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Abstract
This paper is devoted to the fast solution of interface concentrated finite element
equations. The interface concentrated finite element schemes are constructed
on the basis of a non-overlapping domain decomposition where a conforming
boundary concentrated finite element approximation is used in every subdo-
main. Similar to data-sparse boundary element domain decomposition meth-
ods the total number of unknowns per subdomain behaves like O((H/h)(d−1)),
where H , h, and d denote the usual scaling parameter of the subdomains, the
average discretization parameter of the subdomain boundaries, and the spatial
dimension, respectively. We propose and analyze primal and dual substructur-
ing iterative methods which asymptotically exhibit the same or at least almost
the same complexity as the number of unknowns. In particular, the so-called
All-Floating Finite Element Tearing and Interconnecting solvers are highly par-
allel and very robust with respect to large coefficient jumps.
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Figure 5: Maximal eigenvalue of the FETI preconditioner.

proposed primal and dual domain decomposition preconditioners resulting in asymptotically
optimal or almost optimal solvers for the interface concentrated finite element equations.
The first class of preconditioners are based on inexact Dirichlet-Dirichlet preconditioning
techniques. The second class of preconditioners are constructed on the basis of the so-called
All-Floating Finite Element Tearing and Interconnecting technology. The latter class of
preconditioners is very robust with respect to jumps in the coefficients of the PDE. It is
clear that the AF-FETI technology can be replaced by the FETI-DP technique. The number
of unknowns involved in the IC-FEM is comparable to the number of unknowns living on the
skeleton of the domain decomposition. Thus, the coupling of IC-FEM with the Boundary
Element Method (BEM) seems to be very attractive for many applications. In contrast to
the standard FEM the IC-FEM will not perturb the complexity of the BEM. We refer the
reader to the survey paper [25] for the standard symmetric BEM-FEM coupling.
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1 Introduction

Boundary concentrated finite element methods (BC-FEM) introduced and investigated by
Khoromskij and Melenk in [18] allow us to solve potential problems with smooth coefficients
as accurate as the corresponding standard finite element methods (FEM) but with a signifi-
cantly smaller number of unknowns. Indeed, the total number of unknowns in the BC-FEM
is proportional to O(h−(d−1)) whereas the total number of unknowns in the standard FEM
behaves like O(h−d), where h and d denote the the average discretization parameter of the
boundary and the spatial dimension, respectively. Moreover, the stiffness matrices of the
BC-FEM are significantly better conditioned than the usual stiffness matrices. This property
was already recovered by Yserentant [37].
Interface concentrated finite element methods (IC-FEM) are a combination of nonoverlapping
domain decomposition (DD) methods with the BC-FEM that is used in the subdomains Ωk
in which the initial domain Ω is decomposed. Now we can admit piecewise smooth coefficients
in the partial differential equation that we are going to solve. An efficient method for the
solution of symmetric and positive definite systems of linear algebraic equations arising from
the finite element discretization of elliptic boundary value problems is the preconditioned
conjugate gradient method with DD preconditioners. The nonoverlapping Dirichlet-Dirichlet
DD preconditioning technique and the Finite-Element-Tearing and Interconnecting (FETI)
method are typical representatives of primal and dual nonoverlapping DD approaches, respec-
tively. We refer the reader to the monograph [36] for an excellent overview over the different
DD methods.
The Dirichlet-Dirichlet DD-preconditioner requires preconditioners for the local Dirichlet
problems on the subdomains, a Schur complement preconditioner related to the interfaces
and approximate discrete harmonic extension operators, or more precisely, bounded discrete
extension operators acting from the subdomain boundaries into the interior, see [27], [31],
[14], [15] and [21].

Nowadays, for preconditioning the local Dirichlet problems, a lot of very efficient techniques
are available from preconditioning standard h, p or hp finite element equations, see, e.g.,
[21]. First preconditioners for the Schur complement were proposed by Dryja for some special
cases in [6] and [7]. The BPS preconditioners proposed and developed by Bramble, Pasciak
and Schatz in a series of papers can be seen as a generalization to more general decompo-
sitions and discretizations [2]. During the last 20 years many alternative Schur complement
preconditioners have been proposed in the literature. Let us here only mention the Schur
complement BPX [35], techniques borrowed from the boundary element method [25] and H-
matrix techniques [17]. In the case of uniform refined meshes, two basic techniques for the
fast evaluation of the approximate discrete harmonic extension of a finite element function on
the boundary to the interior exist, namely, an averaging technique [31], [28] and hierarchical
decomposition techniques [15], [12], [16].

The FETI technology introduced by Farhat and Roux in [11] has been developed to a very
efficient and robust parallel solver technique for large scale finite element equations. There are
a lot of modifications and new versions of the classical one-level FETI method like the FETI-
DP (Dual-Primal) [10] and BDDC (Balanced Domain Decomposition by Constraints) [5], [26]
methods. The main building blocks of the FETI methods are solvers or preconditioners for
the local Dirichlet and the local Neumann problems in the subdomains and a component
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managing the global information exchange. We again refer to the monograph [36] for more
information on and references to FETI methods.

In this paper, we propose and investigate fast, robust and highly parallel DD solvers for
large-scale interface concentrated finite element equations. The polynomials of high order
are removed by an overlapping preconditioner with inexact subproblem solvers which was
suggested by Pavarino [33]. This preconditioner requires

• a solver for the each patch corresponding to a node, and

• a coarse space solver for p = 1 on the computational domain.

The first problem is treated by a direct solver, whereas the second problem is treated by
two different types of domain decomposition preconditioners. The first preconditioner is a
nonoverlapping domain decomposition preconditioner of Dirichlet-Dirichlet type with inexact
subproblem solvers. The second type of preconditioners are All-Floating FETI precondition-
ers. We will prove that the design of both preconditioner leads to an almost optimal solver
for the corresponding system of algebraic finite element equations the complexity of which is
almost proportional to the number of unknowns corresponding to the skeleton of the domain
decomposition. Moreover, we show that the FETI preconditioners are robust with respect to
jump of the coefficients.

The rest of the paper is organized as follows: In Section 2, we formulate the boundary value
problem and describe its discretization with the help of the IC-FEM. In Section 3, we con-
sider the primal DD-preconditioners. In Section 4, we investigate the FETI-preconditioners.
Several numerical experiments are presented in Section 5.

2 Model Problem and Finite Element Discretization

2.1 Model Problem

For a bounded Lipschitz domain Ω with

Ω =
s⋃

i=1

Ωi ⊂ R2, Ωi ∩ Ωj = ∅ with i 6= j, (2.1)

a symmetric positive definite matrix function D ∈ R2,2 which is piecewise constant on Ωj
and a right hand side f ∈ L2(Ω) analytic on Ωj , we consider the following Dirichlet problem,
given in weak formulation:
Problem 2.1. (model problem) Find u ∈ H1

0 (Ω) such that

a(u, v) :=

∫

Ω
∇u(x) · D(x)∇v(x) dx =

∫

Ω
f(x)v(x) dx =: l(v) ∀ v ∈ H1

0 (Ω). (2.2)

2.2 Discretization - The Geometric Mesh, the Linear Degree Vector and the
Fine Element Space

We will restrict our considerations to γ-shape-regular triangulations τ of Ω consisting of affine
triangles, i.e., each element K ∈ τ is the image FK(K̂) of the reference triangle K̂, where the
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Figure 4: Eigenvalues of C−1K for strongly jumping coefficients: minimal eigenvalue left, max-
imal eigenvalue right

In a second experiment, we have chosen ai = 10i, i = 1, 2, 3, 4. From the experiments, it
can seen that the primal DD-preconditioner is not robust with respect to the jumps of the
diffusion coefficient, see Figure 4.

