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We give trace norm estimates for products of integral operators and for diffusion semigroups. These 
are applied to differences of heat semigroups. A natural example of an integral operator with finite 
trace which is not trace class is given. 

INTRODUCTION 

We prove two trace class criteria. The first, Theorem 1, provides an estimate for the trace 
norm of the product of two integral operators. The second, Theorem 3, concerns differences 
of diffusion semigroups. Both results are inspired by the same circle of problems, namely the 
search for trace estimates for differences of heat semigroups, which in turn are a powerful 
tool in the investigation of spectral properties of the associated Hamiltonians. The according 
applications are indicated in Section 3. Let us now give a little more details concerning the 
following sections. 

Section 1 is devoted to a proof of Theorem 1 which states that 

IIABIIr < /IIA[', ~]ll~llB[x, .Iliads(x), 

if A, B are operators with kernels A[., .], B[., .] and the L2-norms in the integral are assumed 
to exist. As one immediately notices, this includes the well-known case that  A, B are 
Hilbert-Schmidt,  but it is much more general: The kernels A, B do not even have to define 
bounded operators in L2. We then relate the above estimate to Corollary 2, which is the key 
to the results of the second section. There we treat differences of ultracontractive diffusion 
semigroups. The advantage of Theorem 3 in comparison with the results of [9] is the fact 
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that  we do not have to assume the validity of a Feynman-Kac  formula or even the existence 
of a stochastic process. This enables the easy application to Neumann boundary problems 
given in Corollary 5. We end the third section by giving an example which clarifies some 
aspects of the trace norm estimates for semigroup differences: We show that  an addit ional  
Dirichlet boundary  condition on a set of finite capacity can lead to a semigroup difference 
which is not trace class, but  is a Hi lber t -Schmidt  operator with finite trace. This shows 
that  a conjecture in [9] is wrong. Moreover it  appears to be the first "natural" example of 
an operator  with positive continuous kernel and finite trace which, nevertheless, is not trace 

class. 

1. I N T E G R A L  OPERATORS 

We assume throughout  that  (X, 92, m) is a cr-finite measure space and we are concerned with 
trace class operators on L2 = L2(X, 92, m) which we denote by ~1 = f131(L2). We use II" II~r 
for the trace norm on f131 and write (~2,  ('l ')HS) for the Hilbert  Schmidt operators,  where 

(A[B)Hs = trace(B'A). 

A measurable function A[., .] : X x X ~ C such that  

or, equivalently, 

i 
f 

A f(.) = J A[-, y]f(y)dm(y) 

is said to be a kernel for the operator A. 

THEOREM 1 
for a.e. x E X and 

Let A, B : X • X --* C be measurable such that A[., x], B[x, .] e L2 

j llA[',z][hllB[z,']l[#m(z) < ~. 

Then there is a trace class operator AB  : L2 --+ L2 with kernel 

Y] = [ A[x, z]B[z, y]dm(z) AB[x, 
J 

such that 

(1) 

f 
IIABI[~ ~ J II A[' z]ll~Hg[~, (2) 

PROOF. Set h(z) :-- NA[',~]I[~,g(~) :-- IIB[z,'IN~. With the convention g- l (~) :__ 0 where 
g(x) = O, we write Mg-~ for the corresponding multiplication operator.  It follows that  

AB = AMh-~ M(h~W~ M(hgW~ Mg-~ B. 
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However AMh-~M(hg)~/2 and M(hg)~/2Mg-~B are Hilbert-Schmidt operators because of 

/ dx / dzlA(x,z)h-l(z)(hg)l/2(z)l 2 

-~- f dx f dz[A(x,z)h-l/2(z)gl[2(z)[ 2 

=/g(z)h(z)dz < OG , 

and a similar computat ion for the kernel of M(hg)l/~Mg-1B. [] 

Remark: The est imate in (2) cannot be improved in general. There are examples where the 
right-hand side of (2) is equal to the trace norm. Take for instance 

A(x, y) = al(x)a2(y), B(x, y) = bl(x)b2(y), 

where ai, bi are positive functions on X. Moreover assume al, b~ e L2(X), f a2(z)bl(z)dz =: 
(a21bl) < ~ .  ThenAB is trace class and the estimate in (2) yields 

[[ABI[tT _< Ilal[[2[lb~[[e(aelbl). 

