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Abstract. We carry out a careful study of operator algebras associated with Delone dynamical
systems. A von Neumann algebra is defined using noncommutative integration theory. Features of
these algebras and the operators they contain are discussed. We restrict our attention to a certain
C∗-subalgebra to discuss a Shubin trace formula.

Mathematics Subject Classifications (2000): 46L60, 47B80, 82B44, 52C23.

Key words: operator algebras, groupoids, random operators, aperiodic tilings, quasicrystals.

Introduction

This paper is part of a study of Hamiltonians for aperiodic solids. Among them,
special emphasis is laid on models for quasicrystals. To describe aperiodic order,
we use Delone (Delaunay) sets. Here we construct and study certain operator alge-
bras which can be naturally associated with Delone sets and reflect the aperiodic
order present in a Delone dynamical system. In particular, we use Connes non-
commutative integration theory to build a von Neumann algebra. This is achieved
in Section 2 after some preparatory definitions and results gathered in Section 1.
Let us stress the following facts: it is not too hard to write down explicitly the von
Neumann algebra N (�, T ,µ) of observables, starting from a Delone dynamical
system (�, T ) with an invariant measure µ. As in the case of random operators,
the observables are families of operators, indexed by a set � of Delone sets. This
set represents a type of (aperiodic) order and the ergodic properties of (�, T ) can
often be expressed by combinatorial properties of its elements ω. The latter are
thought of as realizations of the type of disorder described by (�, T ). The algebra
N (�, T ,µ) incorporates this disorder and plays the role of a noncommutative
space underlying the algebra of observables. To see that this algebra is in fact a von
Neumann algebra is by no means clear. At that point the analysis of Connes [9]
enters the picture.

� Research partly supported by the DFG in the priority program Quasicrystals.
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In order to verify the necessary regularity properties we rely on work done
in [29], where we studied topological properties of a groupoid that naturally comes
with (�, T ). Using this, we can construct a measurable (even topological)
groupoid. Any invariant measure µ on the dynamical system gives rise to a transver-
sal measure 
 and the points of the Delone sets are used to define a random Hilbert
space H . This latter step specifically uses the fact that we are dealing with a dy-
namical system consisting of point sets and leads to a noncommutative random
variable that has no analogue in the general framework of dynamical systems. We
are then able to identify N (�, T ,µ) as End
(H). While in our approach we use
noncommutative integration theory to verify that a certain algebra is a von Neu-
mann algebra, we should also like to point out that at the same time we provide
interesting examples for the theory. Of course, tilings have been considered in
this connection quite from the start as seen on the cover of [10]. However, we
emphasize the point of view of concrete operators and thus are led to a somewhat
different setup.

The study of traces on this algebra is started in Section 3. Traces are intimately
linked to transversal functions on the groupoid. These can also be used to study
certain spectral properties of the operator families constituting the von Neumann
algebra. For instance, spectral properties are almost surely constant for the mem-
bers of any such family. This type of results is typical for random operators. In fact,
we regard the families studied here in this random context. An additional feature
that is met here is the dependence of the Hilbert space on the random parameter
ω ∈ �.

In Section 4 we introduce a C∗-algebra that had already been encountered in a
different form in [6, 17]. Our presentation here is geared towards using the elements
of the C∗-algebra as tight binding Hamiltonians in a quantum mechanical descrip-
tion of disordered solids (see [6] for related material as well). We relate certain
spectral properties of the members of such operator families to ergodic features of
the underlying dynamical system. Moreover, we show that the eigenvalue counting
functions of these operators are convergent. The limit, known as the integrated den-
sity of states, is an object of fundamental importance from the solid state physics
point of view. Apart from proving its existence, we also relate it to the canonical
trace on the von Neumann algebra N (�, T ,µ) in case that the Delone dynamical
system (�, T ) is uniquely ergodic. Results of this genre are known as Shubin’s
trace formula due to the celebrated results from [36].

We conclude this section with two further remarks.
Firstly, let us mention that starting with the work of Kellendonk [17], C∗-

algebras associated to tilings have been subject to intense research within the frame-
work of K-theory (see, e.g., [18, 19, 32]). This can be seen as part of a program
originally initiated by Bellissard and his coworkers in the study of so-called gap-
labelling for almost periodic operators [3–5]. While the C∗-algebras we encounter
are essentially the same, our motivation, aims and results are quite different.
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Secondly, let us remark that some of the results below have been announced in
[28, 29]. A stronger ergodic theorem will be found in [30] and a spectral theoretic
application is given in [20].

1. Delone Dynamical Systems and Coloured Delone Dynamical Systems

In this section we recall standard concepts from the theory of Delone sets and intro-
duce a suitable topology on the closed sets in Euclidian space. A slight extension
concerns the discussion of coloured (decorated) Delone sets.

A subset ω of R
d is called a Delone set if there exist 0 < r,R < ∞ such that

2r � ‖x − y‖ whenever x, y ∈ ω with x �= y, and BR(x) ∩ ω �= ∅ for all x ∈ R
d .

Here, the Euclidean norm on R
d is denoted by ‖ · ‖ and Bs(x) denotes the (closed)

ball in R
d around x with radius s. The set ω is then also called an (r, R)-set. We

will sometimes be interested in the restrictions of Delone sets to bounded sets. In
order to treat these restrictions, we introduce the following definition.

DEFINITION 1.1. (a) A pair (
,Q) consisting of a bounded subset Q of R
d and


 ⊂ Q finite is called a pattern. The set Q is called the support of the pattern.
(b) A pattern (
,Q) is called a ball pattern if Q = Bs(x) with x ∈ 
 for

suitable x ∈ R
d and s ∈ (0,∞).

The pattern (
1,Q1) is contained in the pattern (
2,Q2)written as (
1,Q1) ⊂
(
2,Q2) if Q1 ⊂ Q2 and 
1 = Q1 ∩ 
2. Diameter, volume, etc., of a pattern are
defined to be the diameter, volume, etc., of its support. For patterns X1 = (
1,Q1)

and X2 = (
2,Q2), we define �X1X2, the number of occurrences of X1 in X2, to
be the number of elements in {t ∈ R

d : 
1 + t ⊂ 
2,Q1 + t ⊂ Q2}.
For further investigation we will have to identify patterns that are equal up to

translation. Thus, on the set of patterns we introduce an equivalence relation by
setting (
1,Q1) ∼ (
2,Q2) if and only if there exists a t ∈ R

d with 
1 = 
2 + t

and Q1 = Q2 + t . In this latter case we write (
1,Q1) = (
2,Q2) + t . The
class of a pattern (
,Q) is denoted by [(
,Q)]. The notions of diameter, volume,
occurrence, etc., can easily be carried over from patterns to pattern classes.