In a last experiment, we determine the numbers of iterations of the pcg-method for the
solution of Ku = b using the preconditioner C (3.29) with CS = CB,BPX and CD = CD,BPX
and a relative accuracy of 10−5. Table 1 displays the numbers of iterations for the diffusion
coefficients ai = i and ai = 10i, = 1, 2, 3, 4, respectively. In both cases, the numbers of

Level 0 1 2 3 4 5 6 7 8 9

N 41 129 337 785 1713 3601 7409 15057 30385 61073

ai = i 5 13 16 17 17 18 18 19 19 19
ai = 10i 5 23 35 41 53 57 57 55 56 56

Table 1: Numbers of pcg-iterations for the solution of Kx = b with the preconditioner C.

pcg-iterations are bounded.

In a last experiment, we investigate the FETI preconditioner (4.21) CF for F (4.16). Again,
the finite element mesh of Figure 2 with p = 1 is used. We consider five different distributions
for the coefficients mat = [ai]

4
i=1 in the subdomains Ωi, i = 1, 2, 3, 4. The maximal eigenvalue

of C−1
F F is displayed in Figure 5, whereas the minimal eigenvalue is 1 in all experiments. Both

eigenvalues are robust with respect to material jumps. Moreover, a logarithmic growth of the
condition number can be seen.

6 Conclusions

The solution of potential problems with piecewise smooth coefficients can be approximated by
the interface concentrated finite element method with the same asymptotical accuracy as the
standard finite element method but with a considerably smaller number of unknowns. We have
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a1 a2

a4a3

Figure 2: Coefficient matrix (left) and IC-concentrated mesh (right)

In all experiments, we use the preconditioner C (3.29), where EDB is the matrix representation
of the extension operator of Algorithm 3.8. and the preconditioners CS = {SB , CB,BPX}
and CD =

{
KL,DL, CD,BPX , RRT

}
for the Schur complement and the block of the interior

functions, where

• CB,BPX and CD,BPX denote the BPX-preconditioner for SB and KD, respectively,

• R denotes the Cholesky factor of the incomplete Cholesky factorization for KD, i.e.
Cichol = RRT , and

• DL denotes the diagonal part of KL.

Since p = 1 on all elements, the block KH does not exist. Experiments for the overlapping
preconditioner CD be defined via (3.16) have already been presented in [9], [29].
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Figure 3: Eigenvalues of C−1K for moderate jumping coefficients: minimal eigenvalue left,
maximal eigenvalue right

Figure 3 displays the maximal and minimal eigenvalue of C−1K for several variants of CS and
CD in the case of moderate jumping coefficients ai = i, i = 1, 2, 3, 4. The optimality of the
condition number can be seen in all cases. The usage of CD = CD,BPX or CD = RRT reduces
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mapping FK satisfies the inequality

h−1
K ‖F ′

K‖L∞(K) + hK‖
(
F ′
K

)−1‖L∞(K) ≤ γ ∀K ∈ τ.

Here hK denotes the diameter of the element K. Moreover, we assume τ = ∪sj=1τ
(j) with

τ (j) := {K ∈ τ | supp{K} ⊂ Ωj} to be a geometric mesh with boundary mesh size h (see
also Figure 2). The precise description is given in the following definition.
Definition 2.2. (geometric mesh) There exist c1, c2 > 0 such that for all K ∈ τ (j):

1. if K ∩ ∂Ωj 6= ∅, then h ≤ hK ≤ c2h,

2. if K ∩ ∂Ωj = ∅, then c1 inf
x∈K

dist(x, ∂Ωj) ≤ hK ≤ c2 sup
x∈K

dist(x, ∂Ωj).

In order to define hp-FEM spaces on the mesh τ , we associate a polynomial degree pK ∈ N
with each element K ∈ τ and collect these pK in the polynomial degree vector p := (pK)K∈τ .
Furthermore we associate a polynomial degree

pe := min {pK | e is an edge of element K} (2.3)

with each edge e of the triangulation. We denote the vector containing the polynomial
distribution of the triangle K ∈ τ with edges {ei | i = 1, 2, 3} by

p(K) := (pe1, pe2, pe3, pK). (2.4)

In conjunction with geometric meshes a particularly useful polynomial degree distribution is
the linear degree vector:
Definition 2.3 (linear degree vector). Let Ω = ∪sj=1Ωj . For all j = 1, . . . , s, let τ (j) be a

geometric mesh on Ωj with boundary mesh size h and let τ = ∪sj=1τ
(j) be a mesh on Ω. A

polynomial degree vector p = (pK)K∈τ is said to be a linear degree vector with slope α > 0 if

1 + αc1 log
hK
h

≤ pK ≤ 1 + αc2 log
hK
h

(2.5)

for some c1, c2 > 0.

Now we are in the position to define our hp-FEM spaces:

Definition 2.4 (FEM spaces). Let Ω = ∪sj=1Ωj. For all j = 1, . . . , s, let τ
(j)
l be a geometric

mesh on Ωj with boundary mesh size hl and let τl = ∪sj=1τ
(j)
l be a mesh on Ω. Let p be a

linear degree vector. Furthermore, for all edges e let pe be given by (2.3) and for all K ∈ τ
let p(K) be given by (2.4). Then we setSpl,j = Sp(Ωj , τ (j)l ) := {u ∈ H1(Ωj) | u ◦ FK ∈ Pp(K)(K̂) ∀K ∈ τ

(j)
l },Spl,j,0 = Sp0 (Ωj , τ (j)l ) := Spl,j ∩H1

0 (Ωj),Vp
l = Vp(Ω, τl) := {u ∈ H1(Ωj) | u|Ωj ∈ Spl,j ∀j = 1, . . . , s},Vp

l,0 := Vp
l ∩H1

0 (Ω),

where
Pp(K)(K̂) := {u ∈ PpK (K̂) | u|ei ∈ Ppei , i = 1, 2, 3}.
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The FE-discretization of Problem 2.1 then reads:
Problem 2.5 (FE-approximation). Find uh ∈ Vp

l,0 such that

a(uh, vh) = l(vh) ∀ vh ∈ Vp
l,0.

Considering the approximation properties of boundary concentrated hp-FEM, we have the
following theorem
Theorem 2.6. Let Ωi ⊂ R2 and τi a geometric mesh with boundary mesh size h on Ωi. Let
p be a linear degree vector with slope α sufficiently large. Then for u ∈ H1+δ(Ωi), δ ∈ (0, 1)
we have

inf
vh∈Sp(Ωi,τi)

‖u− vh‖H1(Ωi) ≤ Chδ.

Proof. See [18].

2.3 The System of Finite Element Equations

To solve Problem 2.5 numerically, we equip the space Vp
l,0 with a basis

Φ = {ΦB ,ΦL,ΦH} = {φi | i = 1, . . . , N} (2.6)

in the following way:

The functions φ1, . . . , φNB
are the usual nodal hat functions with suppφi 6⊂ Ωj for all j =

1, . . . , s, ∀i = 1, . . . , NB , i.e. the support is not contained in one subdomain Ωj only. The
functions φNB+1, . . . , φNL

are the usual nodal hat functions with suppφi ⊂ Ωj for some j,
∀i = NB + 1, . . . , NL. The remaining functions φNL+1, . . . , φNH

are all polynomials of degree
p > 1. Since hK = h for all elements with K ∩ ∂Ωj 6= ∅, we have p = 1 for all these boundary
elements by (2.5). With this definition, the basis functions φi can be divided into three
groups,

• the boundary functions ΦB = {φi | i = 1, . . . , NB},
• the interior functions of low order ΦL = {φi | i = NB + 1, . . . , NL},
• the interior functions of high order ΦH = {φi | i = NL + 1, . . . , NH}.

