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On the solution of the rational matrix equation
X = Q + LX−1LT

Peter Benner∗ Heike Faßbender†

September 30, 2006

Abstract: We study numerical methods for finding the maximal
symmetric positive definite solution of the nonlinear matrix equation
X = Q + LX−1LT , where Q is symmetric positive definite and L is
nonsingular. Such equations arise for instance in the analysis of sta-
tionary Gaussian reciprocal processes over a finite interval. Its unique
largest positive definite solution coincides with the unique positive
definite solution of a related discrete-time algebraic Riccati equation
(DARE). We discuss how to use the butterfly SZ algorithm to solve
the DARE. This approach is compared to several fixed point type
iterative methods suggested in the literature.

1 Introduction

The nonlinear matrix equation

X = f(X) with f(X) = Q+ LX−1LT , (1)

where Q = QT ∈ Rn×n is positive definite and L ∈ Rn×n is nonsingular, arises
in the analysis of stationary Gaussian reciprocal processes over a finite interval.
The solution of certain 1-D stochastic boundary-value systems are reciprocal
processes. For instance, the steady-state distribution of the temperature along a
heated ring or beam subjected to random loads along its length can be modeled
in terms of such reciprocal processes. A different example is a ship surveillance
problem: given a Gauss-Markov state-space model of the ship’s trajectory, it is
desired to assign a probability distribution not only to the initial state, but also

∗Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany,
benner@mathematik.tu-chemnitz.de

†Technische Universität Braunschweig, Institut Computational Mathematics, 38106 Braun-
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to the final state, corresponding to some predictive information about the ship’s
destination. This has the effect of modeling the trajectory as a reciprocal process.
For references to these examples see, e.g., [22].

The problem considered here is to find the (unique) largest positive definite
symmetric solution X+ of (1). This equation has been considered, e.g., in [12,
15, 18, 23, 26, 28]. In [12], the set of Hermitian solutions of (1) is characterized
in terms of the spectral factors of the matrix Laurent polynomial L(z) = Q +
Lz − LT z−1. These factors are related to the Lagrangian deflating subspace of
the matrix pencil

G− λH =

[
LT 0
−Q I

]
− λ

[
0 I
L 0

]
. (2)

In particular, one can conclude from the results in [12, Section 2] that this matrix
pencil does not have any eigenvalues on the unit circle and that the spectral radius
ρ(X−1

+ LT ) is less than 1 as
[

I
X+

]
spans the stable Lagrangian deflating subspace of

G− λH. Alternatively, one could rewrite (1) as the discrete Lyapunov equation
X+ − (X−1

+ LT )TX+(X
−1
+ LT ) = Q. As Q and X+ are positive definite, we get

ρ(X−1
+ LT ) < 1 from the discrete version of the Lyapunov stability theorem (see,

e.g., [20, p. 451]). Moreover, it is shown in [12], that the unique largest positive
definite solution of (1) coincides with the unique positive definite solution of a
related Riccati equation. For this, it is noted in [12] that if X solves (1), then it
also obeys the iterated equation

X = f(f(X)) = Q+ F (R−1 +X−1)−1F T

with F = LL−T and R = LTQ−1L = RT positive definite. Using the Sherman-
Morrison-Woodbury formula to derive an expression for (R−1+X−1)−1, we obtain

DR(X) = Q+ FXF T − FX(X +R)−1XF T −X, (3)

a discrete-time algebraic Riccati equation (DARE). Because (F, I) is controllable
and (F,Q) is observable, a unique stabilizing positive definite solution X∗ exists
[19, Theorem 13.1.3]. This unique solution coincides with that solution of (1) one
is interested in. DAREs appear not only in the context presented, but also in
numerous procedures for analysis, synthesis, and design of control and estimation
systems with H2 or H∞ performance criteria, as well as in other branches of
applied mathematics and engineering, see, e.g., [1, 2, 3, 19, 33].

In [12] essentially three ideas for solving (1) have been proposed. The straight-
forward one is a basic iterative algorithm that converges to the desired positive
definite solution X+ of (1). Essentially, the algorithm interprets equation (1) as a
fixed point equation and iterates Xi+1 = f(Xi); see Section 2.1 for more details.

The second idea is to compute the desired solution from the stable Lagrangian
deflating subspace of G − λH. If we can compute Y1, Y2 ∈ Rn×n such that the

2
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can be used to improve the accuracy of a computed solution. Several examples
comparing the iterative methods with the SZ approach show that none of the
methods discussed is superior. Usually, the doubling-type algorithm computes
the approximate solution very fast, but due to the back transformation step, the
accuracy can deteriorate significantly. On the other hand, the fixed point iteration
is often very slow. The SZ approach needs a predictable computing time which is
most often less than that of the fixed point iteration when a comparable accuracy
is requested, but is much higher than for the doubling algorithm. The accuracy
of the SZ approach is not always the best compared to the other methods, but
in none of the examples tested it fails as opposed to the iterative methods.
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columns of
[
Y1
Y2

]
span the desired deflating subspace of G − λH, then X¦ =

−Y2Y
−1
1 is the desired solution of (1).