Every Delone set ω gives rise to a set of pattern classes, P (ω) viz P (ω) =
{[Q ∧ ω] : Q ⊂ R

d bounded and measurable}, and to a set of ball pattern classes
PB(ω)) = {[Bs(x) ∧ ω] : x ∈ ω, s > 0}. Here we set Q ∧ ω = (ω ∩Q,Q).

For s ∈ (0,∞), we denote by P s
B(ω) the set of ball patterns with radius s; note

the relation with s-patches as considered in [21]. A Delone set is said to be of finite
local complexity if for every radius s the set P s

B(ω) is finite. We refer the reader
to [21] for a detailed discussion of Delone sets of finite type.

Let us now extend this framework a little, allowing for coloured Delone sets.
The alphabet A is the set of possible colours or decorations. An A-coloured Delone
set is a subset ω ⊂ R

d × A such that the projection pr1(ω) ⊂ R
d onto the first

coordinate is a Delone set. The set of all A-coloured Delone sets is denoted by DA.
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Of course, we speak of an (r, R)-set if pr1(ω) is an (r, R)-set. The notions of
pattern, diameter, volume of pattern, etc., easily extend to coloured Delone sets, e.g.

DEFINITION 1.2. A pair (
,Q) consisting of a bounded subset Q of R
d and


 ⊂ Q×A finite is called an A-decorated pattern. The set Q is called the support
of the pattern.

A coloured Delone set ω is thus viewed as a Delone set pr1(ω) whose points
x ∈ pr1(ω) are labelled by colours a ∈ A. Accordingly, the translate Ttω of a
coloured Delone set ω ⊂ R

d × A is given by

Ttω = {(x + t, a) : (x, a) ∈ ω}.
From [29] we infer the notion of the natural topology, defined on the set F (Rd) of
closed subsets of R

d . Since in our subsequent study in [30] the alphabet is supposed
to be a finite set, the following construction will provide a suitable topology for
coloured Delone sets. Define, for a ∈ A,

pa: DA → F (Rd), pa(ω) = {x ∈ R
d : (x, a) ∈ ω}.

The initial topolgy on DA with respect to the family (pa)a∈A is called the natural
topology on the set of A-decorated Delone sets. It is obvious that metrizability and
compactness properties carry over from the natural topology without decorations
to the decorated case.

Finally, the notions of Delone dynamical system and Delone dynamical system
of finite local complexity carry over to the coloured case in the obvious manner.

DEFINITION 1.3. Let A be a finite set. (a) Let � be a set of Delone sets. The
pair (�, T ) is called a Delone dynamical system (DDS) if � is invariant under the
shift T and closed in the natural topology.

(a′) Let � be a set of A-coloured Delone sets. The pair (�, T ) is called an A-
coloured Delone dynamical system (A-DDS) if � is invariant under the shift T and
closed in the natural topology.

(b) A DDS (�, T ) is said to be of finite local complexity if
⋃

ω∈� P
s
B(ω) is finite

for every s > 0.
(b′) An A-DDS (�, T ) is said to be of finite local complexity if

⋃
ω∈� P

s
B(ω) is

finite for every s > 0.
(c) Let 0 < r,R < ∞ be given. A DDS (�, T ) is said to be an (r, R)-system if

every ω ∈ � is an (r, R)-set.
(c′) Let 0 < r,R < ∞ be given. An A-DDS (�, T ) is said to be an (r, R)-

system if every ω ∈ � is an (r, R)-set.
(d) The set P (�) of pattern classes associated to a DDS � is defined by

P (�) = ⋃
ω∈� P (ω).

In view of the compactness properties known for Delone sets, [29], we get that
� is compact whenever (�, T ) is a DDS or an A-DDS.
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2. Groupoids and Noncommutative Random Variables

In this section we use concepts from Connes noncommutative integration theory [9]
to associate a natural von Neumann algebra with a given DDS (�, T ). To do so,
we introduce

• a suitable groupoid G(�, T ),

• a transversal measure 
 = 
µ for a given invariant measure µ on (�, T ),

• and a 
-random Hilbert space H = (Hω)ω∈�,

leading to the von Neumann algebra

N (�, T ,µ) := End
(H)

of random operators, all in the terminology of [9]. Of course, all these objects
will now be properly defined and some crucial properties have to be checked. Part
of the topological prerequisites have already been worked out in [29]. Note that
comparing the latter with the present paper, we put more emphasis on the relation
with noncommutative integration theory.

The definition of the groupoid structure is straightforward see also [6], Sect. 2.5.
A set G together with a partially defined associative multiplication ·: G2 ⊂ G ×
G → G, and an inversion −1: G → G is called a groupoid if the following
holds:

• (g−1)−1 = g for all g ∈ G,

• If g1 · g2 and g2 · g3 exist, then g1 · g2 · g3 exists as well,

• g−1 · g exists always and g−1 · g · h = h, whenever g · h exists,

• h · h−1 exists always and g · h · h−1 = g, whenever g · h exists.

A groupoid is called a topological groupoid if it carries a topology making
inversion and multiplication continuous. Here, of course, G×G carries the product
topology and G2 ⊂ G × G is equipped with the induced topology.

A given groupoid G gives rise to some standard objects: The subset G0 =
{g · g−1 | g ∈ G} is called the set of units. For g ∈ G, we define its range r(g) by
r(g) = g · g−1 and its source by s(g) = g−1 · g. Moreover, we set Gω = r−1({ω})
for any unit ω ∈ G0. One easily checks that g · h exists if and only if r(h) = s(g).

By a standard construction we can assign a groupoid G(�, T ) to a Delone dy-
namical system. As a set G(�, T ) is just � × R

d . The multiplication is given by
(ω, x)(ω − x, y) = (ω, x + y) and the inversion is given by (ω, x)−1 = (ω − x,

−x). The groupoid operations can be visualized by considering an element (ω, x)
as an arrow ω − x

x−→ ω. Multiplication then corresponds to concatenation of
arrows; inversion corresponds to reversing arrows and the set of units G(�, T )0

can be identified with �.
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Apparently this groupoid G(�, T ) is a topological groupoid when� is equipped
with the topology of the previous section and R

d carries the usual topology.
The groupoid G(�, T ) acts naturally on a certain topological space X. This

space and the action of G on it are of crucial importance in the sequel. The space
X is given by

X = {(ω, x) ∈ G : x ∈ ω} ⊂ G(�, T ).