On the other hand 

> Ilalll llb211 (a lb ) = /IIA[',zlli llB[z, "]ll dm(z). 

COROLLARY 2 Let A E ?8(Lt, L2), B E ~(L~, LI) and assume that there exists 
a O in L1 such that ]Bfl <__ ~ for every f in the unit ball of L2. Then 

IIAell   < IIAH. I1r 

PROOF:  The Dunford-Pet t is  Theorem (as presented, e.g. in [6]) ensures the existence of a 
kernel for A s.t. 

esssup~exllA[', x][[2 = IIAII. 
Moreover, B admits  a kernel with the property 

/ x  liB[x, "]ll~dm(x) < II~l]t < ( x ) .  

In fact, let C := M~-IB. Then C maps L2 to L~  with norm less than 1. The Dunford-  
Pettis Theorem (applied to the adjoint C'  of C) implies the existence of a kernel such that  
esssupllC[x, ']ll~ < oo. Therefore, B[x,y] := O)(x)C[x,y] is a kernel for B with the asserted 
properties. Now an appeal to Theorem 1 gives the desired estimate. [] 

We want to remark that  Corollary 2 first appeared in a slightly different form [9] (with a 
proof that  relied on some abstract machinery). In the present form with a more elementary 
proof it was given in [10]. Corollary 2 will be the key to the results in the following section. 
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Apart  from its applications in Section 3, it proved to be a very useful tool in the spectral 
theoretic investigations of [10]. 

The following observation how Theorem 1 can be deduced from Corollary 2 is due 
to a referee, whose suggestion is gratefully acknowledged: 
Consider, in the notation from above, 

Af(x)  = / h(z)-~A[x,z]f(z)dm(z), [~f(z)= h(z) f B[z,y]f(y)dm(y). 

Then, under the assumptions of Theorem 2, Corollary 2 is applicable to A,/~ and yields the 
result of Theorem 1 as AB = AB. 

2. DIFFUSION SEMIGROUPS 

We call a semigroup U = (U(t);t > O) a diffusion semigroup if the following conditions are 
satisfied 

�9 V(t) E f~(L~) is positivity preserving for all t _> 0, i.e. U(t)f  >_ 0 for f > 0, t _> 0. 

�9 U(t) induces a bounded operator on Lp for all t > 0,p �9 [ 1 , ~ )  

�9 U(t) is self adjoint on L2 for t > 0. 

If furthermore,  

�9 U(t) induces a bounded operator from L1 to L~  for all t > 0 

we speak of an uItracontractive diffusion semigroup. To simplify notation, we denote by 
UAHp,q the norm of an operator from Lp to Lq and we use 

Lq := { f ; I f I  q �9 L1},llfliq := IIIflqtll 

for 0 < q < 1. There is a natural  order for positivity preserving semigroups which comes 
from the order of functions, namely 

V _< U :r gt  _> 0, f _> 0:  V(t ) f  < U(t)f. 

The main result of this section deals with differences of semigroups which obey this order 
relation. 

T H E O R E M  3 Assume that U, V are ultracontractive diffusion 
semigroups satisfying V < U and set D(t) := U(t) - V(t) for t >_ O. 
If  D(t)l �9 L1/2 for some t > 0 then 

IlU(2t) - V(2t)ll~ _< I]D(t)llll/=[ID(t)lf11(L(llU(t)l[~,~ + IIV(t)l]l,2). 

We single out one step in the proof of Theorem 3 which can be thought of as a Cauchy-  
Schwarz inequality for positivity preserving operators. For integral operators it can easily be 
deduced from the usual Cauchy-Schwarz inequality. In the proof below we make essential use 
of the existence of a lifting for a-finite measure spaces (see [6, 4] for background information). 
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LEMMA 4 Assume that A : Loo --+ Loo is positivity preserving and induces a 
bounded operator from L1 to Lo~. Then, for f E L2: 

[A f[ < (A1) ~/2. ( A(lf[2) ) ~/2. 