The third idea is to compute the desired solution via the unique solution X∗
of the DARE. The solution X∗ can be found by direct application of Newton’s
method for DAREs [15, 16, 19, 25]. However, comparison with the basic fixed
point iteration is not favorable [15, Section 5]. Therefore, this approach of solving
the DARE is not considered here. Instead we will compute its solution via the
stable deflating subspace of an associated matrix pencil. As R is positive definite,
we can define

M − λN =

[
F T 0
Q I

]
− λ

[
I −R−1

0 F

]
. (4)

As (F, I) is controllable, (F,Q) is observable, and Q and R−1 are positive definite,
M −λN has no eigenvalues on the unit circle; see, e.g., [19]. It is then easily seen
that M − λN has precisely n eigenvalues in the open unit circle and n outside.
Moreover, the Riccati solution X∗ can be given in terms of the deflating subspace
of M − λN corresponding to the n eigenvalues λ1, . . . , λn inside the unit circle
using the relation

[
F T 0
Q I

] [
I

−X

]
=

[
I −R−1

0 F

] [
I

−X

]
Λ,

where Λ ∈ Rn×n with the spectrum σ(Λ) = {λ1, . . . , λn}. Therefore, if we can
compute Y1, Y2 ∈ Rn×n such that the columns of

[
Y1
Y2

]
span the desired deflating

subspace of M − λN , then X∗ = −Y2Y
−1
1 is the desired solution of the DARE

(3). See, e.g., [19, 21, 25], and the references therein.
Hence, two of the ideas stated in [12] how to solve (1) can be interpreted as the

numerical computation of a deflating subspace of a matrix pencil A−λB. This is
usually carried out by an iterative procedure like the QZ algorithm. Applying the
numerically backward stable QZ algorithm to a matrix pencil results in a general
2n× 2n matrix pencil in generalized Schur form from which the eigenvalues and
deflating subspaces can be read off.

Both matrix pencils to be considered here (G − λH and M − λN) have a
symplectic spectrum, that is, their eigenvalues appear in reciprocal pairs λ, λ−1.
They have exactly n eigenvalues inside the unit circle, and n outside. Sorting
the eigenvalues in the generalized Schur form such that the eigenvalues inside
the unit circle are contained in the upper left n × n block, the desired deflating
subspace can easily be read off and the solution X¦, resp. X∗ can be computed.
(This method results in the popular generalized Schur vector method for solving
DAREs [27].) Due to roundoff errors unavoidable in finite-precision arithmetic,
the computed eigenvalues will in general not come in pairs {λ, λ−1}, although the
exact eigenvalues have this property. Even worse, small perturbations may cause
eigenvalues close to the unit circle to cross the unit circle such that the number
of true and computed eigenvalues inside the open unit disk may differ. Moreover,

3



the application of the QZ algorithm to a 2n× 2n matrix pencil is computation-
ally quite expensive. The usual initial reduction to Hessenberg-triangular form
requires about 70n3 flops plus 24n3 for accumulating the Z matrix; each iteration
step requires about 88n2 flops for the transformations and 136n2 flops for accu-
mulating Z; see, e.g., [29]. An estimated 40n3 flops are necessary for ordering the
generalized Schur form. This results in a total cost of roughly 415n3 flops, em-
ploying standard assumptions about convergence of the QZ iteration (see, e.g.,
[14, Section 7.7]).

The use of the QZ algorithm is prohibitive here not only due to the fact that
it does not preserve the symplectic spectra, but also due to the costly computa-
tion. More efficient methods have been proposed which make use of the following
observation: M −λN of the form (4) is a symplectic matrix pencil. A symplectic
matrix pencil M − λN,M,N ∈ R2n×2n, is defined by the property

MJMT = NJNT ,

where

J =

[
0 In

−In 0

]
,

and In is the n × n identity matrix. The nonzero eigenvalues of a symplectic
matrix pencil occur in reciprocal pairs: if λ is an eigenvalue of M − λN with left
eigenvector x, then λ−1 is an eigenvalue of M−λN with right eigenvector (Jx)H .
Hence, as we are dealing with real symplectic pencils, the finite generalized eigen-
values always occur in pairs if they are real or purely imaginary or in quadruples
otherwise. Although G−λH as in (2) is not a symplectic matrix pencil, it can be

transformed into a very special symplectic pencil Ĝ− λĤ as noted in [23]. This

symplectic pencil Ĝ− λĤ allows the use of a doubling algorithm to compute the
solution X¦. These methods originate from the fixed point iteration derived from
the DARE. Instead of generating the usual sequence {Xk}, doubling algorithms
generate {X2k}. This class of methods attracted much interest in the 1970s and
80s, see [29] and the references therein. After having been abandoned for the
past decade, they have recently been revived by a series of papers, e.g. [10, 23].
To be more specific, define

N (Ĝ, Ĥ) = {[G?, H?] : G?, H? ∈ R2n×2n, rank[G?, H?] = 2n, [G?, H?]
[
bH

− bG

]
= 0}.

