Exercises Singularity Theory

1. (2 points) Show that for any $f \in \mathbf{m}_{\mathcal{R}_{n}}^{k}$ and any $l \in \mathbb{N}$

$$
\mu(f) \geq\binom{ n+k+l-1}{k+l-1}-n\binom{n+l}{l}
$$

(Hint: Start by proving that for all l one has $J_{f}+\mathbf{m}_{\mathcal{R}_{n}}^{k+l}=\mathcal{R}_{n}^{\leq l} \partial_{x_{1}} f+\ldots+\mathcal{R}_{n}^{\leq l} \partial_{x_{n}} f+\mathbf{m}_{\mathcal{R}_{n}}^{k+l}$ where $\mathcal{R}^{\leq l}$ denotes the space of polynomials of degree at most l.)
2. (3 points) Let k be an integer greater than 3 . Prove that every finitely determined germ in $x^{2} y+\mathbf{m}_{\mathcal{R}_{2}}^{k}$ is equivalent to one of the germs $x^{2} y \pm y^{l}, l \geq k$.
(Hints: (1) The determinacy of $x^{2} y \pm y^{l}$ is l. (2) Write a germ in $x^{2} y+\mathbf{m}_{2}^{k}$ in the form $x^{2} y+a y^{k}+$ $b x y^{k-1}+x^{2} q+$ rest where q is a degree $k-2$ homogeneous polynomial and rest means terms of degrees $>k$. Try to simplify the germ using the local diffeomorphism $\phi(x, y)=\left(x-\frac{b}{2} y^{k-2}, y-q\right)$.)
3. (3 points) Let k be an integer greater than 3. Prove that every finitely determined germ in $x^{3}+\mathbf{m}_{2}^{k}$ is equivalent to either one of the germs

$$
\varepsilon^{l-1}\left(x^{3}+y^{l}\right)
$$

or a germ in

$$
x^{3}+\varepsilon^{l} x y^{l-1}+\mathbf{m}_{2}^{l+1}
$$

where $\varepsilon= \pm 1$ and $l \geq k$.
(Hints: As in Exercise 2, write a germ in $x^{3}+\mathbf{m}_{2}^{k}$ in the form $x^{3}+a y^{k}+b x y^{k-1}+x^{2} q+r e s t$ where q is a degree $k-2$ homogeneous polynomial and rest means terms of degrees $>k$. Try to simplify the germ using the local diffeomorphism $\phi(x, y)=\left(x-\frac{1}{3} q, y\right)$.)
4. (6 points) Extend the classification of germs of smooth real functions to the case $\mu=6$, namely:
(a) Show that $\mu_{f}=6$ implies $k:=\operatorname{corank}(f) \in\{1,2\}$.
(b) If $k=1$, conclude that f is stably equivalent to x^{7}.
(c) If $k=2$, show that f is stably equivalent to $g \in \mathbf{m}_{2}^{3}$ that is 5 -determined.
(d) Write g as $g=p+h$ with p is a cubic form and $h \in \mathbf{m}_{2}^{4}$. You may assume that (see Vorlesung 11)

$$
p \in\left\{0, x^{3}, x^{2} y, x^{3}-x y^{2}, x^{3}+y^{3}\right\}
$$

Conclude that the only possibilities are $p \in\left\{x^{3}, x^{2} y\right\}$. (Hint: To show that $p \neq 0$ you may need Exercise 1).
(e) For $p=x^{3}$ use Exercise 3 above to show that g can only be equivalent to $\pm\left(x^{3}+y^{4}\right)$. (Hint: All the other possibilities can be ruled out using the fact that g is 5 -determined or by comparing the Milnor numbers.)
(f) For $p=x^{2} y$ use Exercise 2 to conclude that g can only be equivalent to $x^{2} y \pm y^{5}$.

To be handed in until Wednesday, December 13th 2017