In particular, it inherits a topology form G(�, T ). This X can be used to define
a random variable or measurable functor in the sense of [9]. Following the latter
reference, p. 50f, this means that we are given a functor F from G to the category
of measurable spaces with the following properties:

• For every ω ∈ G0 we are given a measure space F(ω) = (Yω, βω).
• For every g ∈ G we have an isomorphism F(g) of measure spaces, F(g): Ys(g)

→ Yr(g) such that F(g1g2) = F(g1)F (g2), whenever g1g2 is defined, i.e.,
whenever s(g1) = r(g2).

• A measurable structure on the disjoint union

Y =
⋃
ω∈�

Yω

such that the projection π : Y → � is measurable as well as the natural
bijection of π−1(ω) to Yω.

• The mapping ω �→ βω is measurable.

We will use the notation F : G� Y to abbreviate the above.
Let us now turn to the groupoid G(�, T ) and the bundle X defined above. Since

X is closed ([29], Prop. 2.1), it carries a reasonable Borel structure. The projection
π : X → � is continuous, in particular measurable. Now, we can discuss the action
of G on X. Every g = (ω, x) gives rise to a map J (g): Xs(g) → Xr(g), J (g)(ω −
x, p) = (ω, p + x). A simple calculation shows that J (g1g2) = J (g1)J (g2) and
J (g−1) = J (g)−1, whenever s(g1) = r(g2). Thus, X is an G-space in the sense
of [27]. It can be used as the target space of a measurable functor F : G� X. What
we still need is a positive random variable in the sense of the following definition,
taken from [29]. First some notation:

Given a locally compact space Z, we denote the set of continuous functions on
Z with compact support by Cc(Z). The support of a function in Cc(Z) is denoted
by supp(f ). The topology gives rise to the Borel-σ -algebra. The measurable non-
negative functions with respect to this σ -algebra will be denoted by F +(Z). The
measures on Z will be denoted by M(Z).

DEFINITION 2.1. Let (�, T ) be an (r, R)-system.
(a) A choice of measures β: � → M(X) is called a positive random variable

with values in X if the map ω �→ βω(f ) is measurable for every f ∈ F +(X), βω
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is supported on Xω, i.e., βω(X − Xω) = 0, ω ∈ �, and β satisfies the following
invariance condition∫

Xs(g)

f (J (g)p) dβs(g)(p) =
∫

Xr(g)

f (q) dβr(g)(q)

for all g ∈ G and f ∈ F +(Xr(g)).
(b) A map � × Cc(X) → C is called a complex random variable if there exist

an n ∈ N, positive random variables βi , i = 1, . . . , n and λi ∈ C, i = 1, . . . , n
with βω(f ) = ∑n

i=1 β
ω
i (f ).

We are now heading towards introducing and studying a special random vari-
able. This variable is quite important as it gives rise to the *2-spaces on which the
Hamiltonians act. Later we will see that these Hamiltonians also induce random
variables.

PROPOSITION 2.2. Let (�, T ) be an (r, R)-system. Then the map α: � →
M(X), αω(f ) = ∑

p∈ω f (p) is a random variable with values in X. Thus the
functor Fα given by Fα(ω) = (Xω, αω) and Fα(g) = J (g) is measurable.

Proof. See [29], Corollary 2.6. ✷
Clearly, the condition that (�, T ) is an (r, R)-system is used to verify the mea-

surability conditions needed for a random variable. We should like to stress the
fact that the above functor given by X and α• differs from the canonical choice,
possible for any dynamical system. In the special case at hand this canonical choice
reads as follows:

PROPOSITION 2.3. Let (�, T ) be a DDS. Then the map ν: � → M(G), νω(f )
= ∫

Rd f (ω, t) dt is a transversal function, i.e., a random variable with values in G.

Actually, one should possibly define transversal functions before introducing
random variables. Our choice to do otherwise is to underline the specific functor
used in our discussion of Delone sets. As already mentioned above, the analogue
of the transversal function ν from Proposition 2.3 can be defined for any dynamical
system. In fact this structure has been considered by Bellissard and coworkers in a
C∗-context. The notion almost random operators has been coined for that; see [3]
and the literature quoted there.

After having encountered functors from G to the category of measurable spaces
under the header random variable or measurable functor, we will now meet random
Hilbert spaces. By that one designates, according to [9], a representation of G in
the category of Hilbert spaces, given by the following data:

• A measurable family H = (Hω)ω∈G0 of Hilbert spaces.
• For every g ∈ G a unitary Ug: Hs(g) → Hr(g) such that

U(g1g2) = U(g1)U(g2)
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whenever s(g1) = r(g2). Moreover, we assume that for every pair (ξ, η) of
measurable sections of H the function

G → C, g �→ (ξ |η)(g) := (ξr(g)|U(g)ηs(g))
is measurable.

Given a measurable functor F : G � Y there is a natural representation L2 ◦ F ,
where Hω = L2(Yω, βω) and U(g) is induced by the isomorphism F(g) of mea-
sure spaces.

Let us assume that (�, T ) is an (r, R)-system. We are especially interested in
the representation of G(�, T ) on H = (*2(Xω, αω))ω∈� induced by the measur-
able functor Fα: G(�, T ) � X defined above. The necessary measurable struc-
ture is provided by [29], Proposition 2.8. It is the measurable structure generated
by Cc(X).

The last item we have to define is a transversal measure. We denote the set
of nonnegative transversal functions on a groupoid G by E+(G) and consider the
unimodular case (δ ≡ 1) only. Following [9], p. 41f, a transversal measure 
 is a
linear mapping 
: E+(G) → [0,∞] satisfying

• 
 is normal, i.e., 
(sup νn) = sup
(νn) for every increasing sequence (νn)
in E+(G).

• 
 is invariant, i.e., for every ν ∈ E+(G) and every kernel λ with λω(1) = 1
we get 
(ν ∗ λ) = 
(ν).