Since rank
[
bH

− bG

]
≤ 2n, it follows that N (Ĝ, Ĥ) 6= ∅. For any given [G?, H?] ∈

N (Ĝ, Ĥ), define

Ğ = G?Ĝ, H̆ = H?Ĥ.

The transformation
Ĝ− λĤ → Ğ− λH̆

4

becomes compared to the residual tol obtained by the SZ algorithm. Hence, the
SZ algorithm may require more arithmetic operations, but usually it generates
more accurate solutions.

Example 2. In [15], the following example is considered:

L =

[
50 10
20 60

]
, Q =

[
3 2
2 4

]
.

The solution X+ is given by

X+ ≈
[
51.7993723118 16.0998802679
16.0998802679 62.2516164469

]

Slow convergence for the fixed point iteration was already observed in [15], after
400 iteration steps one obtains the residual norm

||X400 −Q− LX−1
400L

T ||F
||X400||F

= 3.78 · 10−10,

and the error
||X+ −X400||F = 1.64 · 10−8,

since ρ(X−1
+ LT ) = 0.9719. The doubling iteration yields after 8 iterations

||X¦ −Q− LX−1
¦ LT ||F

||X¦||F
= 6.35 · 10−13

and
||X+ −X¦||F = 7.77 · 10−11,

while the SZ algorithm obtains

||X∗ −Q− LX−1
∗ LT ||F

||X∗||F
= 1.79 · 10−13

and
||X+ −X∗||F = 6.98 · 10−11.

Hence, the doubling iteration outperforms the SZ algorithm here, but the SZ
algorithm is slightly more accurate.

6 Conclusions

We have discussed several algorithms for a rational matrix equation that arises
in the analysis of stationary Gaussian reciprocal processes. In particular, we
have described the application of the SZ algorithm for symplectic pencils to
solve this equation. Moreover, we have derived a defect correction equation that

17



fixed point iteration doubling iteration
n av it > 58 it > 150 av ](RSDA > tol
5 50.33 30 20 5.15 23
6 59.76 44 13 5.39 31
7 53.79 30 21 5.05 28
8 55.56 35 22 5.06 47
9 53.60 29 20 4.97 48
10 52.28 27 22 4.87 56
11 49.17 23 13 4.70 56
12 48.97 24 24 4.60 66
13 48.40 23 22 4.55 70
14 50.35 24 19 4.60 68
15 45.62 15 21 4.41 72
16 46.64 17 22 4.42 75
17 46.89 16 21 4.23 84
18 45.56 15 16 4.15 84
19 42.77 14 15 4.03 81
20 43.40 10 27 3.97 88
30 37.22 1 0 3.49 96
40 35.77 0 0 3.23 96
50 33.00 0 0 2.93 98
60 29.73 0 0 2.82 100

Table 2: Second set of test examples

100 examples of size n = 5, 6, 7, . . . , 20 and n = 30, 40, 50, . . . , 60 were generated
and solved as described above. The matrices Q generated for these tests had a
small norm

1.6 < ||Q||2 < 405,

but a fairly large condition number, we allowed for

1 < κ2(Q) < 1013.

The fixed point iteration performed much better for these examples, but the
number of iterations necessary for convergence seems to be unpredictable. The
doubling iteration performs better than before, less iterations were needed for
convergence. But while the iteration is run until the residual is less than n ·
||Q||F · eps, it is clearly seen here that this does not imply the same accuracy for
the solution X¦ of (1). The larger n is chosen, the worse the residual

RSDA =
||X¦ −Q− LX−1

¦ LT ||F
||X¦||F

16

is called a doubling transformation. An important feature of this kind of trans-
formation is that it is structure-preserving [7], eigenspace-preserving [5, 7, 24],
and eigenvalue-squaring. In [23], an appropriate doubling transformation for the

symplectic pencil Ĝ−λĤ is given. The resulting algorithm has very nice numer-
ical behavior, with a quadratic converge rate, low computational cost and good
numerical stability. Essentially the same algorithm was proposed in [26] using a
different motivation. See Section 2.2 for more details.