In the same way, the basis Φi on the subdomains Ωi, i = 1, . . . , s, is introduced. Analogously,
this basis can be partitioned into ΦB,i, ΦL,i and ΦH,i, i.e. boundary functions (B), interior
functions of low order (L) and interior functions of high order (H). More precisely, let

Φi = Φ |Ωi Ri and ΦB,i = ΦB |Ωi RB,i (2.7)

with the corresponding restriction matrices Ri and RB,i. Now, the solution of Problem 2.5 is
equivalent to solve the system of linear equations

Ku = f, (2.8)

where

K = [a(φj , φk]
N
k,j=1 , f = [f(φj)]

N
j=1 , u = [uk]

N
k=1 .
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which can be done in parallel and which can be performed by means of a sparse direct method
with the matrix factorization in a preprocessing step, or with the help of the PCG method
with the Dirichlet preconditioner CD,i proposed by relation (3.16) in Subsection 3.2.

4.2.3 AF-FETI3 Solvers

The AF-FETI3 system (4.20) is again an one-fold saddle point problem which can be solved
by the solvers mentioned above. In any case, we need

• an efficient preconditioners Ci for the regularized local Neumann matrices (4.19) and

• a FETI preconditioner CF ,
which are available from Section 3 and (4.21)–(4.23), respectively.
Theorem 4.3. Assume that the AF-FETI3 system (4.20) is solved by means of the Bramble
Pasciak PCG method with the scaled inexact Dirichlet FETI preconditioner (4.22) and an ap-
propriately scaled local Neumann preconditioners (3.27) composed of the optimal components
CD,i, CS,i and EDB,i given in Section 3. Then not more than I(ε) = O((1+ log(H/h)) log ε−1)
iterations and ops(ε) = O((H/h)(1 + log(H/h)) log ε−1) arithmetical operations are required
in order to reduce the initial error by the factor ε ∈ (0, 1) in a parallel regime, where
H/h = maxHi/hi. The number of iterations I(ε) is robust with respect to the jumps in
the coefficients. Moreover, at most O(H/h) storage units are needed per processor.

Proof. The estimate for the number I(ε) of iterations is a direct consequence of results given
in [3] (see [38] for improved estimates) and of the spectral estimates (3.14) and (4.25). The
complexity estimates for the arithmetical costs and the memory demand follow from the
corresponding complexity estimates for the block matrices involved in the matrix-vector mul-
tiplications and in the preconditioning.

We emphasize that we can solve the interface concentrated finite element equations with the
same complexity (even with a slightly better complexity) as data-sparse boundary element
DD equations (cf. [23] and [22]). In contrary to boundary element technology we can easily
include source terms f(·) and we can even admit non-constant, but smooth coefficients ai(·)
in the subdomains Ωi.

5 Numerical Experiments

In this section, we first present some numerical experiments for the primal DD-solver proposed
in Section 3. Finally, we investigate the behavior of the FETI preconditioner studied in
Section 4.

We consider problem (2.2) in Ω = (−1, 1)2 using a piecewise constant coefficient matrix
D(x, y) with coefficients ai, i = 1, 2, 3, 4 and a right hand side f(x, y) = 1, see Figure 2. The
problem is discretized by an IC-FEM with p = 1 in all elements. The interfaces are at the
lines x = 0 and y = 0, whereas the boundaries are situated at x = ±1 and y = ±1. Here, we
choose Dirichlet boundary conditions, see Figure 2.
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spectral inequalities (4.25) were proved for S̃FEMB,i (see [20], [4], or [36]), they are also valid if

we replace S̃FEMB,i in F and CF by the matrices S̃B,i, S̃B,i+ TB,i, or W̃B,i. This completes the
proof of the theorem.

Now we can solve the SPD system (4.16) via the PCG method that can efficiently be per-
formed on the subspace Λ0 with one of the preconditioners CF proposed above. Theorem 4.2
immediately implies that we need at most I(ε) = O((1+log(H/h)) log ε−1) iterations in order
to reduce the initial error by the factor ε ∈ (0, 1) in a parallel regime. The matrix-vector
product Fλ, or F̂λ0, requires the (parallel) solution of the systems

S̃B,iwB,i = rB,i, (4.26)

which are equivalent to the solution of the regularized finite element Neumann problems

(
K̃B,i KBD,i

KDB,i KD,i

)(
wB,i
wD,i

)
=

(
rB,1
0D,1

)
, i = 1, . . . , s. (4.27)

The discrete Neumann problem (4.27) can now be solved either by means of a sparse direct
method with the matrix factorization in a preprocessing step, or with the help of the PCG
method with the Neumann preconditioner (3.27) proposed in Subsection 3.4. The precondi-
tioning step C−1

F ρ requires

• the (parallel) solution of local discrete Dirichlet problems with the system matrices KD,i,

• the (parallel) matrix-vector multiplications (S̃B,i + TB,i)wB,i costing O((Hi/hi)) arith-
metical operations, or

• the (parallel) multiplications W̃B,iwB,i costing O((Hi/hi)(ln(Hi/hi))
2) arithmetical op-

erations

for the preconditioners (4.21), (4.22), or (4.23), respectively. Thus, the scaled inexact Dirichlet
FETI preconditioner (4.22) is the cheapest FETI preconditioner.

4.2.2 AF-FETI2 Solvers

The saddle point problem (4.14) can be solved by the Bramble-Pasciak PCG [3] or by any
other suitable Krylov subspace iterative solver [34], e.g. the preconditioned conjugate residual
method [19]. In any case, we need

• efficient preconditioners CB,i for the regularized local Schur complements S̃B,i and
• a FETI preconditioner CF

which are available from Section 3, cf. (3.27), and (4.21)–(4.23), respectively. It follows from
Theorem 4.2, Theorem 3.7 and the results of [3] and [38] that the number I(ε) of iterations
of the Bramble-Pasciak PCG behaves like O((1 + log(H/h)) log ε−1).

The matrix-vector multiplication S̃B,ivB,i requires the solution of the local Dirichlet systems

KD,iwD,i = rD,i, (4.28)
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Then, uh =
∑N

k=1 ukφk provides the solution of (2.5). Moreover, let Ki be the stiffness matrix
restricted to Φi, i = 1, . . . , s, i.e.

Ki = [a(φj,i, φk,i]
Ni

k,j=1 . (2.9)

Then, a consequence of (2.7)-(2.9) is the following formula

K =

s∑

i=1

RiKiR
⊤
i (2.10)

with the restriction matrix introduced in (2.7). In the following, we are interested in con-
structing fast solver for the systems of linear algebraic equations (2.8).

3 Primal Iterative Substructuring Methods

In this section, we will derive a primal DD preconditioner for the matrix K (2.8) with in-
exact subproblem solvers. In Subsection 3.1, we expose the ingredients of a nonoverlapping
DD-preconditioner. In Subsection 3.2, we develop the preconditioner on the subdomains.
Subsection 3.2 is devoted to the construction of the preconditioner on the subdomains. Using
this extension, we show the equivalence of the Schur complement norm to the H1/2(Γ)-
seminorm. In Subsection 3.4, we prove the independence of the condition number for the
preconditioned system from the discretization parameter. In Subsection 3.5, we show that
the preconditioning operation C−1r can be performed in optimal arithmetical complexity.

