue (#0000FF) for the third element.
All elements must be plotted with a single plot call, coordinates are given inline
in the plot command, closed by the letter ’e’. For these 3 elements the plot
command is:

plot [-0.2:3.2] [-0.1:1.1] \

"-" title "" with filledcurve lc rgb "#ff0000" \

fillstyle transparent solid 1.000000 ,\

"-" title "" with filledcurve lc rgb "#00ff00" \

fillstyle transparent solid 1.000000 ,\

"-" title "" with filledcurve lc rgb "#0000ff" \

fillstyle transparent solid 1.000000 ;

0.0 0.0

1.0 0.0

1.0 1.0

0.0 1.0

0.0 0.0

e

1.0 0.0

2.0 0.0

2.0 1.0

1.0 1.0

1.0 0.0

e

2.0 0.0

3.0 0.0

3.0 1.0

2.0 1.0

2.0 0.0

e

Please note that the plot lines separated by a comma but the last line is closed
with a semicolon. Also the number of plot lines and the number of coordinate
blocks, closed by letter ’e’ must match exactly. The result of given plot command
is shown in figure 4.

For practical relevant cases the used colorflow depends on the underlying datas,
some basics and examples for colormaps are given in section 7 togehter with the
source code of the color mapping functions in appendix B. In figure 5 an example
for a temperature field plot, corresponding with the mesh and displacement of
figure 3 is shown. Here the ’multiplot’ functionality of gnuplot is used to plot
the temperature field togehter with the color bar into a single plot. The plot

10

The colormap colormap 01 (shown in figure 7 with sourcecode on page 23) is
a simple rainbow color flow used in many visualization tools like matlab, octave
etc. Figure 7a is an example for the color mapping and in figure 7b the color
mapping functions (1),(2),(3) for the red, green and blue color channel are shown.

0 0.2 0.4 0.6 0.8 1

(a) Example for colormap tg

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

co
lo
r

u

r(u) g(u) b(u)

(b) Color mapping functions

Figure 7: Simple rainbow colormap: colormap 01

15



7.1. Colormap pictures and short description

The colormap colormap tg (shown in figure 6 with sourcecode on page 22) is
used inside a commercial visualization program, coming together with a thermo-
graphic camera. Figure 6a is an example for the color mapping and in figure 6b
the color mapping functions (1),(2),(3) for the red, green and blue color channel
are shown.

0 0.2 0.4 0.6 0.8 1

(a) Example for colormap tg

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

co
lo
r

u

r(u) g(u) b(u)

(b) Color mapping functions

Figure 6: Colormap for a thermographic camera: colormap tg

14

consist of 4310 quadrangular elements, so the gnuplot-script with all this lines
and coordinate values must generated from the output data of the finite element
program with a script, here this is done with a perl-script.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

x 2
[m

m
]

x1[mm]

Figure 4: Simple example for temperature plot

20

22

24

26

28

30

32

34

36
T[◦C]

0

5

10

15

20

25

30

0 20 40 60 80 100
x 2
[m

m
]

x1[mm]

Figure 5: Example picture for temperature plot [Glä14]

11



6. Video creation (V4)

Especially for time dependent datas often a visualization with a video is one of
the most impressive variants. In preparation of a video all the single frames must
created. The so called ’frame rate’ of a video is the number of pictures per second,
values of 25 frames per second are normal. All this frames must generated with a
script (e.g. perl) as picture files, for example in portable network graphics (png)
format and named in a convention like frame-012345.png.

Then this frames can converted to a mp4-video with the help of ffmpeg by calling

ffmpeg -r 25 -f image2 -i upng/frame-%06d.png \

-vcodec libx264 -crf 15 test.mp4

which creates a mp4 (h.264) format video which should play on the most plat-
forms.

The given options to ffmpeg are in detail:

-r 25 frame rate 25 frames per second

-f image2 input data is a image sequence

-i upng/frame-%06d.png input files are in subdir upng and named by frame-

followed by a six digit number with leading zeros + extension .png

-vcodec libx264 video coding is done with libx264, which produces a video in
h.264 (known as mp4) format

-crf 15 a quality switch, small values means better quality, usual: 15-20

There are many more options and possible video formats which are useable with
ffmpeg, for more details see www.ffmpeg.org.

7. Colormaps

In this section some examples of colormaps, used for the temperature plots are
shown. The corresponding source code can be found in appendix B. In all cases a
colormap is a function c : R→ [0, 1]3, mapping a given value T to an RGB-triplet
[r(T ), g(T ), b(T )]T with the one dimensional color mapping functions r,g,b

r : R→ [0, 1] mapping for color red (1)

g : R→ [0, 1] mapping for color green (2)

b : R→ [0, 1] mapping for color blue. (3)

12

However, for using the whole color range, the first step for arbitrary values T ∈ R
is mapping these values to the interval [0, 1] which can be done after computing
the boundary values Tmin and Tmax by an affin linear transformation

T̃ : [Tmin, Tmax]→ [0, 1]

defined by

T̃ (T ) :=
T − Tmin

Tmax − Tmin

.

Then the correponding color can be computed by one of the color mapping func-
tions, given in the next subsection with an example color bar. The source code
can be found in appendix B, the usage of this functions is calling
(my $red, my $green, my $blue)=colmap XX($T) .

13


