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6.3 The relation to the Laplace–Beltrami operator

As in the plane plate case, the surface Laplace–Beltrami operator4S = DivSGradS
arises from the trace of the [GradS GradS .] ·A3 operator. Note that this is cor-
rectly done for the second order tensor [GradS GradS U ] · A3, not for the 3rd
order [GradS GradS U ]. Obviously,

tr([GradS GradS U ] ·A3) = tr([Ai(GradSU),i] ·A3)

= tr(AiV i)

with some vector function V i = (GradSU),i ·A3. This simply yields

tr([GradS GradS U ] ·A3) = tr(AiV i) = Ai · V i

= Ai · (GradSU),i ·A3

= (DivSGradSU) ·A3

= (4S U) ·A3. (20)

Note that tr( ([GradS GradS U ] ·A3) · (A3A3) ) = tr( (A3A3) · (AiV i) ) = 0.
Hence, for an arbitrary displacement vector U we have the interesting relations

trEa = DivSU and trEb = (4S U) ·A3 .
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6 Remarks on the differential operators

6.1 The plate equation

The special case of the well–known plate equation is obtained from the simplifi-
cations of Section 2.3. Note that x1 = L1η

1 and x2 = L2η
2, so

GradS = Ai ∂

∂ηi
= ei

∂

∂xi
.

Here, we may split U = u + we3 into an in–plane part u = uiei and the plate
deflection w(x1, x2)e3. Then we have from (16) and (17)

2Ea =

(
∂uj
∂xi

+
∂ui
∂xj

)
eiej,

the 2D-strain tensor in the plane and

Eb = ([eiejU ,ij] · e3) · ekek = eiej
∂2w

∂xixj
,

the strain in the Kirchhoff plate bending equation.

6.2 The behavior of the differential operators when applied to
the initial midsurface Y

A second remark is targeted at the behavior of both operators when applied to
the surface definition Y :
While

GradSY = A
is a simple consequence of the initial definition or may serve as the definition of
the surface gradient operator, we have an analogous result for the other operator
[GradS GradS .] ·A3:

[GradS GradS Y ] ·A3 = [GradSA] ·A3

= [GradS(I −A3A3)] ·A3

= −Ai(A3,iA3 + A3A3,i) ·A3

= Ai(BijA
jA3) ·A3

= B. (19)

Hence, if the linearized strain tensor is applied to Y instead of U , we obtain

Ea = A and Eb = B .

13



and

W a(U) =
1

2

∫

S0

γij(U) cijkl γkl(U)dS

W b(U) =
1

2

∫

S0

%ij(U ) cijkl %kl(U)dS

(Note that the volume element was simplified to hdτdS).

The third (original) Koiter energy is obtained from a special ansatz for the un-
known vector U as an expansion w.r.t. the contravariant surface basis:

U = UiA
i + U3A3

with the 3 unknown functions (U1, U2, U3) depending on (η1, η2).

Now, the derivatives of U lead to longer expressions, such as

U ,j = Ui,jA
i + UiA

i
,j + U3,jA3 + U3A3,j

= (Uk,j − UiΓijk)Ak + (U3,j − UiBi
j)A3 − U3BjkA

k

and the coefficients γij(U) and %ij(U) are changed into the well-known complicate
functions on derivatives of (U1, U2, U3), compare [2].

If a more general material law is considered (still constant w.r.t. τ), we have a
change in the expressions of the cijkl only. For instance, a transversely isotropic
material (compare [6, 7]) uses a spatial dependent normalized direction vector
a(η1, η2) of given “fiber directions” and 5 material parameters (µ, µa, λ, α, β) to
define the material tensor as

C = 2µI + λ(I I) + α(aaI + Iaa) + 2(µa − µ)Ĉ + β(aaaa)

(Here, Ĉ : X = (aa) · X + X · (aa) for each second order tensor X .)

Usually, the fiber direction a is in the tangential plane of S0 with a = a1A1+a2A2

then the material coefficients are generalized to

cijkl = (AiAj) : C : (AkAl)

= 2µAilAjk + λAijAkl + α(aiajAkl + Aijakal)

+ 2(µa − µ)(ajakAil + Ajkalai) + βaiajakal

without any change in the differential operators γij(U ) and %ij(U).
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1 Introduction

We consider the deformation of a thin shell of constant thickness h under me-
chanical loads.