3.1 Block Partitioning of the Stiffness Matrix

We partition the stiffness matrix into 3 times 3 blocks, which corresponds to the partition of
the shape functions into ΦB , ΦL and ΦH , see (2.6),

K =




KB KB,L KB,H

KL,B KL KL,H

KH,B KH,L KH


 =

[
KB KB,D

KD,B KD

]

with D = L ∪H. The two times two block matrix can be factorized into

K =

[
I KB,DK−1

D

0 I

] [
SB 0
0 KD

] [
I 0

K−1
D KD,B I

]
(3.1)

with the Schur-complement

SB = KB −KB,DK−1
D KD,B . (3.2)

In this section, we will investigate a preconditioner of the type

C =

[
I −E⊤

DB

0 I

] [
CS 0
0 CD

] [
I 0

−EDB I

]
, (3.3)

where

5



• CD is a preconditioner for KD,

• CS is a preconditioner for the Schur-complement SB or the inexact Schur-complement

SB + TB := SB + (E⊤
DB −H⊤

DB)KD(EDB −HDB) with HDB = K−1
D KDB , (3.4)

• EDB is the matrix representation of the extension operators Ej acting from Γ = ∪si=1∂Ωi\∂Ω
into the interior of the domains Ωj.

The following result is the key in order to analyze the preconditioner C, see e.g. [13], [32].
Lemma 3.1. Let CS and CD be spd preconditioners for SB and KD, i.e.

cS (CSv, v) ≤ (SBv, v) ∀v, (3.5)

cI (CDv, v) ≤ (KDv, v) ≤ CI (CDv, v) ∀v. (3.6)

Moreover, let (
K
[

I
EDB

]
g,

[
I

EDB

]
g

)
≤ c2E

(
CSg, g

)
∀g. (3.7)

Then, the inequalities
c (Cv, v) ≤ (Kv, v) ≤ C (Cv, v) ∀v

hold with c = cI
2 min{1, cS

cI+c
2
E−cS } and C = 2max{c2E , CI}.

Proof. We start the proof with the following equation
[

I
EDB

]⊤
K
[

I
EDB

]
= SB + (E⊤

DB −H⊤
DB)KD(EDB −HDB) (3.8)

with the discrete harmonic extension HDB = −K−1
D KDB .

Next, we prove the upper estimate. First, we transform the inequality K ≤ CC into an
equivalent formulation. Using (3.1) and (3.3), we obtain
[
I −H⊤

DB

0 I

] [
SB 0
0 KD

] [
I 0

−HDB I

]
≤ C

[
I −E⊤

DB

0 I

] [
CS 0
0 CD

] [
I 0

−EDB I

]

which is equivalent to
[
I E⊤

DB −H⊤
DB

0 I

] [
SB 0
0 KD

] [
I 0

EDB −HDB I

]
≤ C

[
CS 0
0 CD

]

and [
SB + (E⊤

DB −H⊤
DB)KD(EDB −HDB) (E⊤

DB −H⊤
DB)KD

KD(EDB −HDB) KD

]
≤ C

[
CS 0
0 CD

]
. (3.9)

Both matrices are postive definite. Using the Cauchy-Schwarz inequality, (3.8), (3.7), (3.6),
we can estimate [

SB + (E⊤
DB −H⊤

DB)KD(EDB −HDB) (E⊤
DB −H⊤

DB)KD

KD(EDB −HDB) KD

]

≤ 2

[
SB + (E⊤

DB −H⊤
DB)KD(EDB −HDB) 0
0 KD

]

= 2



[

I
EDB

]⊤
K
[

I
EDB

]
0

0 KD


 ≤ 2max{c2E , CI}

[
CS 0
0 CD

]
.
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4.2 AF-FETI Solvers and Preconditioners

Throughout this subsection, we assume that D(x) = αiI on Ωi. We are interested in the
robustness of our FETI preconditioners with respect to large jumps of these coefficients across
the interfaces. We note that all results remain valid if the spectral condition number κ(D) =
λmax(D)/λmin(D) of the diffusion matrix is small on Ωi.

4.2.1 AF-FETI1 Solvers

Since the system matrix F̂ of the AF-FETI1 system (4.16) is symmetric and positive definite
(SPD), it can efficiently be solved with the help of the PCG method with an appropriate FETI
preconditioner ĈF . It is clear that we only have to construct preconditioner CF for F on the
subspace Λ0 = kerG⊤ = (rangeG)⊥. Candidates for CF are the following preconditioners:

• scaled exact Dirichlet FETI preconditioner (see, e.g., [36])

C−1
F = ASBA⊤, SB = diag(S̃B,i), (4.21)

• scaled inexact Dirichlet FETI preconditioner

C−1
F = A(SB + TB)A⊤, SB + TB = diag(S̃B,i + TB,i) (4.22)

with the disturbed Schur complements TB , see (3.4),

• scaled data-sparse hypersingular BETI preconditioner

C−1
F = AWA⊤, W = diag(W̃B,i), (4.23)

with the matrices W̃B,i arising from an appropriate data-sparse approximation of the
hypersingular operator on ∂Ωi [24].

The matrix
A = (BD̃−1B⊤)−1BD̃−1 (4.24)

is defined by the interconnecting matrix B = diag(BB,i) and by the scaling matrix D̃ =
diag(D̃B,i) with appropriate diagonal matrices D̃B,i. The diagonal entries depend on the
coefficients αi, see [20], [4], [36] for further details.
Theorem 4.2. Let CF be one of the FETI preconditioners defined by (4.21), (4.22), or (4.23).
Then, there exist positive constants cF and cF such that the spectral inequalities

cF (CFλ, λ) ≤ (Fλ, λ) ≤ cF (1 + log(H/h))2 (CFλ, λ) (4.25)

hold for all λ ∈ Λ0 = kerG⊤, where the constant cF and cF are independent of hi, Hi, and
the αi’s (coefficient jumps), H/h = maxHi/hi.

Proof. By Theorem 3.13, the matrices S̃B,i, S̃B,i+ TB,i and W̃B,i are spectrally equivalent to

an auxiliary Schur complement S̃FEMB,i arising from a standard finite element discretization
with linear triangular element on an auxiliary quasi-uniform triangular mesh generated from
the given quasi-uniform boundary mesh on ∂Ωi with the average mesh size h [24]. Since the
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Remark 4.1. We mention that the iteration updates for λ completely life in the subspace
Λ0 if the initial guess is chosen as λe. Therefore, a basis of Λ0, forming the columns of L0,
is not explicitly required in the computation. We further mention that in the case of large
jumps in the coefficients of the PDE the scalar product in Λ has to be changed according to
the proposal made in [20], see also [4] and [36]. Of course, the change of the scalar product
changes the orthoprojection P, too.

Eliminating the unknowns vB,1, . . . , vB,s from the AF-FETI2 system (4.14), we get the FETI
Schur complement problem

F̂λ0 = d̂0 (4.16)

with the FETI Schur complement

F̂ = L⊤
0 PFP⊤L0 with F =

s∑

i=1

BB,iS̃−1
B,iB⊤

B,i (4.17)

and the corresponding right-hand side

d̂0 = L⊤
0 Pd0 − L⊤

0 P
s∑

i=1

BB,iS̃−1
B,idB,i. (4.18)

The symmetric and positive definite system (4.16) is called AF-FETI1 system.

On the other hand, we can again unfold the AF-FETI2 system (4.14) arriving at a saddle
point system that is similar to the saddle point system (4.3) but now with regular diagonal
blocks

K̃i =

[
K̃B,i KBD,i

KDB,i KD,i

]
, (4.19)

with the regularized matrices K̃B,i = KB,i + αi1B,i1
⊤
B,i. Moreover, let

B̃i =
(
L⊤
0 PBB,i 0

)
, ũi =

(
vB,i
uD,i

)
, and f̃

i
=

(
f
B,i

− B⊤
B,1λe

f
D,i

)
.

Then, the resulting system called AF-FETI3 system can be written in the form:




K̃1 0 . . . 0 B̃⊤
1

0 K̃2
... B̃⊤

2
...

. . . 0
...