Here we propose to compute the desired solution X∗ via an approximate
solution of the DARE (3) by the (butterfly) SZ algorithm applied to the cor-
responding symplectic pencil [8, 9, 11]. This algorithm is a fast, reliable and
structure-preserving algorithm for computing the stable deflating subspace of the
symplectic matrix pencil M − λN (4) associated with the DARE. The matrix
pencil M − λN is first reduced to the so called symplectic butterfly form, which
is determined by only 4n−1 parameters. By exploiting this special reduced form
and the symplecticity, the SZ algorithm is fast and efficient; in each iteration
step only O(n) arithmetic operations are required instead of O(n2) arithmetic
operations for a QZ step. We thus save a significant amount of work. Of course,
the accumulation of the Z matrix requires O(n2) arithmetic operations as in the
QZ step. Moreover, by forcing the symplectic structure, the abovementioned
problems of the QZ algorithm are avoided. See Section 3 for more details.

Any approximate solution X̃ computed, e.g., with one of the methods de-
scribed above, can be improved via defect correction. This is considered in Sec-
tion 4. Finally, in Section 5 we compare the different algorithms for solving (1)
discussed here.

2 Iterative Algorithms for (1)

2.1 The Fixed Point Iteration

As suggested in [12], the equation (1) can be solved directly by turning it into a
fixed point iteration

Xi+1 = f(Xi) = Q+ LX−1
i LT (5)

with initial condition X0 = Q. In [12], it is shown that the sequence {Xi}
converges to the unique positive definite solution X+ of (1). This convergence is
robust as for any positive ε there exists a neighborhood Υ of X+ such that for
any initial condition X0 ∈ Υ, the sequence generated by (5) remains in a ball of
radius ε centered in X+ and converges to X+. Moreover, the sequence generated
by (5) converges to X+ for any positive definite initial condition X0 as well as for
any initial condition such that X0 ≤ −LQ−1LT . The convergence rate is related
to the spectral radius ρ(X−1

+ LT ). The convergence is linear, but, if ρ(X−1
+ LT ) is

close to 1, the convergence may be very slow. See also [15, Section 2].
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An inverse free variant of the fixed point iteration is possible. However, the
algorithm is not always convergent, [15, last paragraph, Section 3].

Our implementation of the fixed point iteration first computes the Cholesky
decomposition Xi = CiC

T
i , next the linear system L = CiBi is solved (that is,

Bi = LC−1
i )) and finally Xi+1 = Q+BiB

T
i is computed. The total flop count for

one iteration step is therefore 10
3
n3 flops, as the first step involves about n3

3
, the

second one 2n3 flops and the last one n3 flops.
In many applications, rather than the solutions of matrix equations them-

selves, their factors (such as Cholesky or full-rank factors) are needed; see, e.g.,
[4, 29]. Therefore, it is desirable to use methods that compute such a factor di-
rectly without ever forming the solution explicitly. Such a method can also easily
be derived based on the fixed point iteration (1). As all iterates are positive
definite, it is natural here to use their Cholesky factors. Assuming we have a
Cholesky factorization Xi = YiY

T
i ; then the Cholesky factor of

Xi+1 = Q+ LX−1
i LT = CCT + L(YiY

T
i )−1LT =

[
C, LY −T

i

] [
C, LY −T

i

]T

can be obtained from the leading n × n submatrix of the L-factor of the LQ
factorization of [

C, LY −T
i

]
=

[
@

]
. (6)

Note that the Q-factor is not needed as it cancels:

Xi+1 = Yi+1Y
T
i+1 = LiQiQ

T
i L

T
i =

[
L̂i, 0

] [
L̂i, 0

]T
= L̂iL̂

T
i .

An LQ factorization for the specially structured matrix in (6) is implemented
in the SLICOT1 subroutine MB04JD. Employing this, the factorized fixed point
iteration yielding the sequence Yi of Cholesky factors of Xi requires 3n3 flops
per iteration and is thus slightly cheaper than the fixed point iteration itself.
Additionally, 1

3
n3 flops for the initial Cholesky factorization of Q are needed.

2.2 The Doubling Algorithm

As already observed in [12], the solution X of (1),

X = Q+ LX−1LT ,

satisfies

G

[
I
X

]
= H

[
I
X

]
W (7)

for some matrix W ∈ Rn×n where

G =

[
LT 0
−Q I

]
, H =

[
0 I
L 0

]
.

1See http://www.slicot.org.
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fixed point iteration doubling iteration
n av it > 58 it > 150 av
5 77.60 74 8 6.01
6 78.47 71 11 6.06
7 79.00 76 12 6.08
8 75.27 69 9 5.97
9 85.87 78 13 6.17
10 89.70 84 14 6.34
11 84.59 83 19 6.30
12 87.86 88 24 6.35
13 87.03 90 23 6.38
14 92.90 87 10 6.35
15 93.79 85 22 6.58
16 89.72 89 29 6.56
17 95.87 92 22 6.59
18 92.27 87 19 6.53
19 102.92 94 21 6.65
20 99.27 92 29 6.69
30 101.00 95 26 6.74
40 113.44 99 37 7.10
50 110.00 97 50 7.21
60 118.87 99 62 7.40
70 119.06 100 64 7.45
80 114.77 97 53 7.46
90 110.94 100 65 7.60
100 113.76 97 59 7.67

Table 1: First set of test examples

same (or better) accuracy than the solution X∗ computed via the SZ algorithm.
Therefore, for these examples, the doubling algorithm is certainly the most ef-
ficient algorithm. The matrices Q generated for these tests had a fairly small
condition number

1 < κ2(Q) < 105,

and a small norm
0.3 < ||Q||2 < 1.