Given a fixed transversal function ν on G and an invariant measure µ on G0 there
is a unique transversal measure 
 = 
ν such that 
(ν ∗ λ) = µ(λ•(1)), see [9],
Theorem 3, p. 43. In the next section we will discuss that in a little more detail in
the case of DDS groupoids.

We can now put these constructions together.

DEFINITION 2.4. Let (�, T ) be an (r, R)-system and let µ be an invariant
measure on �. Denote by V1 the set of all f : X → C which are measurable
and satisfy f (ω, ·) ∈ *2(Xω, αω) for every ω ∈ �.

A family (Aω)ω∈� of bounded operators Aω: *2(ω, αω) → *2(ω, αω) is called
measurable if ω �→ 〈f (ω), (Aωg)(ω)〉ω is measurable for all f, g ∈ V1. It is called
bounded if the norms of the Aω are uniformly bounded. It is called covariant if it
satisfies the covariance condition

Hω+t = UtHωU
∗
t , ω ∈ �, t ∈ R

d,

where Ut : *2(ω) → *2(ω+ t) is the unitary operator induced by translation. Now,
we can define

N (�, T ,µ) := {A = (Aω)ω∈� | A covariant, measurable and bounded}/∼,
where ∼ means that we identify families which agree µ almost everywhere.
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As is clear from the definition, the elements of N (�, T ,µ) are classes of fami-
lies of operators. However, we will not distinguish too pedantically between classes
and their representatives in the sequel.

Remark 2.5. It is possible to define N (�, T ,µ) by requiring seemingly weaker
conditions. Namely, one can consider families (Aω) that are essentially bounded
and satisfy the covariance condition almost everywhere. However, by standard pro-
cedures (see [9, 25]), it is possible to show that each of these families agrees almost
everywhere with a family satisfying the stronger conditions discussed above.

Obviously, N (�, T ,µ) depends on the measure class of µ only. Hence, for
uniquely ergodic (�, T ), N (�, T ,µ) =: N (�, T ) gives a canonical algebra. This
case has been considered in [28, 29].

Apparently, N (�, T ,µ) is an involutive algebra under the obvious operations.
Moreover, it can be related to the algebra End
(H) defined in [9] as follows.

THEOREM 2.6. Let (�, T ) be an (r, R)-system and let µ be an invariant measure
on �. Then N (�, T ,µ) is a weak-∗-algebra. More precisely,

N (�, T ,µ) = End
(H),

where 
 = 
ν and H = (*2(Xω, αω))ω∈� are defined as above.
Proof. The asserted equation follows by plugging in the respective definitions.

The only thing that remains to be checked is that H is a square integrable represen-
tation in the sense of [9], Definition, p. 80. In order to see this it suffices to show
that the functor Fα giving rise to H is proper. See [9], Proposition 12, p. 81.

This in turn follows by considering the transversal function ν defined in Propo-
sition 2.3 above. In fact, any u ∈ Cc(R

d)+ gives rise to the function f ∈ F +(X)

by f (ω, p) := u(p). It follows that

(ν ∗ f )(ω, p) =
∫

Rd

u(p + t) dt =
∫

Rd

u(t) dt,

so that ν ∗ f ≡ 1 if the latter integral equals 1 as required by [9], Definition 3,
p. 55. ✷

We can use the measurable structure to identify L2(X,m), where m =∫
�
αωµ(ω) with

∫ ⊕
�
*2(Xω, αω) dµ(ω). This gives the faithful representation

π : N (�, T ,µ) → B(L2(X,m)), π(A)f ((ω, x)) = (Aωfω)((ω, x))

and the following immediate consequence.

COROLLARY 2.7. π(N (�, T ,µ)) ⊂ B(L2(X,m)) is a von Neumann algebra.

Next we want to identify conditions under which π(N (�, T ,µ)) is a factor.
Recall that a Delone set ω is said to be nonperiodic if ω+ t = ω implies that t = 0.
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THEOREM 2.8. Let (�, T ) be an (r, R)-system and let µ be an ergodic invariant
measure on �. If ω is nonperiodic for µ-a.e. ω ∈ � then N (�, T ,µ) is a factor.

Proof. We want to use [9], Corollaire 7, p. 90. In our case G = G(�, T ), G0 = �

and

Gω
ω = {(ω, t) : ω + t = ω}.

Obviously, the latter is trivial, i.e., equals {(ω, 0)} iff ω is nonperiodic. By our as-
sumption this is valid µ-a.s. so that we can apply [9], Corollaire 7, p. 90. Therefore
the centre of N (�, T ,µ) consists of families

f = (f (ω)1Hω
)ω∈�,

where f : � → C is bounded, measurable and invariant. Since µ is assumed to be
ergodic this implies that f (ω) is a.s. constant so that the centre of N (�, T ,µ) is
trivial. ✷

Remark 2.9. Since µ is ergodic, the assumption of nonperiodicity in the theo-
rem can be replaced by assuming that there is a set of positive measure consisting
of nonperiodic ω.

Note that the latter result gives an extension of part of what has been announced
in [28], Theorem 2.1 and [29], Theorem 3.8. The remaining assertions of [29] will
be proved in the following section, again in greater generality.

3. Transversal Functions, Traces and Deterministic Spectral Properties

In the preceding section we have defined the von Neumann algebra N (�, T ,µ)

starting from an (r, R)-system (�, T ) and an invariant measure µ on (�, T ). In
the present section we will study traces on this algebra. Interestingly, this rather
abstract and algebraic enterprise will lead to interesting spectral consequences. We
will see that the operators involved share some fundamental properties with ‘usual
random operators’.

Let us first draw the connection of our families to ‘usual random operators’, re-
ferring to [7, 31, 39] for a systematic account. Generally speaking one is concerned
with families (Aω)ω∈� of operators indexed by some probability space and acting
on *2(Zd) or L2(Rd) typically. The probability space � encodes some statistical
properties, a certain kind of disorder that is inspired by physics in many situations.
One can view the set � as the set of all possible realization of a fixed disordered
model and each single ω as a possible realization of the disorder described by �.
Of course, the information is mostly encoded in a measure on � that describes the
probability with which a certain realization is picked.