If a usual linear elastic material behavior is proposed, then consequently a lin-
earized strain tensor has to be considered. In this case, the well established Koiter
shell equation is obtained after some additional simplifications.

We consider these simplifications from the initial large strain equation to the
Koiter shell equation in an easier form due to Ciarlet [3]. Based on this, we are
able to find a coordinate free description, which means that differential operators
(defined on the mid surface of the shell) are used instead of derivatives with
respect to the surface parameters (coordinates) (η1, η2).

2 Basic differential geometry

2.1 The initial mid surface

We start with the description of the basic differential geometry on both the
undeformed shell (initial domain) and the shell after deformation. All vectors and
matrices belonging to the initial configuration (mainly the co- and contravariant
basis vectors and the matrices of first and second fundamental forms) are written
as capital letters. All these quantities belonging to the deformed structure are
the same lower case letters. Let

S0 =
{
Y
(
η1, η2

)
:
(
η1, η2

)
∈ Ω ⊂ R2

}

be the mid surface of the undeformed shell, where Y denote the points of the
surface in the 3-dimensional space and (η1, η2) run through a parameter domain
Ω. Then we have

Ai =
∂

∂ηi
Y the tangential vectors i = 1, 2

A3 = A3 = (A1 ×A2)� |A1 ×A2| surface normal vector.

This defines the first metrical fundamental forms Aij = Ai · Aj written as the
(2× 2)-matrix

A = (Aij)
2
ij=1 .

The surface element is

dS = |A1 ×A2| dη1dη2 = (detA)1/2 dη1dη2

1



and the contravariant basis is

Aj = AjkAk with Aj ·Ak = δjk and Ajk the entries of A−1 .

The second fundamental forms are

Bij =

(
∂2

∂ηi∂ηj
Y

)
·A3 = Ai,j ·A3 = −Ai ·A3,j

forming the matrix B = (Bij)
2
ij=1.

We recall the Gauss- and Weingarten-equations

A3,i = −BijA
jkAk = −BijA

j,

Ai,j = ΓkijAk +BijA3,

Ai
,j = −ΓijkA

k +Bi
jA3, Bi

j = BjkA
ki

with the Christoffel symbols 2Γkij = Akl(Ail,j + Ajl,i − Aij,l).
Throughout this paper we use Einstein’s summation convention, where conse-
quently all indices run from 1 to 2 only.

Later on, we will need the two second order tensors A = AijA
iAj and B =

BijA
iAj often referred as metric tensor and curvature tensor of the surface S0.

Throughout this paper a pair of vectors (first order tensors) as A1A2 (or A1A2 or
similar) is understood as second order tensor. A second order tensor in general is
any linear combination of such pairs. The main meaning of a second order tensor
is its action as a map of the (3-dimensional) vector functions onto itself via the
dot product:

(A1A2) ·U = A1 (A2 ·U )

U · (A1A2) = A2 (U ·A1)

consequently the second order tensor A1A2 has a trace tr(A1A2) = A1 ·A2 and
the transposed tensor of A1A2 is (A1A2)T = A2A1.

The double dot product between two second order tensors such as

(A1A2) : (A3A4) = (A2 ·A3)(A1 ·A4)

is a scalar function on (η1, η2). Later on, we use 4th order tensors in the same
manner, as a 4-tuple of vectors (A1A2A3A4 and an arbitrary linear combination
of those) or as a pair of second order tensors. Here, the main operation is the
double dot product as a map of second order tensors onto second order tensors.

From this definition both tensors A and B are rank-2 tensors mapping each
vector into the tangential space span(A1,A2) = span(A1,A2). Especially A is
the orthogonal projector onto this 2-dimensional space, due to:

A = AijA
iAj = AjA

j = I −A3A3.

2

with a (possibly space dependent) 4th order material tensor C. The most simple
case, the St.Venant–Kirchhoff material, is considered to be

C = 2µI + λ(I I)

with the Lamé constants

2µ =
E

1 + ν
and λ = 2µ

ν

1− ν

(for the plane stress assumption). Here, I is the 4th order identity map (I : X =
X for each 2nd order tensor X ) and (I I) : X = I (I : X ) = I trX .

Now, we end up with three different representations of the Koiter shell energy,
depending on which strain formulation is inserted into (18). If the material
tensor C is constant over the thickness (independent on τ), we integrate over
τ ∈ [−1/2,+1/2] and end up with the 2 parts:

W (U ) = h W a(U) +
h3

12
W b(U)

with

W a(U) =
1

2

∫

S0

Ea : C : Ea dS

W b(U) =
1

2

∫

S0

Eb : C : Eb dS.