In order to generate a different set of test matrices, Q and L were constructed
as follows (using Matlab notation as before)

Q = triu(rand(n));

Q = Q’*Q;

L = rand(n);

15



to which the fixed point iteration is run. That is, the fixed point iteration was
stopped as soon as

||Xi+1 −Xi||F
||Xi+1||F

=
||Xi −Q− LX−1

i LT ||F
||Xi+1||F

< tol.

Hence, the fixed point iteration is run to the same accuracy as the one obtained
by the SZ approach. As the fixed point approach requires about 10

3
n3 arithmetic

operations per iteration step, while the SZ approach requires 586
3
n3 arithmetic

operations, the SZ approach is cheaper if more than 58 iteration are needed in
the fixed point iteration.

For the first set of examples Q and L were constructed as follows (using
Matlab notation)

Q = qr(rand(n));

Q = Q’*diag(rand(n,1))*Q;

L = rand(n);

100 examples of size n = 5, 6, 7, . . . , 20 and n = 30, 40, 50, . . . , 100 were generated
and solved as described above. The fixed point iteration was never run for more
than 150 steps. Table 1 reports how many examples of each size needed more
than 58 iteration steps as well as how many examples of each size needed more
than 150 iteration steps; here it denotes the number of iteration steps. Moreover,
an average number av of iterations is determined, where only those examples of
each size were counted which needed less than 150 iteration steps to converge.
It can be clearly seen, that the larger n is chosen, the more iteration steps are
required for the fixed point equation. Starting with n = 40 almost all examples
needed more than 58 iteration steps. Hence the SZ approach is cheaper than the
fixed point approach. But even for smaller n, most examples needed more than
58 iterations, the average number of iterations needed clearly exceeds 58 for all
n. Hence, overall, it is cheaper to use the SZ approach.

The accuracy of the residual (17) achieved by the SZ approach was in general
of the order of 10−12 for smaller n and 10−8 for larger n. But, as nonorthogonal
transformation have to be used, occasionally, the accuracy can deteriorate to
10−3. In that case, defect correction as described in Section 4 or the fixed point
iteration with starting matrix X0 = X∗ can be used to increase the accuracy of
the computed solution.

Next the doubling algorithm was used to solve the same set of examples. Its
iteration solves the equation (9), the desired solution X¦ is obtained from the
computed solution via (11). The iteration was run until the residuum was less
than n · ||Q||F · eps, where eps is Matlab’s machine epsilon. This does not im-
ply the same accuracy for the solution X¦ of (1). Due to the back substitution
(11), the final solution X¦ may have a larger residual error. For these examples,
only about 7 iterations where needed to determine an X¦ which has about the

14

Hence, the desired solution X can be computed via an appropriate deflating
subspace of G − λH. This could be done by employing the QZ algorithm. But
the following idea suggested in [23] achieved a much faster algorithm.

Assume that X is the unique symmetric positive definite solution of (1). Then
it satisfies (7) with W = X−1LT . Let

L̂ = LQ−1L, Q̂ = Q+ LQ−1LT , P̂ = LTQ−1L,

and
X̂ = X + P̂ .

Then it follows that

Ĝ

[
I

X̂

]
= Ĥ

[
I

X̂

]
W 2, (8)

where

Ĝ =

[
L̂T 0

Q̂+ P̂ −I

]
, Ĥ =

[
0 I

L̂ 0

]
.

The pencil Ĝ − λĤ is symplectic as ĜJĜT = ĤJĤT . (As G and H are not
symplectic themselves, the butterfly SZ algorithm described in the next section
can not be employed directly in order to computed the desired deflating subspace
of Ĝ− λĤ.) It is easy to see that X̂ satisfies (8) if and only if the equation

X̂ = (Q̂+ P̂ )− L̂X̂−1L̂T (9)

has a symmetric positive definite solution X̂.
In [23], it is suggest to use a doubling algorithm to compute the solution X̂

of (8). An appropriate doubling transformation for the symplectic pencil (8) is
given. Applying this special doubling transformation repeatedly the following
structure-preserving doubling algorithm (SDA) arises:

for i = 0, 1, 2, . . .

Li+1 = Li(Qi − Pi)
−TLi

Qi+1 = Qi − Li(Qi − Pi)
−1LT

i (10)

Pi+1 = Pi + LT
i (Qi − Pi)

−1Li

until convergence

with
L0 = L̂, Q0 = Q̂+ P̂ , P0 = 0.