0 . . . 0 K̃s B̃⊤
s

B̃1 . . . B̃s 0







ũ1
...
...
ũs
λ0




=




f̃
1
...
...

f̃
s
0



. (4.20)

Let us mention that all AF-FETI systems derived in this subsection are equivalent. In the
following subsection we propose and analyze fast and robust solvers for the AF-FETI1–AF-
FETI3 systems (4.16), (4.14), and (4.20).
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Using (3.9), we can conclude that K ≤ CC with C = 2max{c2E , CI}.
Finally, we prove the lower estimate. Using similar arguments as for the proof of the upper
estimate, we can show that the assertion cC ≤ K is equivalent to

c

[
CS + (E⊤

DB −H⊤
DB)CD(EDB −HDB) −(E⊤

DB −H⊤
DB)CD

−CD(EDB −HDB) CD

]
≤
[
SB 0
0 KD

]
,

see (3.9). The positive definitness of the above matrices implies
[
CS + (E⊤

DB −H⊤
DB)CD(EDB −HDB) −(E⊤

DB −H⊤
DB)CD

−CD(EDB −HDB) CD

]

≤ 2

[
CS + (E⊤

DB −H⊤
DB)CD(EDB −HDB) 0
0 CD

]
.

Using (3.6), (3.8), (3.7) and (3.5), we can estimate

cI

(
CS + (E⊤

DB −H⊤
DB)CD(EDB −HDB

)
≤ cICS + (E⊤

DB −H⊤
DB)KD(EDB −HDB)

= cICS +

[
I

EDB

]⊤
K
[

I
EDB

]
− SB

≤ cICS + c2ECS − SB

≤ cI + c2E − cS
cS

SB .

Due to the postive definitness of CS+(E⊤
DB−H⊤

DB)CD(EDB−HDB), we have cI+c
2
E−cS > 0.

Together with cICD ≤ KD, we can conclude that C ≤ cK with c = cI
2 min

{
1, cS

cI+c
2
E−cS

}
.

Remark 3.2. A direct consequence of (3.7) is the spectrally equivalence of the Schur-complement
SB and the disturbed Schur-complement SB + TB, see [13].

Summarizing, we have to find the preconditioners CD, CS and the extension E↔ EBD in order
to derive a good preconditioner C.
For an inexact FETI preconditioner, a preconditioner Ci for Ki (cf. (2.9)), i.e. for the
Neumann problem on domain Ωi, is required. Due to (2.7), the block partitioning for K in
(3.1), can be done for the subdomain stiffness matrices, too. A simple computation shows

Ki =

[
I KB,D,iK−1

D,i

0 I

] [
SB,i 0
0 KD,i

] [
I 0

K−1
D,iKD,B,i I

]
(3.10)

with the local Schur-complement

SB,i = KB,i −KB,D,iK−1
D,iKD,B,i. (3.11)

Then, the global Schur complement can be computed via the local Schur-complements, i.e.

SB =

s∑

i=1

RB,iSB,iR⊤
B,i (3.12)

with the assembling matrices RB,i (2.7). Using the DD-approach applied to Ki instead of K
this preconditioner will be developed in Section 3.
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3.2 An Overlapping Preconditioner for the Dirichlet Subproblems

In this subsection, we present the preconditioner for the matrix KD. Here, we use an overlap-
ping preconditioner which has been developed in [29], see also [8], [33]. The preconditioner is
based on the additive Schwarz framework (see, e.g., [36]). We decompose the hp-FEM spaceSp(Ωi, τi) =∑K

i=0Vi for subspaces Vj that will be specified below. This splitting defines an
ASM-preconditioner which eliminates all high order degrees of freedom and, moreover, the
properties of this preconditioner can be expressed by the two numbers C0 and ρ(ǫ) defined be-
low. As a well-known fact from the ASM-theory the condition number of the preconditioned
system is bounded by C2

0 (1 + ρ(ǫ)).

Since KD = blockdiag [KD,i]i it is possible to restrict ourselves to the case of one subdomain
Ωi.
Lemma 3.3 (Clement interpolation). Let τ be a γ-shape-regular affine triangulation. For
K ∈ τ define the patch

ωK := ∪{K ′ ∈ τ | K ∩K ′ 6= ∅}.
Then there exists C > 0 depending solely on γ and a linear operator IC : H1(Ω) 7→ S1(τ)
such that

‖u− Icu‖L2(K) ≤ ChK‖∇u‖L2(ωK) and ‖∇Icu‖L2(K) ≤ C‖∇u‖L2(ωK).

Proof. The proof is given in [9].

Lemma 3.4. Let K̂ be the reference triangle and p(K) = (pe1 , pe2, pe3 , pK) with pei ≤ pK ,
i = 1, . . . , 3, a polynomial degree distribution. Let ip be the one-dimensional Gauss-Lobatto
interpolation operator. Then there exists a constant C > 0 and a linear operator

Ip(K) : P2pK (K̂) 7→ Pp(K̂) (3.13)

such that

• Ipu = u for all u ∈ Pp(K̂),

• ‖Ipu‖H1(K̂) ≤ C‖u‖H1(K̂) for all u ∈ P2pK (K̂),

• (Ipu)|Γi = ipei ,Γiu for i = 1, . . . , 3.

Proof. The proof is given in [9, Theorem 4.4].

Definition 3.5. Let τ be a γ-shape-regular triangulation with polynomial degree distribution
p = (pK)K∈τ . For each K ∈ τ let the operator Ip(K) be given by (3.13). Then we define

Ip : S2p(τ) 7→ Sp(τ) by (Ipu)|K = (Ip(u|K ◦ FK)) ◦ F−1
K .

For a finite element mesh τ , we denote the set of its vertices by V (τ) and the polynomial
degree vector by p = (pK)K∈τ . In order to define our ASM-preconditioner we associate with
each vertex vj a patch

ωj := ∪{K ∈ τ | vj is a vertex of K}
and decompose the space Sp(τ) into the following subspaces:
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on H1(Ωi) ×H1(Ωi) with a positive regularization parameter αi, e.g. αi = h2i . Taking into
account the solvability conditions for local Neumann problems

(g
B,i

− B⊤
B,iλ, 1B,i) = 0 (4.9)

and the representation of the vectors uB,i as

uB,i = vB,i + γi1B,i with (vB,i, 1B,i) = 0, (4.10)

we get the two–fold saddle point problem




S̃B,1 B⊤
B,1 0

. . .
...

S̃B,s B⊤
B,s 0

BB,1 . . . BB,s 0 G
0 . . . 0 G⊤ 0







vB,1
...

vB,s
λ
γ




=




g
B,1
...

g
B,s

0
e




(4.11)

with the notations γ = (γi)i=1,...,s ∈ Rs, G = (BB,11B,1, . . . ,BB,s1B,s) and e = (ei)i=1,...,s =
(−(g

B,i
, 1B,1)i=1,...,s ∈ Rs. The solution uB,i can be recovered via formula (4.10).

Applying the orthogonal projection

P = I − G(G⊤G)−1G⊤ (4.12)

from the space Λ := RL onto the subspace Λ0 = ker G⊤ = (rangeG)⊥ with respect to the
scalar product (·, ·) = (·, ·)Λ = (·, ·)RL to the last but one block equation of system (4.11), we
can exclude γ from the first s + 1 block equations of (4.11). Moreover, let us represent λ in
the form

λ = L0λ0 + λe (4.13)

with known λe = G(G⊤G)−1e ∈ (ker G⊤)⊥ = rangeG, fulfilling the constraints G⊤λe = e, and
unknown L0λ0 ∈ ker G⊤, i.e. G⊤L0λ0 = 0, where λ0 ∈ RL0 and L0 = dimΛ0. The columns
of L0 span a basis of Λ0. Now we can define vB,1, . . . , vB,s and λ0 from the one–fold saddle
point problem




S̃B,1 B⊤
B,1P⊤L0

. . .
...