PROOF. Observe first that by interpolation A is also bounded from L2 to L~. 
Denote by ~ the essentially bounded measurable functions (not equivalence classes!). Since 
m is a-finite there exists a lifting A, by which we understand a linear multiplicative (hence 
order preserving) mapping 

A: L~ ----~ ~ ,  

such that Af  is a function in the equivalence class f .  For fixed x E X set 

q~: : L2 x L2 ~ C,q~(f ,g)  := A(A( f~) ) (x ) .  

As A is linear and positive, q, is a positive sesquilinear form. The Cauchy-Schwarz inequality 
implies 

IA(A(f~))(x)] <_ (A(Alf]e)(x)) 1/2. (A(A]g[2)(x)) ~/~ 

for all x E X. Since Af  is a representative of f ,  we may take g E L2, 0 _< g < 1 in the last 
inequality and obtain 

IA(Zg)l <_ (AIII~) 1/~. (A1) 1/:, 
since Ag 2 < A1. Approximating the constant function 1 from below by a sequence gn such 
that 0 < gn < 1,g~ E L2 and taking the limit n ~ ee gives the desired inequality. [] 

PROOF of Theorem 3. First note that, by the semigroup property of U and V, 

D(2t) = U(t)D(t)  + D(t )V( t ) .  

By Lemma 4, for Ilfll2 <~ 1, 

ID(t)f(x)l <~ (D(t ) l (x) ) l /2"(D(t )] f]2(x))  1/2 

< (D(t)I(x)) ' /2HD(t)HI(~ =: ~5(x). 

Hence we can apply Corollary 2 and obtain 

IlU(t)D(t)[lt,. ~ II~lll'llU(t)ll~,~ 
= IID(t)lll~#lID(t)lll!~Ilu(t)lll,2. 

By the same arguments 

I i D ( t ) V ( t ) l l ~  = 
< 

so that the asserted estimate follows. 

IlV(t)D(t)llr 
II D(t)lll~/z II D(t)II ~1!~ 2 II v(t)II 1,2, 

[] 
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3. APPLICATIONS AND EXAMPLES 

In this section we want to illustrate the above theorems by some applications. Although we 
are interested in more general Hamiltonians (see [2]) we restrict ourselves to the Laplacian on 
If{ d in order to keep preliminary definitions and technicalities at a minimum. We denote the 
heat semigroup by U(t) : =  e 1~2At and write D U A~, A~ for the Dirichlet, respectively Neumann 
Laplacian on an open set E C N d. The latter are selfadjoint operators on L2(E), and we 
extend the semigroups they generate in the obvious way to all of L2(N d) = L2(E) | L2(E ~) 
by setting U~ : =  e 1/2A~t @ 0. With the analogous notation for the Neumann operator we 
note in passing that 

u~ <_ u,v~ <_ u2, 

while U~ f U apart from trivial cases. While U, Uff are always ultracontractive (see [1], 
Section 2.1, especially Example 2.1.8), this is not the case for U N (the Neumann Laplacian 
need not even have compact resolvent). By Px we denote the Wiener measure for particles 
starting in x and get: 

COROLLARY 5 Let ez,t := P~{X, E E ~ for some s < t} for  any open E C R d. 

(1) IIU(2t) - UD(2t)It~ _< c ( t ) f  ~E,t(x)l/2dx. 

(2) I f  U x is ultracontractive, then 

I IU(2t) - U ~ ( 2 t ) l G  < c(t) / ~E,t(x)l/2dz. 

PROOF. By the Feynman Kac formula ([3]), 

V~(t) l (x)  = P 2 X s  e Z for an ~ < t} < X~. 

Consequently, 

(u(t) - u~(~))l(x) = 1 - llZ~{...} 

= F'x{Xs C E ~ for some s _< t}. 