With the formulas (16) and (17) this is a coordinate free form of Koiter’s shell
energy.

The second equivalent formula (comparable to [3]) is obtained from the coordinate
dependent strain equation

Ea = γij(U)AiAj and Eb = %ij(U)AiAj

inserted into the energy functional.

Here, we end up with

cijkl = (AiAj) : C : (AkAl)

= 2µAilAjk + λAijAkl

=
E

1 + ν
(AilAjk +

ν

1− νA
ijAkl)

11



Hence, the linearization of
(bij −Bij)A

iAj

leads to
Eb = %ijA

iAj

with
%ij = A3 · (U ,ij − ΓkijU ,k). (15)

This tensor can be written in a coordinate free manner due to the following
manipulations. First we note that

%ijA
iAj = (%ijA

iAj) · A.

This leads to

%ijA
iAj = ( Ai

[
Aj(U ,ij ·A3)− ΓkijA

j(U ,k ·A3)
]

) · A
= ( Ai

[
Aj(U ,ij ·A3)− ΓkijA

j(U ,k ·A3) +Bk
iA3(U ,k ·A3)

]
) · A

= ( Ai

[
∂

∂ηi
(
AkU ,k

)]
·A3 ) · A

= ( Ai

[
∂

∂ηi
GradSU

]
·A3 ) · A

= ( [GradS GradS U ] ·A3 ) · A

This is the 3rd order tensor [GradS GradS U ] applied to A3, yielding a second
order tensor, which is multiplied with the orthogonal projector A.

So, the final result is a coordinate free Koiter strain as

E linK = Ea − τh Eb,
2Ea = A · (GradSU)T + (GradSU) · A, (16)

Eb = ([GradS GradS U ] ·A3) · A. (17)

5 The resulting Koiter energy

We complete the resulting deformation energy of the shell by inserting E (3) into
the energy functional. Due to the desired small strain assumption in E (3), we use
a linear material law, such as

W (U ) =
1

2

∫

H0

E : C : E dV (18)

10

(Here, I denotes the identity tensor mapping each vector U onto itself).
It should be stressed that the two vectors A1 and A2 are dependent on the
parametrization (η1, η2) chosen to define S0 but A3 not, hence A and B are
independent on the special coordinates (η1, η2) but functions on the given point
Y of S0 only. So, (Y 7→ A3) is called the Gaussian map and B the Weingarten
map. Furthermore the surface gradient as gradient operator on the tangential
space also is independent on the special parametrization (η1, η2), obviously

GradS = Ai ∂

∂ηi
.

The matrix A−1B has two eigenvalues λ1 and λ2 as main curvatures at Y (η1, η2),
as well as the tensor B has these eigenvalues (together with a 0 as rank-2 tensor),
so

H = (λ1 + λ2)/2 = trB/2 = tr(A−1B)/2 is the mean curvature and

K = λ1 · λ2 = det(A−1B) the Gaussian curvature at Y .

2.2 The initial shell

The initial shell is the 3-dimensional manifold

H0 =

{
X
(
η1, η2, τ = η3

)
= Y

(
η1, η2

)
+ τhA3,

(
η1, η2

)
∈ Ω, |τ | ≤ 1

2

}
(1)

with the constant thickness h and A3 from 2.1. For an easy description of the
following let τ = η3 be a synonym for the (dimensionless) thickness coordinate.
We may use η1 and η2 dimensionless as well, then Ai have length dimension (in
m) and Ai in 1/m while A3 = A3 is dimensionless in any case. In 3D we have
to consider the covariant basis

Gi =
∂

∂ηi
X = Ai + τhA3,i , i = 1, 2

and G3 = hA3 as well as the contravariant tensor basis Gi (i = 1, 2) and
G3 = h−1A3.

The volume element of the shell is

dV = [G1 , G2 , G3] dη1dη2dτ = h det(G)1/2 dη1dη2dτ

with the (2×2)-matrix G = (Gij)
2
i,j=1 , Gij = Gi ·Gj , which is simply calculated

as
G = A

(
I − τhA−1B

)2
= (A− τhB)A−1 (A− τhB) . (2)

3



From this, the volume element is well-known as

dV = h (1− 2τhH + (τh)2K) dτ dS
= (1− τhλ1)(1− τhλ2) h dτ dS.