S̃B,s B⊤
B,sP⊤L0

L⊤
0 PBB,1 . . . L⊤

0 PBB,s 0







vB,1
...

vB,s
λ0


 =




dB,1
...

dB,s
0


 , (4.14)

where dB,i = g
B,i

− B⊤
1,Bλe. Once the vectors vB,1, . . . , vB,s and λ0 are defined from (4.14),

we get λ from (4.13), γ from the last but one block equation of system (4.11), i.e.

γ = −(G⊤G)−1G⊤(BB,1vB,1 + · · · + BB,svB,s), (4.15)

and, finally, uB,1, . . . , uB,s from (4.10). We will call the one–fold saddle point problem (4.14)
AF-FETI2 system.
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interconnecting the local potential vectors across the subdomain boundaries and the nodal
parameters on the boundary ΓD with the corresponding Dirichlet data which are zero for
our model problem. Each row of the matrix B = (B1, . . . ,Bs) = ((B1,B , 0), . . . , (Bs,B, 0)) is
connected with a pair of matching nodes across the subdomain boundaries or with a Dirichlet
node. The entries of the former rows are 1 and −1 for the indices corresponding to the
matching nodes on the interface (coupling boundaries) ΓC = ΓS \ΓD and 0 otherwise, whereas
a entry corresponding to a Dirichlet node on ΓD is 1 and again 0 otherwise. Therefore, (4.2)
implies that the corresponding finite element functions ui,h are continuous across the interface
ΓC , i.e. ui,h = uj,h on Γi ∩ Γj 6= ∅, and are vanishing on Γi ∩ ΓD. We assume here that the
number of constraints at some matching node is equal to the number of matching subdomains
minus one. This method of a minimal number of constraints respectively multipliers is called
non–redundant, see, e.g., [20] for the use of redundant constraints.

By introducing Lagrange multipliers λ ∈ RL, the linear system (2.8) is equivalent to the
following extended system




K1 B⊤
1

. . .
...

Ks B⊤
s

B1 . . . Bs 0







u1
...
us
λ


 =




f
1
...
f
s
0


 , (4.3)

where now all matrices Ki are corresponding to local Neumann problems given by the Neu-
mann bilinear form

∫
Ωi

∇u·D∇vdΩ on H1(Ωi). Due to the choice of the matrices, all matrices

Ki are singular with kernels spanned by the vector
[
1⊤i,B , 1

⊤
i,L, 0

⊤
i,H

]⊤
as was already mentioned

in Subsection 3.4.

Eliminating all interior unknowns ui,D, i = 1, . . . , s, from system (4.3), we arrive at the
equivalent reduced system




SB,1 B⊤
B,1

. . .
...

SB,s B⊤
B,s

BB,1 . . . BB,s 0







uB,1
...

uB,s
λ


 =




g
B,1
...

g
B,s

0



, (4.4)

with the singular Schur complements

SB,i = KB,i −KBD,iK−1
D,iKDB,i, i = 1, . . . , s, (4.5)

and the corresponding right-hand sides

g
B,i

= f
B,i

−KBD,iK−1
D,ifD,i, i = 1, . . . , s. (4.6)

The kernels of the matrices SB,i are spanned by the vector 1B,i. We now replace the singular
Neumann Schur complements SB,i by the regularized matrices

S̃B,i = SB,i + αi1B,i1
⊤
B,i, i = 1, . . . , s. (4.7)

This corresponds to the regularized Neumann bilinear form
∫

Ωi

∇u(x) · D(x)∇v(x) dx+

(∫

Γi

u(x) ds

)(∫

Γi

v(x) ds

)
(4.8)
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1. The space of piecewise linear polynomials V0 := S1(τ).
2. Local higher dimensional spaces Vj := {u ∈ Sp(τ) | suppu ⊂ ωj}.

To analyze the properties of the decomposition of Sp(τ), we introduce C0 via:

min





#V (τ)∑

j=0

‖uj‖2A

∣∣∣∣∣∣
u = u0 +

#V (τ)∑

j=1

uj , uj ∈ Vj



 ≤ C2

0‖u‖2A, (3.14)

and define a symmetric matrix ǫ ∈ R(#V (τ))×(#V (τ)) with entries ǫik = 0 if ωi and ωk are
disjoint and ǫik = 1 otherwise. Thus

|a(ui, uk)| ≤ ǫik‖ui‖A‖vk‖A ∀ui ∈ Vi, ∀uk ∈ Vk. (3.15)

Theorem 3.6. Let τ be a γ-shape regular triangulation and p a corresponding polynomial
degree distribution. Let Sp(τ) = V0 +

#V (τ)∑

j=1

Vj

and let a(·, ·) : H1 ×H1 7→ R symmetric positive definite. Then there exists a constant C > 0
depending solely on the bilinear form a(·, ·) and γ, such that

C0 ≤ C, ρ(ǫ) ≤ C

where C0 and ǫ are from (3.14), (3.15), respectively.

Proof. Since there exists M > 0 depending only on γ, such that

#{v′ ∈ V | ωv ∩ ωv′ 6= ∅} ≤M ∀v ∈ V

we have ρ(ǫ) ≤ ‖ǫ‖∞ ≤ M. In order to bound C0, we exploit the properties of the operators
IC and Ip and decompose u ∈ Sp(τ) as follows

u = ICu+ Ip(u− ICu) = ICu+ Ip




#V (τ)∑

j=1

φj(u− ICu)




= u0 +

#V (τ)∑

j=1

uj

with
u0 := Ic(u) ∈ V0, uj := Ip(φj(u− ICu)) ∈ Vj.

Now we want to bound ‖u0‖2A +
∑#V (τ)

j=1 ‖uj‖2A. By Lemma 3.3 and since ‖ · ‖A ∼ ‖ · ‖H1 we
have

‖u0‖2A = ‖Ic(u)‖2 ≤ C‖u‖2A.
Next we consider a fixed j ∈ 1, ...,#V (τ) and a fixed K ⊂ ωj:

‖uj‖2A ≤ C‖uj‖2H1(K) =
∥∥Ip(φj(u− ICu))

∥∥2
H1(K)
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Denoting ũ := (u − ICu), û := ũ|K ◦ FK , φ̂ := φj|K ◦ FK and applying Lemmas 3.4, 3.3 we
get:

‖uj‖2H1(K) ≤ C
(
h2K‖Ip(φ̂û)‖2L2(K̂)

+ ‖∇Ip(φ̂û)‖2L2(K̂)

)

≤ C‖Ip(φ̂û)‖2H1(K̂)

≤ C‖φ̂û‖2
H1(K̂)

≤ C‖û‖2
H1(K̂)

≤ C
(
h−2
K ‖u− ICu‖2L2(K) + ‖∇(u− ICu)‖2L2(K)

)

≤ C‖∇u‖2L2(ωj)
.

Thus, the relations

‖uj‖2H1(ωj)
≤ C

∑

K⊂ωj

‖∇u‖2L2(ωj)

and
#V (τ)∑

j=1

‖uj‖2H1(ωj)
≤ C‖∇u‖2L2(Ω) ≤ C‖u‖2A

follow.

Now we are able to define the following preconditioner for KD,i. Let

C−1
D =

#V (τ)∑

j=1

Q⊤
j K−1

P,jQj +Q⊤
0 (DL)

−1Q0, (3.16)

where

• KP,j denotes the stiffness matrix restricted to Vj , j = 1, . . . ,#V (τ),

• Qj , j = 0, . . . ,#V (τ) is the corresponding finite element restriction matrix onto Vj,

• DL is the diagonal part of the matrix KL.
Theorem 3.7. Let CD be defined via (3.16). Then, we have CD ∼ KD.