Theorem 3 implies 
IIg(2t) - UxD(2t)llt~ < c(t)llr 

proving (1). I f ,  furthermore, U N is ultracontractive, we can apply Theorem 3 to the differ- 
ence U N - U D, since U~rl = Xx and therefore 

( u N ( t )  - u ~ ( t ) ) l  = r  

This yields (2). [] 

We would like to mention that the Neumann heat semigroup is ultracontractive if E has 
the extension property (see [1], Theorem 2.4.4, p. 77). Another way to prove part (2) of 
the above Corollary would be to apply the analysis of [9] to the Dirichlet form generated by 
the Neumann Laplacian. In order to do so, one faces technical problems related with the 
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existence of an associated process. 
In the situation of Corollary 5(1) it would be desirable to weaken the assumption on Cs,t to 
the requirement Cz,t E L1, since the latter is fulfilled for all sets E satisfying cap(E c) < oc 
(see the proof of the following lemma), which in turn is a quite natural  condition. In [9] 
the corresponding statement  was formulated as a conjecture. The following l emma and the 
subsequent example show, however, that  cap(E ~) < ec does not imply ]]U(t)-Uff(t)llt~ < e~. 
There is one more reason why we find this example quite interesting: From the results of 
[9] it is clear that  the semigroup difference in question is a Hilbert-Schmidt  operator with 
positive continuous kernel. Moreover, it is easy to see that  its trace is finite. Thus, according 
to a remark of Simon, [7], Remark 2, p. 37 one would expect it to be trace class, which is not 
the case. To introduce our example we have to recall the definition of the Birman-Solomjak 
space 

P 
Ii(L2) := { / :  R d ~ N; E ( [ _  If(x)12dx) 1/2 < (X3 } , 

aEZ~ J U  

where Ca denotes the unit cube centered at a; see [7], p. 55. 

LEMMA 6 Assume that F := E r satisfies cap(F) < e~ but Xr f[ ll(L2). Then 
r C L1 but e ( t )  - U~(t)  f[ f81 for any t > O. 

PROOF.  For the potential theoretic notions used in this proof we refer the reader 
to [5], Chapter  3. Recall that  

m i n { f  IV/I  2 + Ifl2dx; f G W 1'2, f >_ Xr}, cap(F)  

where f denotes the quasi-continuous representative of f .  The unique minimizing element 
er is called the 1-equilibrium potential of F and can be represented by 

er(x) = / G(x, y)d , r (y) ,  

where ur is a measure supported on P with total mass equal to the capacity of F, and G(x, y) 
is the kernel of ( - A  + 1) -1. Since f G ( x , y ) d x  -- ( - A  + 1)-11(y) = 1, 

, , e r l , l  = ffG(x,y)dur(y)dx 
= / ( f G ( x , y ) d x ) d u r  

= c a p ( r ) .  

(Put in potential  theoretic terms, this calculation proves the equality of the 1-Dirichlet 
capacity cap and the 1-Newtonian capacity.) Denote ~-(w) := inf{s > 0;X~(w) E F}, the 
first hitt ing t ime of F. Then 

= < t }  < - - }  = 

where we used [5], Lemma 4.3.1 in the last step. This proves the first assertion. If 
U(t) - UP(t) e fB1 for some t > 0, it follows that  xr (V( t )  - uD(t ) )  �9 fB1. Since 
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xF(U(t) - uD(t))  = xFU(t),  we may apply [7], Proposition 4.7, to deduce Xr E 11(L2)- 
[] 

EXAMPLE 7 I f  d > 5 and F := [.Jn B~,where B~ is a ball of radius r~ centered at (n, 0 . . . ,  O) 
with r~ _< 1/2 we have 

cap(r) _< c ~ ~-2 ffxrlra(L2) = c' V" re/2 r n  , ~ n " 

n 

For r~ = 1/2-n -2/d it follows that cap(F) < ec and Xr • 11(L2). Consequently~ U ( t ) - u D ( t )  
is Hilbert-Schmidt with finite trace but not trace class. 
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