We are faced with a similar situation, one difference being that in any family
A = (Aω)ω∈� ∈ N (�, T ,µ), the operators Aω act on the possibly different
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spaces *2(ω). Apart from that we have the same ingredients as in the usual ran-
dom business, where, of course, Delone dynamical systems still bear quite some
order. That is, we are in the realm of weakly disordered systems. For a first idea
what this might have to do with aperiodically ordered solids, quasicrystals, as-
sume that the points p ∈ ω are the atomic positions of a quasicrystal. In a tight
binding approach (see [6], Section 4 for why this is reasonable), the Hamiltonian
Hω describing the respective solid would naturally be defined on *2(ω), its matrix
elements Hω(p, q), p, q ∈ ω describing the diagonal and hopping terms for an
electron that undergoes the influence of the atomic constellation given by ω. The
definite choice of these matrix elements has to be done on physical grounds. In
the following subsection we will propose a C∗-subalgebra that contains what we
consider the most reasonable candidates; see also [6, 17]. It is clear, however, that
N (�, T ,µ) is a reasonable framework, since translations should not matter. Put in
other words, every reasonable Hamiltonian family (Hω)ω∈� should be covariant.

The remarkable property that follows from this ‘algebraic’ fact is that certain
spectral properties of the Hω are deterministic, i.e., do not depend on the choice of
the realization ω µ-a.s.

Let us next introduce the necessary algebraic concepts, taking a second look
at transversal functions and random variables with values in X. In fact, random
variables can be integrated with respect to transversal measures by [9], i.e., for a
given nonnegative random variable β with values in X and a transversal measure

, the expression

∫
Fβ d
 is well defined. More precisely, the following holds:

LEMMA 3.1. Let (�, T ) be an (r, R)-system and µ be T -invariant.
(a) Let β be a nonnegative random variable with values in X. Then∫

�
βω(f (ω, ·)) dµ(ω) does not depend on f ∈ F +(X) provided f satisfies∫
f ((ω + t, x + t) dt = 1 for every (ω, x) ∈ X and∫

�

βω(f (ω, ·)) dµ(ω) =
∫
Fβ d
,

where Fβ : G � X is the measurable functor induced by Fβ(ω) = (Xω, βω) and

 = 
ν the transversal measure defined in the previous section.

(b) An analogous statement remains true for a complex random variable β =∑
k λkβk, when we define∫

Fβ d
 =
∑
k

λk

∫
Fβk d


and restrict to f ∈ F +(X) with suppf compact.
Proof. Part (a) is a direct consequence of the definitions and results in [9]. Part

(b), then easily follows from (a) by linearity. ✷
A special instance of the foregoing lemma is given in the following proposition.
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PROPOSITION 3.2. Let (�, T ) be an (r, R)-system and let µ be T -invariant. If
λ is a transversal function on G(�, T ) then

ϕ �→
∫
�

〈λω, ϕ〉 dµ(ω)

defines an invariant functional on Cc(R
d), i.e., a multiple of the Lebesgue measure.

In particular, if µ is an ergodic measure, then either λω(1) = 0 a.s. or λω(1) = ∞
a.s.

Proof. Invariance of the functional follows by direct checking. By uniqueness
of the Haar measure, this functional must then be a multiple of Lebesgue measure.
If µ is ergodic, the map ω �→ λω(1) is almost surely constant (as it is obviously
invariant). This easily implies the last statement. ✷

Each random operator gives rise to a random variable as seen in the following
proposition whose simple proof we omit.

PROPOSITION 3.3. Let (�, T ) be an (r, R)-system and µ be T -invariant. Let
(Aω) ∈ N (�, T ,µ) be given. Then the map βA: � → M(X), βωA(f ) = tr(AωMf )

is a complex random variable with values in X.

Now, choose a nonnegative measurable u on R
d with compact support and∫

Rd u(x) dx = 1. Combining the previous proposition with Lemma 3.1, f (ω, p) :=
u(p), we infer that the map

τ : N (�, T ,µ) −→ C, τ (A) =
∫
�

tr(AωMu) dµ(ω)

does not depend on the choice of f viz u as long as the integral is one. Important
features of τ are given in the following lemma.

LEMMA 3.4. Let (�, T ) be an (r, R)-system and µ be T -invariant. Then the
map τ : N (�, T ,µ) → C is continuous, faithful, nonegative on N (�, T ,µ)+
and satisfies τ(A) = τ(U ∗AU) for every unitary U ∈ N (�, T ,µ) and arbitrary
A ∈ N (�, T ,µ), i.e., τ is a trace.

We include the elementary proof, stressing the fact that we needn’t rely on the
noncommutative framework; see also [27] for the respective statement in a different
setting.

Proof. Choosing a continuous u with compact support we see that

|τ(A)− τ(B)| �
∫

‖Aω − Bω‖ trMu dµ(ω) � ‖A− B‖C,

where C > 0 only depends on u and �. On the other hand, choosing u with
arbitrary large support we easily infer that τ is faithful. It remains to show the last
statement.
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According to [12], I.6.1, Cor. 1 it suffices to show τ(K∗K) = τ(KK∗) for every
K = (Kω)ω∈� ∈ N (�, T ,µ). We write kω(p, q) := (Kωδq |δp) for the associated
kernel and calculate

τ(K∗K) =
∫
�

tr(K∗
ωKωMu) dµ(ω)

=
∫
�

tr(M
u

1
2
K∗
ωKωM

u
1
2
) dµ(ω)

=
∫
�

∑
m∈ω

‖KωM
u

1
2
δm‖2µ(ω)

=
∫
�

∑
l,m∈ω

|kω(l,m)|2u(m)
∫

Rd

u(l − t) dt dµ(ω),

where we used that
∫

Rd u(l − t) dt = 1 for all l ∈ ω. By covariance and Fubinis
theorem we get

· · · =
∫

Rd

∫
�

∑
l,m∈ω

|kω−t (l − t, m− t)|2u(m)u(l − t) dµ(ω) dt.

As µ is T -invariant, we can replace ω − t by ω and obtain

=
∫

Rd

∫
�

∑
l,m∈ω+t

|kω(l − t, m− t)|2u(m)u(l − t) dt dµ(ω)

=
∫
�

∫
Rd

∑
l,m∈ω

|kω(l,m)|2u(m+ t)u(l) dt dµ(ω)

=
∫
�

tr(KωK
∗
ωMu) dµ(ω)

by reversing the first steps. ✷
Having defined τ , we can now associate a canonial measure ρA to every self-

adjoint A ∈ N (�, T ,µ).