As the matrix Qi − Pi is positive definite for all i [23], the iterations above

are all well defined. The sequence Qi+1 will converge to X̂. Thus, the unique
symmetric positive definite solution to (1) can be obtained by computing

X¦ = X̂ − P̂ . (11)
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Essentially the same algorithm was proposed in [26] using a different motivation.
Both papers [23, 26] point out that this algorithm has very nice numerical

behavior, with a quadratic converge rate, low computational cost and good nu-
merical stability. The convergence statement proven in [23] requires that the

spectral radius ρ(X̂−1L̂T ) is strictly less than 1. Though this is not shown in
[23], it can be proved.

Lemma 2.1 With the notation introduced above, we have

ρ(X̂−1L̂T ) < 1.

Proof. As

X̂−1L̂T = (X + P̂ )−1LQ−1L = (X + LTQ−1L)−1LQ−1L

we have with (7) (Q = X − LW,W = X−1LT )

L̂−T X̂ = L−1QL−1(X + LTQ−1L)

= L−1QL−1(XL−1QL−1 + LTQ−1LL−1QL−1)LQ−1L

= L−1QL−1(W−TQL−1 + LTL−1)LQ−1L

= L−1QL−1(W−T (X − LW )L−1 + LTL−1)LQ−1L

= L−1QL−1(W−TXL−1 −W−TLWL−1 + LTL−1)LQ−1L

= L−1QL−1((W−T )2 −XL−1LX−1LTL−1 + LTL−1)LQ−1L

= L−1QL−1((W−T )2 − LTL−1 + LTL−1)LQ−1L

= L−1QL−1(W−T )2LQ−1L.

Therefore,
X̂−1L̂T = L−1QL−1(W T )2LQ−1L,

and as ρ(X−1LT ) < 1,

ρ(X̂−1L̂T ) = ρ(W 2) = ρ
(
(X−1LT )2

)
< 1. ¤

This algorithm requires about 8n3 arithmetic operations per iteration step when
implemented as follows: first a Cholesky decomposition of Qi−Pi = CT

i Ci is com-
puted (1

3
n3 arithmetic operations), then LT

i C
−1
i and C−T

i LT
i are computed (both

steps require 2n3 arithmetic operations), finally Li+1, Qi+1, Pi+1 are computed us-
ing these products (4n3 arithmetic operations if the symmetry of Qi+1 and Pi+1

is exploited). Hence, one iteration step requires 25
3
n3 arithmetic operations.

Despite the fact that a factorized version of the doubling iteration for DAREs
has been around for about 30 years, see [29] and the references therein, the SDA
(10) for (1) can not easily be rewritten to work on a Cholesky factor of Qi due
to the minus sign in the definition of the Qi’s.
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would be roughly 12 times that for the basic fixed point iteration. But a more
efficient algorithm which makes use of the special structure of (16) can be easily
devised: first, note that (16) looks very similar to a Stein (discrete Lyapunov)

equation. The only difference is the sign in front of Ẽ. With this observation
and a careful inspection of the Bartels-Stewart type algorithm for Stein equations
suggested in [6] and implemented in the SLICOT Basic Control Toolbox2 function
slstei (see also [30]), equation (16) can be solved efficiently with this algorithm
when only a few signs are changed. This method requires less than 10 times the
cost for one fixed point iteration.

5 Numerical Experiments

Numerical experiments were performed in order to compare the three different
approaches for solving (1) discussed here. All algorithms were implemented in
Matlab Version 7.2.0.232 (R2006a) and run on an Intel Pentium M processor.

In particular, we implemented

• the fixed point iteration as described in Section 2.1 which requires 10
3
n3

arithmetic operations per iteration,

• the doubling algorithm as described in Section 2.2 which requires 25
3
n3 arith-

metic operations per iteration,

• the SZ algorithm as described in Section 3 which requires 586
3
n3 arithmetic

operations.

Slow convergence of the fixed point iteration has been observed in, e.g., [12, 15].
The convergence rate depends on the spectral radius ρ(X+L

−T ). One iteration of
the doubling algorithm costs as much as 2.5 iterations of the fixed point iteration.
In [23], no numerical examples are presented, in [26] only one example is given (see
Example 2 below) in which the doubling algorithm is much faster than the fixed
point iteration. Our numerical experiments confirm that this is so in general.
The SZ algorithm costs as much as 59 iterations of the fixed point iteration and
as much as 23 iterations of the doubling algorithm.