Here, the necessary condition

εH := (h/2) max
(η1,η2)∈Ω

(max(λ1, λ2)) < 1

guarantees the admissibility of the parametrization of the initial shell. Consis-
tent with the historic literature, we strengthen this inequality in the following
considerations to the case of thin shells as

εH << 1. (3)

This allows the approximation of the volume element by h dτ dS as well as the
approximation of the matrix (I − τhA−1B) by I without significant errors.

2.3 Special case: the plate

Here we have a simplification on S0 such as Y = L1e1 · η1 + L2e2 · η2,

yielding A3 = e3 independent on (η1, η2). From this a lot of simplifications arise:

Gi = Ai, B = O, B = 0.

2.4 The deformed shell

The basic assumption of the simple shell models consists in keeping a straight
line of the points

{
Y (η1, η2) + τhA3(η1, η2) : |τ | ≤ 1

2

}

after the deformation also, i. e. the mid surface is deformed as

St =
{
y(η1, η2) = Y (η1, η2) + U(η1, η2) : (η1, η2) ∈ Ω

}

with an unknown displacement vector U (a function of (η1, η2) as well as of Y ).
The weaker assumption defines the deformed shell as

Ht =
{
x(η1, η2, τ) = y(η1, η2) + τh d(η1, η2)

}
(4)

with an additional vector field d(η1, η2) (the so called director vector).

4

(The last term is A3 · U ,ij). Now, let us start with the first two terms. Using
Gauss–Weingarten equations we get

1

α
[A2,Ai,j,U ,1] =

1

α

[
A2 , ΓkijAk +BijA3 , U ,1

]
=

= −Γ1
ij(A3 ·U ,1) +

1

α
Bij [A2,A3,U ,1] .

So,

ζij = Bij + %ij + ζ
(2)
ij

%ij = A3 · (U ,ij − ΓkijU ,k)

ζ
(2)
ij =

1

α
Bij ([A2,A3,U ,1] + [A3,A1,U ,2]) .

The first term %ij(U) is exactly found in the Koiter’s shell equation (compare
[3]) and will be transformed into a coordinate free description at the end of this

chapter. The other part ζ
(2)
ij has a simple coordinate free meaning and will vanish

after linearizing β.

1

α
(A2 ×A3) ·U ,1 +

1

α
(A3 ×A1) ·U ,2

=A1 ·U ,1 + A2 ·U ,2

=DivSU = GradS ·U
So,

ζ
(2)
ij = (DivSU) Bij.

The term

β−1 =
|a1 × a2|

α
is

|A3 +
1

α
(U ,1 ×A2) +

1

α
(A1 ×U ,2)|+ h.o.t. ,

so

β−2 = 1 + 2
1

α
(U ,1 ×A2) ·A3 + 2

1

α
(A1 ×U ,2) ·A3 + h.o.t.

= 1 + 2DivSU + h.o.t.

This leads to
β = 1− (DivSU) + h.o.t.

and

bij = ζijβ = (Bij + %ij +Bij(DivSU))(1− (DivSU)) + h.o.t.

= Bij + %ij + h.o.t.

9



simply follows
γij = 1

2
(Ai ·U ,j + Aj ·U ,i) (12)

as found in the Koiter shell equation as well.

The tensor
Ea = γij(U)AiAj

has a simple coordinate free representation from:

2Ea = E1 + ET1 ,
E1 = (Aj ·U ,i)A

iAj

= AiU ,i ·AjA
j

= GradSU · A.

Hence, we have
2Ea = A · (GradSU)T + (GradSU) · A (13)

with the orthogonal projector A onto the tangential plane at Y .

4.2 Change of curvature tensor

Here, the linearization of (bij −Bij)A
iAj to

Eb = %ij(U)AiAj

is a longer calculation. We start with abbreviations for

Bij = A3 ·Ai,j =
1

α
[A1,A2,Ai,j]

with the spatial inner product [a, b, c] = (a× b) · c and α = |A1 ×A2|.
In the same way we have

bij = ζijβ with

ζij =
1

α
[a1,a2,ai,j] and

β =
α

|a1 × a2|

and we linearize both parts ζij and β separately. In ζij we delete all quadratic
terms in U to:

ζij = Bij +
1

α
[U ,1 , A2 , Ai,j] +

1

α
[A1 , U ,2 , Ai,j] +

1

α
[A1 , A2 , U ,ij] . (14)

8

Here, we concentrate on the stronger Kirchhoff assumption, where d is the new
surface normal vector a3 of the deformed surface St following its differential
geometry:
Let

ai =
∂

∂ηi
y = Ai + U ,i

the tangential vectors after deformation, then analogously we have

a3 = (a1 × a2)�|a1 × a2|

as surface normal vector of St. Again we have

a = (aij)
2
i,j=1 with aij = ai · aj

b = (bij)
2
i,j=1 with bij = ai,j · a3

as new first and second fundamental forms.