DEFINITION 3.5. For A ∈ N (�, T ,µ) self-adjoint, and B ⊂ R Borel measur-
able, we set ρA(B) ≡ τ(χB(A)), where χB is the characteristic function of B.

For the next two results we refer to [27] where the context is somewhat different.

LEMMA 3.6. Let (�, T ) be an (r, R)-system and µ be T -invariant. Let A ∈
N (�, T ,µ) self-adjoint be given. Then ρA is a spectral measure for A. In partic-
ular, the support of ρA agrees with the spectrum @ of A and the equality ρA(F ) =
τ(F (A)) holds for every bounded measurable F on R.

LEMMA 3.7. Let (�, T ) be an (r, R)-system and µ be T -invariant. Let µ be er-
godic and A = (Aω) ∈ N (�, T ,µ) be self-adjoint. Then there exists @,@ac,@sc,

@pp,@ess ⊂ R and a subset �̃ of � of full measure such that @ = σ (Aω) and
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σ•(Aω) = @• for • = ac, sc, pp, ess and σdisc(Aω) = ∅ for every ω ∈ �̃. In this
case, the spectrum of A is given by @.

We now head towards evaluating the trace τ .

DEFINITION 3.8. The number
∫
Fα d
 =: D�,µ is called the mean density of

� with respect to µ.

THEOREM 3.9. Let (�, T ) be an (r, R)-system and µ be ergodic. If ω is nonpe-
riodic for µ-a.e. ω ∈ � then N (�, T ,µ) is a factor of type IID, where D = D�,µ,
i.e., a finite factor of type II and the canonical trace τ satisfies τ(1) = D.

Proof. We already know that N (�, T ,µ) is a factor. Using Proposition 3.2
and [9], Cor. 9, p. 51 we see that N (�, T ,µ) is not of type I. Since it admits a
finite faithful trace, N (�, T ,µ) has to be a finite factor of type II.

Note that Lemma 3.1, the definition of τ and α give the asserted value
for τ(1). ✷

Remark 3.10. It is a simple consequence of Proposition 4.6 below that

Dω = lim
R→∞

#(ω ∩ BR(0))

|BR(0)|
exists and equals D�,µ for almost every ω ∈ �. Therefore, the preceding result is
a more general version of the results announced as [28], Theorem 2.1 and [29],
Theorem 3.8, respectively. Of course, existence of the limit is not new. It can
already be found, e.g., in [6].

4. The C∗-Algebra Associated to Finite Range Operators and the Integrated
Density of States

In this section we study a C∗-subalgebra of N (�, T ,µ) that contains those oper-
ators that might be used as Hamiltonians for quasicrystals. The approach is direct
and does not rely upon the framework introduced in the preceding sections.

We define

X ×� X := {(p, ω, q) ∈ R
d ×�× R

d : p, q ∈ ω},
which is a closed subspace of R

d ×�× R
d for any DDS �.

DEFINITION 4.1. A kernel of finite range is a function k ∈ C(X ×� X) that
satisfies the following properties:

(i) k is bounded.
(ii) k has finite range, i.e., there exists Rk > 0 such that k(p, ω, q) = 0, whenever

|p − q| � Rk.
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(iii) k is invariant, i.e.,

k(p + t, ω + t, q + t) = k(p, ω, q),

for (p, ω, q) ∈ X ×� X and t ∈ R
d .

The set of these kernels is denoted by Kfin(�, T ).

We record a few quite elementary observations. For any kernel k ∈ Kfin(�, T )

denote by πωk := Kω the operator Kω ∈ B(*2(ω)), induced by

(Kωδq |δp) := k(p, ω, q) for p, q ∈ ω.

Clearly, the family K := πk, K = (Kω)ω∈�, is bounded in the product (equipped
with the supremum norm) Cω∈�B(*2(ω)). Now, pointwise sum, the convolution
(matrix) product

(a · b)(p, ω, q) :=
∑
x∈ω

a(p, ω, x)b(x, ω, q)

and the involution k∗(p, ω, q) := k(q, ω, p) make Kfin(�, T ) into a ∗-algebra.
Then, the mapping π : Kfin(�, T ) → Cω∈�B(*2(ω)) is a faithful ∗-representation.
We denote Afin(�, T ) := π(Kfin(�, T )) and call it the operators of finite range.
The completion of Afin(�, T ) with respect to the norm ‖A‖ := supω∈� ‖Aω‖ is
denoted by A(�, T ). It is not hard to see that the mapping πω: Afin(�, T ) →
B(*2(ω)), K �→ Kω is a representation that extends by continuity to a representa-
tion of A(�, T ) that we denote by the same symbol.

PROPOSITION 4.2. Let A ∈ A(�, T ) be given. Then the following holds:

(a) πω+t (A) = Utπω(A)U
∗
t for arbitrary ω ∈ � and t ∈ R

d .
(b) For F ∈ Cc(X), the map ω �→ 〈πω(A)Fω, Fω〉ω is continuous.

Proof. Both statements are immediate for A ∈ Afin(�, T ) and then can be
extended to A(�, T ) by density and the definition of the norm. ✷

We get the following result that relates ergodicity properties of (�, T ), spectral
properties of the operator families from A(�, T ) and properties of the representa-
tions πω.

THEOREM 4.3. The following conditions on a DDS (�, T ) are equivalent:

(i) (�, T ) is minimal.
(ii) For any self-adjoint A ∈ A(�, T ) the spectrum σ (Aω) is independent of

ω ∈ �.
(iii) πω is faithful for every ω ∈ �.
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Proof. (i) ⇒ (ii) Choose φ ∈ C(R). We then get πω(φ(A)) = φ(πω(A)) since
πω is a continuous algebra homomorphism. Set �0 = {ω ∈ � : πω(φ(A)) = 0}.
By Proposition 4.2(a), �0 is invariant under translations. Moreover, by Proposi-
tion 4.2(b) it is closed. Thus, �0 = ∅ or �0 = � by minimality. As φ is arbitrary,
this gives the desired equality of spectra by spectral calculus.

(ii) ⇒ (iii) By (ii) we get that ‖πω(A)‖2 = ‖πω(A∗A)‖ does not depend on
ω ∈ �. Thus πω(A) = 0 for some A implies that πω(A) = 0 for all ω ∈ � whence
A = 0.

(iii) ⇒ (i) Assume that � is not minimal. Then we find ω0 and ω1 such that
ω1 �∈ (ω0 + Rd).