Example 1. First, the fixed point equation approach as described in Section
2.1 was compared to the SZ approach as described in Section 3. For this, each
example was first solved via the SZ approach. The so computed solution X∗ was
used to determined the tolerance tol

tol =
||X∗ −Q− LX−1

∗ LT ||F
||X∗||F

(17)

2See http://www.slicot.org.
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Assume that ||E|| < 1/||X̃−1||. Then we have ||EX̃−1|| < 1. Using the Neumann
series [14, Lemma 2.3.3] yields

X̃ = E +Q+ LX̃−1(I + EX̃−1 + (EX̃−1)2 + . . .)LT

= E +Q+ LX̃−1LT + LX̃−1EX̃−1LT + LX̃−1(EX̃−1)2LT + . . .

= E +Q+ LX̃−1LT + LX̃−1EX̃−1LT + LX̃−1EX̃−1EX̃−1LT + . . .

= E +Q+ LX̃−1LT + L̃EL̃T + L̃EX̃−1EL̃T + . . .

where
L̃ = LX̃−1.

With the residual
R(X̃) = X̃ −Q− LX̃−1LT ,

we thus have R(X̃) ≈ E+L̃EL̃T . By dropping terms of order O(||E||2), we obtain
the defect correction equation

R(X̃) = Ẽ + L̃ẼL̃T . (16)

Hence, the approximate solution X̃ can be improved by solving (16) for Ẽ. The

improved X̂ is then given by X̂ = X̃ − Ẽ.

Lemma 4.1 Equation (16) has a unique solution if ρ(L̃) = ρ(LX̃−1) < 1.

Proof. Note that (16) is equivalent to the linear system of equations
(
In2 + L̃T ⊗ L̃T

)
vec(Ẽ) = vec(R(X̃)),

where ⊗ denotes the Kronecker product and vec(A) = [a11, . . . , an1,
a12, . . . , an2, . . . , a1n, . . . , ann]

T is the vector that consists of the columns
of A = [aij]

n
i,j=1 stacked on top of each other from left to right [17, Sec-

tion 4.2]. As ρ(L̃) < 1, the assertion follows from σ(In2 + L̃T ⊗ L̃T ) =

1 + σ(L̃2). ¤

Note that Lemma 4.1 also follows from a more general existence result for linear
matrix equations given in [28, Proposition 3.1].

In [15], essentially the same defect correction was derived by applying New-
ton’s method to (1). Written in the notation used here, the defect correction
equation derived in [15] reads

X̃ −Q+ L̃X̃L̃T = E + L̃EL̃T + 2L̃LT .

It is easy to see that this is equivalent to (16). In [15], it is suggested to solve
the defect correction equation with a general Sylvester equation solver as in [13].
In that case, the computational work for solving the defect correction equation

12

3 The butterfly SZ algorithm

As shown in [12], instead of solving the equation (1) one can solve the related
DARE (3),

DR(X) = Q+ FXF T − FX(X +R)−1XF T −X.

One approach to solve this equation is via computing the stable deflating subspace
of the matrix pencil from (4), i.e.,

M − λN =

[
F T 0
Q I

]
− λ

[
I −R−1

0 F

]
.

Here we propose to use the butterfly SZ algorithm for computing the deflating
subspace of M − λN . The butterfly SZ algorithm [9, 11] is a fast, reliable and
efficient algorithm especially designed for solving the symplectic eigenproblem for
a symplectic matrix pencil M̃ − λÑ in which both matrices are symplectic; that
is M̃JM̃T = ÑJÑT = J . The above symplectic matrix pencil

[
F T 0
Q I

]
− λ

[
I −R−1

0 F

]
=

[
L−1LT 0

Q I

]
− λ

[
I −L−1QL−T

0 LL−T

]

can be rewritten (after premultiplying by
[
L 0
0 L−1

]
) as

M̃ − λÑ =

[
LT 0

L−1Q L−1

]
− λ

[
L −QL−T

0 L−T

]
, (12)

where both matrices M̃ = ÑT are symplectic. In [9, 11] it is shown that for

the symplectic matrix pencil M̃ − λÑ there exist numerous symplectic matrices
Z and nonsingular matrices S which reduce M̃ − λÑ to a symplectic butterfly
pencil A− λB:

S(M̃ − λÑ)Z = A− λB =

[
C D
0 C−1

]
− λ

[
0 −I
I T

]
, (13)

where C and D are diagonal matrices, and T is a symmetric tridiagonal matrix.
(More generally, not only the symplectic matrix pencil in (12), but any symplec-

tic matrix pencil M̃ − λÑ with symplectic matrices M̃, Ñ can be reduced to a
symplectic butterfly pencil). This form is determined by just 4n− 1 parameters.
The symplectic matrix pencil A−λB is called a symplectic butterfly pencil. If T
is an unreduced tridiagonal matrix, then the butterfly pencil is called unreduced.
If any of the n− 1 subdiagonal elements of T are zero, the problem can be split
into at least two problems of smaller dimension, but with the same symplectic
butterfly structure.