With

d = a3, (5)

the 3D covariant basis is now

gi =
∂

∂ηi
x = ai + τha3,i = Ai + U ,i + τha3,i

and g3 = ha3. Hence, we can define the (2×2)-matrix g = (gij) from gij = gi ·gj,
which is analogously to G:

g = a
(
I − τh a−1b

)2
= (a− τh b) a−1 (a− τh b) . (6)

3 The strain tensor and its simplifications

From the definition of the deformed shell as (4,5), we may deduce the 3D-
deformation gradient

F = giG
i + g3G

3 = giG
i + a3A

3,

the right Cauchy Green tensor C = FT · F and the strain tensor

E =
1

2
(C − I) =

1

2
(gij −Gij)G

iGj =
1

2
(gijG

iGj −A), (7)

which is a rank-2 tensor only without components of GiG3 or G3G3.

5



In the following we expand this tensor with respect to the surface basis vectors
AiAj instead of GiGj which is possible due to span(G1,G2) = span(A1,A2):

Gi = Ai + τhA3,i

= Ai − τhBijA
jkAk

= (Aij − τhBij)A
j

yields

Gk = GkiGi = Gki(Aij − τhBij)A
j. (8)

Hence, (gij −Gij)G
iGj is written as

[
(Aks − τhBks)G

si
]

(gij −Gij)
[
Gjm(Aml − τhBml)

]
AkAl

which means that

2E = εijA
iAj (9)

and the matrix of the coefficients εij is the following matrix product

(εij)
2
i,j=1 = A(A− τhB)−1g(A− τhB)−1A− A (10)

= (I − τhBA−1)−1(g −G)(I − τhA−1B)−1. (11)

Note, that the expression (9) describes the correct strain tensor without any
simplifications belonging to the Kirchhoff-assumption (5). In contrast to the
formula

2E = (gij −Gij)G
iGj

all dependencies on the thickness coordinate τ are contained in εij only, the tensor
basis is constant w.r.t. τ . From this formula the simplifications towards Koiter’s
shell equation can be deduced.

This is done in 3 steps:

1. Due to the thin shell assumption (3) we approximate εij by ε
(1)
ij = (gij−Gij),

which are now quadratic functions w.r.t. (τh).

2. We neglect the quadratic terms of order (τh)2, yielding E (2).

3. Then E (2) still contains nonlinear expressions similar to large strain, which
are products of derivatives of U , such as (U ,i ·U ,j). As usually for “small
strain” equations we neglect all such products, yielding E (3) being a linear
differential operator applied to U .

These 3 steps result in an approximate strain tensor, which is typically a linear
differential operator acting on U (as small strain) and is a sum of “change of

6

metric” and “change of curvature” as

E (3) = Ea − τhEb

Ea = γij(U)AiAj

Eb = %ij(U)AiAj.

The calculations within these 3 steps are easily done:

1. First we consider the matrix (11) and neglect (I − τhA−1B), yielding

(ε
(1)
ij )2

i,j=1 = g −G
= a− 2τh b+ (τh)2 ba−1b

− (A− 2τh B + (τh)2BA−1B).

2. Hence

2E (2) = ε
(2)
ij A

iAj

with

ε
(2)
ij = (aij − Aij)− 2τh (bij −Bij).

3. We linearize E (2) to

E (3) = Ea − τh Eb

which can be seen as Koiter-strain-tensor because the coefficients γij(U)
and %ij(U) are linear differential operators applied to U and are the same
expressions as in Koiter’s shell model.

4 Linearization of E (2) to small strain and
coordinate free description

We recall

E (2) = [1
2
(aij − Aij)− τh (bij −Bij)]A

iAj

and linearize both parts separately.

4.1 Change of metric tensor

From

aij = Aij + Ai ·U ,j + Aj ·U ,i + U ,i ·U ,j
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