Consequently, there is r > 0, p ∈ ω, δ > 0 such that

dH ((ω0 − p) ∩ Br(0), (ω1 − q) ∩ Br(0)) > 2δ

for all q ∈ ω1. Let ρ ∈ C(R) such that ρ(t) = 0 if t � 1/2 and ρ(0) = 1.
Moreover, let ψ ∈ Cc(R

d) such that suppψ ⊂ Bδ(0) and φ ∈ Cc(R
d) and φ = 1

on B2r(0).
Finally, let

a(x, ω, y) := ρ

(∥∥∥∥
(∑
p∈ω

Tpψ

)
Txφ −

(∑
q∈ω0

Tqψ

)
Tyφ

∥∥∥∥∞
+

+
∥∥∥∥
(∑
p∈ω0

Tpψ

)
Txφ −

(∑
q∈ω

Tqψ

)
Tyφ

∥∥∥∥∞

)
.

It is clear that a is a symmetric kernel of finite range and by construction the cor-
responding operator family satisfies Aω1 = 0 but Aω0 �= 0, which implies (iii). ✷

Let us now comment on the relation between the algebra A(�, T ) defined
above and the C∗-algebra introduced in [6, 17] for a different purpose and in a
different setting. Using the notation from [6] we let

Y = {ω ∈ � : 0 ∈ ω}
and

GY = {(ω, t) ∈ Y × R
d : t ∈ ω} ⊂ X.

In [6] the authors introduce the algebra C∗(GY), the completion of Cc(GY) with
respect to the convolution

fg(ω, q) =
∑
t∈ω

f (ω, t)g(ω − t, q − t)

and the norm induced by the representations

Cω: Cc(GY) → B(*2(ω)),Cω(f )ξ(q) =
∑
t∈ω

f (ω − t, t − q)ξ(q), q ∈ ω.

The following result can be checked readily, using the definitions.
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PROPOSITION 4.4. For a kernel k ∈ Kfin(�, T ) denote fk(ω, t) := k(0, ω, t).
Then

J : Kfin(�, T ) → Cc(GY), k �→ fk

is a bijective algebra isomorphism and πω = Cω ◦ J for all ω. Consequently,
A(�, T ) and C∗(GY) are isomorphic.

Note that the setting in [6] and here are somewhat different. In the tiling frame-
work, the analogue of these algebras have been considered in [17].

We now come to relate the abstract trace τ defined in the last section with the
mean trace per unit volume. The latter object is quite often considered by physi-
cists and bears the name integrated density of states. Its proper definition rests on
ergodicity. We start with the following preparatory result for which we need the
notion of a van Hove sequence of sets.

For s > 0 and Q ⊂ R
d , we denote by ∂sQ the set of points in R

d whose distance
to the boundary of Q is less than s. A sequence (Qn) of bounded subsets of R

d is
called a van Hove sequence if |Qn|−1|∂sQn| → 0, n → 0 for every s > 0.

PROPOSITION 4.5. Assume that (�, T ) is a uniquely ergodic (r, R)-system with
invariant probability measure µ and A ∈ A(�, T ). Then, for any van Hove
sequence (Qn) it follows that

lim
n∈N

1

|Qn| tr(Aω|Qn
) = τ(A)

for every ω ∈ �.

Clearly, Aω|Q denotes the restriction of Aω to the subspace *2(ω∩Q) of *2(ω).
Note that this subspace is finite-dimensional, whenever Q ⊂ R

d is bounded.
We will use here the shorthand Aω(p, q) for the kernel associated with Aω.

Proof. Fix a nonnegative u ∈ Cc(R
d) with

∫
Rd u(x) dx = 1 and support con-

tained in Br(0) and let f (ω, p) := u(p). Then

τ(A) =
∫
�

tr(AωMu) dµ(ω)

=
∫
�

(∑
p∈ω

Aω(p, p)u(p)

)
dµ(ω)

=
∫
�

F(ω) dµ(ω),

where

F(ω) :=
∑
p∈ω

Aω(p, p)u(p)
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is continuous by virtue of [29], Proposition 2.5(a). Therefore, the ergodic theorem
for uniquely ergodic systems implies that for every ω ∈ �:

1

|Qn|
∫
Qn

F (ω + t) dt →
∫
�

F(ω) dµ(ω).

On the other hand,

1

|Qn|
∫
Qn

F (ω + t) dt = 1

|Qn|
∫
Qn

( ∑
p∈ω+t

Aω+t (p, p)u(p)
)

dt

= 1

|Qn|
∫
Qn

(∑
q∈ω

Aω(q, q)u(q + t)

)
dt

︸ ︷︷ ︸
In

by covariance of Aω. Since supp u ⊂ Br(0) and the integral over u equals 1, every
q ∈ ω such that q + Br(0) ⊂ Qn contributes Aω(q, q) · 1 in the sum under the
integral In. For those q ∈ ω such that q + Br(0) ∩ Qn = ∅, the corresponding
summand gives 0. Hence∣∣∣∣ 1

|Qn|
( ∑

q∈ω∩Qn

Aω(q, q) − In

)∣∣∣∣ � 1

|Qn| · #{q ∈ ∂2rQn} · ‖Aω‖

� C · |∂2rQn|
|Qn| → 0

since (Qn) is a van Hove sequence. ✷
A variant of this proposition also holds in the measurable situation.

PROPOSITION 4.6. Let µ be an ergodic measure on (�, T ). LetA∈ N (�, T ,µ)

and an increasing van Hove sequence (Qn) of compact sets in R
d with R

d = ⋃
Qn,

0 ∈ Q1 and |Qn −Qn| � C|Qn| for some C > 0 and all n ∈ N be given. Then,

lim
n∈N

1

|Qn| tr(Aω|Qn
) = τ(A)

for µ-almost every ω ∈ �.
Proof. The proof follows along similar lines as the proof of the preceding propo-

sition after replacing the ergodic theorem for uniquely ergodic systems by the
Birkhoff ergodic theorem. Note that for A ∈ N (�, T ,µ), the function F defined
there is bounded and measurable. ✷

In the proof we used ideas of Hof [14]. The following result finally establishes
an identity that one might call an abstract Shubin’s trace formula. It says that the
abstractly defined trace τ is determined by the integrated density of states. The lat-
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ter is the limit of the following eigenvalue counting measures. Let, for self-adjoint
A ∈ A(�, T ) and Q ⊂ R

d :

〈ρ[Aω,Q], ϕ〉 := 1

|Q| tr(ϕ(Aω|Q)), ϕ ∈ C(R).