Once the reduction to a symplectic butterfly pencil is achieved, the SZ al-
gorithm is a suitable tool for computing the eigenvalues/deflating subspaces of
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the symplectic pencil A−λB [9, 11]. The SZ algorithm preserves the symplectic
butterfly form in its iterations. It is the analogue of the SR algorithm (see [8, 11])
for the generalized eigenproblem, just as the QZ algorithm is the analogue of the
QR algorithm for the generalized eigenproblem. Both are instances of the GZ
algorithm [32].

Each iteration step begins with an unreduced butterfly pencil A−λB. Choose
a spectral transformation function q and compute a symplectic matrix Z̆ such
that

Z̆−1q(A−1B)e1 = αe1

for some scalar α. Then transform the pencil to

Ã− λB̃ = (A− λB)Z̆.

This introduces a bulge into the matrices Ã and B̃. Now transform the pencil to

Â− λB̂ = S−1(Ã− λB̃)Z̃,

where Â − λB̂ is again of symplectic butterfly form. S and Z̃ are symplectic,
and Z̃e1 = e1. This concludes the iteration. Under certain assumptions, it can
be shown that the butterfly SZ algorithm converges cubically. The needed as-
sumptions are technically involved and follow from the GZ convergence theory
developed in [32]. The convergence theorem says roughly that if the eigenvalues
are separated, and the shifts converge, and the condition numbers of the accumu-
lated transformation matrices remain bounded, then the SZ algorithm converges.
For a detailed discussion of the butterfly SZ algorithm see [9, 11].

Hence, in order to compute an approximate solution of the DARE (3) by the

butterfly SZ algorithm, first the symplectic matrix pencil M̃ −λÑ as in (12) has
to be formed, then the symplectic matrix pencil A− λB as in (13) is computed.
That is, symplectic matrices Z0 and S0 are computed such that

A− λB := S−1
0 M̃Z0 − λS−1

0 ÑZ0

is a symplectic butterfly pencil. Using the butterfly SZ algorithm, symplectic
matrices Z1 and S1 are computed such that

S−1
1 AZ1 − λS−1

1 BZ1

is a symplectic butterfly pencil and the symmetric tridiagonal matrix T in the
lower right block of S−1

1 BZ1 is reduced to quasi-diagonal form with 1 × 1 and
2×2 blocks on the diagonal. The eigenproblem decouples into a number of simple
2× 2 or 4× 4 generalized symplectic eigenproblems. Solving these subproblems,
finally symplectic matrices Z2, S2 are computed such that

Ă = S−1
2 S−1

1 AZ1Z2 =

[
φ11 φ12

0 φ22

]
,

B̆ = S−1
2 S−1

1 BZ1Z2 =

[
ψ11 ψ12

0 ψ22

]
,

10

where the eigenvalues of the matrix pencil φ11 − λψ11 are precisely the n stable
generalized eigenvalues. Let Z = Z0Z1Z2. Partitioning Z conformably,

Z =

[
Z11 Z12

Z21 Z22

]
, (14)

the Riccati solution X∗ is found by solving a system of linear equations:

X∗ = −Z21Z
−1
11 . (15)

This algorithm requires about 195n3 arithmetic operations in order to com-
pute the solution of the Riccati equation (and is therefore cheaper than the QZ
algorithm which requires about 422n3 arithmetic operations). The cost of the
different steps of the approach described above are given as follows. The com-
putation of L−1Q and L−1 using an LU decomposition of L requires about 14

3
n3

arithmetic operations. A careful flop count reveals that the initial reduction of
M̃−λÑ to butterfly form A−λB requires about 75n3 arithmetic operations. For
computing Z0, an additional 28n3 arithmetic operations are needed. The butter-
fly SZ algorithm requires about O(n2) arithmetic operations for the computation
of Ă − λB̆ and additional 85n3 arithmetic operations for the computation of Z
(this estimate is based on the assumption that 2

3
iterations per eigenvalue are

necessary as observed in [9]). The solution of the final linear system requires
14
3
n3 arithmetic operations. Hence, the entire algorithm described above requires

about 586
3
n3 arithmetic operations.

However, it should be noted that in the SZ algorithm non-orthogonal equiva-
lence transformations have to be used. These are not as numerically stable as the
orthogonal transformations used by the QZ algorithm. Therefore, the approxi-
mate DARE solution computed by the SZ algorithm is sometimes less accurate
than the one obtained from using the QZ algorithm. A possibility to improve
the computed solution is defect correction is discussed in the next section.

4 Defect Correction

Any approximate solution X̃ computed, e.g., with one of the methods described
above, can be improved via defect correction. Let

X̃ = X + E

where X is the exact solution of (1), X = Q+ LX−1LT . Then

X̃ = E +Q+ LX−1LT

= E +Q+ L(X̃ − E)−1LT

= E +Q+ L((I − EX̃−1)X̃)−1LT

= E +Q+ LX̃−1(I − EX̃−1)−1LT .
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