Proof. Due to [37] and [18], the condition number of KL does not depend on the discretization
parameter. This gives DL ∼ KL. Now, the result is a consequence of Theorem 3.7.

3.3 Schur complement preconditioner and extension operator

Next, we consider the preconditioner CS for SB (3.2). We will prove that the norm induced
by the Schur complement SB (3.2) is equivalent to a suitable seminorm. Therefore, the
extension operators E for the nearly discrete harmonic extension of a function g ∈ H1/2(∂Ω̃)
to a function u = Eg ∈ H1(Ω̃) has to be investigated. We follow the approach of Haase and
Nepomnyaschikh [16].

In a first step, we describe the extension of Haase and Nepomnyaschikh. Then, we prove that
this type of extension can be used for boundary concentrated meshes with p = 1 or p > 1
defined via Definition 2.3, too. Finally, the equivalence of the Schur complement is shown.
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3.5 Computational Aspects

In the previous subsection, we have proved the optimality of the condition number of C−1K.
For the design of an optimal solver, the operation C−1r should be performed in optimal
arithmetical complexity. This is the purpose of this subsection.

The preconditioner C (3.29) consists of three ingredients, namely the preconditioner CD for
KD, the Schur-complement preconditioner CS and the extension operator EDB .
For the preconditioning operation C−1

D rD (3.16), we have to solve subproblems onto the high-
order subspaces Vj, j = 1, . . . , n. Those problems can be treated by direct solvers since
dim(Vj) � (1 + log hK

h )3, see (2.5). On the subspace V0, we have to multiply with a diagonal
matrix. Hence, the cost for C−1

D rD is O(N).

Furthermore, we need a good preconditioner CS for SB . Due to Theorem 3.13, the norm
induced by the Schur complement is equivalent to the H1/2-norm on the skeleton. Hence,
any preconditioner which is known from the h-version of the FEM using uniform refined
meshes can be used as preconditioner for the Schur complements SB,i or the assembled Schur
complement SB (see, e.g. [21] or [36]). Thus, nowadays many preconditioners CS,i for SB,i
are available such that κ(CS,i−

1
2SB,iCS,i−

1
2 ) = O(1) and the solution of a system CS,iw = r

requires O(Ni) floating point operations. Similar results are valid for the assembled Schur
complement SB. In our numerical experiments presented in Section 5 we use the so-called
Schur complement BPX preconditioner proposed in [35].

The last ingredient is the matrix representation of the extension operator EDB. Due to Al-
gorithm 3.8, the operations EDBwB and ETDBwD involve only BPX-like basis transformations
at the boundary or skeleton and on the interior, which are proportionally to the numbers of
unknowns at the skeleton or the interior. Therefore both operations require O(N) floating
point operations.

Summarizing, the total cost for C−1r is O(N) flops.

4 All-Floating Interface Concentrated Finite Element Tearing and
Interconnecting Methods

4.1 AF-FETI Formulations

In order to avoid assembled matrices and vectors, we tear the global potential vector u on
the subdomain boundaries Γi by introducing the individual local unknowns

ui = Riu. (4.1)

In contrast to the preceding sections the vector u of nodal parameters now contains also those
nodal parameters belonging to the Dirichlet boundary ΓD that coincides with Γ = ∂Ω for
our model problem (2.1). The global continuity of the potentials and the Dirichlet boundary
conditions are now enforced by the constraints

s∑

i=1

Biui = 0 (4.2)
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3.4 Final condition number estimates

Now, we are in the position to summarize the results of Subsections 3.2 and 3.3. In a first
step, we propose the primal DD preconditioner for Ki (3.10). Let

Ci =
[
I −E⊤

DB,i

0 I

] [
CS,i 0
0 CD,i

] [
I 0

−EDB,i I

]
, (3.27)

where

• CD,i is the preconditioner (3.16) for KD,i,

• CS,i is a preconditioner for SB,i with CS,i ∼ SB,i,
• EDB,i is the matrix representation of the extension operator EL,i : ∂Ωi 7→ Ωi in Algo-

rithm 3.8.

Note that the matrix Ci is positive definite if ∂Ω ∩ ∂Ωi 6= ∅. If ∂Ω ∩ ∂Ωi = ∅, this matrix is

positive semidefinite with ker Ci = kerKi = [uB , uL, uH ]
⊤ =

[
1⊤i,B , 1

⊤
i,L, 0

⊤
i,H

]⊤
. The choice of

the preconditioners CS,i is specified in the next subsection.
Theorem 3.14. Let Ci be defined via (3.27). Then, the spectral inequalities

c8 (Civ, v) ≤ (Kiv, v) ≤ c9 (Civ, v) (3.28)

are valid for all v ∈ RNi, where the spectral constants do not depend on Ni.

Proof. We show that the assumptions of Lemma 3.1 are satisfied. Due to Theorem 3.7, we
have CD,i ∼ KD,i. Our assumptions imply the estimate CS,i ∼ SB,i. Using Theorem 3.13,
Theorem 3.11 and |u|2H1(Ωi)

∼ (Kiu, u) for all u = Φiu ∈ S1L,i, the relation
(
Ki

[
I

EBD,i

]
g,

[
I

EBD,i

]
g

)
≤ c2E

(
CS,ig, g

)
∀g

holds with a constant, which is independent of Ni, for the matrix representation of the
extension operator in Algorithm 3.8.

Now, we will present the solver for the global stiffness matrix K. Let

C =

[
I −E⊤

DB

0 I

] [
CS 0
0 CD

] [
I 0

−EDB I

]
, (3.29)

where

• CD is the block diagonal matrix of the preconditioner (3.16) for KD,i, i = 1, . . . , s,

• CS is a preconditioner for SB , which satisfies CS ∼ SB ,
• EDB is the matrix representation of the extension operators EL,i : ∂Ωi 7→ Ωi in Algorithm

3.8.
Theorem 3.15. Let C be defined via (3.29). Then,

c10 (Cv, v) ≤ (Kv, v) ≤ c11 (Cv, v) ∀v.
The constants do not depend on N .

Proof. The proof is similar to the proof of Theorem 3.14.
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Figure 1: Refinement of each element of the mesh.

The technique of Haase and Nepomnyaschikh has originally been derived for the h-version of
the finite element method with p = 1 using uniform refined meshes and uses the hierarchy
of the nested finite element spaces. Let τ0 ⊂ τ1 ⊂ τ2 ⊂ . . . ⊂ τL be a sequence of nested

triangular (d = 2) or tetrahedral (d = 3) finite element meshes with nodes x
(l)
i , i = 1, . . . , Nl,

l = 0, . . . , L, on a domain Ω̃. Here τ0 is the coarse mesh and τl is obtained from τl−1 be
subdividing each element of τl−1 into 2d new congruent elements, cf. Figure 1 for d = 2.

Due to Definition 2.4, S1l denotes the space of all functions which are piecewise linear, linear
on each element of τl and belong to H1(Ω̃). The corresponding trace space is denoted by Bl,
i.e. Bl = S1l |∂Ω̃. This space is spanned by nodal basis functions ψi,l, i.e.Bl = span {ψi,l}Nl

i=1 = spanΨl. (3.17)

Moreover, letW(i)
l = span {ψi,l} be the one-dimensional subspace corresponding to the node

x
(l)
i . Let g ∈ Bl ⊂ H1/2(∂Ω̃). In order to define a function u = Eg such that

‖ u ‖H1(Ω̃)≤ c ‖ g ‖H1/2(∂Ω̃), u |∂Ω̃= g, (3.18)

Haase/Nepomnyaschikh used a BPX-like decomposition of the function g. LetQi,l : L2(∂Ω̃) 7→W(i)
l be the L2-like projection from L2(∂Ω̃) onto W(i)

l , i.e.