Its distribution function is denoted by n[Aω,Q], i.e., n[Aω,Q](E) gives the num-
ber of eigenvalues below E per volume (counting multiplicities).

THEOREM 4.7. Let (�, T ) be a uniquely ergodic (r, R)-system and µ its er-
godic probability measure. Then, for self-adjoint A ∈ A(�, T ) and any van Hove
sequence (Qn),

〈ρ[Aω,Qn], ϕ〉 → τ(ϕ(A)) as n → ∞
for every ϕ ∈ C(R) and every ω ∈ �. Consequently, the measures ρQn

ω converge
weakly to the measure ρA defined above by 〈ρA, ϕ〉 := τ(ϕ(A)), for every ω ∈ �.

Proof. Let ϕ ∈ C(R) and (Qn) be a van Hove sequence. From Proposition 4.5,
applied to ϕ(A) = (ϕ(Aω))ω∈�, we already know that

lim
n∈N

1

|Qn| tr(ϕ(Aω)|Qn
) = τ(ϕ(A))

for arbitrary ω ∈ �. Therefore, it remains to show that

lim
n∈N

1

|Qn|
(

tr(ϕ(Aω)|Qn
)− tr(ϕ(Aω|Qn

))
) = 0. (∗)

This latter property is stable under uniform limits of functions ϕ, since both
ϕ(Aω|Qn

) and ϕ(Aω)|Qn
are operators of rank dominated by c · |Qn|.

It thus suffices to consider a polynomial ϕ.
Now, for a fixed polynomial ϕ with degree N , there exists a constant C = C(ϕ)

such that

‖ϕ(A)− ϕ(B)‖ � C‖A− B‖(‖A‖ + ‖B‖)N

for any A,B on an arbitrary Hilbert space. In particular,

1

|Qn|
∣∣ tr(ϕ(Aω)|Qn

)− tr(ϕ(Bω)|Qn
)
∣∣ � C‖Aω − Bω‖(‖Aω‖ + ‖Bω‖)N

and

1

|Qn|
∣∣ tr(ϕ(Aω|Qn

))− tr(ϕ(Bω|Qn
))

∣∣ � C‖Aω − Bω‖(‖Aω‖ + ‖Bω‖)N

for all Aω and Bω.
Thus, it suffices to show (∗) for a polynomial ϕ and A ∈ Afin(�, T ), as this

algebra is dense in A(�, T ). Let such A and ϕ be given.
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Let Ra the range of the kernel a ∈ C(X ×� X) corresponding to A. Since the
kernel of Ak is the k-fold convolution product b := a · · · a one can easily verify
that the range of Ak is bounded by N · Ra . Thus, for all p, q ∈ ω ∩ Qn such that
the distance of p, q to the complement of Qn is larger than N · Ra, the kernels of
Ak
ω|Qn

and (A|Qn
)k agree for k � N . We get:

((ϕ(Aω)|Qn
)δq |δp) = b(p, ω, q) = (ϕ(Aω|Qn

)δq |δp).
Since this is true outside {q ∈ ω ∩ Qn : dist(q,Qc

n) > N · Ra} ⊂ ∂N ·RaQn the
matrix elements of (ϕ(Aω)|Qn

) and ϕ(Aω|Qn
) differ at at most c · |∂N ·RaQn| sites,

so that

|tr(ϕ(Aω)|Qn
)− tr(ϕ(Aω|Qn

))| � C · |∂N ·RaQn|.
Since (Qn) is a van Hove sequence, this gives the desired convergence. ✷

The above statement has many precursors: [2–4, 31, 36] in the context of almost
periodic, random or almost random operators on *2(Zd) or L2(Rd). It generalizes
results by Kellendonk [17] on tilings associated with primitive substitutions. Its
proof relies on ideas from [2–4, 17] and [14]. Nevertheless, it is new in the present
context.

For completeness reasons, we also state the following result.

THEOREM 4.8. Let (�, T ) be an (r, R)-system with an ergodic probabiltiy mea-
sure µ. Let A ∈ A(�, T ) be self-adjoint (Qn) be an increasing van Hove sequence
(Qn) of compact sets in R

d with
⋃
Qn = R

d , 0 ∈ Q1 and |Qn −Qn| � C|Qn| for
some C > 0 and all n ∈ N. Then,

〈ρ[Aω,Qn], ϕ〉 → τ(ϕ(A)) as n → ∞
for µ-almost every ω ∈ �. Consequently, the measures ρQn

ω converge weakly to the
measure ρA defined above by 〈ρA, ϕ〉 := τ(ϕ(A)), for µ-almost every ω ∈ �.

The Proof follows along similar lines as the proof of the previous theorem with
two modifications: Instead of Proposition 4.5, we use Proposition 4.6; and instead
of dealing with arbitrary polynomials we choose a countable set of polynomials
which is dense in Cc([−‖A‖ − 2, ‖A‖ + 2]).

The primary object from the physicists point of view is the finite volume limit:

N[A](E) := lim
n→∞ n[Aω,Qn](E)

known as the integrated density of states. It has a striking relevance as the number
of energy levels below E per unit volume, once its existence and independence of
ω are settled.

The last two theorems provide the mathematically rigorous version. Namely,
the distribution function NA(E) := ρA(−∞, E] of ρA is the right choice. It gives
a limit of finite volume counting measures since

ρ[Aω,Qn] → ρA weakly as n → ∞.
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Therefore, the desired independence of ω is also clear. Moreover, by standard argu-
ments we get that the distribution functions of the finite volume counting functions
converge to NA at points of continuity of the latter.

In [30] we present a much stronger result for uniquely ergodic minimal DDS
that extends results for one-dimensional models by the first named author, [26].
Namely we prove that the distribution functions converge uniformly, uniform in ω.
The above result can then be used to identify the limit as given by the tace τ . Let
us stress the fact that unlike in usual random models, the function NA does exhibit
discontinuities in general, as explained in [20].

Let us end by emphasizing that the assumptions we posed are met by all the
models that are usually considered in connection with quasicrystals. In particular,
included are those Delone sets that are constructed by the cut-and-project method
as well as models that come from primitive substitution tilings.
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