Qi,lg = di,l(g)ψi,l ∀g ∈ Bl,
where

di,l =
(g, ψi,l)L2(∂Ω̃)

(ψi,l,1)L2(∂Ω̃)

, or, di,l =
(g,1)L2(suppψi,l)

(1,1)L2(suppψi,l)

.

Moreover, let

Ql =

Nl∑

i=1

Qi,l, l = 0, . . . , L, and Q−1 = 0.

Now, the extension of a function g ∈ BL into Ω̃ can be defined.
Algorithm 3.8. 1. Let ψl = (Ql −Ql−1)g ∈ Bl, l = 0, . . . , L.

2. Define the function u ∈ S1l via

ul(xi,0) =

{
ψl(xi,0) if xi,0 ∈ ∂Ω̃

g if xi,0 /∈ ∂Ω̃
, (3.19)

ul(xi,l) =

{
ψl(xi,l) if xi,l ∈ ∂Ω̃

0 if xi,l /∈ ∂Ω̃
. (3.20)

11



3. Set u = Elg = u0 + u1 + . . . + uL.
Remark 3.9. Note that the function ul in (3.19), (3.20) is uniquely defined by setting the

function values in the nodes x
(l)
i of the mesh τl. For g, a coarse grid problem on the mesh τ0

has to be solved. Alternatively, the mean value of g over ∂Ω̃ can be taken.

Now, the following result has been shown.
Theorem 3.10. Let τ0 ⊂ . . . ⊂ τL be a family of uniformly refined meshes and let S1l ,
l = 0, . . . , L be the space of the piecewise linear nodal basis functions on τl. Let EL : BL 7→ S1L
be the extension of Algorithm 3.8. Then, we have ELg |∂Ω̃= g. Moreover, there is a constant
c2 which is independent of L such that

‖ ELg ‖H1(Ω̃)≤ c2 ‖ g ‖H1/2(∂Ω̃) ∀g ∈ BL.
Proof. The proof was given in [16].

Next, we consider a family of boundary concentrated finite element meshes and the corre-
sponding finite element spaces Sl.
Theorem 3.11. Let τ0 ⊂ . . . ⊂ τL be a family of meshes on a domain Ω̃, which are geo-
metrically refined to the boundary. Let Sl, l = 0, . . . , L, be defined via Definition 2.4. Then,SL |∂Ω̃= BL. Moreover, let EL : BL 7→ SL be the extension operator of Algorithm 3.8. Then,
there exists a constant c2 which is independent of L (and N) such that

‖ ELg ‖H1(Ω̃)≤ c2 ‖ g ‖H1/2(∂Ω̃) ∀g ∈ BL. (3.21)

Proof. Due to (2.5), the polynomial degree on the elements on ∂Ω̃ is 1. Thus, SL |∂Ω̃= BL.
This proves the first assertion.

Due to (3.19) and (3.20), the image of extension operator described in Algorithm 3.8 for
uniformly refined meshes belongs to the space S1L. Theorem 3.10 implies the estimate

‖ ELg ‖H1(Ω̃)≤ c2 ‖ g ‖H1/2(∂Ω̃) ∀g ∈ BL
with the constant of Theorem 3.10. Since S1L ⊂ SpL, the second assertion follows.

Remark 3.12. If
∫
∂Ω̃ g = 0, or g |Γ̃= 0 for Γ̃ ⊂ ∂Ω̃ with meas(Γ̃) > 0, relation (3.21) remains

valid, if the seminorms are used instead of the seminorms in (3.21). This is a consequence of
the Poincare-Friedrichs type inequalities, see [36, Lemma A17], or, [30].

Hence, we have shown that the extension of Haase/Nepomnyaschikh for uniformly refined
meshes can be used for geometrically refined meshes with grading factor 1

2 , too.

In a next theorem, we show that the norm induced by the Schur complement SB,i (3.11) is
equivalent to the H1/2(∂Ωi) norm and that the norm induced by the Schur complement SB
(3.2) is equivalent to the following norm:

‖ g ‖2
H1/2(Γ)

:=‖ g ‖2L2(Γ) +|g|2
H1/2(Γ)

, where |g|2
H1/2(Γ)

= inf
u |Γ= g
u |∂Ω= 0

|u|2H1(Ω).
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Theorem 3.13. Let τ
(i)
0 ⊂ . . . ⊂ τ

(i)
L be a family of geometrically refined meshes on the

domains Ωi, i = 1, . . . , s, and let BL,i and BL,Γ be the trace spaces of SL,i and VL,0 onto
∂Ωi and Γ = ∪si=1∂Ωi\∂Ω, respectively. Let ΦB,i and ΦB be defined via (2.6) and (2.7),
respectively.

Moreover, let SB,i be defined via (3.11). If ∂Ω ∩ ∂Ωi 6= ∅, we have

c4 |gi|2H1/2(∂Ωi∩Γ) ≤ (SB,igi, gi) ≤ c5 |gi|2H1/2(∂Ωi∩Γ) ∀gi = ΦB,igi ∈ BL,i, g |∂Ω= 0. (3.22)

If ∂Ω ∩ ∂Ωi = ∅, we have

c4 |gi|2H1/2(∂Ωi∩Γ) ≤ (SB,igi, gi) ≤ c5 |gi|2H1/2(∂Ωi∩Γ) ∀gi = ΦB,igi ∈ BL,i. (3.23)

Moreover, the relation

c6 ‖ g ‖2
H1/2(Γ)

≤ (SBg, g) ≤ c7 ‖ g ‖2
H1/2(Γ)

∀g = ΦBg ∈ BL,Γ (3.24)

holds. The constants c4, c5, c6 and c7 are independent on L and N .

Proof. The proof of (3.22) is adapted from [36], see also [1]. By the trace theorem and the
Poincare Friedrichs inequality

c14c
−2
T |gi|2H1/2(∂Ωi)

≤ c14 ‖ u ‖2H1(Ωi)
≤ c15|u|2H1(Ωi)

≤ min
uD

(Kiu, u)

= (SB,igi, gi), u =

[
g
i

uD

]
, u = Φiu.

Due to Theorem 3.11 and Remark 3.12, there exists a function u ∈ H1(Ωi), u |∂Ωi
= g such

that |u|H1(Ωi) ≤ c2|g|H1/2(∂Ωi)
. Thus, we can conclude that

(SB,igi, gi) ≤ (Kiu, u) ≤ c12|u|2H1(Ωi)
≤ c12c

2
2|gi|2H1/2(∂Ωi)

.

To prove (3.23), we have

c4 |gi|2H1/2(∂Ωi∩Γ) ≤ (SB,igi, gi) ≤ c5 |gi|2H1/2(∂Ωi∩Γ) ∀gi = ΦB,igi ∈ BL,i,∫
∂Ωi

gi = 0 (3.25)

by the same arguments.

Let gi ∈ BL,i with g =
∫
∂Ω gi. Thus, one obtains gi = g · 1 + gi,0 with

∫
∂Ω gi,0 = 0. Since

|gi|H1/2(∂Ωi)
= |gi,0|H1/2(∂Ωi)

, and (SB,igi, gi) = (SB,ig0,i, g0,i) for gi,0 = ΦB,igi, relation (3.23)

is a consequence of (3.25).

To prove (3.24), we have

‖ g ‖2H1/2(Γ)=

s∑

i=1

‖ g ‖2H1/2(∂Ωi∩Γ) . (3.26)

Since meas(∂Ω) > 0, the H1/2(Γ) seminorm is equivalent to the H1/2(Γ) norm. This is
implied by the Poincare-Friedrichs inequality. Using (3.26), (3.12), (3.23) and (3.22), the
assertion follows.
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